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The detailed investigation of the Higgs sector at present and future colliders necessitates from the theory
side as precise predictions as possible, including higher-order corrections. An important ingredient for the
computation of higher-order corrections is the renormalization of the model parameters and fields. In this
paper we complete the renormalization of the two-Higgs-doublet model (2HDM) Higgs sector launched in
a previous contribution with the investigation of the renormalization of the mixing angles α and β. Here, we
treat the renormalization of the mass parameterm2

12 that softly breaks theZ2 symmetry of the 2HDMHiggs
sector. We investigate the impact of two different renormalization schemes on the sample Higgs-to-Higgs
decay H → hh. This decay also allows us to analyze the renormalization of the mixing angles and to
confirm the properties extracted before in other Higgs decays. In conclusion we find that a gauge-
independent, process-independent and numerically stable renormalization of the 2HDM Higgs sector is
given by the application of the tadpole-pinched scheme for the mixing angles α and β and by the use of the
modified minimal subtraction scheme for m2

12.
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I. INTRODUCTION

The experimental data [1–4] on the properties of the
Higgs boson discovered in 2012 by the LHC experiments
ATLAS [5] and CMS [6] are compatible with a Standard
Model (SM)-like Higgs boson. Still they leave room for
interpretations in models beyond the SM (BSM).
Theoretical and experimental considerations lead to the
conclusion that the SM cannot be the ultimate theory of
nature. In view of no direct discovery of BSM manifes-
tations in the form of new particles so far, we are bound
to study the Higgs sector in great detail in order to gain
insights into possibly existing new physics (NP). Among
the plethora of BSM extensions of the Higgs sector, two-
Higgs-doublet models (2HDM) [7–9] play an important
role. They feature five physical Higgs bosons: twoCP-even
ones h and H, a CP-odd scalar A and two charged Higgs
bosons H�. The couplings of these Higgs bosons to SM
particles are modified by two mixing angles: the angle α
arising from the diagonalization of the CP-even Higgs
mass matrix, and β originating from the CP-odd and
charged Higgs sectors. Together with singlet models,
2HDMs form the simplest SM extensions that are com-
patible with theoretical and experimental constraints
[10–14]. Additionally, at tree level the Higgs sector of

the minimal supersymmetric extension of the SM (MSSM)
[7,15–17] represents a special case of the 2HDM type II.
This allows to map insights gained in investigations of the
2HDM onto the MSSM and to compare effects that are
possible in the less restricted 2HDM to the situation in the
more restrained supersymmetric Higgs sector. The com-
parison of different models and, ultimately, the identifica-
tion of the underlying theory requires experimental data at
the highest precision. Besides excellent experimental
analysis techniques and the accumulation of a large amount
of data at sufficiently high energy, this necessitates from the
theory side precise predictions on observables and param-
eters, including higher-order corrections. In a previous
paper [18] we have provided an important basis for the
computation of higher-order (HO) corrections in the 2HDM
by working out a manifestly gauge-independent renorm-
alization of the two 2HDM mixing angles α and β, which
is additionally process independent and numerically
stable.1 The mixing angles play an important role for
phenomenology, and we have investigated our renormal-
ization scheme in the sample decays of the charged
Higgs boson into a W boson and a CP-even scalar,
H� → W�h=H, and of the heavy CP-even Higgs decay
into a pair of Z bosons, H → ZZ.
In this paper we complete our renormalization of the

2HDM Higgs sector by computing the next-to-leading-
order (NLO) corrections to Higgs-to-Higgs decays. The*marcel.krause@kit.edu
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1Recently, in Ref. [19] a modified minimal subtraction scheme
was proposed for α and β.
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investigation of these decays is of particular phenom-
enological interest. Not only are they a clear manifesta-
tion of an extended Higgs sector, but they also give
access to the trilinear Higgs self-couplings. The deter-
mination of these self-interactions constitutes a first
important step towards the reconstruction of the Higgs
potential [20–22], which is the final missing piece in the
experimental verification of the Higgs mechanism.
Higgs-to-Higgs decays can also be exploited for the
discovery of non-SM Higgs bosons through cascade
decays that are not accessible directly (see e.g.
Refs. [23–29]). Interestingly, they can also be used to
distinguish between different models [30]. It might even
be that we see NP in Higgs pair production before
anywhere else, i.e. in particular for Higgs couplings of
the 125 GeV resonance which are SM-like [31].
Compared to the NLO computation of the Higgs decays

presented in Ref. [18], the HO corrections to Higgs-to-
Higgs decays require in addition the renormalization of the
mass parameter m2

12 of the Higgs potential. This parameter
softly breaks the discrete Z2 symmetry, imposed to avoid
tree-level flavor-changing neutral currents (FCNCs). We
suggest different renormalization schemes for m2

12 and
investigate their numerical stability with respect to typical
sizes of higher-order corrections encountered in 2HDM
Higgs-to-Higgs decays. The sample decay chosen in our
analysis additionally allows us to study the numerical
stability of the angular renormalization schemes proposed
in Ref. [18] in a process which shows in the Higgs self-
coupling a much more involved dependence on the mixing
angles than the previously studied decays. In order to do so
we identify the 2HDM parameter regions that lead to
parametrically enhanced loop corrections due to nonde-
coupling effects. Subsequently, we analyze the loop cor-
rections with respect to numerical stability in the
decoupling regime where the heavy Higgs masses are
due to a large mass scale independently of the Higgs
self-couplings. In a first step we perform these investiga-
tions for the type II 2HDM. The studies for the type I
model and the analysis of the numerical impact of the
different renormalization schemes on the electroweak
corrections of all possible Higgs decays is the subject of
a follow-up paper.
The paper is organized as follows. In Sec. II we briefly

introduce our model and set the notation. In Sec. III we
briefly review our renormalization conditions of Ref. [18],
which are also needed here, and introduce the additionally
required renormalization ofm2

12 entering the loop-corrected
Higgs-to-Higgs decays. In Sec. IV we describe the calcu-
lation of the electroweak one-loop correction to the sample
decay H → hh. The numerical analysis is presented in
Sec. V in which we investigate our proposed renormaliza-
tion procedures with respect to gauge independence,
process independence and numerical stability. Our con-
clusions are given in Sec. VI.

II. DESCRIPTION OF THE MODEL

Our work is performed within the framework of a general
2HDM with a global softly broken discrete Z2 symmetry.
For the kinetic term of the two SUð2ÞL Higgs doublets Φ1

and Φ2 we introduce the covariant derivative

Dμ ¼ ∂μ þ
i
2
g
X3
a¼1

τaWa
μ þ

i
2
g0Bμ; ð2:1Þ

where τa denote the Pauli matrices, Wa
μ and Bμ are the

SUð2ÞL andUð1ÞY gauge bosons, respectively, and g and g0
are the corresponding gauge couplings. The Higgs sector is
described by the kinetic Lagrangian

Lkin ¼
X2
i¼1

ðDμΦiÞ†ðDμΦiÞ ð2:2Þ

and the scalar potential, which can be cast into the form

V ¼ m2
11jΦ1j2 þm2

22jΦ2j2 −m2
12ðΦ†

1Φ2 þ H:c:Þ

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
λ5
2
½ðΦ†

1Φ2Þ2 þ H:c:�: ð2:3Þ

The absence of FCNCs at tree level is ensured by imposing
the discrete Z2 symmetry under which the doublets trans-
form as Φ1 → −Φ1 and Φ2 → Φ2. We assume CP con-
servation so that the 2HDM potential depends on eight real
parameters: three mass parameters, m11, m22 and m12, and
five coupling parameters λ1–λ5. As can be inferred from the
potential, a nonzero value of m2

12 softly breaks the discrete
Z2 symmetry. The two doublet fields Φ1 and Φ2 can be
expressed in terms of charged complex fields ϕþ

i and real
neutral CP-even and CP-odd fields ρi and ηi (i ¼ 1, 2),
respectively. By expanding the two Higgs doublets about
their vacuum expectation values (VEVs), developed after
electroweak symmetry breaking (EWSB), which are real in
the CP-conserving case,

Φ1 ¼
� ϕþ

1

ρ1þiη1þv1ffiffi
2

p

�
and Φ2 ¼

� ϕþ
2

ρ2þiη2þv2ffiffi
2

p

�
; ð2:4Þ

the mass matrices can be derived from the terms bilinear
in the Higgs fields in the Higgs potential. Under the
assumption of charge andCP conservation they decompose
into 2 × 2 matrices MS, MP and MC for the neutral CP-
even, neutral CP-odd and charged Higgs sectors. For the
two Higgs doublets Φi to take their minimum at hΦii≡ vi
the minimum conditions
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∂V
∂Φ1

����
hΦii

¼ ∂V
∂Φ2

����
hΦii

¼ 0; ð2:5Þ

have to be fulfilled. This is equivalent to the requirement of
the two terms linear in ρ1 and ρ2 to vanish, i.e.

