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We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions
jF ¼ 3; mFi ↔ jF ¼ 4; mFi to the Lorentz-violating Standard Model extension (SME) coefficients of the
proton and neutron. The new model uses Lorentz transformations developed to second order in boost and
additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in
Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients
including the isotropic coefficient ~cTT . Using this new model in a second analysis of the data delivered by
the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13
orders of magnitude the present maximum sensitivities for laboratory tests [2] on the ~cQ, ~cTJ , and ~cTT
coefficients for the neutron and on the ~cQ coefficient for the proton, reaching respectively 10−20, 10−17,

10−13, and 10−15 GeV.
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I. INTRODUCTION

Our best current fundamental theories, General
Relativity and the Standard Model of particle physics,
are not expected to be valid at the Planck scale, where
presumably a theory of quantum gravity holds. This,
among other motivations, has given rise to the study of
unified theories such as string theory or theories of
quantum gravity such as loop quantum gravity. The
Planck-scale energy EP is on the order of 1019 GeV,
and the highest-energy experiments or observations are
well below this scale (ultrahigh-energy cosmic rays have
energy lower than 1011 GeV). So testing these theories has
been displaced to low-energy scales, where suppressed
relics from Planck-scale physics may be observable,
resulting in deviations from known physics.
There has been widespread interest in the last two

decades in searching for such deviations, particularly
among the so-called quantum gravity phenomenology
[3–7]. Of the possible deviations from known physics, a
central one is the breaking of the continuous space-time
symmetries: Lorentz symmetry, which is the invariance
under three rotations and three boosts (shown to be also

associated with the discrete charge, parity, time-reversal
(CPT) symmetry in Refs. [8–10]). Observable spontaneous
breaking of these two symmetries could for example arise
in string field theory, as was suggested nearly three decades
ago [11,12].
A widely used effective field theory describing Lorentz

invariance violations (LIVs) and CPT violations is the
Standard Model extension (SME) [2,13–15]. Under the
conservative physical assumptions of energy-momentum
conservation and observer Lorentz invariance, the SME
introduces all possible Lorentz- and CPT-violating tensor
operators in the Lagrange densities of the Standard Model
(and General Relativity), parametrized by coefficients.
These coefficients can be seen as background tensor fields
that are constant in space-time on the scale of solar system
experiments and lead to a fundamentally different LIV
approach than, e.g., space- or time-varying scalar field
approaches [16–19]. They are allowed to be species
dependent and vanish in the case of perfect Lorentz and
CPT symmetry. As a test framework, the SME does not
predict values of the coefficients. However, they are
generally expected to be suppressed by a power of
E=EP increasing with the dimension of the associated
LIVoperator, where E is a cutoff energy. In Ref. [20], E has
been taken as the electroweak energy (Eew ∼ 102 GeV),
leading to suppressions by a power of 10−17.
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We focus here on the matter sector (electron, proton, and
neutron) of the minimal SME (mSME) which includes
Lorentz-violating operators of mass dimensions 3 and 4 in
the Lagrange density.1 Many of the coefficients are already
constrained at or below their expected suppression [2].
Among still poorly constrained coefficients in this sector
are, however, several components of the CPT-even, trace-
less, and symmetric c̄μν tensor, namely ~cTT for the proton
and neutron (10−11 GeV for laboratory experiments), ~cTJ
for the neutron (10−5 GeV), and ~cQ for the neutron
(10−14 GeV), where indices ðT; X; Y; ZÞ refer to the coor-
dinates in the Sun centered celestial equatorial frame
(SCF). In this study, reanalyzing with a more complete
model the data taken in Ref. [1] on spin-polarized tran-
sitions in a 133Cs fountain clock, we bring the bounds for
all these coefficients below or near one Planck-scale
suppression (i.e., 10−17 GeV), thereby improving them
by up to 13 orders of magnitude. We constrain for the
first time independently all c̄μν components simultaneously.
We find no evidence for Lorentz violation, which chal-
lenges suppressions generally expected from quantum
gravity phenomenology or helps set limits on the cutoff
energy E ([23–26]).

II. METHODS SUMMARY

Our generic approach is the following. LIV is manifested
in our experiment as an anisotropy of the nucleons
dispersion relation. Two states with a different nuclear
momentum quadrupole moment undergo a different LIV
energy shift, giving rise to a boost- and orientation-
dependent shift of the transition frequency. We measure
directly this frequency shift by interferometry on atomic
wave functions, using the usual clock Ramsey interrogation
sequence but applied on spin-polarized states.
A Lorentz transformation allows us to express this lab

LIV frequency shift in terms of the c̄μν coefficients in an
inertial frame (usually taken for Solar System experiments
as the SCF, i.e., the Solar System rest frame). It combines a
rotation, which gives sensitivity to c̄JK coefficients, and
boosts, giving sensitivity to c̄TJ (suppressed by one order in
boost) and to the isotropic c̄TT coefficient (suppressed by
two orders in boost). The latter corresponds to an overall
rescaling of energies, which gives rise to time variations at
sidereal frequency and annual sidebands in the case of the
lab frame. It can also be constrained using fast-moving
particles; in that case, the observability of c̄TT depends on
the velocity of the particles themselves. However, in
laboratory experiments, the velocity of the particles can
be neglected in comparison with the lab boost. LIV
observables being usually expressed only to order 1 in
boost, this coefficient has mostly been dismissed so far in

this type of test and is consequently among the less
constrained coefficients of the c̄μν tensor. Its current best
limits are set by its gravitational effects; for nucleons,
torsion balance experiments bring a constraint on a linear
combination involving this coefficient, at the 10−11 GeV
level [2]. This gravitational LIV shift is negligible for
hyperfine transitions, so without loss of generality, the
clock observable is derived here in flat space-time.
We use a setup usually operated as a Cs fountain clock

contributing to Temps Atomique International (TAI) in
nonmagnetic (mF ¼ 0) states. For testing the SME, it has
been operated on magnetized (mF ≠ 0) states to allow LIV
tests during two periods respectively of 21 and 14 days at
half a year interval. The two data sets were already
analyzed in Ref. [1] and led to five new independent
constraints on eight components of the proton c̄μν tensor.
In this second analysis, our advanced mSME model allows
us to disentangle the nine components and provides new
limits on the isotropic component c̄TT which was not
included in the previous analysis.
We also introduce an alternative calculation of the

nuclear quadrupole moment, also investigated in
Refs. [27] and [28], to address the shortcomings of the
usual Schmidt shell model considered so far in the
derivation of SME clock observables, which only takes
into account a single nucleon contribution [29] and there-
fore does not provide a realistic description of the nucleus
for most atoms. The calculations are performed with self-
consistent relativistic mean field (SCRMF) theory, which
allows us to go beyond the single nucleon model and to
calculate both the neutron and proton contributions to the
nuclear quadrupole moment involved in the SME LIV shift.
In Sec. III, we recall the main features of the description

of alkali hyperfine transitions in the SME and our exper-
imental setup. This section is kept brief as details are known
in the literature and can be found in the cited references. We
then describe in Sec. IV the transformation to the Sun
centred frame including the second order boost and the
resulting model for our experiment, with some of the details
relegated to an Appendix. After a description of our data
analysis in Sec. V, we first present in Sec. VI our results
using the Schmidt nuclear model, as is usual in SME
analyses, in order to facilitate comparison with previous
results from this and other experiments. We then briefly
describe the SCRMF nuclear calculations (Sec. VII) and
provide in Sec. VIII our constraints based on this nuclear
model. Section IX is devoted to a general discussion with
conclusions and perspectives in Sec. X.

