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We established the allowed parameters of the two-Higgs-doublet model (2HDM) from flavor physics
observables—more precisely, from rare B-meson decays. In our analysis, the most formidable constraints
on the 2HDM parameters arise from the branching ratio of rare radiative B-meson decay, i.e. B → Xsγ.
However, the constraints arising from the branching ratio of Bs → μþμ− decay in themH� - tan β plane give
mH� > 80 GeV for the value of tan β ∼ 2, which is in agreement with large electron-positron collider (LEP)
data. Furthermore, we also investigate the bounds on the CP-even mH and CP-odd mA0 Higgs boson not
only from the above mentioned physical observables, but also from the zero crossing of the forward-
backward asymmetry of B → K�μþμ− decay. Therefore, these bounds on parameters of the 2HDM will
provide fertile ground to test the 2HDM at current and future B-physics experiments.

DOI: 10.1103/PhysRevD.95.075009

I. INTRODUCTION

The discovery of the Higgs boson by ATLAS and CMS
experiments at the Large Hadron Collider (LHC) [1,2]
completes the only missing ingredient of the Standard
Model (SM). In most cases, the results predicted by the SM
are in good agreement with current experimental data, but
still there are some unanswered questions that the SM
cannot address, such as the hierarchy problem, neutrino
masses, dark matter, etc. In order to answer these questions,
a number of new physics (NP) models have been proposed
in literature. The NP signatures can be investigated through
two possible approaches: In the first approach, direct
observation, the effects of NP can be probed by smashing
the particles at an adequately large energy and then
exploring the different particles produced as a result of
this collision. The dedicated experiments for this purpose
are the ATLAS and the CMS at the LHC. In the second
approach, the NP effects can be explored via precision
studies, especially in flavor physics, and the devoted
experiments for precision frontiers are the LHCb and
Belle II at the super-KEKB. The flavor physics processes
are among the most suitable candles to explore the NP in
the precision approach, especially the rare decays of B and
K mesons. The rare B-meson decays are the ideal labo-
ratory system to investigate NP as well as the nonpertur-
bative aspects of QCD at low-energy frontiers. As
mentioned earlier, in most of the cases, the predictions
of the SM are in consensus with current experimental data,

but there are some anomalies at the level of 3σ observed in
certain flavor physics observables. For example, the LHCb
results on the branching ratio of Bs → ϕμþμ− in the two
large-recoil bins deviate at the 3σ level from the SM
predictions [3]. Likewise, the LHCb analysis of the
3 fb−1 of data on B → K�μþμ− confirms the anomaly
(at the 3σ level) [4] that they have observed in the two
large-K� recoil bins of angular observables P0

5 [5,6] during
their analysis of 1 fb−1 data in 2013 [7]. In addition, a
measurement of the ratio of the branching fractions of the
Bþ → Kþμþμ− and Bþ → Kþeþe− decays shows a 2.6σ
deviation from the SM predictions [8]. To resolve the issues
that appear repeatedly in various observables in these decay
modes, there exist plenty of NP models, such as models
with extra dimensions [9,10], the little Higgs model
[11,12], family nonuniversal Z0 models [13,14], and the
supersymmetric standard model [15]. One of the most
popular extensions of the SM is the two-Higgs-doublet
model (2HDM) suggested by Lee [16] as a means of
explaining the matter-antimatter asymmetry [17,18]. A nice
and comprehensive review of the 2HDM was presented in
Ref. [18]. Just to be brief here, in the 2HDM, in addition to
the SM Higgs doublet, an additional complex Higgs
doublet was considered which then leads to two scalars
ðh;HÞ, one pseudoscalar (A), and two charged ðH�Þ Higgs
bosons. The vacuum expectation values (VEVs) of the
2HDM are represented by v1 and v2, and the interactions of
the fermions with the Higgs field, through which they
acquire mass, depend on the tangent of the ratio of the
VEV; i.e., tan β ¼ v2

