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The electron self-energy and anomalous magnetic moment in (2þ 1) QED with a Chern-Simons term
are investigated at finite temperature and density in an external magnetic field. In the limiting case of a
relatively weak magnetic field, the exact expression for the vacuum anomalous magnetic moment (AMM)
has been found at zero temperature and density of the medium. The energy shift and AMM of an electron
are analyzed as a function of the temperature and Chern-Simons parameter in the charge-symmetric case.
We obtained the new asymptotic expression for the AMM in the high-temperature region. The electron
AMM has been calculated also in the case of a completely degenerate magnetized electron gas.
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I. INTRODUCTION

The study of quantum processes in (2þ 1)-dimensional
theories, causing great interest, is also associated with
practical applications in condensed matter physics [1–4],
and with unusual properties of topologically massive two-
dimensional models of quantum field theory [5–10]. The
further study of radiation effects in (2þ 1)-dimensional
quantum electrodynamics ðQED2þ1Þ in the presence of
external conditions, such as an external field, a finite
temperature, and a density of matter is of current interest
in many areas of physics.
In the free case, when there is no external field, the one-

loop thermodynamic potential, polarization, and mass
operators were calculated in QED2þ1 without the Chern-
Simons term at finite temperature in charge-symmetric
plasma [11], as well as in a degenerate electron gas [12].
The polarization operator of QED2þ1 has been analyzed

in the papers [13,14] in a constant magnetic field based on
the results previously obtained within the framework of
(3þ 1)-dimensional electrodynamics ðQED3þ1Þ [15]. It has
been shown that, as opposed to QED3þ1, in QED2þ1 along
with a symmetric part, a polarization operator contains
an antisymmetric part, which determines the inducedChern-
Simons mass.
The polarization operator in QED2þ1 with a nonzero

fermion density has been analyzed in the papers [16,17] at
zero temperature in a constant magnetic field. Radiation
shift of electron energy in QED2þ1 has been studied in the
papers [18,19] at a finite temperature and density. The
results of the performed calculations show that a finite
electron mass is being induced in the original massless
theory at a finite temperature due to the energy of electron
interaction with charge-symmetric plasma.

The first calculations of the electron AMM based on the
vertex function were performed in the limiting case of so-
called pure Chern-Simons theory [20–23], being a limiting
case of QED2þ1 with the Chern-Simons term, when

e2; θ → ∞;
e2

θ
¼ const;

where θ is the value of the Chern-Simons coefficient. We
note also that e2 has the dimensions of mass in QED2þ1 and
is dimensionless in QED3þ1 (in the system of units,
where ℏ ¼ c ¼ 1).
The study of electron motion in a constant magnetic

field with due consideration of radiation effects is of
fundamental interest in a quantum electrodynamics. This
problem has a direct application to the dynamic theory on
an electron anomalous magnetic moment, i.e. AMM
depends on the field strength and electron energy in a
constant magnetic field [24–26].
In the paper [27]within the framework ofQED2þ1, whose

Lagrangian includes a Chern-Simons term of a topological
nature, the radiation-induced shift of the ground state energy
of an electron in a magnetic field has been analyzed. An
asymptotical behavior of the energy shift has been studied
and it was shown for the first time that the presence of the
Chern-Simons term leads to finiteness of the effective
magnetic susceptibility at zero external magnetic field.
This result was later indirectly confirmed in the paper

[28] via AMM calculation based on the computation of the
vertex function of QED2þ1 with the Chern-Simons term.
The asymptotics of temperature contribution to the electron
AMM in the limiting case of high temperatures (T ≫ m, θ)
in the case of charge-symmetric plasma is presented in this
paper along with the exact result for vacuum anomalous
magnetic moment. The vertex function calculation has
been performed in the paper [28] in the approximation
of small transferred momentum of an electron. In quantum*peminov@mail.ru
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electrodynamics this asymptotics corresponds to the cal-
culation of electron AMM in a relatively weak magnetic
field without regard to dynamic nature of electron AMM in
a topologically massive QED2þ1 [24–26].
Another method of developing a theory of electron AMM

different from the one used in [28] enables one to obtain
complete physical information about the dynamic nature of
AMM and is based on the calculation of the fermion mass
operator in magnetized electron-positron plasma. It was
proposed in the paper [29] and applied, for example, when
studying the dynamic nature of the energy shift and AMM
electron in QED3þ1 [29,30]. The energy shift and radiative
decay of a massive Dirac neutrino in magnetized electron-
positron plasma was investigated in the paper [31–33].
The objective of the present work is to study the total

radiative mass shift and AMM electron in magnetized
electron-positron plasma at a finite temperature and density
within the framework of two-dimensional electrodynamics
with the Chern-Simons term.
The exact formulas describing the radiative shift of the

ground state energy of an electron is obtained in Sec. II.
Consideration of electron spin properties has been per-
formed based on the operator proposed in the paper, which
is the two-dimensional analogue of a projections operator
of a three-dimensional spin unit vector in QED3þ1 on the
direction of a magnetic field. The electron ground-state
energy shift has been calculated in Sec. III in a relatively
weak magnetic field at zero temperature and medium
density and an exact expression for vacuum electron
AMM in QED2þ1 with the Chern-Simons term having
been obtained. In Sec. IV, the dependence of the energy
shift and AMM electron on the temperature of charge-
symmetric plasma has been analyzed in a weak magnetic
field. The contribution of the finite density effects at zero
temperature to the AMM of the electron has been consid-
ered as well. A discussion of work results is held in the
conclusions in Sec. V.