T1

v1
¼ m2

11 −m2
12

v2
v1

þ λ1v21
2

þ λ345v22
2

; ð2:6Þ

T2

v2
¼ m2

22 −m2
12

v1
v2

þ λ2v22
2

þ λ345v21
2

: ð2:7Þ

The tadpole conditions can be exploited to replace m2
11 and

m2
22 by the tadpole parameters T1 and T2. This yields the

following explicit form of the mass matrices:

MS ¼
 

m2
12

v2
v1
þ λ1v21 −m2

12 þ λ345v1v2

−m2
12 þ λ345v1v2 m2

12
v1
v2
þ λ2v22

!

þ
 T1

v1
0

0 T2

v2

!
; ð2:8Þ

MP ¼
�
m2

12

v1v2
− λ5

��
v22 −v1v2

−v1v2 v21

�
þ
 T1

v1
0

0 T2

v2

!
;

ð2:9Þ

MC ¼
�
m2

12

v1v2
−
λ4 þ λ5

2

��
v22 −v1v2

−v1v2 v21

�
þ
 T1

v1
0

0 T2

v2

!
;

ð2:10Þ
where we introduced the abbreviation

λ345 ≡ λ3 þ λ4 þ λ5: ð2:11Þ

In Eqs. (2.8)–(2.10) we explicitly kept the tadpole param-
eters T1 and T2, which vanish at tree level, in order to
ensure the correct treatment of the minimum conditions
beyond leading order (LO). The diagonal mass matrices of
the physical states can be obtained by performing the
following orthogonal transformations:

�
ρ1

ρ2

�
¼ RðαÞ

�
H

h

�
; ð2:12Þ

�
η1

η2

�
¼ RðβÞ

�
G0

A

�
; ð2:13Þ

�
ϕ�
1

ϕ�
2

�
¼ RðβÞ

�
G�

H�

�
; ð2:14Þ

which lead to the physical Higgs states, a neutral light CP-
even, h, a neutral heavy CP-even, H, a neutral CP-odd, A,
and two charged Higgs bosons, H�. The massless pseudo-
Nambu-Goldstone bosonsG� andG0 form the longitudinal
components of the massive gauge bosons, the charged W�
and the Z boson, respectively. In terms of the mixing angles
ϑ ¼ α and β, respectively, the rotation matrices read

RðϑÞ ¼
�
cos ϑ − sin ϑ

sinϑ cosϑ

�
: ð2:15Þ

The mixing angle β can be expressed through the ratio of
the two VEVs,

tan β ¼ v2
v1

; ð2:16Þ

with the phenomenological constraint v21 þ v22 ¼ v2 ≈
ð246 GeVÞ2. The mixing angle α on the other hand can
be parametrized in terms of the entries ðMSÞij (i, j ¼ 1, 2)
of the CP-even scalar mass matrix as

tan 2α ¼ 2ðMSÞ12
ðMSÞ11 − ðMSÞ22

: ð2:17Þ

Introducing the abbreviation

M2 ≡ m2
12

sβcβ
ð2:18Þ

and the shorthand notation sx ≡ sin x etc., we have [32]

tan 2α ¼ s2βðM2 − λ345v2Þ
c2βðM2 − λ1v2Þ − s2βðM2 − λ2v2Þ

: ð2:19Þ

After diagonalization the physical masses are given by

m2
h;H ¼ 1

2

�
ðMSÞ11 þ ðMSÞ22

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððMSÞ11 − ðMSÞ22Þ2 þ 4ððMSÞ12Þ2

q �
;

ð2:20Þ

m2
A ¼ M2 − λ5v2; ð2:21Þ

m2
H� ¼ M2 −

λ4 þ λ5
2

v2: ð2:22Þ

Note, in particular, that the masses of the heavier Higgs
bosons, ϕheavy ¼ H, A and H�, take the form [32]

m2
ϕheavy

¼ M2 þ fðλiÞv2 þOðv4=M2Þ; ð2:23Þ
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where fðλiÞ denotes a linear combination of λ1–λ5. There
are two interesting limits that will play an important role in
the relative size of the NLO corrections. ForM2 ≫ fðλiÞv2
we are in the decoupling limit. In the opposite case, if
M2 ≲ fðλiÞv2 and the Higgs boson masses are large, we are
in the strong coupling regime, as we then need the coupling
strengths to be significant. Both regimes will be inves-
tigated in detail in the numerical analysis.
For the parametrization of the Higgs potential V there

are various possibilities to choose the set of independent
parameters. Our guideline is given by the wish to relate the
parameters to as many physical quantities as possible.
Thus we express the VEV v in terms of the physical gauge
boson masses MW and MZ and the electric charge e, and
replace m2

11 and m2
22 by the tadpole parameters T1 and T2.

Later, we will also choose the renormalization through
Higgs decays. For this we need the fermion masses mf.
Our set of independent parameters is then given by the
Higgs boson masses, the tadpole parameters, the two
mixing angles, the soft breaking parameter, the massive
gauge boson masses, the electric charge and the fermion
masses:

Input parameters∶ mh;mH;mA;mH� ; T1; T2; α;

tan β; m2
12;M

2
W;M

2
Z; e;mf: ð2:24Þ

III. RENORMALIZATION

The one-loop computation of our sample Higgs-to-Higgs
decay process

H → hh; ð3:1Þ

encounters ultraviolet (UV) divergences. These are can-
celed by the renormalization of the parameters and wave
functions involved in the process. In particular, the process
requires the renormalization of the gauge sector and the
Higgs sector of the 2HDM. In Ref. [18] we proposed
several renormalization schemes for the mixing angles α
and β, among these also the process-dependent renormal-
ization through the decays H → ττ and A → ττ. These
processes additionally require the renormalization of the
fermion sector. Here, we first briefly repeat the basic
features of our chosen renormalization conditions that have
been described in Ref. [18], with emphasis on the renorm-
alization of the mixing angles. For further details, we refer
the reader to Ref. [18]. We then present the renormalization
of the soft breaking parameter m2

12, which is required in the
loop-corrected Higgs-to-Higgs decays.
For the renormalization, the bare parameters p0 involved

in the process have to be replaced by the renormalized ones,
p, and the corresponding counterterms δp,

p0 ¼ pþ δp: ð3:2Þ

Additionally the fields Ψ are renormalized by their field
renormalization constants δZΨ as

Ψ0 ¼
ffiffiffiffiffiffi
ZΨ

p
Ψ; ð3:3Þ

where Ψ generically stands for scalar, vector and fermion
fields. Note, that ZΨ is a matrix in the case of mixing fields.
All Higgs bosons, gauge bosons and fermions are renor-
malized on-shell (OS). The electric charge, which enters the
weak gauge couplings, is defined to be the full electron-
positron photon coupling for OS particles in the Thomson
limit. Note, that we will use the fine-structure constant at
the Z boson mass, αðM2

ZÞ, as input in order to avoid large
logarithms due to light fermions f ≠ t. The renormalization
conditions for the tadpoles are chosen such that the correct
vacuum is reproduced at one-loop order which implies

δTi ¼ Ti; i ¼ 1; 2; ð3:4Þ

where the Ti stand for the contributions from the genuine
Higgs boson tadpole graphs in the gauge basis.

A. Renormalization of the mixing angles

In Ref. [18] we discussed in great detail the renormal-
ization of the mixing angles α and β. In particular,
schemes used in the literature before were shown to lead
to gauge-dependent decay amplitudes. This is based on the
fact that the standard treatment of the tadpoles, the standard
tadpole scheme, leads to gauge-dependent counterterms
for the masses and mixing angles. In particular, a gauge-
independent decay amplitude can then only be obtained
through a physical, e.g. a process-dependent, definition of
the angular counterterms. In the standard tadpole scheme
the correct vacuum at higher orders is given by the VEV2

that is derived from the gauge-dependent loop-corrected
Higgs potential, and is therefore also gauge dependent.
Consequently, all bare quantities and counterterms given
in terms of the VEV become gauge dependent as well. In
the alternative tadpole scheme [33], the bare quantities
are not gauge dependent, as they are expressed in terms of
the tree-level VEV, which is gauge independent. The
correct minimum at higher orders is reproduced by
shifting the VEV. The shift affects the counterterms but
not the bare quantities. With the exception of the wave
function renormalization constants, the counterterms are
gauge independent in the alternative tadpole scheme. In
practice the change from the standard to the alternative
tadpole scheme, also referred to as the standard and
tadpole schemes, respectively, requires the following
modifications:

2In the 2HDMwe have two VEVs, which are related, however,
due to the requirement of ensuring unitarity of the scattering
amplitudes.
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(1) Self-energies: The self-energies in the wave function
renormalization constants and counterterms have to
be changed to contain additional tadpole contribu-
tions: Σðp2Þ → Σtadðp2Þ.

