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By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-
Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the
CPT-even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order
chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting
rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate
Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we
derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We
also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to
obtain new limits from atomic-clock or deuteron storage-ring experiments.
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I. INTRODUCTION

The detection of an experimental signal corresponding to
the breakdown of Lorentz symmetry [1] would be a major
discovery and could potentially provide valuable informa-
tion about a possible theory of quantum gravity. Although
no such signal has been detected to date, there is still a large
interest in the possibility that Lorentz symmetry might be
violated in nature. This is caused by the fact that some
proposed models of quantum gravity involve mechanisms
that allow for (spontaneous) Lorentz violation (LV) at
Planck-scale energies [2]. Tiny remnants of such high-
energy LV might be detectable at experimentally attainable
energies, in particular because there is little experimental
background from conventional Lorentz-symmetric (LS)
physics for many of the corresponding signals.
Searches for LV are arguably [3] best performed in the

context of a realistic effective field theory (EFT) for general
LV, called the Standard-Model Extension (SME) [4]. Its
particle-physics Lagrangian contains all possible operators
that can be constructed using the conventional Standard-
Model fields, coupled to fixed background tensors. These
Lorentz-violating coefficients (LVCs) presumably originate
from an underlying fundamental theory that (spontane-
ously) breaks Lorentz symmetry. Being the most general
realistic EFT for Lorentz-symmetry breaking, the SME is
also the most general realistic EFT for CPT violation [5].
From a phenomenological point of view, the virtue of

the SME lies in the fact that it provides a means to explicitly
calculate observable signals for Lorentz-symmetry break-
ing, as well as a way to systematically identify uncon-
strained regions of the LV parameter space. As a
consequence, many stringent constraints on LVCs have
been obtained experimentally [6]. Particularly successful
in this respect are low-energy precision tests of nuclear
and hadronic systems, providing severe limits on various
effective nucleon and other hadronic parameters for LV.

However, since QCD is nonperturbative at the relevant
energies, deriving direct bounds on the more fundamental
quark and gluon parameters that appear in the SME
Lagrangian is complicated. This amounts to a relatively
small set of direct bounds on quark and gluon parameters [6].
A promising approach, that is aimed at remedying this

situation, is applying the well-established machinery of
chiral perturbaton theory (χPT) [7] to the QCD sector of the
SME [8,9]. It is similar in spirit to studies of the breaking of
parity [10] and of time-reversal symmetry [11]. In this
work, we extend this approach to the CPT-even pure-gluon
sector of the minimal Standard-Model Extension (mSME).
The latter is the restriction of the full SME to LVoperators
with mass dimension d ≤ 4. In Sec. II, we will introduce
the relevant mSME operator and discuss some pertinent
properties of the corresponding LVC: kμνρσG . In Sec. III, we
construct the induced chiral effective Lagrangian in terms
of the degrees of freedom that are relevant below the chiral-
breaking scale Λχ ≃ 1 GeV, i.e. the light mesons and
baryons. We will investigate the power-counting rules
and introduce the LV heavy-baryon Lagrangian in
Sec. IV, which we use to calculate the LV contribution
to the nucleon self-energy. Using the obtained Lagrangians,
in Sec. V, we will obtain the first bounds on 8 of the 19
independent components of the LVC from existing bounds
on effective neutron and proton parameters, while improv-
ing the existing limit on an additional component by 8
orders of magnitude. The power of the chiral perturbation
approach is exemplified by the observation that the
remaining ten components of kμνρσG do not induce any
kinetic nucleon terms. This leads us to conclude that
nucleon bounds cannot directly constrain these ten param-
eters to the desired level of accuracy. On the other hand,
such bounds can be obtained by considering contributions
of kμνρσG to a pure-photon operator. This will be considered
in Sec. VI. In Sec. VII, we show that additional and/or
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improved bounds might be obtained by considering
Cherenkov-like pion emission by protons and LV pion
exchange between nucleons and its effect on for example
the spin precession of the deuteron. Finally, in Sec. VIII,
we will summarize and present our conclusions.

II. PURE-GLUON CPT-EVEN
MSME LAGRANGIAN

In the mSME, there is one LV CPT-even coefficient that
couples to a pure-gluon operator. This operator has mass
dimension 4 and is given by [4]

L ¼ −
1

2
kμνρσG TrðGμνGρσÞ; ð1Þ

where Gμν ¼ 1
2
Ga

μνλ
a is the gauge field strength of the

SUð3Þ color gauge group (here, λa=2, with a ¼ 1;…; 8, are
the corresponding generators) and kμνρσG is a real tensor that
parametrizes the LV. The operator is even under charge
conjugation, and after either a parity or a time-reversal
transformation, it gains a factor ð−1Þμð−1Þνð−1Þρð−1Þσ,
with ð−1Þμ ¼ 1 if μ ¼ 0 and ð−1Þμ ¼ −1 otherwise.
In addition to this CPT-even operator, there is one CPT-

odd gluon operator of mass dimension 3 in the mSME.
However, it is associated with negative and imaginary
contributions to the energy. Although it has recently been
shown that consistent quantization is nevertheless possible
for the analogous photon parameter upon introducing an
unobservably small photon mass [12], we will ignore the
CPT-odd gluon term in the present case.
The coefficient kμνρσG in Eq. (1) is real and has the

symmetries of the Riemann curvature tensor, i.e.