III. SME FREQUENCY SHIFT IN THE LAB FRAME
FOR ALKALI HYPERFINE TRANSITIONS

AND EXPERIMENTAL SETUP

Treating in all generality the SME shift on an atomic
transition includes curved space-time, eight mSME tensors,
and summing over all electrons and nucleons. As shown

1A detailed discussion of the questions of locality, causality,
and stability can be found in Ref. [21].
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previously (Refs. [29–31]), treated as a perturbation to
usual hyperfine energy levels in alkali, LIV gives rise to a
dipolar shift (parametrized in the SME by the b̄μ, d̄μν, and
ḡλμν tensors) and a quadrupolar shift (parametrized by the
c̄μν tensor). The dipolar SME shift of a jF;mFi state is
proportional to mF. In the specific linear combination of
transition frequencies used as the observable, following the
approach of Ref. [1], the linear dependence in mF of our
observable is nullified in order to reduce systematic shifts
from magnetic fields. Our test is thus sensitive only to the
quadrupolar shift, which we detail hereunder.
As shown previously (Refs. [29–31]), hyperfine states of

alkali atoms are affected by a LIV quadrupolar energy shift
given in curved space-time by the expectation value of the
operator

P
wδĤw with w ¼ p, n, e for the proton, neutron,

and electron, where for each particle

δĤ ¼ 2U
3c2

c̄tt
p̂2

2m
−

1

6m
Cð2Þ0 P̂ð2Þ

0 : ð1Þ

Here, we omitted the w index for the sake of simplicity. The
Cartesian coordinate components are labeled with indices
ðt; x; y; zÞ and relate to the space-time lab frame; the
direction z is taken along the quantization axis. U is the
Newtonian gravitational potential, and p̂ and m are respec-
tively the momentum operator and the mass of the particle.

The spherical tensor component T ðrÞ
q associated with a

tensor T μν is used here for a compact formulation, with r its
rank and q ∈ ð−r; ::rÞ the index of its spherical compo-

nents. The T ð2Þ
0 component appearing here is linked to the

Cartesian coordinates via T ð2Þ
0 ¼ T jj − 3T zz with the

convention of summation over like indices. This notation
is used both for tensors Cij ¼ c̄ij and P̂ij ¼ p̂ip̂j:

Cð2Þ0 ¼ c̄jj − 3c̄zz ð2Þ

P̂ð2Þ
0 ¼ p̂2 − 3p̂2

z : ð3Þ

The first term of the quadrupolar LIVoperator in Eq. (1)
leads to an anomalous gravitational redshift [31]. It has
been used in the analysis of the spectroscopy of an
electronic transition in dysprosium to provide a gravita-
tional constraint on the electron c̄TT coefficient [32]. This
anomalous redshift scales as the differential internal kinetic
energy between two states; therefore, it is relevant for
electronic transitions, but it is negligible for transitions
between hyperfine states, which differ essentially via the
relative orientation of the nuclear and electronic spin. So
this contribution plays a negligible role and will be ignored
in the following.
The second term scales with the quadrupole moment

operator of the momentum and can be regarded as an
anisotropy of each particle’s kinetic energy. It is governed
by the quadrupole moment of the c̄μν tensor, which is

usually, in the mSME, expressed in terms of energy for
each particle by

~cq ¼ mc2Cð2Þ0 : ð4Þ

In an atomic hyperfine state jF;mFi, the perturbative
energy shift contribution from each particle is therefore
proportional to the expectation value of the momentum

quadrupole moment operator hF;mFjP̂ð2Þ
0 jF;mFi, which

using the Wigner-Eckart theorem can be expressed as a
function of the expectation value in the extremal mF ¼ F

state hF;FjP̂ð2Þ
0 jF;Fi with a prefactor emF (following the

notation of Ref. [29]):

emF ¼ hF;mFjF̂ ð2Þ
0 jF;mFi

hF;FjF̂ ð2Þ
0 jF;Fi

ð5Þ

¼ FðF þ 1Þ − 3m2
F

FðF þ 1Þ − 3F2
: ð6Þ

This is a Clebsch-Gordan coefficient involving the quadru-

pole moment operator F̂ ð2Þ
0 ¼ F̂2 − 3F̂2

z of the tensor F̂iF̂j

with F the total magnetic moment of the atomic state; it
does not depend on the considered particle within the atom.
Summing from Eq. (1) over all particles, the total LIV

perturbative energy shift of a state jF;mFi can therefore be
expressed as

δE ¼ emF

X
w

γw ~cwq ð7Þ

with particle-dependent dimensionless scaling factors

γw ¼ Mw
20

6m2
wc2

ð8Þ

which are proportional to the total momentum quadrupole
moment from the Nw particles of type w:

Mw
20 ¼ −

XNw

N¼1

hF;FjP̂ð2Þ
0;w;NjF;Fi: ð9Þ

The analysis is performed using the data obtained from
the 133Cs and 87Rb dual fountain FO2 (see Fig. 1),
operating at the Paris Observatory, already used in Ref.
[1]. An atomic gas is laser cooled and launched upward on
a ballistic trajectory. The desired jF;mFi initial state is
prepared in the selection cavity, and remaining atoms in
other states are pushed away by a push beam. A microwave
cavity allows us to perform a Ramsey interferometry
sequence as the atoms pass through its mode successively
during their upward and downward passages. For further
experimental details, we refer the reader to an abundant
body of literature (e.g., Refs. [33,34]).
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Our data consist of two measurement sets of 21 and
14 days duration, taken respectively in April and
September 2005. During the experiment, the fountain
was run in Cs mode, which interrogates transitions between
the F ¼ 3 and F ¼ 4 hyperfine levels of the ground state
62S1=2, with a magnetic field oscillating at 9.2 GHz. It was
interrogated alternatively on three j3; mFi ↔ j4; mFi tran-
sitions with mF ¼ þ3, −3, and 0, of respective frequencies
νþ3, ν−3, and ν0.
The quantization magnetic field is vertical. The rota-

tional and orbital motion of the Earth then provides a
change of the orientation of this axis, as well as of the
laboratory boost, with respect to the Sun centered frame
(see Sec. IV). In the presence of LIV, this would result in a
time variation of the particles kinetic energy anisotropy and
therefore in a time-varying quadrupole shift of the atomic
level energies described by Eq. (7).
From Eq. (7), the frequency shift of a jF ¼ 3; mFi ↔

jF ¼ 4; mFi transition can be calculated through the differ-
ential energy shift between the two levels [30]. We use a
combination of hyperfine transition frequencies, νc ¼
νþ3 þ ν−3 − 2ν0 already used in Ref. [1], which preserves
the sensitivity to the quadrupolar LIV shift while canceling
magnetic perturbations from the first order Zeeman effect.
From Eq. (7), it can be shown that the LIV frequency shift
of this observable is [30]

δνc ¼ −
9

7h
½γp ~cpq þ γn ~cnq�; ð10Þ

with an overall scaling 9=7h ¼ 3.1 × 1023 Hz=GeV for
SME coefficients expressed in GeV. Here γw is defined as in
Eq. (8) but with the momentum quadrupole moment
expectation value Mw

20 in Eq. (9) taken in the jI; Ii state.

It is not sensitive to the electron SME coefficients. Indeed,
closed shells do not contribute [29], and the symmetry of the
orbital of the valence electron is spherical since its orbital
angular momentum in the state 62S1=2 is L ¼ 0; this leads a
zero value of the momentum quadrupole moment in Eq. (9).
Our experiment thus offers a test of LIV sensitive only to
nucleons, allowing us to give constraints decorrelated from
the electron LIV coefficients. The frequency shift is related
to each nucleon SME coefficient through a dimensionless
factor γw via the nucleon momentum quadrupole moment
Mw

20 [Eq. (8)] obtained from the nuclear model [Eq. (9)]. The
explicit dependence for each nucleon thus requires the
choice of a nuclear model, for which there is no simple
description for heavy nuclei such as 133Cs. We address this
question further in Secs. VI and VII. In the rest of the paper,
all references to notations γw,Mw

20, and to Eqs. (8) and (9) are
meant, as in Eq. (10), with the momentum quadrupole
moment expectation value Mw

20 taken in the jI; Ii state.