II. GENERAL CASE

Topologically massive QED2þ1 is described by the
Lagrangian [6]

L ¼ −
1

4
FμνFμν þ Ψ̄½ðp̂þ eÂÞ −m�Ψ

þ 1

4
θεμναFμνAα −

1

2ξ
ð∂μAμÞ2; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field tensor, ξ is the gauge
parameter,m is the electron mass, and the electron charge is
−e < 0. Adding the Chern-Simons term

LCS ¼
1

4
θϵμναFμνAα ð2:2Þ

to theLagrangianof thegauge fieldAμ leads to the fact that the
gauge field obtains a mass equal to the parameter θ, but the

theory gauge invariance is not violated. This mass generation
mechanism is independent of the famous Higgs mechanism,
and both mechanisms can operate simultaneously [9]. The
finite mass of a gauge field leads, for example, to screening of
both electric and magnetic fields, and the attraction between
electrons becomes possible [34,35].
We consider the four-component fermions in QED2þ1,

connected with a four-dimensional reducible representation
of Dirac’s matrices [11,36]

γ0 ¼
�
σ3 0

0 −σ3

�
; γ1;2 ¼

�
iσ1;2 0

0 −iσ1;2

�
; ð2:3Þ

where σ1;2;3 are the Pauli matrices. First, we shall present in
real time formalism a finite-temperature photon propagator
in QED2þ1 with the Chern-Simons term in the Landau
gauge [5,18,19]:

Dβ
μ;νðpÞ ¼ −

�
i

p2 − θ2 þ i0
þ 2πδðp2 − θ2ÞNBðjp0jÞ

�

×

�
gμν −

pμpν

p2 þ i0
þ iθεμνλ

pλ

p2 þ i0

�
: ð2:4Þ

Here

NBðxÞ ¼
1

expðβxÞ − 1
ð2:5Þ

is the Bose-Einstein distribution function, gμν ¼ ðþ;−;−Þ,
εμνλ is the completely antisymmetric third rank unit pseudo-
tensor, and β ¼ 1

T is the reciprocal temperature. The
dynamic nature of the electron energy shift and AMM
in a constant magnetic field is described using the mass
operator constructed from the temperature Green’s func-
tions in the real time formalism [26]

Σβðx; x0Þ ¼ −ie2γμGðH; T; μ; x; x0ÞγνDβ
μνðx − x0Þ; ð2:6Þ

where Dβ
μνðx − x0Þ is the photon Green’s function at finite

temperature, H is the magnetic field strength, and μ is the
chemical potential. For the Green’s function of an ideal
electron-positron gas in a constant magnetic field, we shall
use the following representation [26,29]:

GðH; T; μ; x; x0Þ ¼ ScðH; x; x0Þ þ SβðH;T; μ; x; x0Þ; ð2:7Þ
where

ScðH; x; x0Þ ¼ −
1

2πi

Z
∞

−∞
dω exp½iωðt − t0Þ�

×
X

s;ε¼�1

εΨε
sð~xÞΨ̄ε

sð ~x0Þ
ωþ εEsð1 − iδÞ ð2:8Þ

is an ordinary causal Green’s function of an electron in a
constant magnetic field, and a temperature-dependent part
of the time Green’s function equals
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SβðH;T; μ; x; x0Þ ¼ i
X

s;ε¼�1

εΨε
sð~xÞΨ̄ε

sð ~x0Þ
exp½βðEs − εμÞ þ 1�

× exp½−iεEsðt − t0Þ�: ð2:9Þ
The summation in the formulas (2.8) and (2.9) is carried out
over all quantum numbers fsg of the positive ðε ¼ þ1Þ and
negative ðε ¼ −1Þ frequency states;Ψε

sð~xÞ is the coordinate
part of the Dirac equation solution in a static magnetic field
in QED2þ1 and Es is the energy of the electron stationary
states. Using the Dirac-Schwinger equation and perturba-
tion theory, we find further that a radiative shift of electron
energy is determined by the diagonal matrix element of
mass operator (2.6), i.e.

Eζ;ζ0
q ðH; T; μÞ ¼ −ie2

ZZ
d3xd3x0Ψ̄qζ0 ðxÞ

× γμGðH; T; μ; x; x0Þ
× γνDβ

μνðx − x0ÞΨqζðx0Þ; ð2:10Þ

where the functions GðH; T; μ; x; x0Þ and Dβ
μνðx − x0Þ are

defined by the formulas (2.4) and (2.7)–(2.9), Ψqζð~xÞ is the
wave function of a stationary state ðsÞ ¼ ðq; ζÞ, of which
the radiation energy shift is to be found, the quantum
numbers ζ and ζ0 ¼ �1 characterize the dependence of the
energy shift on the spin initial and final states, and fqg is
the set of quantum numbers of stationary state, except the
spin. The case with ζ ¼ 1 corresponds to the electron spin
oriented along the direction of the magnetic field, while
ζ ¼ −1 is opposite to the latter.
Thus, in order to calculate the value (2.10) and develop a

theory of the electron AMM in a topologically massive
QED2þ1, it is necessary to find an exact solution of the
stationary Dirac equation, including the electron spin proper-
ties. Choosing the vector potentialAμ of an external magnetic
field in the Landau gauge ðA0 ¼ A1 ¼ 0; A2 ¼ xHÞ, the
Hamiltonian of the Dirac equation

i
∂Ψ
∂t ¼ ĤΨ ð2:11Þ

in a static magnetic field can be represented as

Ĥ ¼ α1p̂x þ α2ðp̂y þ exHÞ þmγ0; ð2:12Þ
where the matrices α1;2 ¼ γ0γ1;2, p̂x and p̂y are the projec-
tions of a momentum operator, and H is the magnetic field
strength. TheHamiltonian (2.12) commuteswith the operator
p̂y and the Dirac equation solution we represent as