kμνρσG ¼ −kμνσρG ¼ kρσμνG ; kμ½νρσ�G ¼ 0; ð2Þ

where the square brackets indicate total antisymmetrization
of the enclosed indices. The second relation holds for
antisymmetrization of any group of three indices. It follows
from the fact that, using the first two relations in Eq. (2),

we can write kμ½νρσ�G ¼ 1
24
ϵαβγδk

αβγδ
G ϵμνρσ. Therefore, a cor-

responding nonzero part of kμνρσG does not violate Lorentz
symmetry and can be absorbed in the conventional θ̄ term
of QCD. Additionally, we can take kμνρσG to have a
vanishing double trace, i.e. ðkGÞμνμν ¼ 0, since such a
trace part also does not violate Lorentz invariance and can
be absorbed in the conventional LS gauge term.
These considerations show that kμνρσG has 19 independent

real, physical, and LV components. These can be grouped
into two groups of nine and ten parameters, respectively,
by decomposing kμνρσG as

kμνρσG ¼ Eμνρσ þWμνρσ; ð3Þ

where

Eμνρσ ¼ 1

2
ðημρkνσ þ ηνσkμρ − ηνρkμσ − ημσkνρÞ; ð4aÞ

kμν ¼ ηαβk
μανβ
G ; ð4bÞ

and ημν is the Minkowski metric tensor. This decomposition
is similar to the Ricci decomposition of the Riemann
curvature tensor, with Eμνρσ the semitraceless part built
in terms of the Ricci curvature kμν and Wμνρσ the fully
traceless Weyl tensor (the would-be Ricci scalar vanishes
because kμνρσG is doubly traceless). A convenient way of
writing Eμνρσ and Wμνρσ is

Eμνρσ ¼ 1

2
ðkμνρσG þ k̆μνρσG Þ;

Wμνρσ ¼ 1

2
ðkμνρσG − k̆μνρσG Þ; ð5Þ

with k̆μνρσG ¼ 1
4
ϵμναβϵρσγδðkGÞαβγδ and ϵμνρσ the Levi-Cività

tensor with ϵ0123 ¼ þ1. Some additional intuition can be
gained by comparing kμνρσG to itsUð1Þ photon analog, kμνρσF ,
which has been studied in much greater detail than kμνρσG .
Using Eq. (5), it is easy to see that the ten independent
components of Wμνρσ are the gluon analogs of the bire-
fringent components of kμνρσF , which cause the vacuum to
have an effective refractive index [13]. In contrast, the nine
independent components of Eμνρσ should be compared to
the nonbirefringent part of kμνρσF [13]. Both Eμνρσ andWμνρσ

obey Eq. (2).
Presently, the only reported bound on kμνρσG is obtained

through quantum mixing of kμν with the LVC cμν of the
electron [14]. The resulting bound is given by

j~ktrj ¼
2

3
jk00j < 4 × 10−15: ð6Þ

This leaves 18 of the 19 independent CPT-even mSME
pure-gluon parameters unbounded. However, one expects
at least some of them to contribute to effective LV
parameters for nucleons and hadrons, for which stringent
limits have been obtained [6]. Therefore, we will consider
the EFT of QCD, chiral perturbation theory, which is
formulated in terms of these (effective) degrees of freedom.

III. EFFECTIVE CHIRAL LAGRANGIAN

We construct the low-energy effective chiral Lagrangian
corresponding to Eq. (1) in the formalism of Gasser
and Leutwyler [15]. For a pedagogical introduction, see
Ref. [16]. As any approach to χPT, it is based on the
observation that the QCD Lagrangian, containing only
gluons and the lightest three quarks, is approximately
invariant under global SUð3ÞL × SUð3ÞR ×Uð1ÞV trans-
formations of the quark fields [disregarding the axialUð1ÞA
symmetry, which is broken by quantum anomalies]. From
the absence of parity doubling in the hadron spectrum, one
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deduces that the axial SUð3ÞA part of the SUð3ÞL × SUð3ÞR
symmetry must be spontaneously broken, leaving
SUð3ÞV × Uð1ÞV as the remaining symmetry group. The
pseudo-Goldstone bosons associated with the symmetry
breaking are identified with the light JP ¼ 0− mesons,
which have a small mass compared to the JP ¼ 1− vector
mesons and the JP ¼ 1

2
þ baryons. The nonzero masses of

the pseudoscalar mesons originate from the fact that in the
QCD Lagrangian the SUð3ÞA symmetry is explicitly
broken by the (small) quark masses.
The effective Lagrangian is constructed in terms of the

low-energy degrees of freedom, i.e. the light-meson fields
and the baryons, such that it contains all possible operators
that obey the symmetries of the QCD Lagrangian [7].
To correctly implement these symmetries, the light-meson
fields are collected in the unitary matrix

U ¼ expðiϕaðxÞλa=F0Þ; ð7Þ

where ϕa are the pseudo-Goldstone fields, λa are the
Gell-Mann matrices, and F0 ≃ Λχ=ð4πÞ is the pion-decay
constant in the limit of vanishing quark masses, i.e. the
chiral limit. The matrix U transforms as

U → RUL† ð8Þ

under chiral transformations. Here, the global matrices
R and L are independent SUð3Þ matrices. We disregard
interactions with external fields in this work, since they
appear only in higher-order effects (however, see Sec. VI).
Consistent introduction of such interactions would require
Eq. (8) to become a local transformation.
To apply the QCD symmetries to the effective baryon