(2) Tadpole counterterms: In turn, the tadpole counter-
terms do not appear any more in the scalar sector:
δTϕiϕj

→ 0.
(3) Vertex corrections: In the virtual corrections addi-

tional tadpole contributions have to be taken into
account if the extension of the corresponding cou-
pling by an external CP-even Higgs boson h, H,
which carries the tadpole, exists.

For all details, we refer the reader to Appendix A
of Ref. [18].
In Ref. [18] the tadpole-pinched scheme was introduced

as a manifestly gauge-independent renormalization scheme
for the angular counterterms. It relies on the use of the
alternative tadpole scheme together with the modified
Higgs self-energies defined by means of the pinch tech-
nique [34–40].3 The angular counterterms are obtained in

terms of the pinched self-energies Σ̄ðp2Þ, where p2 denotes
the four-momenta squared at which they are evaluated.
Note that they have to be evaluated in the tadpole scheme
and can be related to the tadpole self-energies in the
Feynman gauge through

Σ̄ðp2Þ ¼ Σtadðp2Þjξ¼1 þ Σaddðp2Þ: ð3:5Þ

Here ξ represents the gauge-fixing parameters ξZ, ξW and ξγ
of the Rξ gauge. For the renormalization of the mixing
angle β the pseudoscalar or the charged sector can be used,
leading to different counterterm definitions. We will use
two different definitions, specified below. We will further-
more apply two different tadpole-pinched schemes which
differ by their choice of the renormalization scale:
On-shell tadpole-pinched scheme: The renormalization

scale is chosen to be the on-shell scale in the self-energies.
Applying the results of Ref. [56], the angular counterterms
are given by

δα ¼ Reð½Σtad
Hhðm2

HÞ þ Σtad
Hhðm2

hÞ�ξ¼1 þ Σadd
Hhðm2

HÞ þ Σadd
Hhðm2

hÞÞ
2ðm2

H −m2
hÞ

; ð3:6Þ

δβð1Þ ¼ −
Reð½Σtad

G�H�ð0Þ þ Σtad
G�H�ðm2

H�Þ�ξ¼1
þ Σadd

G�H�ð0Þ þ Σadd
G�H�ðm2

H�ÞÞ
2m2

H�
; ð3:7Þ

δβð2Þ ¼ −
Reð½Σtad

G0Að0Þ þ Σtad
G0Aðm2

AÞ�ξ¼1
þ Σadd

G0Að0Þ þ Σadd
G0Aðm2

AÞÞ
2m2

A
: ð3:8Þ

The additional contributions read (see also Ref. [56] for the
CP-even case in the MSSM),

Σadd
Hhðp2Þ ¼ g2sβ−αcβ−α

32π2c2W

�
p2 −

m2
H þm2

h

2

�
× fB0ðp2;m2

Z;m
2
AÞ − B0ðp2;m2

Z;m
2
ZÞ

þ 2c2W ½B0ðp2;m2
W;m

2
H�Þ − B0ðp2;m2

W;m
2
WÞ�g;
ð3:9Þ

Σadd
G0Aðp2Þ ¼ g2sβ−αcβ−α

32π2c2W

�
p2 −

m2
A

2

�
½B0ðp2;m2

Z;m
2
HÞ

− B0ðp2;m2
Z;m

2
hÞ�; ð3:10Þ

Σadd
G�H�ðp2Þ ¼ g2sβ−αcβ−α

16π2

�
p2 −

m2
H�

2

�
½B0ðp2;m2

W;m
2
HÞ

− B0ðp2;m2
W;m

2
hÞ�; ð3:11Þ

where B0 is the scalar two-point function [57,58] and cW
refers to the cosine of the Weinberg angle θW .
p⋆ tadpole-pinched scheme: In this scheme the self-

energies are evaluated at the average of the particle
momenta squared [56],

p2⋆ ¼ m2
ϕ1
þm2

ϕ2

2
; ð3:12Þ

with ðϕ1;ϕ2Þ ¼ ðH; hÞ, ðG�; H�Þ and ðG0; AÞ, respec-
tively. The additional contributions then obviously vanish
and the angular counterterms simplify to

δα ¼ Re½Σ̄Hhðm
2
hþm2

H
2

Þ�
m2

H −m2
h

; ð3:13Þ
3For a discussion of the pinch technique, see Refs. [41–46] and

also Refs. [40,47] for a comparison with the background field
method [48–55].
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δβð1Þ ¼ −
Re½Σ̄G�H�ðm

2

H�
2
Þ�

m2
H�

; ð3:14Þ

δβð2Þ ¼ −
Re½Σ̄G0Aðm

2
A
2
Þ�

m2
A

: ð3:15Þ

Process-dependent renormalization: We also apply a
process-dependent renormalization of the mixing angles.
The angular counterterm δβ is obtained from the require-
ment that the loop-corrected Higgs decay A → ττ including
only the weak corrections is equal to the LO width,4

ΓLOðA → ττÞ ¼! ΓNLO
weakðA → ττÞ: ð3:16Þ

The counterterm δα is obtained by applying the same
condition, but on the H → ττ decay,

ΓLOðH → ττÞ ¼! ΓNLO
weakðH → ττÞ: ð3:17Þ

The process-dependent renormalization leads to gauge-
dependent angular counterterms if the standard tadpole
scheme is applied. The angular counterterms are manifestly
gauge independent, on the other hand, in case the alter-
native tadpole scheme is used.

B. Renormalization of m2
12

For the renormalization of the soft Z2 breaking param-
eter m2

12 the bare parameter is replaced by the renormalized
one and its counterterm,

ðm2
12Þ0 ¼ m2

12 þ δm2
12: ð3:18Þ

We will apply two different renormalization schemes.
Modified minimal subtraction scheme: In the modified

minimal subtraction (MS) scheme5 the counterterm δm2
12

is chosen such that it cancels all residual terms of the
amplitude, which are proportional to

Δ ¼ 1

ϵ
− γE þ lnð4πÞ; ð3:19Þ

where γE denotes the Euler-Mascheroni constant. These
terms obviously contain the remaining UV divergences
given as poles in ϵ plus additional finite constants that
appear universally in all loop integrals [61]. The renorm-
alization of δm2

12 in this scheme is hence given by

δm2
12 ¼ δm2

12ðΔÞjMS; ð3:20Þ

where the right-hand side of the equation symbolically
denotes all terms proportional to Δ that are necessary to
cancel the Δ dependence of the remainder of the amplitude.
Process-dependent renormalization: A more physical

definition of the counterterm is provided by the renorm-
alization through a physical process. As m2

12 only appears
in the couplings between Higgs bosons, the simplest
processes that can be chosen to fix the counterterm are
given by the on-shell decays

H → hh; ð3:21Þ

H → HþH−; ð3:22Þ

h → AA; ð3:23Þ

H → AA: ð3:24Þ

As the scalar h is identified with the 125 GeV Higgs boson
the decay h → HþH− is kinematically not possible, since
we restrict the charged Higgs mass to mH� > mh; see e.g.
Ref. [62] for a type II 2HDM.6 We will compute the loop
corrections to the decay H → hh in order to study the
impact of the various renormalization schemes, so that this
process cannot be used for the determination of δm2

12. With
H� masses above 480 GeV in the type II 2HDM [62],
which we will choose for the numerical analysis, the decay
H → HþH− would require very heavy H bosons, so we do
not consider this process either. The OS process h → AA
is kinematically very restricted as it requires pseudoscalars
A with masses below 125 GeV=2 that additionally have
escaped detection at collider experiments so far. Although
such scenarios are possible in principle, they are very rare,
and the measurement of the decay is challenging.7 This
leaves us with the process H → AA as the least restrictive
one to fix the counterterm of δm2

12.
Note, that δm2

12 in both schemes is gauge independent
irrespective of the chosen tadpole scheme. Being a parameter

4See Ref. [59], for a discussion on the renormalization of tan β
within the MSSM and the application of the process-dependent
scheme.

5We did not apply the MS scheme to the renormalization of the
mixing angles, as it leads to one-loop corrections of the decay
widths that are orders of magnitude larger than in the other
schemes. This was checked in Ref. [60] for a large set of allowed
2HDM scenarios. The reason is that in general the wave function
renormalization constants introduce large finite contributions to
the one-loop amplitudes, which need to be canceled by the finite
parts of the angular counterterms, a cancellation that does not take
place any more in the MS scheme.

6The 2HDM also allows for scenarios with the second lightest
Higgs bosonH being the SM-like resonance [63]. This kinematic
setup would worsen the situation here, however.

7A thorough discussion of the exotic decays of h in some
extensions of the SM, including the 2HDMand the next-to-minimal
2HDM can be found in Ref. [64] (see also Ref. [65]). The CMS
Collaboration [66] has recently released a search for light bosons in
decays of the 125 GeV Higgs boson with an interpretation in the
framework of the next-to-minimal 2HDM.
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of the original 2HDM Higgs potential before EWSB, it is
not related to the VEV and hence cannot encounter any
gauge dependences arising from the treatment of the VEVat
higher orders.