IV. TIME VARIATION IN THE SUN CENTERED
FRAME WITH SECOND ORDER BOOST

As the lab frame rotates and moves around Earth and
Sun, periodic modulations of the clock frequency appear
when each lab frame SME coefficient ~cwq in Eq. (10) is
expressed in terms of the SCF SME coefficients. The latter
are supposed constant at the time scale of our experiment,
since the SCF has a rectilinear uniform motion with respect
to a cosmological frame like the one given by the cosmic
microwave background. The SCF celestial frame, defined
in Ref. [36], is conventionally used to report SME results
and to compare them. If T is the Lorentz transformation
from the SCF to the lab frame for a covector, the tensor
component c̄ij in the lab frame is the following combina-
tion of the tensor components in the SCF,

c̄ij ¼ Ti
ΠTj

Γc̄ΠΓ; ð11Þ
where Π, Γ are indices spanning the SCF coordinates
ðT; X; Y; ZÞ. As described in Ref. [30],T is the composition
of a Lorentz boost Λ followed by a rotation R. The Lorentz
boost Λ involves the Earth’s orbital boost which varies with
annual frequency Ω and the lab boost due to the Earth’s
rotation varying at sidereal frequency ω, with respective
magnitude β⊕ ∼ 10−4 and βl ∼ 10−6 (ratio of velocity to
speed of light). The rotation is due to Earth’s rotation, at
sidereal frequency. The generic expressions of Λ and T are
given respectively in Eqs. (A1) and (A4) in Appendix A.
In the previous analysis [1] (as well as in most of the

previous literature, e.g., Refs. [29,30]), the boost matrix Λ
was approximated at first order of its Taylor expansion in β
and included only the dependence in the Earth’s orbital
boost β⊕. This OðβÞ model led to stringent constraints
on eight of the nine independent components of c̄μν
of the proton, improving state-of-the-art constraints by
up to 13 orders of magnitude. The ninth one, the isotropic

FIG. 1. Schematic view of an atomic fountain, from Ref. [35].
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coefficient c̄TT , is suppressed by a factor β2 and thus did not
appear in this first order model.
The main motivation of the present analysis is that

the high improvement demonstrated by these first results,
based on the intrinsic high sensitivity of cold atom clocks,
can also benefit the more suppressed c̄TT terms. Since the
suppression arises from the pure timelike nature of the c̄TT
coefficient, the constraint is expected to be less stringent,
but this coefficient is the less constrained from other non-
gravitational experiments as well. In this analysis, we
developed an improved SME model of our observable,
which, using a second order boost expression of Eq. (10) in
the SCF, includes the c̄TT coefficient. This approach has also
been used previously in spectroscopy in Ref. [32] to
constrain electron c̄μν coefficients. Initially, our model
contained all the terms up to Oðβ2Þ for the nine independent
components of c̄μν, but as they do not provide any valuable
contribution to the analysis, they are neglected, except for the
c̄TT coefficient. More details on this derivation and a
summarized version of the model can be found in
Appendix A (Table V).
The Lorentz-violating signal with this Oðβ2Þ model

includes sinusoidal variations at base frequencies
f0;ω; 2ωg associated with sidebands at annual frequency
Ω as for the first order model and new sidebands at 2Ω. It
exhibits in total 13 frequency components (25 quadratures),
instead of 3 frequency components (5 quadratures) for
the previous analysis which did not include the annual
frequency nor the second order terms.
SCF c̄μν components appear as nine observable combi-

nations, which as usually in the SME are given rescaled by
the rest mass energy of the particle and will be referred to in
the following as [2]

~cQ ¼ mc2ðc̄XX þ c̄YY − 2c̄zzÞ
~c− ¼ mc2ðc̄XX − c̄YYÞ
~cJ ¼ mc2ðc̄KL þ c̄LKÞ
~cTJ ¼ mc2ðc̄TJ þ c̄JTÞ
~cTT ¼ mc2c̄TT ð12Þ

where J, K, L are indices spanning spatial SCF coordinates
ðX; Y; ZÞ. The index w referring to the flavor of the particle
(proton or neutron) has been omitted here for the mass m
and the tensor components.

V. DATA ANALYSIS

The data processing is performed using a weighted least-
squares adjustment2 of the data used in Ref. [1] to the
Oðβ2Þmodel. In our observable in Eq. (10), c̄wq is expressed

in terms of the SCF SME coefficients as described in
Sec. IV, and the flavor-dependent scaling factor γw value is
set from the considered nucleus model, as will be described
in Secs. VI and VII. From our measurements of νc, we then
adjust directly all nine independent SCF combinations
given in Eq. (12), without intermediate steps as, e.g., on
the Fourier basis. As the data show white noise behavior
(see Ref. [1]), the least-squares method provides robust
limits on SME coefficients. Our 3 mHz data standard
deviation averages over the two data sets down to a
resolution of 60 μHz on the amplitude of a sinusoidal
deviation, which sets the bottom limit of statistical sensi-
tivity of our test as in Ref. [1].
The main systematic effects which are not already

corrected in the clock data, as detailed in Ref. [33], are
the Zeeman frequency shifts. For the frequency combina-
tion in Eq. (10), the second order Zeeman effect, propor-
tional to B2 with B the magnetic field, adds up to an overall
shift of −2 mHz for our data. The variations of this term
due to magnetic field fluctuations lie well below our
frequency resolution; as in Ref. [1], this shift is therefore
considered as constant, and the measured value of νc is
corrected for this constant offset prior to the SME model
adjustment.
The first order Zeeman shift, proportional to B, is

theoretically rejected in the combined observable νc.
However, atoms with mF ¼ þ3 and mF ¼ −3 follow
slightly different trajectories, which in the presence of
magnetic field inhomogeneities results in the incomplete
cancellation of the first order Zeeman shift in νc. The
residual shift can be estimated using the time of flight
(TOF) of the atoms in the fountain, measured periodically
during the clock operation for each data set. As described in
Ref. [1], the TOF data exhibit a systematic difference of
158 μs between themF ¼ þ3 andmF ¼ −3 atomic clouds;
a Monte Carlo simulation allows us to constrain the
corresponding residual first order Zeeman shift of νc to
a conservative estimate of 0� 25 mHz [1].
As this dominant systematic effect is susceptible to

varying with temperature at daily and annual frequency,
it could mimic nonzero SME coefficients. To assess this
systematic bias, we use the upper limit of the above
calibration to convert TOF data to worst-case frequency
shift data, which we adjust with the Oðβ2Þ model by
weighted least squares. We obtain an amplitude for each
SME coefficient (noted Xi

TOF) with a statistical uncertainty
σiTOF. The obtained amplitude is an upper bound in absolute
value; we therefore estimate the systematic bias at zero and
the systematic variance at ðXi

TOFÞ2 þ ðσiTOFÞ2.3
To obtain the total variance-covariance matrix of the

estimated SME coefficients, we sum the statistical (clock

2Because the data are dominated by white noise (see Ref. [1]),
ordinary least-squares fitting is well adapted for our analysis.

3For simplicity, we neglect the cross term 2Xi
TOFσ

i
TOF since the

systematics fit results show only either highly significant values
or highly nonsignificant values.
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data) and systematic (TOF data) matrix elements, in which
the systematic variances are defined as above. The values
and uncertainties for SME coefficients depend on the
nucleus model considered and will be presented for the
Schmidt nuclear model in Sec. VI and using a more realistic
nuclear model in Sec. VIII. The detailed discussion is
in Sec. IX.