Lagrangian, one defines the unitary square root of the
matrix U in Eq. (7) by u, i.e. u2 ¼ U. The chiral trans-
formation of u leads to the definition of the unitary matrix
K ¼ KðL;R;UÞ by u → u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
RUL†

p ≡ RuK−1, or
K ¼ ðRUL†Þ−1

2Ru ¼ u0†Ru ¼ u0Lu†. Subsequently, the
1
2
þ baryon octet, described by eight Dirac spinors Ba, with
a ¼ 1;…; 8, is represented by the traceless 3 × 3 matrix

B ¼ Baλaffiffiffi
2

p ; ð9Þ

that transforms under global SUð3ÞL × SUð3ÞR as

B → KBK†: ð10Þ

The chiral covariant derivative of B is defined using the
chiral connection Γμ ¼ 1

2
½u†∂μuþ u∂μu†� and is given by

DμB ¼ ∂μBþ ½Γμ; B�: ð11Þ

The final building block of the Lagrangian we need is the
chiral vielbein, given by

uμ ¼ i½u†∂μu − u∂μu†�; ð12Þ

that transforms as uμ → KuμK† under chiral transforma-
tions. Both Γμ and uμ become dependent on external fields,
when one includes them.
Based on the chiral-transformation properties of the

different building blocks of the Lagrangian, one builds
all operators that have the symmetry properties of the QCD
Lagrangian. These operators can be ordered by powers of
the expansion parameter q=Λχ, where q ∼mπ ≪ Λχ is the
typical momentum of the process. We will discuss the
power counting in more detail in the next section.
The lowest-order light-meson and baryon Lagrangians

are then given by [15,17,18]

Lϕ ¼ F2
0

4
Tr½∂μUð∂μUÞ†� þ F2

0B0

2
Tr½MU† þUM†�;

ð13aÞ

LϕB ¼ Tr½B̄ðiD −m0ÞB� þ
D
2
Tr½B̄γμγ5fuμ; Bg�

þ F
2
Tr½B̄γμγ5½uμ; B��; ð13bÞ

respectively. Here, M ¼ diagðmu;md;msÞ is the quark-
mass matrix. The mass term in the QCD Lagrangian
breaks chiral symmetry. However, it would be invariant
under chiral transformations if M would transform as
M → RML†. This property is mimicked by Eq. (13a), and
it exemplifies how symmetry-breaking terms are incorpo-
rated into the formalism [17].
Furthermore, B0, D, and F are low-energy constants

(LECs) of which the size cannot be determined using
symmetry arguments. However, an order-of-magnitude
estimate can be given, using naive dimensional analysis
(NDA) [19]. In this case, NDA gives B0 ¼ OðΛχÞ, which
leads for example tom2

π ¼ Oððmu þmdÞΛχÞ, which agrees
fairly well with the actual pion mass. For this reason, an
insertion of the quark-mass matrix in the Lagrangian counts
as Oðq2Þ for the power counting. The coefficients D and
F are experimentally determined to be D ¼ 0.80 and
F ¼ 0.50 (at tree level) [20]. This also agrees well with
NDA estimates, which give D;F ¼ Oð1Þ.
In the same way the conventional QCD Lagrangian

gives rise to a LS low-energy effective Lagrangian, the LV
operators in the QCD sector of the SME can be related
to effective operators in a LV chiral Lagrangian [8,9]. Being
a pure-gluon operator, Eq. (1) is trivially invariant under
chiral transformations of the quark fields, while its discrete-
symmetry properties are described below Eq. (1). Knowing
the transformation properties of the building blocks of the
chiral Lagrangian (an overview of their discrete-symmetry
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properties can be found for example in Ref. [21]), we
can find the lowest-order relevant effective operators that
capture the chiral invariance, as well as the C, P, and T
characteristics of Eq. (1). They are given by

LkG
ϕ ¼ F2

0r1
4

kμνTr½ð∂μUÞ†∂νU�; ð14aÞ

LkG
ϕB ¼ ir2kμνTr½B̄γμDνB� þ ir3

2m0

~WμνρσTr½B̄σμν½uρ; DσB��

þ ir4
2m0

~WμνρσTr½B̄σμνfuρ; DσBg�; ð14bÞ

where ~Wμνρσ ¼ ϵμναβWαβ
ρσ. Additional operators with the

correct symmetry properties can be constructed at the
present chiral order. However, they can all be shown to
be redundant up to higher-order terms, using the leading-
order equations of motion [8,22] or by using symmetries of
the Lorentz indices of the LV coefficients. We omitted
any pure-pion terms involvingWμνρσ, since they are at least
two orders higher in the chiral expansion than the term in
Eq. (14a). This is easily understood by realizing that pion-
field derivatives are the only objects carrying a Lorentz
index (in the absence of external fields). In the final two
terms of Eq. (14b), we included a factor 1=m0 such that
NDA designates all LECs r1;…; r4 to be of order Oð1Þ.
For applications to experimental observations, the

explicit lowest-order operators in terms of the physical
pion and nucleon fields are the most likely to be relevant
(although applications of the three-flavor case might be
found in for example kaon physics [23]). They can be
found directly from Eqs. (13) and (14) and are given by