IV. DECAY WIDTHS AT ELECTROWEAK
ONE-LOOP ORDER

We will present here the details for the computation of
the electroweak one-loop corrections to the Higgs-to-Higgs
decay widths

H → hh and ð4:1Þ

H → AA: ð4:2Þ

The first process will be used to study numerically the
impact of the various renormalization schemes that we
propose on the NLO corrections. The second process serves
as a process-dependent definition of the counterterm δm2

12.

A. Electroweak one-loop corrections to H → hh

The heavy Higgs decay into a pair of SM-like Higgs
bosons,

H → hh; ð4:3Þ

depends through the trilinear Higgs self-coupling

λHhh ≡ g · gHhh

¼ g
−cβ−α
2MWs2β

�
s2αð2m2

h þm2
HÞ −

m2
12

sβcβ
ð3s2α − s2βÞ

�

ð4:4Þ

not only on the mixing angles α and β but also on m2
12. The

LO decay width is given by

ΓLOðH → hhÞ ¼ GFM2
WmHg2Hhh

4
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
h

m2
H

s
; ð4:5Þ

where GF denotes the Fermi constant. The NLO decay
width can be written as the sum of the LO width and the
one-loop corrected decay width Γð1Þ,

ΓNLO ¼ ΓLO þ Γð1Þ: ð4:6Þ

The one-loop correction Γð1Þ is obtained from the interfer-
ence of the LO decay amplitude with the one at NLO. The
contributions to the NLO decay amplitude are given by
the virtual corrections and the counterterm diagrams. The
virtual corrections consist of the pure vertex corrections,
shown in Fig. 1, and the corrections to the external legs.

FIG. 1. Generic diagrams contributing to the vertex corrections in H → hh with fermions F, scalar bosons S, ghosts U and gauge
bosons V in the loops.
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The vertex corrections comprise the one-particle irreducible
(1PI) diagrams given by the triangle diagrams with fer-
mions, scalars, ghosts and gauge bosons in the loops and
the diagrams involving four-particle vertices. The external
leg corrections consist of off-diagonal and diagonal field
mixing contributions hH;Hh;HH and hh, which all vanish
due to the OS renormalization conditions of the external
fields. The counterterm diagrams are shown in Fig. 2. They
are given by all possible counterterm insertions on the
external legs and the genuine vertex counterterm. For the
correct derivation of the symmetry factors associated with
the various counterterm contributions we start from the bare
Lagrangian describing the involved trilinear Higgs self-
interactions. In terms of the coupling factors

ghhh ¼
3

2MWs2β

�
2m2

12

sβcβ
cαþβc2β−α −m2

hð2cαþβ þ s2αsβ−αÞ
�
;

ð4:7Þ

gHHh ¼
sβ−α

2MWs2β

�
−
m2

12

sβcβ
ð3s2α þ s2βÞ þ s2αðm2

h þ 2m2
HÞ
�

ð4:8Þ

and gHhh defined in Eq. (4.4) it reads

LHhh
int ¼ g

�
−ghhh
3!

h0h0h0 −
gHhh

2!
H0h0h0 −

gHHh

2!
H0H0h0

�
;

ð4:9Þ

where h0 and H0 denote the bare fields. At NLO we obtain
in terms of the renormalized fields h and H,

LHhh
int ≈

NLO
g

�
−ghhh
3!

3δZhH

2
−
gHhh

2!

�
δZhh þ

δZHH

2

�

−
gHHh

2!
δZHh

�
Hhh; ð4:10Þ

where the δZ’s denote the wave-function renormalization
constants. The Feynman rule λHhh

CT;WR for this counterterm
contribution from the wave-function renormalization is
derived by applying the functional derivatives with respect
to the external renormalized fields,

λHhh
CT;WR ¼ i

δ

iδH
δ

iδh
δ

iδh
LHhh
int : ð4:11Þ

Adding the genuine vertex counterterm δðg · gHhhÞ we have
for the counterterm amplitude

MCT
Hhh ¼ g

�
ghhh

δZhH

2
þ gHhh

�
δZhh þ

δZHH

2

�

þ gHHhδZHh þ
1

g
δðg · gHhhÞ

�
: ð4:12Þ

The genuine vertex counterterm at NLO is given by

δðg · gHhhÞ

¼ g

�
gHhh

�
δg
g
−
δMW

MW

�

þ
�
−cβ−α
MWs2β

��
s2α
2

ð2δm2
h þ δm2

HÞ −
�
3s2α − s2β

s2β

�
δm2

12

�

þ
�
gHhh

�
−tβ−α −

2

t2β

�
−
m2

12

MW

�
cβ−α
s22β

�
6s2α
t2β

�
δβ

þ
�
gHhhtβ−α −

2m2
h þm2

H − 3m2
12=ðsβcβÞ

MW

cβ−αc2α
s2β

�
δα

	
:

ð4:13Þ

The NLO corrections factorize from the LO amplitude
so that the one-loop corrected decay width can be cast into
the form

ΓNLOðH → hhÞ ¼ ΓLO½1þ Δvirt
Hhh þ Δct

Hhh�; ð4:14Þ

with Δct
Hhh given by

Δct ¼ 2MCT
Hhh

g · gHhh
: ð4:15Þ

The expressionΔvirt
Hhh is quite lengthy so we do not display it

explicitly here.
In case the alternative tadpole scheme is applied, addi-

tional diagrams have to be included in the virtual correc-
tions. They are depicted in Fig. 3 and involve quartic Higgs
self-couplings where the additionally attached Higgs to the
original trilinear vertex is connected to a tadpole diagram.
The inclusion of these additional diagrams in combination
with the change of the mass, angular and wave-function
counterterms in the alternative tadpole scheme leaves the
overall NLO decay width invariant, provided the angular
counterterms are defined in a process-dependent scheme.

FIG. 2. Counterterm diagrams contributing to the NLO decay H → hh.
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B. Electroweak one-loop corrections to H → AA

We use the decay of the heavy scalar H into a pair of
pseudoscalars A,

H → AA; ð4:16Þ

for a process-dependent renormalization of m2
12. The

leading-order decay width depends on m2
12 (in addition

to the mixing angles α and β) through the trilinear coupling

λHAA≡ g · gHAA

¼−
g

2MW

�
cβ−αð2m2

A −m2
HÞþ

sαþβ

s2β

�
2m2

H −
2m2

12

sβcβ

��
:

ð4:17Þ

The LO decay width is given by

ΓLOðH → AAÞ ¼ GFM2
WmHg2HAA

4
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
A

m2
H

s
: ð4:18Þ

The EW one-loop corrections consist of the virtual correc-
tions and the counterterm contributions which guarantee
the UV finiteness of the decay amplitude. The virtual
corrections, which comprise the corrections to the external
legs and the pure vertex corrections, are depicted in
Fig. 4. The corrections to the external legs in Figs. 4(b),
4(c) and 4(d) vanish because of the OS renormalization of
the external fields. Figures 4(e) and 4(f) are zero due to a

Slavnov-Taylor identity [67]. The 1PI diagrams of the
vertex corrections are displayed in Fig. 5. They consist of
the 1PI diagrams given by the triangle diagrams with
fermions, scalars and gauge bosons in the loops and by the
diagrams containing four-particle vertices. The counterterm
contributions are given by the genuine vertex counterterm
and by the counterterm insertions on the external legs, cf.
Fig. 6. For the derivation of the latter we start from the
bare Lagrangian involving the relevant trilinear Higgs self-
couplings. With the coupling factors

ghAA ¼ 1

2MW

�
sβ−αð2m2

A −m2
hÞ þ

cαþβ

s2β

�
2m2

h −
2m2

12

sβcβ

��
;

ð4:19Þ

gHG0A ¼ −
sβ−α
2MW

ðm2
A −m2

HÞ ð4:20Þ

and gHAA defined in Eq. (4.17) it reads in terms of the bare
fields denoted by the subscript 0,

LHAA
int ¼ g

�
−
ghAA
2!

h0A0A0 −
gHAA

2!
H0A0A0

− gHG0AH0G0
0A0

�
: ð4:21Þ

Replacing the bare fields by their renormalized ones and
the corresponding wave-function renormalization con-
stants, the NLO expansion of the Lagrangian reads

FIG. 4. Generic diagrams contributing to the virtual corrections of H → AA: vertex corrections (a) and corrections to the external
legs (b)–(f).

FIG. 3. Additional vertex diagrams in the alternative tadpole scheme contributing to the decay H → hh.
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LHAA
int ≈

NLO
g

�
−
ghAA
2!

δZhH

2
−
gHAA

2!