Ψ ¼ Ne−iεEntþiypy

0
BBB@

C1un−1ðηÞ
C2unðηÞ
C3un−1ðηÞ
C4unðηÞ

1
CCCA: ð2:13Þ

Here,N is the normalization factor,Ckðk ¼ 1; 2; 3; 4Þ are the
constant coefficients, argument of the Hermite functions
unðηÞ

η ¼
ffiffiffiffiffiffiffi
eH

p �
xþ py

eH

�
: ð2:14Þ

Eigenvalues of theHamiltonian (2.12), meeting the condition
of square-law integrability of the eigenfunction, are defined
by the

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eHn

p
; n ¼ 0; 1; 2;…; ð2:15Þ

and the constants Ck satisfy the system of equations

C1ðεEn −mÞ − C2p⊥ ¼ 0;

C3ðεEn þmÞ − C4p⊥ ¼ 0; ð2:16Þ

where p⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eHm

p
is the magnitude of the electron

momentum in a magnetic field.
As we can see, the electron energy levels in a magnetic

field in (2þ 1)-dimensional electrodynamics are discrete
ones and do not depend on the quantum number py, as well
as they are determined by the main quantum number n only.
Along with py and n, in order to define a fermion quantum
state completely, it is necessary to introduce a third
quantum number, which makes it possible to divide
solutions of the Dirac equation taking into account spin
states.
We assume that the wave function (2.13) is also the

eigenfunction of an operator

Â ¼ iεγ0γ1γ2; ð2:17Þ

which commutes with the Hamiltonian (2.12) and is an
integral of motion. If we subordinate the wave function
(2.13) to the additional condition

ÂΨ ¼ ζΨ; ð2:18Þ

where ζ ¼ �1, then the Dirac normalized positive- and
negative-frequency solutions shall be determined from the
following formulas:

Ψε¼þ1 ¼
ðeHÞ14ffiffiffiffiffiffiffiffi
2En

p exp½−iEntþ iypy�

2
6664
0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En −m
p

un
0

0

1
CCCAD1

þ

0
BBB@

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En þm
p

un

1
CCCAD−1

3
7775; ð2:19Þ
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Ψε¼−1 ¼
ðeHÞ14ffiffiffiffiffiffiffiffi
2En

p exp½iEntþ iypy�

2
6664
0
BBB@

0

0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En þm

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En −m
p

un

1
CCCAD1

þ

0
BBB@

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En −m

p
un−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

En þm
p

un
0

0

1
CCCAD−1

3
7775; ð2:20Þ

where with ζ ¼ þ1 it is necessary to set D1 ¼ 1, D−1 ¼ 0
(the spin is directed along the field), and with ζ ¼ −1, vice
versa, D1 ¼ 0, D−1 ¼ 1 (the spin is directed opposite the
field). The coefficients D1 and D−1 satisfy the normaliza-
tion condition

D2
1 þD2

−1 ¼ 1:

In Sec. III we show that the operator Â is a (2þ 1)-
dimensional analogue of the projection of the operator
three-dimensional spin vector on the direction of the
magnetic field in QED3þ1. In the absence of the longi-
tudinal component of momentum it is proportional to the
operator transverse polarization [24] and the quantum
number ζ ¼ �1 does have meaning projection of electron
spin on the direction of the magnetic field. It follows from
(2.19) that in the ground state (n ¼ 0) the electron spin can
only be directed opposite the direction of the magnetic field
(D1 ¼ 0, D−1 ¼ 1).
Using (2.3)–(2.4), (2.6)–(2.10), (2.19)–(2.20), we

present a radiative shift of the ground state energy of an
electron in magnetized electron-positron plasma of
QED2þ1 with the Chern-Simons term in the following
form, suitable for further analysis:

ΔE ¼ ΔEðHÞ þ ΔEBðH; TÞ þ ΔEFðH;T; μÞ; ð2:21Þ� ΔEðHÞ
ΔEBðH; TÞ

�
¼ −

e2

4π

Z
∞

−∞
dp0

Z
∞

0

pdpdsGðp0; p; s; θÞ

× exp½isðp2
0 − 2mp0Þ − δs�

×

0
B@

1
p2
0
−p2−θ2þi0

ð−2πiÞ δðp2
0
−p2−θ2Þ

exp½jpo jT −1�

1
CA; ð2:22Þ

ΔEF
0 ðH; T; μÞ ¼ e2

4π2
X
ε¼�1

Z
∞

−∞
dxdλ expðiλxÞ

Z
∞

0

pdp

×Gðp0 ¼ m − ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ x

p
; p; λ; θÞ

×
1

ðm − ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ x

p
Þ2 − p2 þ i0

×
1

exp½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ x

p
− εμÞβ� þ 1

; ð2:23Þ

where the following notations are take: ΔEðHÞ is the
nonrenormalized radiative energy shift in an external
magnetic field at T ¼ μ ¼ 0, ΔEBðH; TÞ is the electron
energy shift through its interaction with equilibrium radi-
ation,ΔEFðH; T; μÞ is the temperature electron energy shift
owing to its exchange interaction with plasma electrons
ðε ¼ þ1Þ and positrons ðε ¼ −1Þ, and Gðp0; p; s; θÞ is
defined by the formula

Gðp0; p; s; θÞ ¼ cosðeHsÞ expð−iseHÞ

× exp

�
−
p2

eH
ð1 − cosðeHsÞÞ expð−iseHÞ

�

×

�
F0 þ

F2 − F1

p2
0 − p2 þ i0

�
: ð2:24Þ

Here, we have identified the contributions corresponding to
three terms of sum, determining the structure of the photon
propagator in QED2þ1 with the Chern-Simons term (2.4).
The value F0 describes the contribution corresponding to
the term of the sum proportional to gμν, the pμpν term in the
photon propagator contributes only to F1, and the value F2

arises due to the term of sum proportional to the gauge field
mass θ. They have the following form:

F0 ¼ 2mþ p0 þ i tgðeHsÞð2m − 3p0Þ;

F1 ¼ ð2mp2
0 − p3

0Þ
expðiseHÞ
cosðeHsÞ þ p0p2

expð−iseHÞ
cosðeHsÞ ;

F2 ¼ −2θðp2
0 − p2Þ expð−iseHÞ

cosðeHsÞ : ð2:25Þ

Note that the temperature part of the energy shift in
QED2þ1 with the Chern-Simons term has no need of
renormalization and is a finite one in the whole range of
external field variation, and the renormalization of a
vacuum radiative energy shift in a constant magnetic field,
as in QED3þ1, shall be conducted by subtracting from the
unrenormalized quantity its value in the absence of an
external field.