Lπ ¼
1

2
ð∂μπÞ · ð∂μπÞ −

1

2
m2

ππ2; ð15aÞ

LπN ¼ N̄

�
iD −mN −

gA
2Fπ

γμγ5ðτ · ∂μπÞ
�
N; ð15bÞ

LkG
π ¼ r1

2
kμνð∂μπÞ · ð∂νπÞ; ð15cÞ

LkG
πN ¼ ir2kμνN̄γμ∂νN þ i

r3 þ r4
2mNFπ

~WμνρσN̄σμνðτ · ∂ρπÞ∂σN;

ð15dÞ

where N ¼ ðp; nÞT is the nucleon doublet, τ · π ¼�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0
�
, and Fπ ¼ 92.4 MeV is the pion-decay

constant. Strictly speaking, the LECs for these two-flavor
operators are not the same as the ones in Eqs. (13) and (14),
since they receive correction when one integrates out the
heavier particles. A determination of the relation between
the two sets of LV LECs requires a matching of the two-
and three-flavor theories, along the lines of Refs. [15,24],

where relations for the LS LECs can be found. This lies
outside the scope of the present considerations. However,
since we cannot determine the LECs for the LV operators
better than to an order-of-magnitude level anyway, the
distinction between two- and three-flavor LECs for LV is
not very relevant at present, and we will denote them by the
same symbol.
An important observation is that the fully traceless tensor

Wμνρσ does not contribute to any kinetic pion or nucleon
terms [nor to any other kinetic terms in Eqs. (13a) and
(13b)]. This is reminiscent of a different LVC that was
considered in Ref. [8]. As in that paper, also here it has
great consequences for the way limits can be set on Wμνρσ.
As we will see, for kμν we can set limits using the very
precise bounds that follow from clock-comparison experi-
ments [6]. However, to leading order, these do not pertain
toWμνρσ, because it does not contribute to properties of free
protons and neutrons.

IV. POWER COUNTING AND THE
HEAVY-BARYON APPROACH

A consistent power-counting scheme is necessary to turn
the obtained effective theory into a practical tool. We have
to know which (loop) diagrams contribute if a certain level
of precision is required. To quantify this, one first defines
the chiral index Δ, which represents the importance of an
operator in the Lagrangian [7,15]. In terms of this chiral
index, a chiral dimension ν is defined, which specifies the
significance of a renormalized Feynman diagram. A dia-
gram of chiral dimension ν will contribute at order OðqνÞ,
where q is a small quantity of the order of the pion mass.
In the Lorentz invariant case, the chiral index for

operators with at most two baryon fields is given by

Δ ¼ dþ f=2 − 2; ð16Þ

where f ≤ 2 counts the number of baryon fields and d
is determined by the number of (covariant) derivatives
plus twice the number of light-quark masses (since mq is
proportional to m2

π). For a LV operator, we use the same
definition of the chiral index. This does not directly account
for the presence of the small LVC. However, since the
coefficients for LV must be heavily suppressed, the LS
contributions will essentially always dominate over the LV
ones, at least for energies that are relevant in the present
context. Therefore, one never needs to compare chiral
indices of LV interactions to those of LS interactions.
A generic diagram will now contribute at the following

chiral order [25],

ν ¼ 2NL þ IB − NB þ 2þ
X
i

Δi; ð17Þ

whereNL, IB, andNB are the number of independent loops,
internal baryon lines, and the total number of baryon
vertices, respectively, while i runs over the different
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interactions that contribute to the diagram. For diagrams
with exactly one baryon in the initial and final states, it
holds that NB ¼ IB þ 1 (there are no closed fermion loops
in the low-energy EFT), and ν becomes

ν ¼ 2NL þ 1þ
X
i

Δi: ð18Þ

Again, with a LV insertion, the diagram will be suppressed
with respect to any diagram without such an insertion, and
we can use the same definition of ν for LV diagrams.
It is well known that the diagrams in relativistic meson-

baryon theory only obey the power counting in Eq. (18) if
the theory is properly renormalized [26]. Otherwise, loop
calculations will receive contributions of order m0, which
is not a small quantity; in fact, m0=Λχ ¼ Oð1Þ. These
contributions will upset the power counting in Eq. (18).
This holds for LS as well as LV loop diagrams. For
example, the nucleon self-energy will receive a contribu-
tion from the diagram in Fig. 1(b), which involves a LV
insertion in the pion propagator, originating from Eq. (15c).
The power counting predicts that this diagram will start to
contribute at order OðqνÞ ¼ Oðq3Þ. However, if we calcu-
late the value of the diagram using dimensional regulari-
zation, we find that it gives a term