VI. RESULTS BASED ON THE SCHMIDT
NUCLEAR MODEL

From the sensitivity in frequency variation of our data set
(Sec. V), the corresponding sensitivity on SME coefficients
depends on the value of the scaling factors γp;n [Eq. (10)]
which are proportional to the momentum quadrupole
moment of the nucleons in the extremal state jI; Ii from
Eq. (8) and Eq. (9). As an exact calculation is typically not
feasible, different simplification levels can be used. A
simplified description of the nucleus is given by the
Schmidt model, which has so far been used in many cases
when reporting SME constraints from atomic spectroscopy.
It relies on a shell description of the nucleus. With an odd
number of protons (55) and an even number of neutrons
(78) in the nucleus of 133Cs atoms, a shell model leads to
closed neutron shells and to a single valence proton. In the
Schmidt description, this nucleon carries the entire mag-
netic moment of the nucleus which is involved in the
hyperfine splitting. The expectation values in Eq. (9),
which in principle have to be summed over all nucleons,
reduce in this description to the expectation value for this
single proton and to an overall zero value from the neutrons
[29]: γn ¼ 0. With this nucleus model, the only constraints
we can extract from our data are thus on proton coefficients.
In the SME article on clocks [30] and in the first data
analysis [1], the approximated value of γp has been taken as
γp ¼ −1.1 × 10−3, leading to an expected maximum res-
olution on ~cpQ of approximately 2 × 10−25 GeV using the

frequency resolution given in Sec. V and the conversion
factor expressed in Sec. III.
Using these γp;n values, our analysis provides the bounds

on the ~cpμν components presented in Table I. They are all
consistent with Lorentz symmetry. The uncertainties show
an improvement by 5 orders of magnitude on the ~cpTT
coefficient compared to the state-of-the-art laboratory
constraints (Refs. [1,31]), reaching the 10−16 GeV scale.
The correlation matrix is displayed on Fig. 2. It contains
high values, except for the ~cpQ coefficient which is almost
decorrelated at this sensitivity level. This indicates that the
uncertainties contained in Table I are marginalized uncer-
tainties dominated by those correlations and could thus be
significantly improved with additional data spread over
one year.
In addition to the correlation matrix, we provide con-

fidence intervals on Fig. 3, which allow a synthetic view
over significance levels, orders of magnitude, and corre-
lations. We employ an analytical method developed in
Ref. [37], which uses the covariance matrix to build
confidence ellipses of which the semimajor axes are scaled
by a given value of

ffiffiffiffiffiffiffiffi
Δχ2

p
depending on the required

probability.4 Some of the ellipses show a strongly diagonal
orientation, indicating the presence of correlations between
the SME coefficients that are in agreement with the
correlations visible in Fig. 2.
In Appendix C, we provide an alternative, but entirely

equivalent, description of the results under the form of

FIG. 2. Correlation matrix of the ~cpμν components. The matrix
includes the statistic correlations (least-squares fitting of the data)
and the systematic correlations (TOF), as described in Sec. V.

TABLE I. Limits on SME Lorentz-violating parameters ~cpμν for
the proton, in GeV, when using the Schmidt model. The measured
values and total uncertainties are shown together with the
statistical (first bracket) and systematic (second bracket) uncer-
tainties. These limits are obtained using a complete least-squares
adjustment of the Oðβ2Þ model to the Cs fountain data. Con-
straints improved compared to state-of-the-art laboratory limits
are displayed in bold, with the improvement factor in orders of
magnitude in brackets. Note that previous constraints from
Ref. [1] did not determine all coefficients independently (cf.
Sec. IX B).

Coefficient
Value and
uncertainty

Unit
(GeV)

Previous
bound (GeV) Ref.

~cpQ −0.3� 2.1 ð10−2Þ ð2.1Þ 10−22 22 10−22 [1]
~cp− 1.4� 9.0 (0.7) (8.9) 10−24 2.8 10−25 [1]
~cpX −1.5� 5.3 (0.7) (5.2) 10−24 1.2 10−25 [1]
~cpY 0.8� 1.6 (0.3) (1.6) 10−24 1.2 10−25 [1]
~cpZ 1.0� 3.9 (0.8) (3.9) 10−24 2.8 10−25 [1]
~cpTX −1.5� 5.7 (0.6) (5.7) 10−20 3.0 10−21 [1]
~cpTY 1.4� 5.9 (0.3) (5.9) 10−20 3.0 10−21 [1]
~cpTZ −1.1� 3.5 (0.2) (3.5) 10−20 2.0 10−21 [1]
~cpTT 1.6� 6.9 (0.9) (6.9) 10−16ð5Þ < 10−11 [31]

4Here, Δχ2 is the difference between the χ2 value at a given
point in the parameter plane and the one of the best fit solution.
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independently constrained linear combinations of coeffi-
cients. These combinations are obtained from the singular
value decomposition (SVD) of the covariance matrix,
meaning that they are the set of orthonormal vectors (in
the Euclidean sense) that diagonalize the covariance matrix.
Having no correlation between these combinations implies
that the uncertainty is not degraded and thus reaches a
lower value as can be seen in Table VI, typically decreased
by a factor of 2. The linear combinations given in Table VII
have dominant coefficients; the corresponding constraints
can thus be regarded as the “maximal sensitivity” on this
coefficient from our data, in the sense commonly used
when reporting SME constraints [2].

VII. SCRMF NUCLEAR MODEL

A. Relativistic mean field formalism

Recent developments in nuclear physics have attracted a
renewed interest in the effects of Lorentz violation in
atomic and nuclear physics [27,28]. Following this trend,
we compute the nuclear matrix elements in the jI; Ii state,
in particular the ones required for the determination of γw

[Eqs. (7), (8) and (10)], in a fully microscopic way using a
state-of-the-art nuclear structure approach. This allows us

to go beyond the single nucleon model and to calculate both
the neutron and proton contributions to the nuclear matrix
elements. The theoretical framework used here is the
relativistic energy density functional which is particularly
suited to describe nuclear structure properties in great depth
[38]. In this approach, the nucleus is described in terms of
nucleons considered as pointlike Dirac particles, while the
interaction among them is described by an exchange of
mesons. Thus, one may construct in a fully covariant way a
phenomenological Lagrangian density which conserves the
symmetries of the nuclear interaction:

L ¼ ψ̄

�
iγμ∂μ −m − gσσ − gωγμωμ − gργμ~ρ · ~τμ

− gπγ5γμ∂μ~π · ~τ − eγμAμ

�
1 − τ3
2

��
ψ

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

2
ðΩμνΩμν −m2

ωωμω
μÞ

−
1

4
~Rμν

~Rμν þ 1

2
m2

ρ~ρμ · ~ρμ þ
1

4
∂μ~π∂μ~π þ 1

2
m2

π~π2

−
1

4
FμνFμν: ð13Þ

In this section, we use natural units (i.e., c ¼ 1 and ℏ ¼ 1)
for compactness of the notation. The arrows symbolize
vectors of the isospin SU(2) space. ψ is a Dirac 4-spinor
describing a nucleon of mass m, while γμ denotes the usual
Dirac matrices, and τi denotes the isospin Pauli matrices. In
Eq. (13), the nucleons interact by the exchange of fσ; ρ;ω
and πg mesons, while the Coulombian interaction is taken
into account by the 4-potential Aμ. The self-interaction of
each mesonic field is expressed using the field strength

tensors Ωμν and ~Rμν, while Fμν is the usual electromagnetic
field tensor associated with the photon. The coupling
constants of (13) are then fitted in order to accurately
reproduce the binding energies of a set of benchmarking
nuclei [39].
Performing a Legendre transform of (13) yields the

Hamiltonian of the problem

H ¼
Z

d3x ψ̄ ½i∇þm�ψ þ 1

2

Z
d3x ψ̄

�
gσσ þ gωγμωμ

þ gργμ~ρ · ~τμ þ gπγ5γμ∂μ~π · ~τ þ eγμAμ

�
1 − τ3
2

��
ψ :