III. ELECTRON MASS SHIFT AND AMM
IN A CONSTANT MAGNETIC FIELD

Let us perform the calculation of vacuum radiative mass
shift, using the Schwinger parametrization

1

p2
0 − p2 − θ2 þ i0

¼ −i
Z

∞

0

dt exp½itðp2
0 − p2 − θ2 þ i0Þ�

as well as substitution of variables s and t with u and y
according to the formulas
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u ¼ s
sþ t

; y ¼ uðsþ tÞ ¼ s;

0 ≤ u ≤ 1; 0 ≤ y < ∞:

Separating different contributions to the shift of the electron
energy due to the individual terms in the photon propagator
proportional to gμν, pμpν, and θ, respectively, after inte-
gration over the variables p0 and p we obtain the following
result:

ΔEðHÞ ¼ ΔEðF0Þ þ ΔEðF1Þ þ ΔEðF2Þ; ð3:1Þ

where0
B@

ΔEðF0Þ
ΔEðF1Þ
ΔEðF2Þ

1
CA ¼ e2

8π
3
2

Z
1

0

duffiffiffi
u

p

×
Z

∞

0

duffiffiffi
y

p expð−m2uyÞ

0
B@

A0

A1

A2

1
CA; ð3:2Þ

A0 ¼
e−ν½2 − uþ 2u expð−2eHyÞ�

Φ
− u − 2; ð3:3Þ

A1 ¼
e−ν − 1

ν
ð1 − uÞ

�
1

Φ

�
1 −

3

2
u −

u expð−2eHyÞ
Φ

− uð2 − uÞm2uy
�
−
�
1 −

5

2
u − uð2 − uÞm2uy

��
;

ð3:4Þ

A2 ¼
e−ν − 1

ν
ð1 − uÞ θ

m
½expð−2eHyÞ

×
�
1þ 2

Φ
− 2m2uy

�
− ð3 − 2m2uyÞ� ð3:5Þ

and the notations are taken

ν ¼ yð1 − uÞθ2
u

;

Φ ¼ 1 − uþ u
sinðeHyÞ
eHy

expð−eHyÞ: ð3:6Þ

The results (3.1)–(3.6) are exact in the one-loop approxi-
mation and are consistent with the corresponding result
obtained by another method in the paper [27]. But
systematically studying the energy shift and AMM of
the electron in the (2þ 1)-dimensional Chern-Simons
theory, except for the analysis of the asymptotics described
by formulas (10) and (11) of this paper, is not considered in
this paper. Such investigation is fulfilled in the present
paper. Below we carried our calculation from Eqs. (3.1)–
(3.6) of the anomalous magnetic moment of the electron at

zero temperature and density in QED2þ1 with the Chern-
Simons term, previously obtained in [28] as a result of the
vertex function calculation.
Let us consider the limiting case of a relatively weak

magnetic field, when the conditions

eH ≪ m2; mθ ð3:7Þ

are fulfilled and the parameter k ¼ θ
m can take any values. In

this case, the main contribution to the integral (3.2)
provides the domain t ¼ eHy ≪ 1, and in the approxima-
tion linear in the magnetic field, the following asymptotics
take place from the formulas (3.3)–(3.6):

ΔEðF0Þ≃ e2

16π

eH
m2

Z
1

0

u2ðu − 2Þdu
½u2 þ k2ð1 − uÞ�32

¼ e2

16π

eH
m2

�
ð3 − 3kÞ −

�
2 −

3

2
k2
�
ln
kþ 2

k

�
;

ð3:8Þ

ΔEðF2Þ≃ e2

4πk
eH
m2

Z
1

0

udu

�
5u − 6

½u2 þ k2ð1 − uÞ�12

þ u2ð2 − uÞ
½u2 þ k2ð1 − uÞ�32

�

¼ e2

4π

eH
m2

�
2 − k ln

kþ 2

k

�
; ð3:9Þ

ΔEðF1Þ≃ e2

16πk
eH
m2

Z
1

0

du

�
u2ð6 − 7uÞ

½u2 þ k2ð1 − uÞ�12

−
u4ð2 − uÞ

½u2 þ k2ð1 − uÞ�32
�
¼ 0: ð3:10Þ

The integral over the variable u in the formula (3.10) is
exactly equal to zero. Thus, the pμpν term in the photon
propagator does not contribute to the mass shift and
vacuum electron AMM accordingly. This finding is con-
sistent with the similar result of the paper [28], where, in
consequence of the vertex function calculation, it has been
found that the said term of the photon propagator does not
contribute to the magnetic form factor of an electron also at
finite temperature.
As is known, that part of the energy shift of the electron

excited states in a magnetic field, which is proportional to
bilinear combination ðD−1D0

−1 −D1D0
1Þ [24–26] is directly

associated with the presence of electron AMM. In the
ground state, when the electron spin can only be directed
opposite the magnetic field orientation (D1 ¼ 0, D−1 ¼ 1),
the whole amount of the energy shift is equal to the energy
of interaction of the anomalous magnetic moment with the
magnetic field [24]
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Δμ ¼ ΔEðHÞ
H