ΣLVðp2 ¼ m2
phÞ ¼

�
~g2Am

3
π

16πm2
N
~F2
π

−
~g2Am

2
π

16π2mN
~F2
π

�
r1kμνpμpν

þ � � � ; ð19Þ

where pμ is the nucleon momentum, mph denotes the
physical nucleon mass (to order q3), the tildes indicate
renormalized quantities, and the dots represent other LV
contributions (not necessarily of higher order). We
employed the modified minimal substraction scheme of
chiral perturbation theory [15], commonly denoted by gMS,
and for simplicity took the renormalization parameter
μ ¼ mN . The first term in parentheses indeed is of order
Oðq3Þ, as one would expect from Eq. (18). However, the
second term is of order Oðq2Þ and thus does not obey the
assumed power counting. This already happens in the LS
case, where a similar contribution to the nucleon mass
appears when thegMS scheme is employed in the relativistic
theory to calculate the nucleon self-energy [26]. The power

counting can be made consistent by absorbing additional
finite terms by counterterms. Infrared regularization [27]
and the extended on-mass-shell scheme [28] are examples
of a systematic application of such an approach. However,
here we will employ a different approach called heavy-
baryon chiral perturbation theory (HBχPT) [29].
The fact that the power counting is upset in the

relativistic theory in the gMS scheme can be traced to the
fact that the baryon mass is not small, i.e. time derivatives
of the (static) heavy-baryon fields are of order m0=Λχ ¼
Oð1Þ [while all other terms in the baryon covariant
derivative are of order OðqÞ]. To remedy this, in the
heavy-baryon formalism, the nucleon momentum is
usually separated into a large and a small piece like
pμ ¼ m0vμ þ kμ, where vμ represents a fixed baryon
velocity, which obeys v2 ¼ 1, and kμ is a small residual
momentum. For the LS case, kμ also parametrizes how far
the nucleon is off shell, since p2 ¼ m2

0 if k ¼ 0. However,
in the LV case, the dispersion relation of the baryons, which
follows from Eqs. (13b) and (14b), is ~p2 ¼ m2

0, with
~pμ ¼ pμ þ r2kμνpν. It is therefore more convenient to
define the momentum separation by

~pμ ¼ m0vμ þ ~kμ; ð20Þ

where v2 ¼ 1 still holds, ~kμ ¼ kμ þ r2kμνkν, and kμ

remains to be a small residual momentum. It follows that

v · ~k ¼ − ~k2

2m0
. We then define a new heavy-baryon field by

Bv ¼
1

2
ð1þ vÞeim0v̂μxμB; ð21Þ

with v̂μ defined such that ðημν þ r2kμνÞv̂ν ¼ vμ, i.e. to
leading order (LO) in LV v̂μ ¼ ðημν − r2kμνÞvν. Derivatives
of these fields will give the small residual momentum
such that all derivatives can be counted as OðqÞ. The
baryon propagator no longer contains the large baryon
mass. This causes loop diagrams to obey the power
counting in Eq. (18) without absorbing any finite terms
by counterterms. Additionally, in HBχPT, the Dirac matri-
ces can be eliminated in favor of the simpler velocity vμ and

the covariant spin vector Sμ ¼ i
2
γ5σμνvν with S ¼ ð0; ~Σ=2Þ,

~Σ ¼ γ5γ0~γ, for v ¼ ð1; ~0Þ. The lowest-order Lagrangian for
the heavy-baryon fields, corresponding to Eqs. (13b) and
(14b), becomes

LHB ¼ Tr½B̄ðiv · ∂ÞB� þDTr½B̄Sμfuμ; Bg�
þ FTr½B̄Sμ½uμ; B�� þ � � � ; ð22aÞ

LkG
HB ¼ ir2kμνTr½B̄vμ∂νB� þ 2r3WμνρσvμvσTr½B̄Sν½uρ; B��

þ 2r4WμνρσvμvσTr½B̄Sνfuρ; Bg� þ � � � ; ð22bÞ

where we dropped the subscript v on Bv. We only kept
the leading term for each LVC, and the dots represent

(a) (b) (c)

FIG. 1. Three loop diagrams that contribute to the nucleon self-
energy. The dots represent conventional χPT vertices, while the
squares represent (different) LV insertions into the pion and
nucleon propagators. The solid (dashed) lines are nucleon (pion)
propagators. The first loop diagram (a) corresponds to the conven-
tional diagram without LV. The second (b) and third (c) diagrams
involve a LV vertex from Eqs. (15c) and (15d), respectively.
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the higher-order terms and terms with more pions. The
propagator of the baryon field becomes i=ðv · ~kÞ, which
indeed no longer contains a contribution from m0. In terms
of nucleon and pion fields, the HBχPT Lagrangian is

LHB ¼ N̄ðiv · ∂ÞN −
gA
Fπ

N̄Sμðτ · ∂μπÞN þ � � � ; ð23aÞ

LkG
HB ¼ ir2kμνN̄vμ∂νN þ 2ðr3 þ r4Þ

Fπ

×WμνρσvμvσN̄Sνðτ · ∂ρπÞN þ � � � ; ð23bÞ

where we again only kept the LO terms with the minimum
number of pions.
If we now calculate the contribution of the three diagrams

in Fig. 1, using the new HBχPT Lagrangian, we get

Σ ¼ 3g2Am
3
π

32πF2
π

�
1 −

�
r2 −

5

6
r1

�
kμνvμvν

�
; ð24Þ

which only contains terms of orderOðq3Þ. This shows that in
HBχPT these diagrams thus obey the power-counting rule in
Eq. (18) (at least to the present order), as expected.