ð14Þ

The relativistic energy density functional is computed
by taking the expectation value of (14) on the vacuum
state jΦ0i,

E½ρ� ¼ hΦ0jHjΦ0i; ð15Þ

while the density operator of the system is defined as

FIG. 3. Confidence ellipses of the ~cpμν components, when using
the Schmidt model. The red, blue, and green confidence ellipses
correspond respectively to the 68.3%, 90%, and 95.4% confi-
dence regions. The purple square is the position of the least-
squares solution. Axis labels give the 95.4% confidence intervals
in GeV, the respective orders of magnitude of which are given in
the upper right box. Horizontal and vertical blue lines at zero
value allow us to visualize the absence of significance in the
results.
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ρij ¼
hΦ0jc†jcijΦ0i
hΦ0jΦ0i

ð16Þ

with c†i =ci being the nucleonic creation/annihilation
operators. To compute the ground state energy, the varia-
tional principle is applied to (15). Neglecting the Fock
exchange term leads to the relativistic Hartree-Bogoliubov
(RHB) equations, solved in a self-consistent way in an
axially deformed harmonic oscillator basis [39]. For a given
nucleus, this model allows us to obtain its nuclear density in
the nucleus intrinsic frame, as pictured on Fig. 4 for 133Cs.

B. Nuclear quadrupole moments

The solutions of the RHB equations give access to the
density of the system. The moments of the multipolar
expansion of the density describe the shape of the nucleus.
For instance a non-null quadrupole moment in configura-
tion space excludes spherical symmetry but may conserve
an axial symmetry. The quadrupole moment in momentum
space Mw

20 can be directly related to the γw parameters
by Eq. (8).
In the intrinsic frame of the nucleus, the usual quad-

rupolar distribution is expressed in configuration space as

~Qw
20 ¼ hΦ0jð3z2 − r2ÞjΦ0i ¼ Tr½ρð3z2 − r2Þ�; ð17Þ

while in momentum space

~Mw
20 ¼ hΦ0jð3p2

z − ~p · ~pÞjΦ0i: ð18Þ

In a final step, we project the quadrupole moments into
the laboratory frame using

Qw
20 ¼

3K2 − IðI þ 1Þ
ðI þ 1Þð2I þ 3Þ

~Qw
20; ð19Þ

where I is the nuclear spin of the considered nucleus and K
is its projection onto the quantization axis. Note that (19)
gives only an approximate value in the laboratory frame.

For better accuracy, the complete projection of the RHB
solutions on the correct total angular momentum needs to be
performed, in the laboratory frame. This is out of the scope of
the present paper but will be investigated in upcoming work
using the generator coordinate method [40].
When comparing our results to the recently published

ones in Ref. [28], which use a self-consistent mean field
technique (SCMF), we note a good agreement (within a
factor ∼1.3) for Mp

20 but very large discrepancies (up to a
factor ∼60) for Qn

20 andM
n
20. We ascribe this to the method

used in Ref. [28] which is tailored for the proton con-
tribution as it is based on the experimental value ofQp

20 and
is thus likely to be only very approximate for the neutron
quadrupole moments.
When carrying out our calculations for the atoms also

studied in Ref. [27], we find a very good agreement for 21Ne
(for the protonsQp

SCRMF ¼ 9.5 fm2whenQp
SCMF ¼ 9.7 fm2,

while the results are the same for neutron contribution) and
results of the same order of magnitude for 131Xe and 201Hg.
The remaining differences are mainly due to the different
methods used to constrain the computations.
In the case of 133Cs, the number of protons (Z ¼ 55) is

odd; thus, the spin parity of the ground state is given
by the valence proton. In the framework of the energy
density functional, we use the usual half-filling approxi-
mation [41], enforcing the correct spin parity of the state,
here I ¼ Kπ ¼ 7

2
þ. The comparison of the experimental

energy of the ground state (Eexp ¼ −1118.5 MeV) to the
RHB predictions is given in Table II, showing the good
accuracy of the present approach. The quadrupolar
moments in the laboratory frame for 133Cs are given in
Table II for two different parametrizations of the relativistic
functional (15): DD-PC1 is a point-coupling interaction,
while DD-ME2 takes into account the full finite range
meson exchange and is more realistic.
A more detailed presentation and discussion of these

calculations for different nuclei as well as comparisons
between different methods will be the subject of a future
publication.

VIII. RESULTS BASED ON THE
SCRMF NUCLEAR MODEL

From the two nucleon interaction models considered
in Sec. VII, we use the results of the DD-ME2 func-
tional which are expected to be more realistic. From
Eq. (8) and Table II, we obtain γp ¼ 8.32 × 10−4 and

FIG. 4. Nucleonic density of 133Cs in fm−3, in the intrinsic
frame. Left: 3D representation. Right: 2D projection.

TABLE II. Quadrupolar moments in configuration ðfm2Þ and
momentum representation ðℏ=fmÞ2 for 133Cs.

Functional Qn
20 Qp

20 Mn
20 Mp

20 E (MeV)

DD-PC1 −2.6576 −0.3578 0.0047 0.1135 −1118.6
DD-ME2 −2.8083 −0.3538 0.0024 0.1129 −1117.7
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γn ¼ 1.76 × 10−5. In this nuclear model, the neutron
contribution is not neglected, unlike in the Schmidt model,
so our experiment allows us to constrain also neutron LIV,
but with a sensitivity scaled by γn about 2 orders of
magnitude lower than for the proton. We cannot distinguish
the relative nucleon contributions and are sensitive to the
linear combinations ~cpμν þ 0.021~cnμν. The limits on these
SME coefficients combinations, given in Table III, are
obtained by a straightforward rescaling of Table I from the
Schmidt model, and consequently the correlation matrix
stays the same as in Fig. 2 with the proton coefficients
replaced by the above combinations. Since the individual
constraints from proton and neutron cannot be disen-
tangled, results for each nucleon can be expressed in terms
of maximal sensitivity as defined in Ref. [2]. As shown in
Table III, improvements on proton coefficients are equiv-
alent to the ones presented for the Schmidt model. For the
neutron coefficients, our results improve by 12 to 13 orders
of magnitude over state of the art for the ~cTJ coefficients, 7
orders of magnitude for the ~cQ coefficient, and 2 orders of
magnitude for the ~cTT coefficient, respectively down to
10−17, 10−20, and 10−13 GeV.

IX. DISCUSSION

A. Comparison to previous works

Our results show large improvements on the isotropic
coefficient ~cTT for the proton with both nuclear models, as
well as for several neutron coefficients for the relativistic
nuclear model. With this model, by improving on the
previous weakest limits, our analysis brings all ~cμν con-
straints for the proton and neutron below or much nearer to

(for ~cTT) Planck-scale suppression. All results presented in
this paper are still consistent with Lorentz symmetry.
For the proton, results are equivalent with both consid-

ered nuclear models. Our improved LIV model including
annual modulations and terms at orderOðβ2Þ in boost leads
to a high sensitivity to ~cTT that was not constrained by the
previous analysis of our data.
The improvement on neutron coefficients comes from

our new nuclear model that, unlike the Schmidt model,
accounts for the sensitivity of our measurement to the
neutron SME coefficients. The resulting limits on neutron
coefficients are much less stringent than the ones from
comagnetometers [42]. However, comagnetometer limits
so far do not address the boost-dependent parts ~cTJ and ~cTT
nor the spatial part ~cQ, and this is where we provide large
improvements. The previous ~cQ limit was set recently from
acoustic waves in quartz [22].
In Secs. VI and VIII, we compared our results on ~cTT

with those obtained through the SME Weak Equivalence
Principle (WEP) test interpretation of torsion balance experi-
ments [31]. This analysis, however, did not disentangle the
isotropic component ~cTT from the spatial component ~cQ;
disentanglement has been done in Ref. [31] and weakens this
upper bound by 3 orders of magnitude. So in this respect, the
improvement factors of 104 and 102 displayed in Table III
are conservative, since when comparing to this disentangled
limit we rather improve by 7 orders of magnitude the
constraint on ~cTT for the proton and by 5 orders of
magnitude that for the neutron.
The bounds for the proton and neutron shown in

Secs. VI and VIII are compared with the best existing
laboratory limits, despite the existence of stronger astro-
physical constraints (Refs. [43–45]). The latter bring in
particular a better double sided limit on ~cpTT than the one
obtained with our analysis. However, these bounds involve
model-dependent assumptions about distant astrophysical
processes.