: ð3:11Þ

In view of (3.8)–(3.10), we shall find the exact expression
for the vacuum electron AMM in a topologically massive
QED2þ1:

Δμ¼ ΔEðF0Þ þΔEðF2Þ
H

¼
�
−

e
2m

�
e2

8πm

�
3k− 7þ

�
2þ 2k−

3

2
k2
�
ln
kþ 2

k

�
;

ð3:12Þ

which coincides with the result obtained in the paper [28]
based on the electron AMM calculation using the vertex
function. This compliance provides an opportunity to
consider the quantum number ζ as a projection of the
electron spin onto the “orientation” of the magnetic
field in two-dimensional electrodynamics, and the spin
operator (2.17) as a two-dimensional analogue of trans-
verse polarization operator μ3 in QED3þ1 [24]. In the
limiting case

eH
m2

≪ k ¼ θ

m
≪ 1; ð3:13Þ

we shall find from the formulas (3.1), (3.8)–(3.10)

ΔEðHÞ ¼
�
e2

8π

�
eH
m2

ln k: ð3:14Þ

This result coincides with the asymptotics of the ground
electronic state radiation energy shift in QED2þ1 with the
Chern-Simons term obtained for the first time in the
paper [27] [formula (11)]. In the case of the so-called pure
Chern-Simons theory, from Eq. (3.12) we shall find the
results

Δμ ¼
�

e
2m

��
e2

2πθ

�
; ð3:15Þ

which is also in line with the first AMM calculations based
on the vertex function [20–23].

IV. SHIFT OF ELECTRON ENERGY AND AMM
IN MAGNETIZED PLASMA

First, let’ us consider the case of charge-symmetric
plasma, when the chemical potential is μ ¼ 0. Carrying
out integration with respect to the variable p0 in the
formula (2.22) for the Bose contribution by means
of the delta function, the exact result, as in the zero
temperature case, is presented in the form of a double
integral. In the limiting case of a relatively weak magnetic
field, when

b ¼ eH
mT

≪ 1; ð4:1Þ

for the Bose contribution to the energy shift ΔEðH; TÞ we
shall obtain the following presentation:

ΔEBðH; TÞ ¼ ΔEðF0Þ þ ΔEðF1Þ þ ΔEðF2Þ; ð4:2Þ

0
B@

ΔEðF0Þ
ΔEðF2Þ
ΔEðF1Þ

1
CA ¼ e2

4π

Z
∞

0

pdpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ θ2

p 1

exp½
ffiffiffiffiffiffiffiffiffiffi
p2þθ2

p
T � − 1

×

0
B@

G0ðp0Þ þ G0ð−p0Þ
−2θ½G2ðp0Þ þ G2ð−p0Þ�

0

1
CA; ð4:3Þ

where

p0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þθ2

q
;

G0¼
2mþp0

2mpo−θ2
−

4eHp0

ð2mp0−θ2Þ2þ
2eHð2mþp0Þp2

ð2mp0−θ2Þ3 ;

G2¼
1

2mpo−θ2
−

2eH
ð2mp0−θ2Þ2þ

2eHp2

ð2mp0−θ2Þ3 : ð4:4Þ

In charge-symmetrical plasma in the range of low temper-
atures, which are small compared to the electron mass
ðT ≪ mÞ, the Fermi contribution to be defined by the
formula (2.23) is exponentially small compared to the Bose
contributions (2.22) and the electron energy temperature
shift shall be determined by Eqs. (4.3)–(4.4).
In the limiting case (4.1), the Fermi contribution to the

energy shift of the electron ground state is determined by
the following expression:

ΔEFðH; T; μÞ ¼ ΔEðF0Þ þ ΔEðF1Þ þ ΔEðF2Þ; ð4:5Þ

0
B@

ΔEFðF0Þ
ΔEFðF2Þ
ΔEFðF1Þ

1
CA ¼ e2

4π

Z
∞

1

dv

×

0
B@

D0ðvÞ þD0ð−vÞ
−2 θ

m ½D2ðvÞ þD2ð−vÞ�
0

1
CA; ð4:6Þ

where
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D0ðvÞ ¼
v

gðvÞ
�
nFð3 − vÞ

2v
þ
�
eH
m2

�
1

gðvÞ
�
1 − v
v2

n0F

− nF

�
1

v3
−
ðv − 1Þ2
v2gðvÞ

��

þ 1

8

�
eH
m2

�
v2 − 1

v2gðvÞ
��

3

v
− 1

��
n00F −

n0F
v

�

− n0F

�
6

v2
þ 2

ð3 − vÞðv − 1Þ
vgðvÞ

�

þ nF

�
9

v3
þ 7v − 9

v2gðvÞ þ
�
6

v
− 2

� ðv − 1Þ2
g2ðvÞ

���
;

ð4:7Þ

D2ðvÞ ¼
v

gðvÞ
�
nF
2v

þ
�
eH
m2

�
1

2v2gðvÞ
�
n0F −nF

�
1

v
þ v− 1

gðvÞ
��

þ
�
eH
m2

�
v2− 1

8v3gðvÞ
��

n00F −
n0F
v

�

þ 2n0F
v

�
−1þð1−vÞv

gðvÞ
�

þnF

�
3

v2
þ 2

ðv− 1Þ2
g2ðvÞ þ 2v− 3

vgðvÞ
���

; ð4:8Þ

and the following notations are taken:

gðvÞ ¼ 1 − v −
θ2

2m2
; nFðvÞ ¼

1

exp½mv
T þ 1� ;

n0F ¼ ∂nF
∂v :