�
δZAA þ

δZHH

2

�

− gHG0A
δZG0A

2

�
HAA: ð4:22Þ

The Feynman rule λHAA
CT;WR for the counterterm contribution

from the wave-function renormalization is obtained by

performing the functional derivatives with respect to the
external renormalized fields,

λHAA
CT;WR ¼ i

δ

iδH
δ

iδA
δ

iδA
LHAA
int : ð4:23Þ

Together with the genuine vertex counterterm δðg · gHAAÞ

δðg · gHAAÞ ¼ g

�
gHAA

�
δg
g
−
δMW

MW

�
−

1

2MW

�
cβ−αð2δm2

A − δm2
HÞ þ

sαþβ

s2β

�
2δm2

H −
4

s2β
δm2

12

��

−
1

2MW

�
sα−βð2m2

A −m2
HÞ þ

2ðcαs3β − sαc3βÞ
s22β

�
2m2

H −
4m2

12

s2β

�
þ 8c2βsαþβm2

12

s32β

�
δβ

−
1

2MW

�
−sα−βð2m2

A −m2
HÞ þ

cαþβ

s2β

�
2m2

H −
4m2

12

s2β

��
δα

	
ð4:24Þ

we obtain for the counterterm amplitude

MCT
HAA ¼ g

�
ghAA

δZhH

2
þ gHAA

�
δZAA þ

δZHH

2

�

þ gHG0AδZG0A þ 1

g
δðg · gHAAÞ

�
: ð4:25Þ

The one-loop amplitude M1loop
HAA of the decay H → AA

consists of the amplitude built from the vertex corrections
MVC

HAA and of the counterterm amplitude,

M1loop
HAA ¼ MVC

HAA þMCT
HAA: ð4:26Þ

FIG. 6. Counterterm diagrams contributing to the NLO decay H → AA.

FIG. 5. Generic diagrams contributing to the vertex corrections in H → AA with fermions F, scalar bosons S and gauge bosons V in
the loops.
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With the LO amplitude MLO
HAA we then obtain the NLO

partial decay width as

ΓNLO ¼ ΓLO þ mH

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
A

m2
H

s
2Re½ðMLO

HAAÞ�M1loop
HAA �:

ð4:27Þ

The counterterm δm2
12 is fixed by the process-dependent

renormalization condition

ΓLOðH → AAÞ¼! ΓNLOðH → AAÞ: ð4:28Þ

This leads to the counterterm definition

δm2
12 ¼ −

vs22β
4sαþβ

Re½MVC
HAA þ ðMCT

HAAÞδm2
12
¼0�: ð4:29Þ

The additional diagrams that must be taken into account
when the alternative tadpole scheme is applied are dis-
played in Fig. 7. Note that the overall NLO amplitude is
invariant under a change of the tadpole schemes, provided
the angular counterterms are determined in a process-
dependent way.

C. Gauge (in)dependence of the NLO amplitude

As the expressions for the vertex corrections and
counterterms are quite involved we limit our discussion
here to a qualitative level. The quantitative corroboration
of our statements will be presented in the numerical
analysis.
In case the standard tadpole scheme is applied the

computation of the NLO decay amplitude in the general
Rξ gauge reveals that the residual amplitude M with the
counterterms

δp≡ δα; δβ and δm2
12 ð4:30Þ

set to zero exhibits a UV-divergent gauge dependence,

Standard tadpole scheme∶ MH→hhjstandardNLO;ξ;δp¼0 ≠ 0 → ∞:

ð4:31Þ

This divergence can only be canceled by the angular
counterterms, so that in this scheme they necessarily have

to be gauge dependent. Renormalizing α and β through
the process-dependent scheme cancels all UV-divergent
gauge-dependent parts. The remaining UV-divergent
gauge-independent terms are then canceled by δm2

12. It
can be defined either via an M̄S condition or through the
process H → AA. The overall NLO amplitude will finally
be gauge independent as it should be.
Applying the alternative tadpole scheme instead leads to

the cancellation of the UV-divergent gauge-dependent parts
within the residual amplitude, i.e.

Alternative tadpole scheme∶ MH→hhjtadNLO;ξ;δp¼0 ¼ 0:

ð4:32Þ

The angular counterterms in turn can then be defined gauge
independently. The unambiguous gauge-independent def-
inition of the angular counterterms is achieved through the
pinched scheme or the definition via a physical process.
The counterterm for m2

12 is gauge-independent irrespective
of the tadpole scheme and can be renormalized in the M̄S or
the process-dependent scheme.
We can summarize that a gauge-independent decay

amplitude8 for the processH → hh is achieved by applying
the following renormalization schemes for the angular
counterterms:

tadpole treatment δα, δβ
gauge dependence
δα, δβ

standard tadpole
scheme

process dependent gauge dependent

alternative tadpole
scheme

pinched scheme gauge independent

process dependent

Throughout the calculation we employ the alternative
tadpole scheme. This guarantees the manifestly gauge-
independent renormalization of the counterterms. It is
furthermore indispensable for a gauge-independent decay
amplitude if the angular counterterms are not obtained via a
physical process.

FIG. 7. Additional vertex diagrams in the alternative tadpole scheme contributing to the decay H → AA.

8We remind the reader that the schemes previously proposed in
the literature, relying on the application of the standard tadpole
scheme and a definition of the angular counterterms through off-
diagonal wave-function renormalization constants, lead to a
manifestly gauge-dependent decay amplitude.
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Concerning a scheme with process-dependent counter-
term definitions, note, that the results for the NLO decay
widths are the same in the standard and alternative tadpole
schemes. A change of the tadpole scheme leaves the total
NLO amplitude invariant; it only moves around the gauge
dependences between the various building blocks, so that in
the alternative tadpole scheme the counterterms become
gauge independent.

V. NUMERICAL ANALYSIS

The NLO EW corrections to the Higgs decay width
H → hh have been performed in two independent calcu-
lations and all results have been cross-checked against each
other. They agree within numerical errors. The two com-
putations use the Mathematica packages FeynArts 3.9 and 3.7

[68,69], respectively, for the generation of the LO and NLO
amplitudes in the general Rξ gauge. For this, the model file
for the CP-conserving 2HDM was used, which is already
implemented in the package.9 The additionally needed
tadpole and self-energy amplitudes for the definition of
the counterterms and wave function renormalization con-
stants have been generated in the general Rξ gauge. For the
contraction of the Dirac matrices and the expression of the
results in terms of scalar loop integrals FeynCalc 8.2.0 [70,71]
has been applied in one calculation and FormCalc 8.1 [72]
in the other. The C++ libraries LoopTools 2.12 and 2.9 [72],
respectively, have been used for the numerical evaluation of
the dimensionally regularized [73,74] integrals.
Our numerical evaluation has been performed with the

following input parameters. The fine-structure constant α is
taken at the Z boson mass scale [75],

αðM2
ZÞ ¼

1

128.962
; ð5:1Þ

and for the massive gauge boson masses we use [75,76]

MW ¼ 80.385 GeV and MZ ¼ 91.1876 GeV: ð5:2Þ

The lepton masses are chosen as [75,76]

me ¼ 0.510998928 MeV; mμ ¼ 105.6583715 MeV;

mτ ¼ 1.77682 GeV; ð5:3Þ

and the light quark masses, following Ref. [77], are set to

mu ¼ 100 MeV; md ¼ 100 MeV; ms ¼ 100 MeV:

ð5:4Þ

The leptons and light quarks have only a small influence
on the results. For consistency with the ATLAS and CMS
analyses the following OS value for the top quark mass is
taken:

mt ¼ 172.5 GeV; ð5:5Þ
as recommended by the LHC Higgs Cross SectionWorking
Group [76,78]. For the charm and bottom quark OS masses
we use [76]

mc ¼ 1.51 GeV and mb ¼ 4.92 GeV: ð5:6Þ
As we do not includeCP violation the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is real, with the CKM matrix
elements given by [75]

VCKM ¼

0
B@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CA

¼

0
B@

0.97427 0.22536 0.00355

−0.22522 0.97343 0.0414

0.00886 −0.0405 0.99914

1
CA: ð5:7Þ

Finally for the SM-like Higgs mass value, denoted by
mHSM , we take the most recent combined value from
ATLAS and CMS [79],

mHSM ¼ 125.09 GeV: ð5:8Þ
In the 2HDM both the heavier and the lighter of the two
CP-even Higgs bosons can play the role of the SM-like
Higgs boson, depending on the chosen parameter set. In our
investigated cases it is the lighter of the CP-even Higgs
bosons, h, that corresponds to HSM.
For the numerical analysis only those 2HDM parameter

sets have been taken into account that have not yet been
excluded by experimental and the most relevant theoretical
constraints. These parameter points have been obtained by
scans performed in the 2HDM parameter space with the
tool ScannerS [80].10 It checks if the chosen CP-conserving
vacuum represents the global minimum [81], if the 2HDM
potential is bounded from below [82] and if tree-level
unitarity holds [83,84]. The consistency with the electro-
weak precision constraints [85–91] is assumed to be
fulfilled if the S, T and U variables [85] predicted by
the 2HDM are within the 95% ellipsoid centered on the
best-fit point to the EW data. Loop processes with charged
Higgs bosons induce indirect constraints that depend on
tan β via the charged Higgs coupling to the fermions. They
dominantly stem from B physics observables [92–94] and
the measurement of Rb [95–98]. In our analysis we take the

9Note that the parametrization of the 2HDM potential imple-
mented in the FeynArts model file is different from the one
presented in Sec. II. In particular instead of using m2

12 the
parameter Λ5 ≡ 2m2

12=ðv2sβcβÞ is used. This has to be kept in
mind when implementing the counterterm for m2

12.