B. Role of the complete vs piecemeal analysis

In our approach (which we refer to hereafter as the
“complete” analysis), the nine ~cμν coefficients are fitted
simultaneously. Fitting over a data set with sufficient
resolution for a sidereal period combined with a spread
over half a year can enable us to discriminate all coef-
ficients in a single fit, thanks to their contrasted spectral
signatures. The uncertainty related to annual variation
could, however, be strongly degraded by uncontrolled
systematics. In our case, the robustness of the long term
behavior of clocks, which are built to provide absolute
frequency references, gives us access to annual variation
with controlled systematic uncertainty.
This simultaneous fit is in contrast to the most common

approach, referred to hereafter as a “piecemeal” analysis. In
this approach, used, e.g., in Refs. [1] and [32], the SME
model adjustment is made successively on separate subsets

TABLE III. Limits (1 sigma) on SME Lorentz-violating param-
eters ~cwμν for the proton and neutron, in GeV, when using the
SCRMF nuclear model. The last two columns show the corre-
sponding maximal sensitivities on each nucleon as defined in
Ref. [2] (2 sigma limits logarithmically rounded). In bold are the
values which improve over the state-of-the-art laboratory limits
published in the 2017 version of Ref. [2] and obtained with other
experiments, with the improvement in orders of magnitude in
brackets.

Coefficient
Value and
uncertainty

Unit
(GeV) ~cpmax ðGeVÞ ~cnmax ðGeVÞ

~cpQ þ 0.021~cnQ 0.4� 2.8 10−22 10−21 10−20ð7Þ

~cp− þ 0.021~cn− −0.2� 1.2 10−23 10−23 10−21

~cpX þ 0.021~cnX 2.0� 7.0 10−24 10−23 10−21

~cpY þ 0.021~cnY −1.1� 2.2 10−24 10−23 10−22

~cpZ þ 0.021~cnZ −1.3� 5.2 10−24 10−23 10−21

~cpTX þ 0.021~cnTX 2.0� 7.6 10−20 10−19 10−17ð12Þ

~cpTY þ 0.021~cnTY −1.8� 7.8 10−20 10−19 10−17ð12Þ

~cpTZ þ 0.021~cnTZ 1.4� 4.6 10−21 10−19 10−18ð13Þ

~cpTT þ 0.021~cnTT −2.2� 9.1 10−16 10−15ð4Þ 10−13ð2Þ
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of parameters, assuming that they are independent and
assigning in turn a zero expectation value for those not
fitted. The drawbacks of this method are that it requires
assumptions on the expectation values and that, by neglect-
ing the correlation between parameters belonging to different
subsets, it leads to an artificial decrease in the marginalized
uncertainties and thereby to an underestimation of the
individual parameter uncertainties. To illustrate this limit
of the piecemeal analysis, we compared the results shown in
Ref. [1], obtained using such an analysis with two subsets of
parameters, and the results obtained with a complete and
direct fitting of the same first order OðβÞ model to the data.
For both, the Schmidt model was used.
The results presented in Table IV show that, except for

the ~cpQ coefficient of which the sensitivity is dominated by
the systematics, the piecemeal analysis led to an under-
estimation of the uncertainties by a factor 6 to 20 in the
previous analysis. That is why the constraints on the ~cpμν
coefficients presented in Table I show degraded uncertain-
ties in comparison with Ref. [1], except for ~cpQ, the
uncertainty of which remains the same, and for ~cpTT, which
was not constrained in Ref. [1].
In Table IV, we have used the Schmidt nuclear model to

allow easier comparison with previous work. But our
conclusions are general; in particular, the factors C/P are
independent of the nuclear model used.

C. Discussion of the improved nuclear model

Recently, new nuclear models beyond the Schmidt
model were published for several atoms used in LIV
experiments [27,28]. We present here a different model
of the nucleus, as described in Sec. VII. The model
presently used is a state-of-the art application of the density
functional theory, known for a successful description of
various nuclear states over the nuclear chart. As such, the

degrees of freedom of this model are the physical nucleons,
treated in the most general way. The present model is
therefore more universal than the Schmidt model and more
relevant than Ref. [28] to take into account nuclear structure
effects. As discussed in Sec. VII, the results of our
calculation significantly differ from the results for 133Cs
presented in Ref. [28]. It should be noted that results of the
present method on several nuclei are in agreement with the
nonrelativistic energy density functional calculations of
Ref. [27]. In the case of the 133Cs atom, the present results
are in qualitative agreement with those of the Schmidt
model, given that γn remains a factor 45 smaller than γp,
meaning that sensitivity to proton coefficients is much
larger than to neutron ones, as expected.
Our results with the SCRMF nuclear model (Table III)

set limits on the linear combinations ~cpμν þ 0.021~cnμν of
SME coefficients. For other atoms, e.g., those used in
comagnetometers [42], the corresponding linear combina-
tions are different. This opens the possibility of combining
different results in order to derive independent constraints
on proton and neutron parameters in global analyses. This
will be addressed in more detail in future work.

X. CONCLUSION AND PERSPECTIVES

We have presented new constraints on coefficients
parametrizing Lorentz violations for nucleons in the min-
imal Standard Model extension, by monitoring the fre-
quency shifts of hyperfine transitions in a cold atom
fountain on Earth. Within the fermion sector, our observ-
able is by construction only sensitive to the c̄μν coefficients
(Sec. III). This test relies on the anisotropy of the kinetic
energy in the wave functions of the nucleons, characterized
by their nonzero momentum quadrupole moment of which
the value is highly nuclear model dependent. We first use
the Schmidt model, which has so far been mostly used
(Sec. VI), and extend the analysis to a more advanced
SCRMF nuclear model (Secs. VII and VIII).
We have reanalysed data taken by the dual cold atom

fountain FO2 at Paris Observatory in the 133Cs spin-
polarized mode on the j3; mFi ↔ j4; mFi hyperfine
transitions, as first reported in Ref. [1]. Our analysis
features the use of a new SME model that includes terms
of order Oðβ2Þ (Sec. IV). This allows us access to the
isotropic coefficient ~cTT , not constrained by the previous
analysis. Using a direct and simultaneous fitting of all
parameters, we provide a complete analysis including
individual limits on all ~cμν coefficients, the associated
correlation matrix, and confidence intervals (Sec. V). We
also present a description of the results in terms of
independently constrained linear combinations, obtained
through a singular value decomposition of the covariance
matrix (Appendix C).
To allow for direct comparisons with previous works, we

have presented both results, based respectively on the
Schmidt nuclear model (Table I) and on our advanced

TABLE IV. Comparison between piecemeal (P) and complete
(C) analysis for the OðβÞ model used in Ref. [1]. In the complete
analysis, we fit directly for the SME coefficient values. For the
piecemeal results, we report the results obtained in Ref. [1] using
as subsets the ~cpTJ on the one hand and all the purely spatial
combinations on the other hand. The underestimation factor of
the uncertainty in the piecemeal analysis is denoted C/P.