Within the brackets of Eq. (4.6), we explicitly identified the
terms of the sum describing the contributions to electron
mass shift due to the processes of its scattering by electrons
[positive frequency states, of which the contribution is
described via the values D0ðvÞ and D2ðvÞ] as well as
positrons [negative-frequency states, of which the contri-
bution is described via the values D0ð−vÞ and D2ð−vÞ� of
plasma.
We also note that values ΔEBðF1Þ of Bose and ΔEFðF1Þ

of Fermi contributions are equal to zero in the approxi-
mation linear in the magnetic field for all values of
temperature and chemical potential.
From formulas (4.4)–(4.8), in the limiting case, when

H ¼ 0, μ ¼ 0, for the temperature correction to the electron
mass we shall obtain the result which agrees with that
obtained in the paper [19]. Let us present two asymptotics
of the electron mass temperature shift:

Δm ¼
(

e2
8π ½ln θ

2m þ T
m ln 2 −

T
m ln

θ
Te�; θ ≪ 2m ≪ T;

e2
2π ½Tθ lnð1 − e−βθÞ − T

θ lnð1þ e−βmÞ�; 2m ≪ θ; θ2 ≫ 2mT:
ð4:9Þ

Result (4.9) allows us to consider the limiting case of the
massless electrodynamics at relatively low temperatures
ðθ ≫ m; θ2 ≫ 2mTÞ

Δm ¼ e2

2π

�
−
T
θ
ln 2þ T

θ
lnð1 − e−βθÞ

�
: ð4:10Þ

The result (4.10) is the induced electron mass in the
massless QED2þ1 with the Chern-Simon’s term at finite
temperature [18,19].
In the limiting case

T ≫ m; θ; ð4:11Þ

it follows from (4.3)–(4.4), that the leading order thermal
corrections to the electron energy shift, which depend on
the field and coming from the terms proportional to gμν in
the photon propagator, is defined by the formula

ΔEðF0Þ≃ e2

8πm
eH
m2

Z
∞

0

pdpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ θ2

p 1

exp½β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ θ2

p
� − 1

≃ e2

8π

eH
m2

T
m
ln
T
θ
: ð4:12Þ

We note that the ratio θ
m is arbitrarily in the condition (4.11).

In the limiting case, when

T ≫ m ≫ θ; ð4:13Þ

the leading contribution to the value ΔEðF2Þ, coming from
the εμνλ term, has an asymptotic

ΔEðF2Þ≃ e2

2π
θ
eH
m2

Z
∞

0

pdp

ðp2 þ θ2Þ32
1

exp½β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ θ2

p
� − 1

≃ e2

8π

eH
m2

T
θ
: ð4:14Þ

It is interesting to compare (4.12) and (4.14) with the
results (42) and (44) of the paper [28], describing the
contribution to the magnetic form factor of the electron
the terms in the photon propagator proportional to gμν and θ
under the condition (4.11)

FðβÞðηÞ
2 ðq2 ¼ 0Þ ¼ e2

4πm
T
m
ln
θ

T
þOðβ−1Þ; ð4:15Þ

FðβÞðεÞ
2 ðq2 ¼ 0Þ ¼ Oðβ−1Þ: ð4:16Þ
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The comparison shows that the asymptotics (4.12) of the
present paper coincides with the result (4.15) of the paper
[28]. With regard to the result (4.16), one might assume
that the authors of [28] mean OðTmÞ instead of Oðβ−1Þ.
Regardless, it is essential that the contribution (4.16),
coming from the εμνλ term in the photon propagator, is
small compared to (4.15) including also the case (4.13).
This conclusion [28] seems incorrect to us, since the
contribution represented by the formula (4.14) is propor-
tional to the parameter T

θ, rather than
T
m. Therefore, the ratio

of the contributions (4.14) and (4.12)

ΔEðF2Þ
ΔEðF0Þ

¼
m
θ

lnðTθÞ
ð4:17Þ

under fulfillment of the conditions (4.13) may also be the
value much greater than the unit. In the limiting case of
high temperatures in QED3þ1 Bose and Fermi contributions
to electron AMM are proportional to ðTmÞ2 [29,37,38].
However, when passing from QED3þ1 to QED2þ1, the
magnetic properties of photons and electrons are funda-
mentally changing and the Fermi contribution to the
electron mass shift and AMM in the case of high temper-
atures is small compared to the Bose contribution (see [28]
as well). Thus, in the limiting case (4.13), the temperature
contribution to the electron AMM in topologically massive
QED2þ1 shall be determined from the following formula:

Δμ≃
�

e
2m

��
e2

4πm

�
T
m

�
ln
T
θ
þm

θ

�
: ð4:18Þ

In the case of a degenerated electron gas, when there are no
positrons in the plasma, the contribution of the electron
states should only be left in the formula (4.6) and the Fermi
distribution function shall be reduced to step θ-function:

nFðvÞ ¼
�
exp

�
mv − μ

T
þ 1

��
−1

→ θðμ −mvÞ;

∂nFðvÞ
∂v → −δ

�
v −

μ

m

�
; ð4:19Þ

where the chemical potential μ is related with the number
density of the completely degenerate two-dimensional
electron gas by the relation

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnþm2

p
: ð4:20Þ

As a result, in the main logarithmic approximation by the
parameter μ

m, in the limiting case

μ

m
≫ 1;

θ

m
: ð4:21Þ

In the linear approximation with respect to the magnetic
field, we shall obtain the following result from the formulas
(4.6)–(4.8) for the contribution of the finite density effects
to the electron AMM in topologically massive QED2þ1:

Δμ≃
�

e
2m

�
e2

8πm
ln

μ

m
: ð4:22Þ

It is interesting to compare this expression with the
corresponding result obtained in QED3þ1 [30,39]:

δaμe ¼ Δμ
μB

≃ α

3π

�
μ

m

�
2

; ð4:23Þ

where α is the fine-structure constant, and μB ¼ e
2m is the

Born magneton. In the field-free case the electron mass
shift in a degenerated electron gas is described by the exact
formula

ΔmðμÞ ¼
�
e2

8π

��
μ

m
− 1 − 2

�
1þ θ

2m

�
2

ln

����
μ
m − 1þ θ2

2m2

θ2

2m2

����
�
:

ð4:24Þ

The latter result is consistent with the result (9) of the paper
[19], where ~p ¼ 0 should be set.