10We are indebted to Marco Sampaio, one of the authors of
ScannerS, for generously providing us with valid parameter sets.
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most recent bound11 of mH� ≳ 480 GeV for the type II
and flipped 2HDM [62]. Note, that the results from LEP
[101] and the LHC [102,103]12 require the charged Higgs
mass to be above Oð100 GeVÞ depending on the model
type. For the check of the compatibility with the LHC
Higgs data ScannerS uses the Higgs production cross
sections through gluon fusion and b-quark fusion at
next-to-NLO QCD, which are obtained from an interface
with SusHi [105]. The remaining production cross sections
are taken at NLO QCD [77], and the 2HDM Higgs
decays are computed with HDECAY [106,107]. The EW
corrections are consistently neglected in the computation
of these processes as they have not been provided for the
2HDM so far. The program HiggsBounds [108–110] is used
for the check of the exclusion limits and HiggsSignals [111]
is used to test the compatibility with the observed signal
for the 125 GeV Higgs. Further details can be found in
Ref. [112]. All results shown in the following analysis
are for the 2HDM type II.
For the numerical analysis we exploit three different sets

of parameter points that are distinguished with respect
to their Higgs spectra but that all fulfill the above listed
experimental and theoretical constraints:

(i) The parameter sets are chosen such that the decay
H → hh is kinematically possible; hence

Condition ðiÞ∶ MH ≥ 2Mh: ð5:9Þ

(ii) The parameter sets are chosen such that the decay
H → hh is kinematically possible. Additionally, we
require the heavy Higgs boson masses to maximally
deviate by �5% from M, with M2 ≡m2

12=ðsβcβÞ.
We hence have

Condition ðiiÞ∶ MH ≥ 2Mh and ð5:10Þ
mϕheavy

¼ M � 5%; with

mϕheavy
∈ fmH;mA;mH�g: ð5:11Þ

In these scenarios the non-SM Higgs bosons are
approximately mass degenerate and of the order of
the Z2 breaking scale. We generated points where
the value of M ranges from 458 to 1006 GeV.

(iii) The conditions for the parameter sets chosen here
are that both the decay H → hh and the decay
H → AA are kinematically possible, i.e.

Condition ðiiiÞ∶ MH ≥ 2Mh and MH ≥ 2MA:

ð5:12Þ

As we have seen in Sec. IVA the decayH → hh depends
through the Higgs self-coupling λHhh on both mixing
angles α and β and on the soft Z2 breaking parameter
m2

12. This process hence allows us to study the numerical
stability of the renormalization schemes for the mixing
angles but in particular also of the mass parameter m2

12.
The possible renormalization schemes for the angular
counterterms are denoted as follows:

proc∶ process-dependent

pc;o⋆ ∶ p⋆ tadpole-pinched; δβð1Þ ð“c”Þ or δβð2Þð“o”Þ
pOSc;o∶ on-shell tadpole-pinched;

δβð1Þ ð“c”Þ or δβð2Þ ð“o”Þ: ð5:13Þ

As explained above, the process-dependent renormaliza-
tion for α proceeds through the decay H → ττ and the
one for β exploits A → ττ. In the tadpole-pinched schemes,
p⋆ or pOS, β can be renormalized through the charged
sector, with the counterterm denoted by δβð1Þ, or through
the CP-odd sector, with the counterterm given by δβð2Þ. For
m2

12 we adopt the two schemes

proc∶ process-dependent via H → AA and

M̄S∶ modified minimal subtraction scheme: ð5:14Þ

We investigate the size of the NLO corrections by defining

ΔΓ≡ ΓNLO − ΓLO

ΓLO : ð5:15Þ

This ratio measures the relative size of the NLO corrections
compared to the LO decay width. We start by investigating
the impact of the angular renormalization schemes on the
NLO corrections to the Higgs-to-Higgs decays. To this end
we show in Fig. 8 for all parameter sets of (i) the relative
NLO corrections ΔΓH→hh as a function of the LO width
for all possible angular schemes defined in Eq. (5.13).
For β both possible renormalization choices through the
charged and CP-odd sectors have been applied in the
tadpole-pinched schemes. For δm2

12 the M̄S scheme has
been applied with the renormalization scale set to
μR ¼ 2mh. As can be inferred from the plot, the relative
corrections can be huge. Discarding the region for small
LO widths, where ΔΓH→hh diverges,13 we have relative
corrections of up to about 400% (not shown in the plot) in
the process-dependent scheme and of up to about 200% for
the tadpole-pinched schemes. Note that we cut the plot at
ΔΓHhh ¼ −100% in order to avoid negative widths.

11While this paper was being reviewed, this bound was
recently updated to about 580 GeV [99,100].

12The recent ATLAS results [104] have not been translated into
bounds so far.

13While the NLO width also tends to zero when the LO width
becomes small, for some parameter configurations there remains
a nonzero NLO width also for ΓLO ¼ 0, due to cancellations
among various terms contributing at NLO.
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The appearance of huge corrections is not necessarily
due to numerical instability. It is rather the nondecoupling
effects, generically arising in the 2HDM [32,113], that
blow up the NLO corrections. This shall be explained in the
following. In order for the decay H → hh to be kinemat-
ically possible large enough H masses are needed. As can
be read off from Eq. (2.23), heavy masses can either be
obtained through a large mass parameter M or through the
VEVs. They enter the mass relation with a coefficient
proportional to a linear combination of the Higgs potential
couplings λi. In the decoupling limit we have M2 ≫
fðλiÞv2, and the spectrum effectively consists of heavy
Higgs bosons whose masses are given by the scale M
independently of the λi, and of one light resonance that
represents the SM-like Higgs boson. The trilinear and
quartic scalar couplings controlled by λi are comparatively
small and all loop effects due to the heavier Higgs bosons
vanish in the limit m2

ϕheavy
→ ∞ because of the decoupling

theorem [114]. This situation corresponds to the decou-
pling limit of the MSSM, where supersymmetry requires
the couplings λi to be replaced by the gauge couplings g
and g0 and where heavy masses can only be obtained
through a large mass scale M usually chosen to be the
pseudoscalar mass MA. In the opposite case, the strong
coupling regime, we have M2 ≲ fðλiÞv2 for at least one of
the non-SM-like Higgs bosons, and large mass values can
only be obtained for large couplings λi. The decoupling
theorem does not apply and the radiative corrections of
the heavy Higgs bosons develop a power-like behavior in
mϕheavy

, also known as nondecoupling effects [115–124].
They grow proportional to m4

ϕheavy
[32,113]. The huge

corrections in Fig. 8 are due to this power law for scenarios
with heavy non-SM Higgs bosons.
From the above discussion it becomes clear that for a

meaningful discussion of the numerical stability of the
different renormalization schemes we have to separate the
two effects: huge corrections due to large couplings λi and
corrections that are blown up due to numerical instability of
the chosen renormalization scheme. We therefore inves-
tigate the relative NLO corrections for the parameter set (ii)
where we require all non-SM heavy Higgs masses to lie
within 5% around the mass scale M set by the soft Z2

breaking mass parameter. In this limit, the loop effects of
the heavy particles are expected to decouple. However,
even if Eq. (5.11) is fulfilled, the decoupling does not
necessarily take place. It is found to be impossible, in
fact, in the limit sαþβ → 1. This limit is referred to as
the wrong-sign limit as for the 2HDM type II (and F) it
implies a relative minus sign in the couplings of the
SM-like Higgs boson to down-type fermions with respect
to its couplings to massive gauge bosons (and up-type
fermions) [112,125–127]. In Ref. [125] it was shown that
nondecoupling properties inevitably arise for sβþα → 1 in
the 2HDM. The nondecoupling of charged Higgs contri-
butions in the loop-induced hγγ coupling was also dis-
cussed in Refs. [12,128,129].
In order to examine the nondecoupling properties of the

loop contributions to H → hh we focus on the trigono-
metric relations relevant for the involved Higgs couplings.
Two limiting cases are of interest, given by sβ−α ≈ 1 and
sβ−α < 1. While sβ−α → 1 corresponds to the SM limit,
in the wrong-sign regime significant deviations from this
limit are still compatible with LHC data. Thus it was shown
in Refs. [112,126,127] that values of sβ−α ≈ 0.55ð0.62Þ are
compatible with the LHC Higgs data at 3 ð2Þσ and
additionally fulfill the other constraints tested by
ScannerS. Relatively small values of sβ−α, however, require
significant contributions from the second term in
Eq. (2.23), given by fðλiÞv2, even if m2