Coefficient
Uncertainty
(GeV) (P) [1]

Uncertainty
(GeV) (C) C/P

~cpQ 2.2 10−22 2.1 10−22 0.95
~cp− 2.8 10−25 5.2 10−24 19
~cpX 1.2 10−25 1.2 10−24 10
~cpY 1.2 10−25 7.5 10−25 6.3
~cpZ 2.8 10−25 2.8 10−24 10
~cpTX 3.0 10−21 2.3 10−20 7.7
~cpTY 3.0 10−21 5.9 10−20 20
~cpTZ 2.0 10−21 3.3 10−20 16.5
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nuclear model (Table III). The present best limit on
the ~cpTT coefficient is improved by 5 orders of magnitude
with respect to previous laboratory limits, down to the
10−16 GeV scale (Sec. VI). The advanced nuclear model
allows us to place limits on a linear combination of proton
and neutron coefficients, in contrast to the Schmidt model
used in Ref. [1], which accounts only for the proton sector
sensitivity. This leads to improvements on the limits of the
~cnQ, ~c

n
TJ, and ~cnTT neutron coefficients, by up to 13 orders of

magnitude.
All our results are compatible with the absence of

Lorentz violation. As mentioned in the Introduction, if
the relevant scale unit for suppressions is the electroweak-
to-Planck energy ratio (Eew=EP ∼ 10−17), it is particularly
interesting to constrain the dimensionless LIV tensors
~cμν=ðmc2Þ below this Planck suppressed scale. With this
study, we bring the limits at or below that level for the first
time for all proton and neutron coefficients (with mc2 ∼
1 GeV for protons and neutrons), except for c̄nTT and c̄pTT of
which the limits are respectively weaker by 3 and 1 orders
of magnitude. Nonetheless, our results give an experimen-
tal benchmark indicating that the minimal suppression
compatible with our data for the operators associated with
c̄μν is at least one Planck scale. These dimension-4 Lorentz-
violating terms could be expected to be of order 1 from
quantum field theory, and the experimental observations
thus require that an additional suppression mechanism
comes into play, such as that proposed in Refs. [5,25,46].
Our ~cμν coefficients estimations are still significantly

correlated (see Fig. 2), mostly because our two data sets do
not span a sufficient portion of the year to allow their full
decorrelation from the annual sidebands (Appendix A).
Thus, we expect that an additional data set would reduce
the marginalized uncertainties and lead to an improvement
by one extra order of magnitude of all limits, in particular
bringing the limit on ~cpTT down to 10−17 GeV. Based on
synthetic data simulations, the best period for a third data
set would be July or January.
The 133Cs fountain data could also be analyzed in an

extended framework: the nonminimal SME framework,
which takes into account higher order Lorentz-violating
operators. A nonminimal model, up to order 5 or 6, would
contain additional sidereal harmonics, allowing for addi-
tional parameters to be determined and possibly for better
decorrelation of the minimal ones (Ref. [47]).
Previous experiments realized with other setups and

atoms could be reanalyzed with our new nuclear model.
Analyzing SME spectroscopy experiments with more
accurate models of the nucleus is a current effort of several
groups (Refs. [27,28]) and will be the subject of future
work centered on the nuclear calculation method used here
and its application to other atoms and SME tests.
In conclusion, our work brings significant improvement

in constraining possible low-energy signatures of new

high-energy physics, using a set of improved models and
analysis that could also benefit to other experimental tests.
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APPENDIX A: SECOND ORDER MODEL

The direction and amplitude of the lab velocity with
respect to the SCF are respectively denotedn and β ¼ v

c. The
Lorentz boost matrix Λ of the lab with respect to SCF is

Λ ¼
�

γ γβnT

γβn I3 þ ðγ − 1Þn · nT

�
: ðA1Þ

Expanding γ ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ to the second order in β gives

Λ ¼
�
1þ 1

2
β2 βnT

βn I3 þ 1
2
β2n · nT

�
ðA2Þ

¼
�

1 βnT

βn I3

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Λð1Þ

þ
� 1

2
β2 0

0 1
2
β2n · nT

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Λð2Þ

; ðA3Þ

where Λð1Þ is the first order boost and Λð2Þ is the second
order boost.
Following Ref. [30], the transformation matrix T from

the SCF to the lab frame is given by the product

T ¼

0
BBB@

1 0 0 0

0

0 R

0

1
CCCA · Λ; ðA4Þ

where R is the rotation matrix describing the orientation of
the lab frame’s axes directions in the SCF.
The total boost is the sum of the orbital boost of Earth

and the boost of the lab relative to the Earth, with
amplitudes β⊕ and βl respectively. As eccentricity of
Earth’s orbit gives rise to a maximal deviation of 2% of
its mean value, it leads to subleading order corrections in
our model and can be neglected as shown in Ref. [30].
Earth’s orbit is thus taken as circular.
As already mentioned, the second order boost is only

necessary for terms involving ~cTT , as all other components
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TABLE V. Composition of the complete Oðβ2Þ model applied to ~cq in Eq. (10). The expression of the signal
associated to each SCF coefficient is detailed in terms of frequency, phase, and boost suppression. The only
information not reported here is prefactors of order 1 from two angles, the lab colatitude, and the inclination of the
Earth’s orbit. ω (respectively Ω) denotes the angular frequency of the Earth’s rotation (respectively of the Earth’s
orbit). The column on the left is the main harmonic, and the column next to it is the sideband frequency. The spectral
components included in the shortened model fitted to the data are in bold type.

Frequency ~cQ ~c− ~cX ~cY ~cZ ~cTX ~cTY ~cTZ ~cTT

0

0

1 β2⊕ β2⊕ β2⊕

β2⊕ β2l
β2l

Ω
cos β⊕βl β⊕βl β⊕ β⊕ β⊕
sin β⊕βl β⊕βl β⊕ β⊕ β⊕

2Ω
cos β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕
sin β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕

ω

−2Ω
cos β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕
sin β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕

−Ω
cos β⊕βl β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕ β⊕ β⊕βl
sin β⊕βl β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕ β⊕ β⊕βl

0

cos 1 β2⊕ βl
β2⊕

sin β2⊕ β2⊕ 1 βl β2⊕
β2⊕

þΩ
cos β⊕βl β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕ β⊕ β⊕βl
sin β⊕βl β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕ β⊕ β⊕βl

þ2Ω
cos β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕
sin β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕

2ω

−2Ω
cos β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕
sin β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕

−Ω
cos β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕
sin β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕

0

cos β2⊕ 1 β2⊕ β2⊕
β2⊕
β2l

sin β2⊕ 1

β2⊕
β2l

þΩ
cos β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕
sin β⊕βl β⊕βl β⊕βl β⊕βl β⊕ β⊕

þ2Ω
cos β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕
sin β2⊕ β2⊕ β2⊕ β2⊕ β2⊕ β2⊕

3ω

−Ω
cos β⊕βl β⊕βl
sin β⊕βl β⊕βl

þΩ
cos β⊕βl β⊕βl
sin β⊕βl β⊕βl
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of ~cμν are dominated by zero or first order terms in β.
However, it turns out (see Appendix B) that for the ~cTT
component all Oðβ2Þ terms are obtained from solely the
first part of (A3), the second part giving rise to only Oðβ4Þ
terms. Note also that consequently any other second order
effects (e.g., geodetic precession [48]) can be neglected.
The transformation matrix T we obtain is then used in

(11) to relate the lab frame parameters to the SCF ones.
Applying it to ~cq of Eq. (10) leads to a time-varying signal
in case any of the SCF ~cμν coefficients is different from
zero. The full explicit model is not given here because of its
length, but it is available on request. We summarize its
spectral structure in Table V with associated boost sup-
pression factors for each SME coefficient. Restricting to the
relevant terms used in the final adjustment, the shortened
model is composed of an offset plus 12 frequency compo-
nents, which amounts to a total of 25 quadratures.