V. CONCLUSION

A complete description of the electron stationary states
in a magnetic field has been conducted in two-dimensional
electrodynamics based on the proposed spin operator. The
calculation of radiation energy shift of the electron ground
state and AMM in magnetized plasma of topologically
massive QED2þ1 has been performed for the first time.
In the real-time presentation, the electron energy radi-

ation shift is represented as a sum of vacuum electron
energy shift in an external magnetic field, shift of the
electron energy due to interaction with the equilibrium
radiation in a constant magnetic field and the electron
energy temperature shift due to exchange interaction with
the electrons and positrons of magnetized plasma.
In the limiting case of a relatively weak magnetic field,

the dependence of the found values on the task character-
istic parameters, i.e. temperature, chemical potential, and
parameter θ, acting as a gauge field mass, has been studied.
It is shown that the part of the electron ground state energy
shift, depending on the strength of a weak magnetic field,
coincides with the interaction energy of a vacuum electron
AMM in QED2þ1 with the Chern-Simons term with the
external magnetic field. It was found that the contribution
to total shift of an electron mass in the magnetized plasma,
arising due to the term in the photon propagator, propor-
tional to the product pμpν, is identically zero. The exact
value of the vacuum electron AMM in QED2þ1 with the
Chern-Simons term, which coincides with the result pre-
viously obtained based on the analysis of the vertex
function [28], has been calculated on the basis of the value
of vacuum electron mass shift found in a weak magnetic
field. The detailed analysis of the energy temperature shift
in charge-symmetric magnetized plasma shows that the
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high-temperature asymptotic of the AMM presented in the
paper [28] is incorrect. The result for the electron AMM in
a constant magnetic field at a nonzero chemical potential
and zero temperature has been obtained for the first time.
Under fulfillment of conditions (4.13), in the charge-

symmetric plasma, electron AMM in a two-dimensional
QED with the Chern-Simons term is determined by the sum
of vacuum (3.12) and temperature (4.18) contributions

Δμ ¼
�

e
2m

�
e2

4πm

�
− ln

m
θ
þ T
m

�
ln
T
θ
þm

θ

��
: ð5:1Þ

In the other limiting case of a completely degenerated
electron gas, an AMM electron has the following asymp-
totics under fulfillment of the conditions (4.21) and
θ ≪ 2m:

Δμ ¼
�

e
2m

�
e2

4πm

�
− ln

m
θ
þ 1

2
ln

μ

m

�
: ð5:2Þ

Note that both vacuum contribution and temperature
contribution to electron AMM in charge-symmetric plasma

exhibit infrared divergence at θ → 0. At the same time, the
contribution of nonzero fermion density effects to electron
AMM at zero temperature is finite.
It is possible to draw a general conclusion that the

effects of finite temperature and medium density make a
substantial contribution to the electron AMM in a two-
dimensional topologically massive electrodynamics and
this contribution may be decisive in high temperature
and density of medium. The case of a strong magnetic
field, when eH ≫ mT, will be considered elsewhere.
The proposed method of description electron spin may

be used for investigation of radiation effects also and in
other two-dimensional models of quantum theory, includ-
ing, while studying the spin effects in graphene in the
presence of an external magnetic field.

ACKNOWLEDGMENTS

The author expresses his gratitude to V. Ch. Zhukovskii,
A. V. Borisov, and V. V. Sokolov for discussions of this
study and to G. V. Kitaeva for assistance in preparing the
manuscript.

[1] P. K. Pyatkovskiy and V. P. Gusynin, Phys. Rev. B 83,
075422 (2011).

[2] M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea,
Phys. Rep. 496, 109 (2010).

[3] I. V. Fialkovsky and D. V. Vassilevich, Int. J. Mod. Phys. A
27, 1260007 (2012).

[4] V. R. Khalilov, Eur. Phys. J. C 74, 2708 (2014).
[5] S. Deser, Ann. Phys. (N.Y.) 140, 372 (1982).
[6] S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48,

975 (1982).
[7] R. D. Pisarski and S. Rao, Phys. Rev. D 32, 2081 (1985).
[8] C. R. Hagen, Ann. Phys. (N.Y.) 157, 342 (1984).
[9] G. Dunne, in Proceedings of Topological Aspects of Low

Dimensional Systems (Springer-Verlag, Berlin, 2000),
pp. 3–76.

[10] P. Gaete and J. A. Helayël-Neto, Adv. High Energy Phys.
2016, 7 (2016).

[11] M. Y. Novikov, A. S. Sorin, V. Y. Zeitlin, and V. P. Shelest,
Theor. Math. Phys. 69, 977 (1986).

[12] V. V. Skalozub and A. Y. Tishchenko, Zh. Eksp. Teor. Fiz.
104, 3921 (1993) [JETP 77, 883 (1993)].

[13] V. Y. Zeitlin, Yad. Fiz. 49, 742, (1989)[Sov. J. Nucl. Phys.
49, 461 (1989)].

[14] K. V. Zhukovsky and P. A. Eminov, Yad. Fiz. 59, 1265
(1996) [Phys. Atom. Nucl. 59, 1208 (1996)].

[15] A. E. Shabad, in Proceedings of P. N. Lebedev Physics
Institute (Nauka, Moscow, 1988), Vol. 192, pp. 5–152.