H ≈M2, in order
to acquire a sufficiently large mH for the decay H → hh
to take place. This, however, drives us back to the
nondecoupling limit.
Also in the limit sβ−α → 1, corresponding to SM-like

h couplings to the massive gauge bosons, the trilinear
coupling λHhh can become large in the wrong-sign limit.
Analogous to the nondecoupling of the charged Higgs
contribution in the decay h → γγ studied in Ref. [125], the
other heavy Higgs bosons H and A also exhibit a non-
decoupling behavior in the wrong-sign limit. In order to
show this, we consider the ratio λHHh=m2

H, which plays
a role in the EW corrections to H → hh. We analyze this
ratio for both the correct and the wrong-sign regime in the
limit sβ−α → 1, wherem2

H ≈M2. In the wrong-sign regime,
where sβþα → 1, tβ has to be large in order to come close to
the SM limit. We thus obtain

FIG. 8. Scatter plot for the relative NLO corrections to H → hh
for all parameter points passing the theoretical and experimental
constraints and fulfilling the kinematic condition (i), as a function
of the LO width; shown for various angular renormalization
schemes: process-dependent (blue), pOS tadpole-pinched (green),
and p⋆ tadpole-pinched (red);m2

12 has been M̄S renormalized with
μR ¼ 2mh. Scenarios leading to negative widths for one of the
renormalization schemes have been discarded, and we have cut at
300% for positive corrections.
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ð5:16Þ

As can be inferred from Eq. (5.16) the ratio λHHh=m2
H

approaches a constant value in the wrong-sign regime so
that the heavy Higgs loop contributions do not decouple for
m2

H → ∞. In contrast, in the correct-sign limit the ratio
vanishes and the decoupling of heavy H loop effects takes
place. Analogously, the ratio λHhh=m2

H yields a constant
value in the wrong-sign regime and prevents a decoupling
of heavy loop particle contributions. The same holds for
λhAA=m2

A where we find

λhAA
m2

A
¼−

2

v
cβ−α

�
1

tβ
− tβ

�
þO

�
m2

h

vm2
A

�

×

8>>><
>>>:

≈
sβ−α→1

0 correct-sign limit

≈

sβþα → 1;

tβ →∞
2=v wrong-sign limit

þO
�

m2
h

vm2
A

�
:

ð5:17Þ

This nondecoupling behavior in the wrong-sign regime
explains why even in the case where the heavy Higgs boson
masses are controlled by the mass parameter M the loop
effects do not decouple and give rise to large radiative
corrections. This behavior is shown in the following plots.
In Fig. 9 (left) we first display for all points of parameter set
(ii) that pass the theoretical and experimental constraints
the relative NLO corrections as a function of the LO width
for the process-dependent and the two tadpole-pinched
schemes in the angular renormalization. For m2

12 MS
renormalization has been applied at μR ¼ 2mh. Although
our involved heavy Higgs masses are due to a large value of
M, we observe huge relative corrections of up to 300% and
larger. Note that in the plot we cut at −100% in order to
avoid negative widths. Following our considerations on the
decoupling behavior of loop corrections in the SM limit,
we now divide our parameter points into those of the

wrong-sign regime, where sβþα ≈ 1, and those of the
correct-sign regime with sβ−α ≈ 1. We used the sign of
sα as a discriminator between the two regimes, collecting
the parameter sets with sα > 0 for the former and the ones
with sα < 0 for the latter case.14 This leads to Fig. 9 (right)
which displays the relative corrections for the wrong-sign
regime and Fig. 10 for the correct-sign regime. We show
results for all applied renormalization schemes, discard
points with small LO widths and cut at þ300% and
−100%, the latter to avoid negative widths. As expected,
in Fig. 9 (right), despite the fact that all heavy 2HDMHiggs
masses have been chosen within 5% around M, the
corrections can be huge, reaching up to 300% and larger
(not shown in the plot). The plot shows that in the tadpole-
pinched schemes for the displayed parameter points15 the
relative corrections for all scenarios are within about −50%
to −100%. In the process-dependent scheme we can have
rather small corrections, but also huge corrections, largely
exceeding those of the process-independent schemes.
Large corrections like those found for the tadpole-pinched
schemes are to be expected for significant coupling
strengths as involved in the NLO diagrams here. This is
confirmed by the explicit verification that in this non-
decoupling regime the pure vertex corrections become
large. The small corrections found for some scenarios in
the process-dependent scheme are due to accidental can-
cellations between the various terms contributing at NLO
and not because of more numerical stability in this
renormalization scheme. This is why we observe here also
huge corrections of up to 300% and beyond while this is
not the case for the process-independent schemes. In order
to be able to draw more conclusive statements on the
numerical stability, corrections beyond the one-loop level
would have to be calculated in this regime of strong
coupling constants. This is beyond the scope of this paper.
Taking into account only scenarios in the correct-sign

limit, we are left with Fig. 10, where we cut on scenarios
leading to relative corrections beyond þ300% and −100%,
respectively, and discarded those with small LO widths.
As explained above in detail, we are now truly in the
decoupling limit. This is reflected by the plot. Since the
involved trilinear couplings are not as large as in the wrong-
sign regime, for the process-independent renormalization
schemes the relative NLO corrections have become con-
siderably smaller as compared to the wrong-sign case. Also
of course, the LO widths are smaller.16 Having excluded
scenarios with enhanced corrections due to nondecoupling,

14We explicitly verified that for sin α < 0 the ratio of involved
coupling over corresponding loop mass is relatively small, while
the sets with sinα > 0 comprise ratios with much larger values,
reflecting the nondecoupling situation.

15By also including scenarios with relative corrections beyond
100%, the relative corrections in the tadpole-pinched schemes
can also be larger.

16Note the different scales in Fig. 9 and Fig. 10.
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we can now proceed to investigate the numerical stability
of the applied schemes. Inspecting Fig. 10 (left), we see
that the corrections in the tadpole-pinched schemes all lie
between about −60 and þ40%. The process-dependent
renormalization on the other hand induces much larger
corrections, of the order of up to 300% and larger. While
again we can also have small corrections in the process-
dependent scheme, this is due to accidental cancellations
and not a sign of numerical stability. This statement is
underlined by the fact that the corrections in this
scheme can become huge as well, whereas in the
process-independent schemes they do not exceed −60%.
In Fig. 10 (left) we furthermore see a difference between
the pOS and the p⋆ tadpole-pinched scheme. For small LO
widths the relative NLO corrections in the p⋆ tadpole-
pinched scheme increase more quickly. This behavior can
be traced back to the appearance of the top resonance in the

G0A self-energy encountered in the β renormalization
through the CP-odd Higgs sector, i.e. ĩn δβð2Þ. For masses
m2

A=2 ¼ 4m2
t the diagram shown in Fig. 11 becomes

resonant. This requires relatively light pseudoscalar masses
of about 488 GeV. The tail of this effect is, however, still
visible for masses up to mA ≈ 700 GeV. In the renormal-
ization through the charged sector no self-energy diagrams

FIG. 10. Same as Fig. 9 but only with points featuring scenarios in the correct-sign limit, i.e. sin α < 0. Left: all schemes. Right:
Without β renormalization in the po⋆ scheme (see text).

FIG. 9. Scatter plot for the relative NLO corrections to H → hh for all parameter points passing the theoretical and experimental
constraints and fulfilling the kinematic condition (ii), as a function of the LO width, shown for various angular renormalization schemes:
process-dependent (blue), pOS tadpole-pinched (green), and p⋆ tadpole-pinched (red); m2

12 has been M̄S renormalized with μR ¼ 2mh.
Scenarios leading to negative widths for one of the renormalization schemes have been discarded, and we have cut at 300% for positive
corrections. Left: All points. Right: Only those with sin α > 0, corresponding to the wrong-sign regime.