V. LIMITS FROM NUCLEON OBSERVABLES

The best limits on the semitraceless part of kμνρσG come
from the fact that it contributes to the effective cμν

parameter for the proton and the neutron. In other words,
the first operator in Eq. (15d) has the form icμνψ̄γμ∂νψ , and
this operator has been studied intensively for the cases in
which ψ represents the proton or the neutron. The bounds
on the components of the neutron and proton cμν translate
almost directly to bounds on the corresponding compo-
nents of kμν.
One has to keep in mind, however, that the operator in

Eq. (15d) contains a LEC r2 of which the size can only be
estimated by NDA. Moreover, the effective cμν parameters
for the proton and neutron will receive additional contri-
butions from other LV coefficients with the same symmetry
properties, in particular from several quark parameters,
discussed in Ref. [9]. It is impossible to completely
disentangle the contributions from different coefficients,
using just the proton and neutron bounds. The best one can
do is obtain a bound on the isospin even (odd) part of cμν by
considering the sum (difference) of the neutron and proton
coefficients (kμν contributes to the isospin-even part).
On the other hand, it seems hard to imagine that the

contributions from different LVCs conspire to cancel to the
level of the stringent proton and neutron bounds, especially
because they all come with LECs that are not related by
symmetry arguments. To be conservative, we have there-
fore set an order of magnitude bound on the components of
kμν that is 2 orders of magnitude weaker than the best
bound on the corresponding proton or neutron parameter.

The results are summarized in Table I. In fact, only nine of
the ten components in the table are independent, since we
did not incorporate the tracelessness of kμν.

VI. LIMITS FROM PHOTON OBSERVABLES

In this section, we look at the fully traceless part of
kμνρσG , defined in Eq. (3). As can be seen from Eqs. (14a)
and (14b), there are no kinetic terms in the lowest-order
Lagragian when one does not include external fields.
However, upon inclusion of electromagnetic fields,
Wμνρσ induces the operator

LEM ¼ rFWμνρσFμνFρσ; ð25Þ

with Fμν the photon field strength. This operator is thus
generated by quark and gluon loop corrections to the
photon propagator [such corrections were used in
Ref. [14] to obtain the bound in Eq. (6)]. The lowest-order
Feynman diagram that induces this operator involves a
quark loop in the photon propagator, where a gluon is
exchanged between the internal quark lines. Therefore, the
NDA estimate for the LEC rF is given by rF ¼ Oðα=ð4πÞÞ,
with α the fine-structure constant. The operator in Eq. (25)
has exactly the same form as a photon operator [4] that
involves the parameter kμνρσF . The fully traceless part of this
coefficient, defined as in Eq. (3), causes birefringence
of light in vacuum [13]. By investigating the light from
distant gamma-ray bursts, very stringent limits have been
set on the birefringent part of kμνρσF , which we denote here
by Wμνρσ

F . We see now that these bounds are actually
bounds on Wμνρσ

F þ rFWμνρσ. Because of the symmetry
properties in Eq. (2), these are the only CPT-even mSME
coefficients that, to leading order in LV, contribute to
birefringent effects in photons [34].
Using bounds on birefringent photon coefficients [35],

one can thus obtain bounds on certain combinations of
components of Wμνρσ. We conservatively estimate these
bounds to be 5 orders of magnitude weaker than the limits
on kμνρσF , i.e. 3 orders to account for rF ¼ Oðα=ð4πÞÞ and 2
orders for the uncertainty in rF and partial cancellations

TABLE I. Order-of-magnitude bounds on the LV components
of kμν ¼ ηαβk

αμβν
G in the Sun-centered inertial reference frame [6],

with J; K ∈ fX; Y; Zg. In the right-most column, we reference
the papers where the corresponding bounds on cμν for the proton
or the neutron were obtained.

Tensor component Limit References

kTT 10−21 [30,31]
kTJ 10−19 [32]
kJK 10−27 [33]
kXX; kYY 10−27 [33]
kZZ 10−20 [32]
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between coefficients. The resulting bounds are collected in
Table II.
These limits are not independent; in fact, they essentially

come from just three measurements. However, any further
cancellation between the different components seems
unlikely. Using Eq. (5), one can easily translate Table II
to the corresponding limits on kμνρσG . One finds that, of the
components of Wμνρσ in Table II, the top row corresponds
to kaG ¼ k1G; k

2
G; k

8
G; k

9
G; k

10
G , respectively, while the bottom

row corresponds to k3G;…; k7G, respectively, with

kaG ¼ ðk0213G ; k0123G ; k0202G − k1313G ; k0303G − k1212G ;

k0102G þ k1323G ; k0103G − k1223G ; k0203G þ k1213G ;

k0112G þ k0323G ; k0113G − k0223G ; k0212G − k0313G Þ; ð26Þ

defined analogously to ka for the photon [13].

VII. POTENTIAL IMPROVEMENTS

The limits in Tables I and II are already quite strict.
In fact, they can seem more than sufficient, when one
compares them to a reasonable guess for the size of the
dimensionless LVCs:Mew=Mpl ≃ 10−16 withMew andMpl

the electroweak scale and the Planck scale, respectively.
However, one does not know what mechanism, if any,
would induce these operators and what the associated mass
scales are. There are even models where the LV parameters
scale with some power of the temperature of the Universe
[36]. Also, all bounds on kμν are based on one operator and
therefore depend on one (renormalized) LEC. Similarly, all
bounds onWμνρσ depend on rF (plus loop corrections). It is
desirable to get bounds from different effective operators
that involve the same LVCs but different (renormalized)
LECs. We consider one option for each coefficient in the
following.