[16] V. R. Khalilov, Theor. Math. Phys. 125, 1413 (2000).
[17] V. R. Khalilov and I. V. Mamsurov, Eur. Phys. J. C 75, 167

(2015).

[18] Y.-C. Kao, Mod. Phys. Lett. A 06, 3261 (1991).
[19] K. V. Zhukovskii and P. A. Eminov, Phys. Lett. B 359, 155

(1995).
[20] I. I. Kogan and G.W. Semenoff, Nucl. Phys. B368, 718

(1992).
[21] I. I. Kogan, Phys. Lett. B 262, 83 (1991).
[22] M. Fleck, A. Foerster, H. O. Girotti, M. Gomes, J. R. S.

Nascimento, and A. J. da Silva, Int. J. Mod. Phys. A 12,
2889 (1997).

[23] M. Chaichian, W. F. Chen, and V. Y. Fainberg, Eur. Phys. J.
C 5, 545 (1998).

[24] A. A. Sokolov and I. M. Ternov, Relativistic Electron
(Nauka, Moscow, 1983).

[25] V. I. Ritus, in Proceedings of P. N. Lebedev Physics Institute
(Nauka, Moscow, 1986), Vol. 168, pp. 52–120.

[26] A. V. Borisov, A. S. Vshivtsev, V. Ch. Zhukovskii, and P. A.
Eminov, Usp. Fiz. Nauk 167, 241 (1997) [Phys. Usp. 40,
229 (1997)].

[27] I. M. Ternov, A. V. Borisov, and K. V. Zhukovskii, Moscow
Univ. Phys. Bull. 52, 99 (1997).

[28] A. Das and S. Perez, Phys. Lett. B 581, 182 (2004).
[29] I. M. Ternov, V. Ch. Zhukovskii, P. A. Eminov, and P. G.

Midodashvili, Yad. Fiz. 43, 764 (1986) [Sov. J. Nucl. Phys.
43, 485 (1986)].

[30] V. Ch. Zhukovskii, T. L. Shoniya, and P. A. Eminov, Yad.
Fiz. 57, 1437 (1994) [Phys. At. Nucl. 57, 1365
(1994)].

[31] P. A. Eminov, Adv. High Energy Phys. 2016, 11 (2016).
[32] A. I. Ternov and P. A. Eminov, Phys. Rev. D 87, 113001

(2013).

ANOMALOUS MAGNETIC MOMENT OF AN ELECTRON IN A … PHYSICAL REVIEW D 95, 075029 (2017)

075029-9

https://doi.org/10.1103/PhysRevB.83.075422
https://doi.org/10.1103/PhysRevB.83.075422
https://doi.org/10.1016/j.physrep.2010.07.003
https://doi.org/10.1142/S0217751X1260007X
https://doi.org/10.1142/S0217751X1260007X
https://doi.org/10.1140/epjc/s10052-013-2708-z
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1103/PhysRevD.32.2081
https://doi.org/10.1016/0003-4916(84)90064-2
https://doi.org/10.1155/2016/9146961
https://doi.org/10.1155/2016/9146961
https://doi.org/10.1007/BF01037672
https://doi.org/10.1007/BF02551045
https://doi.org/10.1140/epjc/s10052-015-3389-6
https://doi.org/10.1140/epjc/s10052-015-3389-6
https://doi.org/10.1142/S0217732391003766
https://doi.org/10.1016/0370-2693(95)00931-A
https://doi.org/10.1016/0370-2693(95)00931-A
https://doi.org/10.1016/0550-3213(92)90221-V
https://doi.org/10.1016/0550-3213(92)90221-V
https://doi.org/10.1016/0370-2693(91)90647-9
https://doi.org/10.1142/S0217751X97001596
https://doi.org/10.1142/S0217751X97001596
https://doi.org/10.1007/s100529800863
https://doi.org/10.1007/s100529800863
https://doi.org/10.3367/UFNr.0167.199703a.0241
https://doi.org/10.1070/PU1997v040n03ABEH000209
https://doi.org/10.1070/PU1997v040n03ABEH000209
https://doi.org/10.1016/j.physletb.2003.12.014
https://doi.org/10.1155/2016/2523062
https://doi.org/10.1103/PhysRevD.87.113001
https://doi.org/10.1103/PhysRevD.87.113001


[33] A. A. Dobrynina, N. V. Mikheev, and G. G. Raffelt,
Phys. Rev. D 90, 113015 (2014).

[34] G. M. Zinov’ev, S. V. Mashkevich, and H. Sato, Zh. Eksp.
Teor. Fiz. 105, 198 (1994) [JETP 78, 105 (1994)].

[35] H. O. Girotti, M. Gomes, J. L. deLyra, R. S. Mendes, J. R. S.
Nascimento, and A. J. da Silva, Phys. Rev. Lett. 69, 2623
(1992).

[36] T. Appelquist, M. Bowick, D. Karabali, and L. C. R.
Wijewardhana, Phys. Rev. D 33, 3704 (1986).

[37] Y. Fujimoto and J. H. Yee, Phys. Lett. B 114, 359
(1982).

[38] G. Barton, Phys. Lett. B 162, 185 (1985).
[39] P. Elmfors and B.-S. Skagerstam, Z. Phys. C 49, 251

(1991).

P. A. EMINOV PHYSICAL REVIEW D 95, 075029 (2017)

075029-10

https://doi.org/10.1103/PhysRevD.90.113015
https://doi.org/10.1103/PhysRevLett.69.2623
https://doi.org/10.1103/PhysRevLett.69.2623
https://doi.org/10.1103/PhysRevD.33.3704
https://doi.org/10.1016/0370-2693(82)90362-8
https://doi.org/10.1016/0370-2693(82)90362-8
https://doi.org/10.1016/0370-2693(85)91084-6
https://doi.org/10.1007/BF01555498
https://doi.org/10.1007/BF01555498