FIG. 11. Top loop diagram contributing to the mixed self-
energy Σtad

G0A in the β renormalization.
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with pure top loop contributions are encountered in the

mixed G�H� self-energy so that the counterterm δβð1Þ is
not affected by the top resonance. Note furthermore that the
counterterm δβð2Þ in the pOS scheme would require A
masses as low as 350 GeV to hit the top resonance. These
are not included in set (ii) so that no resonant enhancement
is visible in the pOS scheme.
In Fig. 10 (right) we have excluded the po⋆ renormaliza-

tion of δβ from the plot. As expected all tadpole-pinched
schemes now show the same behavior. For scenarios with
light pseudoscalar masses the β renormalization through
the charged sector might therefore be preferable. From
these investigations we furthermore conclude that the
tadpole-pinched schemes are numerically stable and can
hence be advocated as renormalization schemes for the
mixing angles that are numerically stable, gauge indepen-
dent and process independent. This confirms our findings
in Ref. [18] in a process involving a coupling that has a
complicated dependence on α and β so that the cancellation
of huge tadpole contributions is nontrivial. Moreover, the
plots show the good numerical behavior of the MS scheme
applied for δm2

12. Independently of the discussion with
respect to numerical stability we have seen that also in the
tadpole-pinched schemes the corrections can be significant
due to the nondecoupling behavior of the corrections.
In these cases clearly higher-order corrections have to
be included in order to make reliable predictions. This is
beyond the scope of this paper.
We finalize the discussion of the angular counterterms

by examining a specific scenario in the decoupling limit.17

It is given by

Scen1∶ mH ¼ ð671.05…803.12Þ GeV;
mA ¼ 700.13 GeV; mH� ¼ 700.35 GeV;

tan β ¼ 1.45851; α ¼ −0.570376;

m2
12 ¼ 2.0761 × 105 GeV2: ð5:18Þ

The chosen pseudoscalar Higgs mass is far above the top
resonance so that no enhanced contributions in the p⋆
scheme are to be expected. Figure 12 displays the relative
NLO correction to the decay H → hh for Scen1 as a
function of the heavy Higgs boson mass mH for the
renormalization of the mixing angles in the p⋆ and in the
OS tadpole-pinched schemes. The angle β has been
renormalized through both the charged and CP-odd
sectors. We do not include the numerically unstable
process-dependent renormalization. The kinks in the
curves which appear independently of the renormalization
scheme at mH ≈ 781 and 791 GeV (not visible in the

plot) are due to threshold effects in the scalar two-
point function B0 appearing in the counterterms. They
are given by the following parameter configurations and
counterterms:

Kink Kinematic point Origin

1 mHð780.74 GeVÞ
¼ mH�ð700.34 GeVÞ þMW

δZhh, δZHH , δZHh

2 mHð791.31 GeVÞ
¼ mAð700.13 GeVÞ þMZ

δZhh, δZHH , δZHh

In the investigated mass range the LO width varies between
0.356 GeV at the lowest and 0.221 GeV at the highest
mH value. As can be inferred from the plot, the relative
corrections range between about −25% andþ66% depend-
ing on mH and on the renormalization scheme. The
corrections are large, but not numerically unstable.
Comparing the results in the pc⋆ and po⋆ schemes and those
of the pOSc and pOSo schemes, the remaining theoretical
uncertainty due to missing higher-order corrections can be
estimated based on a change of the renormalization scheme
for β. The p⋆ scheme is more affected by the change of the
renormalization scheme and induces an estimated theoreti-
cal uncertainty which varies between about 17% and 9%
from the lower to the upper mH range. The residual
theoretical uncertainty can also be estimated from the scale
change by comparing the pOSo with the po⋆ scheme on the
one hand and pOSc with the pc⋆ scheme on the other hand.
In the lower mass range the β renormalization through the
CP-odd sector suffers more from a change of the renorm-
alization scale than the one through the charged Higgs
sector. For the former the theoretical uncertainty is esti-
mated to be about 20% here. At mH ¼ 803 GeV for both
schemes the uncertainties are similar with about 2–3%.
Note that with growing mH the scenario departs more and

FIG. 12. Relative NLO corrections to H → hh for angular
renormalization in the tadpole-pinched schemes as defined in
Eq. (5.13), with the 2HDM parameters given by Scen1
[Eq. (5.18)]. m2

12 has been M̄S renormalized with μR ¼ 2mh.

17The masses of A and H� do not deviate by more than 5%
from M. The heavy Higgs mass mH deviates by 5.7% at the
lowest and by 20% at the highest mass value in the chosen range.

HIGGS-TO-HIGGS BOSON DECAYS IN A 2HDM AT … PHYSICAL REVIEW D 95, 075019 (2017)

075019-17



more from the decoupling regime which is reflected in the
increase of the NLO corrections.
So far we have used the renormalization scale μR ¼ 2mh

in the MS renormalization of δm2
12. This scale choice is

justified by Fig. 13. It shows the relative NLO corrections
for the parameter points of set (i) with m2

12 M̄S renormal-
ized at three different renormalization scales, given by
μR ¼ mH, mh and 2mh. Scenarios with small LO widths
have been discarded, and we have cut the relative negative
and positive corrections at −100% and 300%, respectively.
The angles have been renormalized in the OS tadpole-
pinched scheme. As can be inferred from the plot,
μR ¼ 2mh yields the smallest corrections and is hence
the recommended scale among the three.
We now turn to the investigation of the process-

dependent renormalization of m2
12. For this purpose we

use the parameter points of set (iii) for which H → AA
decays are kinematically allowed. Clearly, here we are not
in the decoupling regime any more due to the mass
hierarchy among the heavy non-SM Higgs bosons, so that
large radiative corrections are to be expected. This is
confirmed by Fig. 14 which shows the relative NLO
corrections to the decay width H → hh as a function of
the LO width for all points fulfilling condition (5.12) in
accordance with the experimental and theoretical con-
straints. It compares the renormalization of m2

12 through
the process H → AA with the one in the M̄S scheme with
μR ¼ 2mh. In both cases the mixing angles are renormal-
ized in the pOS scheme. Due to the large involved
couplings the corrections are found to be extremely large.

In the M̄S scheme the corrections are restricted to values
within about −300% and 150% discarding small LO
widths. Corrections of this size can also be found in the
process-dependent scheme, due to accidental cancellations
among the various NLO terms. However, there are also
scenarios yielding much larger relative corrections with
values beyond 600% (not visible in the plot).
In conclusion, the M̄S scheme is the preferable scheme

for m2
12 due to its better numerical stability that has been

verified in the investigation in the decoupling regime when
compared to the process-dependent definition viaH → AA.
Again, of course, independent of the question of numerical
stability, the overall large corrections also in the process-
independent schemes call for the inclusion of higher-order
corrections that are beyond the scope of this paper.

VI. CONCLUSIONS

We investigated the renormalization of the mass param-
eter m2

12, which softly breaks the Z2 symmetry imposed on
the 2HDM Higgs potential. The impact of the renormal-
ization through the M̄S scheme and through a process-
dependent definition via the decay H → AA was analyzed
in the sample decay H → hh for a type II 2HDM. While
the process-dependent scheme cannot be tested in the
decoupling regime and hence a statement on its numerical
stability is prevented by huge radiative corrections, our
analysis for the type II 2HDM still indicates an unfavorable
numerical behavior of the process-dependent scheme
defined using H → AA when compared to the MS scheme.

FIG. 14. Scatter plot for the relative NLO corrections to
H → hh for all parameter points passing the theoretical and
experimental constraints and fulfilling the kinematic condition
(iii), as a function of the LO width, shown for the process-
dependent renormalization of m2

12 (dark green) and MS
renormalization with μR ¼ 2mh. The angles have been renor-
malized in the pOS scheme. Scenarios with negative NLO
widths have been excluded, and the relative positive corrections
have been cut at 300%.

FIG. 13. Scatter plot for the relative NLO corrections to
H → hh for all parameter points passing the theoretical and
experimental constraints and fulfilling the kinematic condition
(i), as a function of the LO width, shown for three different
renormalization scales in the MS renormalized m2

12: μR ¼ mh

(red), mH (dark green) and 2mh (light green); angles are pOS
tadpole-pinched renormalized. Scenarios with negative NLO
widths have been excluded, and the relative positive corrections
have been cut at 300%.
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The latter behaves better in the regime where the loop
corrections are dominated by strong coupling contributions
and the higher-order corrections are hence parametrically
enhanced. Furthermore, it has proven good numerical
properties in the decoupling limit. The Higgs decay into
lighter Higgs pairs also gave us the opportunity to recon-
firm the good properties found previously in the tadpole-
pinched renormalization scheme for the mixing angles α
and β. Based on our findings we propose for the renorm-
alization of the 2HDM Higgs sector the application of the
tadpole-pinched scheme for the mixing angles α and β and
the M̄S scheme for m2

12. These schemes lead to manifestly
gauge-independent counterterms, and are process indepen-
dent and numerically stable. In scenarios featuring light
CP-odd Higgs bosons (mA ≲ 700 GeV), the po⋆ scheme is
less preferable, due to the impact of the top resonance on δβ
in this scheme. In order to further promote the proposed
renormalization scheme for the 2HDM Higgs sector, the

next step is to investigate all possible Higgs decays and to
test different combinations of renormalization schemes and
also different processes for renormalization. Additionally,
the behavior for the type I 2HDM has to be investigated.
These studies are the subject of a paper in preparation
where all EW corrections to all scalar decays in the
different Yukawa types of the 2HDM will be presented.
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