APPENDIX B: LAB FRAME c̄q IN TERMS
OF c̄TT TO SECOND ORDER IN BOOST

The (instantaneous) Lorentz transformation of covector
components from the SCF to the laboratory frame is written

uμ ¼ TΞ
μuΞ; ðB1Þ

where capital greek letters denote components with respect
to the SCF. For the c̄μν coefficients in the lab frame, the
transformation is

c̄μν ¼ TΞ
μTΠ

νc̄ΞΠ: ðB2Þ

We now adopt the special case of isotropic SCF coef-
ficients c̄ΞΠ, in matrix form (recall that c̄ΞΠ is traceless),0

BBBBB@

c̄TT 0 0 0

0 1
3
c̄TT 0 0

0 0 1
3
c̄TT 0

0 0 0 1
3
c̄TT

1
CCCCCA; ðB3Þ

and we focus on the quadrupole set of coefficients in the lab
frame c̄q ¼ c̄xx þ c̄yy − 2czz. Using the Lorentz transfor-
mation and Eq. (B3), the lab frame coefficients can be
written as

c̄q ¼ ½TT
xTT

x þTT
yTT

y

− 2TT
zTT

z�c̄TT þ ½TJ
xTJ

x

þTJ
yTJ

y − 2TJ
zTJ

z�
1

3
c̄TT: ðB4Þ

Thus, wewould need to know the spatial part of the Lorentz
transformation to second order in the boost velocity to get
the desired expression. However, there is a quicker method.
We use the defining property of Lorentz transformations

and the flat space-time metric:

ημν ¼ TΞ
μTΠ

vηΞΠ: ðB5Þ
From this equation, we can reexpress the terms involving
TJ

j using only the TT
j terms. For instance, if we pick

μ ¼ ν ¼ x, then we have from (B5),

1 ¼ TΞ
xTΠ

xηΞΠ

¼ −TT
xTT

x þTJ
xTJ

x; ðB6Þ
thus implying

TJ
xTJ

x ¼ 1þ ½TT
x�2 ðB7Þ

with similar identities holding for the other terms in the last
line of (B4). Using identities like (B7), in Eq. (B4), we
arrive at the expression

c̄q ¼
4

3
c̄TT ½TT

xTT
x þTT

yTT
y − 2TT

zTT
z�; ðB8Þ

from which it should be clear that only the first order boost
in Λ is needed to find the time dependence of c̄q in terms of
c̄TT . A similar method was used in Ref. [49].

APPENDIX C: INDEPENDENT BOUNDS
ON LINEAR COMBINATIONS OF SME
COEFFICIENTS USING SINGULAR

VALUE DECOMPOSITION

One can use a singular value decomposition of the
covariance matrix [50] to set constraints on linear combi-
nations of SME coefficients. This decomposition is equiv-
alent to a diagonalization of the covariance matrix C, which
allows the determination of independently constrained
linear combinations of parameters. These combinations
are orthonormal to each other in the Euclidean sense. We
write the covariance matrix C as

C ¼ V · S · VT; ðC1Þ

TABLE VI. Limits on linear combinations of SME Lorentz-
violating parameters ~cpμν for the proton using the Schmidt model,
in GeV. These combinations have been obtained using a singular
value decomposition of the total covariance matrix.

Linear combination Value and uncertainty Unit (GeV)

c1 ð−0.2� 2.1Þ 10−22

c2 ð−2.0� 3.6Þ 10−24

c3 ð0.6� 1.6Þ 10−24

c4 ð−4.0� 7.0Þ 10−25

c5 ð−0.3� 1.3Þ 10−24

c6 ð0.7� 2.4Þ 10−20

c7 ð−1.7� 6.8Þ 10−20

c8 ð0.1� 1.4Þ 10−20

c9 ð1.6� 6.9Þ 10−16
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where the matrix V contains the eigenvectors of C and the
diagonal S matrix contains its eigenvalues. These two
matrices and the parameter vector a are then used to define
the linear-independent combinations vector, denoted c, and
their associated uncertainties σci :

c ¼ VT · a ðC2Þ
σci ¼

ffiffiffiffiffi
Sii

p
: ðC3Þ

The detailed composition of those combinations is pre-
sented in Table VII, and their values and uncertainties are

shown in Table VI. We also provide the analytical con-
fidence ellipses of these linear combinations in Fig. 5. As
expected, the ellipses are not tilted, meaning that the linear
combinations have a diagonal covariance matrix. The
results have been given for the Schmidt model. For the
alternative nuclear model used here, results in Table VI
and Fig. 5 would be rescaled as was done in Sec. VIII for
Table III, and in their composition given in Table VII,
proton coefficients would be replaced by ~cpμν þ 0.021~cnμν.

APPENDIX D: EXPECTATION VALUE
OF THE NONLOCAL p2 OPERATOR

Considering a generic one-body operator

Ô ¼
X
i;j

hijOjjic†i cj; ðD1Þ

one can show using the Wick theorem that the expectation
value on an Hartree-Fock-Bogoliubov vacuum of this
squared operator can be written

hΦ0jÔ2jΦ0i
hΦ0jΦ0i

¼ ½TrðOρÞ�2 þ TrðO2ρÞ

− TrðOρOρÞ − Tr½OκðOκÞ��; ðD2Þ
with the normal density defined as

ρij ¼
hΦ0jc†jcijΦ0i
hΦ0jΦ0

E ðD3Þ

and the pairing tensor

κij ¼
hΦ0jcjcijΦ0i
hΦ0jΦ0i

: ðD4Þ

In the case of (18), the matrix elements of the momentum
operator can be expressed in the deformed harmonic-
oscillator basis as

hij~pjji ¼ −iℏ
Z

d3rid3rjϕ�
i ð~rÞ ~∇ϕjð~rÞ: ðD5Þ

Thus, one may directly use (D2) to compute (18).

TABLE VII. Composition of the linear combinations of ~cpμν coefficients obtained using a SVD of the covariance matrix. Boldface
numbers indicate the leading terms, for better visibility.

~cpQ ~cp− ~cpX ~cpY ~cpZ ~cpTX ~cpTY ~cpTZ ~cpTT

c1 1.0 −5.3 10−5 3.5 10−5 −4.9 10−6 −7.7 10−6 −4.6 10−5 1.3 10−4 −1.7 10−5 2.8 10−9

c2 5.7 10−5 0.99 −0.01 0.02 0.05 9.9 10−5 −8.1 10−5 4.2 10−5 −3.2 10−9
c3 2.7 10−5 −0.11 −0.8 0.06 0.59 7.1 10−5 2.3 10−5 6.1 10−6 −1.7 10−9
c4 −1.2 10−6 0.02 −0.09 −0.99 −0.02 −1.7 10−5 6.4 10−8 −1.4 10−6 1.1 10−10

c5 1.3 10−5 −0.02 −0.57 0.06 −0.81 4.0 10−6 −1.8 10−5 3.7 10−6 −4.2 10−10
c6 −6.3 10−5 1.1 10−4 −6.7 10−5 2.3 10−5 3.9 10−5 −0.96 0.11 −0.26 −7.1 10−5
c7 1.1 10−4 −7.0 10−5 −9.8 10−6 2.2 10−6 2.9 10−5 −0.22 −0.86 0.47 −2.1 10−5
c8 −6.1 10−5 2.3 10−5 −2.3 10−6 2.5 10−6 −7.0 10−6 −0.17 0.51 0.84 8.6 10−7

c9 −4.8 10−9 9.0 10−9 −6.8 10−9 2.0 10−9 4.2 10−9 −7.2 10−5 −1.1 10−5 −9.3 10−6 1.0

FIG. 5. Confidence ellipses of the linear combinations (SVD).
The red, blue, and green confidence ellipses correspond respec-
tively to the 68.3%, 90%, and 95.4% confidence regions. The
purple square is the position of the least-squares solution. Axis
labels give the 95.4% confidence intervals in GeV, the respective
orders of magnitude of which are given in the upper right box.
Horizontal and vertical blue lines at zero value allow us to
visualize the absence of significance in the results.
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