A. kμν and Cherenkov-like pion emission

In addition to the nucleon operator in Eq. (15d), the
semitraceless part of kμνρσG also induces the kinetic pion
operator in Eq. (15c). Such a pion operator has been studied
before on several occasions [37,38]. One of the potential
observational consequences of this operator is that it
induces an effective refractive index for the vacuum, in
the sense that the maximal attainable velocity of the pion
will be smaller or larger than the speed of light (see e.g.
Ref. [38]). If the coefficients have the correct sign, then

Cherenkov-like processes can occur; e.g. protons with an
energy above some threshold Eth will start emitting
(neutral) pions until their energy falls below Eth.
An easy way to see this is by realizing that such a process

requires the pion to have a spacelike momentum. For
simplicity, we assume that the proton has a conventional
kinetic term. Four-momentum conservation implies that
p2 ¼ 2ðm2

p − qi · qfÞ, with p the pion momentum and qi
(qf) the initial (final) proton momentum. It follows that the
pion must have spacelike momentum, since qi · qf ≥ m2

p

by the standard Minkowski inequality for timelike four-
vectors. Furthermore, the LV dispersion relation for the
pion, which follows from Eq. (15c), is given by
p2 þ r1kμνpμpν −m2

π ¼ 0, and therefore the pion thresh-
old condition for spacelike momenta becomes

j~pj > mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1kμνp̂μp̂ν

p ; ð27Þ

with p̂μ ¼ pμ=j~pj. Clearly, this is only a physical threshold
if r1kμνp̂μp̂ν > 0, and therefore one can never obtain a
complete set of limits from Cherenkov-like processes,
because the “wrong” sign for the coefficients does not
allow for spacelike momenta. For that sign, the decay is
kinematically forbidden, no matter how large the coeffi-
cients are.
The best sensitivity we can get for the LVC comes from

considering ultra-high-energy cosmic-ray protons, which
are seen to arrive on Earth with energies above several tens
of EeVs from more or less all directions [39]. These proton
energies must be below the threshold in Eq. (27); other-
wise, the protons would have decayed. This means that we
can obtain a (one-sided) sensitivity for kμν of

r1kμνp̂μp̂μ ≲ m2
π

E2
crp

∼ 10−23; ð28Þ

with Ecrp the cosmic-ray proton energy. This has the
potential to improve at least some of the limits in Table I.
Notice that actually obtaining limits from Cherenkov-

like processes requires some theoretical work. Strictly
speaking, one has to calculate the actual emission rate
and demonstrate that it does not vanish (or is too small).
This seems unlikely, since it is easy to verify that the square
of the relevant matrix element obeys

jMj2 ∝ −
g2Am

2
p

F2
π

p2; ð29Þ

which implies a very large decay rate for spacelike
momenta (an explicit expression for the matrix element
for Cherenkov-like pion emission from photons was found
in Ref. [38]). The kinematics, however, makes the phase
space integrals rather involved, placing the calculation

TABLE II. Order-of-magnitude bounds on the LV components
ofWμνρσ in the Sun-centered inertial reference frame [6], obtained
by comparing to results in Ref. [35].

Tensor components Limit
1
2
WTYXZ; 1

2
WTXYZ;WTXXY;WTXXZ;WTYXY 10−34

WTYTY;WTZTZ;WTXTY;WTXTZ;WTYTZ 10−35
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of the total decay rate outside the scope of this work.
Notice that, in obtaining Eq. (29), we assumed that
there exists an observer frame where all energies are below
Λχ such that the chiral-perturbation-theory Lagrangian is
valid. Since pμ is spacelike, we can go the frame where

p ¼ ð0; ~pÞ. Momentum conservation then implies that qi ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ 1
4
~p2

q
; 1
2
~pÞ and qf ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ 1
4
~p2

q
;− 1

2
~pÞ. In this

frame, the pion dispersion relation implies that
j~pj ¼ mπffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cijp̂ip̂j−1
p , which is in the order of the pion mass

if cijp̂ip̂j is not too close to unity. This shows that there
exist at least some scenarios in which all involved momenta
are below Λχ. Otherwise, the emission rate is still not likely
to vanish, but it becomes even harder to calculate.
More importantly than calculating the exact decay rate,

one has to verify that the theory with spacelike momenta
can be made consistent, since spacelike momenta corre-
spond to negative energies in some observer frames
(notably the rest frame of the decaying particle).
Moreover, for some values of the coefficients, the energy
becomes complex valued at high momenta (see Ref. [40]
for a thorough discussion of these problems in LV fermion
theories). For low-energy processes, one can ignore such
issues by conjecturing that higher-dimensional operators
that will save the theory at large energies exist [40].
However, when considering Cherenkov-like processes,
one is explicitly making use of the existence of spacelike
momenta. If higher-dimensional operators prevent these
momenta from occurring, they prevent the very process
that was used to obtain Eq. (28), hence invalidating it.
For a different LVC, it has been shown that a theory with
spacelike momenta can nevertheless be quantized and does
not contain runaway stability issues [12]. We suspect that
this is possible as well for some forms of kμν. This remains
to be shown, however.

B. Wμνρσ and the nucleon-nucleon potential

The fully traceless part of kμνρσG does not appear in any
kinetic term for baryons or light mesons. The lowest-
order term allowed by all the symmetries is the one in
Eq. (15d), which is a pion-nucleon interaction term.
A similar situation was identified in Ref. [8] for a different
LVC. As in Ref. [8], using chiral effective field theory
[41,42], we can calculate the nucleon-nucleon potential that
follows from considering one-pion exchange between the
two nucleons, with one of the vertices originating form the
LV πN operator in Eq. (15d). The resulting potential is
given by

VLV ¼ −
2gA
F2
0

ðr3 þ r4ÞW0i0jτ1 · τ2
ðσi1σm2 þ σm1 σ

i
2Þqjqm

q2 þm2
π

;

ð30Þ

where σ1;2 (τ1;2) are spin (isospin) operators corresponding
to the interacting nucleons and q ¼ p − p0 is the momentum
transfer that flows from nucleon 1 to nucleon 2, while p and
p0 are the relative momenta of the incoming and outgoing
nucleon pair in the center-of-mass frame. As usual, the latin
indices run only over spatial directions. We note that in
Ref. [43] additional structures of LV contributions to a
scalar-mediated nucleon-nucleon potential can be found.
We thus see that Wμνρσ induces an isospin-even two-

body operator in the nucleon-nucleon potential. We leave
the detailed study of this operator for future work.
Obviously, one should expect physical consequences of
such a term in nuclear systems with two or more nucleons.
For example clock-comparison experiments will most
likely be able to provide limits on several components
ofWμνρσ. One would then have to calculate the contribution
of Eq. (30) to the energy levels of an atom or nucleus with
spin F and spin projection MF,

δEðF;MFÞ ¼ hF;MFjVLVjF;MFi; ð31Þ

where each part in a spherical decomposition of the potential
will have a distinct contribution, as described in Ref. [44].
Such a multipole decomposition of W0i0j shows that it only
has parts with an angular momentum quantum number of
l ¼ 2 (a nonzero l ¼ 1 part would have to be antisymmetric
in i, j). Because of the triangle inequality for angular
momenta, to leading order, W0i0j will thus contribute only
to clock-comparison experiments involving nuclei with a
nuclear spin of I ≥ 1. The best corresponding sensitivity for
LV was obtained in a comagnetometer experiment involving
133Cs, which has I ¼ 7=2 [45]. In that experiment, a bound
in the order of 10−32 GeV on a dimensionful LV parameter
was set. Naively, we thus expect a bound in the order of
10−32 on ðr3 þ r4ÞW0i0j from such experiments. A rigorous
derivation of these limits would require calculating nuclear
matrix elements of the two-body operator in Eq. (30) and lies
outside the scope of the present work.
A related possibility is to study Eq. (30) in the context of

the spin precession of the deuteron or other light nuclei in a
storage ring [46]. Especially the deuteron has the advantage
that one does not have to assume a nuclear model to calculate
the physical observables. Studying the sidereal variation of
the spin-precession frequency of the deuteron, as was done
in Ref. [47] for the muon, could provide limits on Wμνρσ

that are complementary to those quoted in Table II and
to potential bounds from clock-comparison experiments.
A detailed analysis of the required observables and the
systematic effects lies outside the scope or the present work.
However, naively interpreting the quoted precision on the
deuteron spin tune (spin revolutions per turn) of σ ¼ 10−10

[46] to a bound on the LVCs (assuming an analysis along the
lines of Ref. [47] is possible) gives a limit in the order of
10−27 GeV−1. Most likely, such experiments will thus not
improve on the results in Table II. However, the latter come
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from only three independent measurements. Moreover,
limits from storage-ring experiments will have the added
benefit that they are laboratory bounds, which generally
involve fewer assumptions than astrophysical bounds, such
as those in Table II.

VIII. SUMMARY AND CONCLUSION

In this paper, we constructed the chiral effective
Lagrangian that is induced by the pure-gluon LV operator
of mass dimension 4, which is part of the mSME
Lagrangian. We wrote down the dominant operators in
the context of a three-flavor SUð3Þ as well as a two-flavor
SUð2Þ formalism. Relations between the LECs in these two
formalisms are yet to be obtained but are not very relevant
for obtaining order-of-magnitude limits on the LVCs. We
developed the power-counting rules and showed that in a
relativistic meson-baryon theory in the gMS scheme, loop
contributions to the LVCs upset the power counting,
analogous to LS contributions in the conventional theory.
To deal with this situation, we wrote down the dominant
operators in heavy-baryon chiral perturbation theory and
used them to calculate the LV contribution to the nucleon
self-energy to order Oðq3Þ.
The symmetries of the mSME gluon operator constrain

the form of the chiral effective operators in such a way that
kinetic hadron terms can be written down for 9 of the 19
independent components of kμνρσG . We showed that these

can be bounded by clock-comparison experiments. The
resulting limits are collected in Table I. We also suggested
that additional and improved bounds can be obtained by
considering Cherenkov-like pion emission by high-energy
protons.
From our constructed chiral effective Lagrangian, we

concluded that bounds on the remaining ten components
of kμνρσG , collected in Wμνρσ, cannot be obtained from
considerations of free nucleon properties. Therefore, pres-
ently available analyses of clock-comparison experiments
do not pertain to these components of kμνρσG . On the other
hand, Wμνρσ does induce a photon operator that causes the
birefringence of light in vacuum. Therefore, we were able
to translate existing photon bounds to bounds on Wμνρσ.
These are collected in Table II. Additional and comple-
mentary bounds on the fully traceless part of kμνρσG can most
likely be obtained by considering the effect of the nucleon-
nucleon potential in Eq. (30) on clock-comparison experi-
ments and storage-ring experiments involving the deuteron.
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