v1
, and it serves as a free parameter in the

2HDM. In general, the 2HDM owns the FCNC transition at
tree level, which can be avoided by imposing an ad hoc
discrete symmetry [19]. Imposing an ad hoc symmetry
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motivates to two different possibilities in the 2HDM,
namely the types I and II. In type I, in order to retain
the flavor conservation at tree level, all the fermions couple
with one of the Higgs doublet, whereas in the type-II
scenario, the 2HDM somehow harmonizes with the min-
imal supersymmetric model (MSSM); i.e., the up- and
down-type quarks couple with two different Higgs dou-
blets, and so they are the charged leptons. In addition to
these two types, there are two other versions of the 2HDM
in which the down-type quarks and charged leptons acquire
mass from different doublets: type III and type IV [20], and
all four of these types of 2HDM are summarized in Table I.
From the experimental observation of branching ratios of
b → sγ and the measurement of the Higgs boson at the
LHC [21,22], one can get the indirect constraints on the
masses of the 2HDM along with the constraint on tan β.
This has been done in the past; Hou et al. [23] have
discussed the charged Higgs boson effects on the loop
induced B-meson decays. Also, in some recent studies
(cf. Ref. [24]), a lower limit of 304 GeV on the charged
Higgs mass in 2HDM type II is established by the
branching ratio of b → sγ. In Refs. [25,26], constraints
from Bs;d → μþμ−, B → τν, and B → Xsγ are applied to a
charged Higgs boson and tan β in all four types of 2HDM.
In the present work, we provide a comprehensive analysis
of all types of 2HDM in light of rare B decays. In particular,
we implement constraints on scalars, pseudoscalars,
charged Higgs boson masses and coupling parameters of

the 2HDM from the ALEPH Collaboration results on the
branching ratio of b → sγ [27], and from the LHCb
Collaboration results on the branching ratio of Bs →
μþμ− [28], along with the measurement of the zero crossing
of lepton forward-backward asymmetry ðAFBÞ of B →
K�μþμ− [29].

II. THEORETICAL FRAMEWORK

A. Overview of the two-Higgs-doublet model

In line with the SM of particle physics, the 2HDM has the
only extension in the Higgs sector where an extra Higgs
doublet is introduced, and it leaves all the other particle
contents the same. In general, the scalar potential in the
2HDM has 11 independent parameters, but imposing a
particular symmetry will reduce the number of free param-
eters. In most of the 2HDMmodels, a discrete Z2 symmetry
is imposed which takes the first doubletΦ1 → Φ1 (Z2 even)
and the second doublet Φ2 → −Φ2 (Z2 odd). The implica-
tions of Z2 symmetry leave us with eight free parameters in
CP-conserving potential—namely the four masses; the
rotation angle in the CP-even sector, α; the ratio of the
vacuum expectation values, tan β ¼ v2=v1; and the soft
breaking parameterm2

12—and these, alongwith their explicit
form, are explained in detail in Ref. [30]. Just like the mass
generation of fermions in the SM, in the 2HDM the fermions
can get mass because of the Yukawa coupling of yij to the
Higgs doubletΦ. In the 2HDM, the Yukawa couplings to the
first scalar doubletΦ1 are fixed, because the interactions have
to be diagonal both in flavor space and in mass eigenstate
basis. However, in the case of the second scalar doublet Φ2,
the couplings are nondiagonal and cannot be related to
fermion masses. The mass eigenstates for fermions can be
written as vectors in flavor space; therefore, the 2HDM
Yukawa sector can be expressed in terms of physical Higgs
mass eigenstates as [31]

LYukawa ¼ −
1ffiffiffi
2

p D̄fκD sinðβ − αÞ þ ρD cosðβ − αÞgDh −
1ffiffiffi
2

p D̄fκD cosðβ − αÞ − ρD sinðβ − αÞgDH

−
iffiffiffi
2

p D̄γ5ρ
DDA −

1ffiffiffi
2

p ŪfκU sinðβ − αÞ þ ρU cosðβ − αÞgUh −
1ffiffiffi
2

p ŪfκU cosðβ − αÞ

− ρU sinðβ − αÞgUH −
iffiffiffi
2

p Ūγ5ρ
UUA −

1ffiffiffi
2

p L̄fκL sinðβ − αÞ þ ρL cosðβ − αÞgLh

−
1ffiffiffi
2

p L̄fκL cosðβ − αÞ − ρL sinðβ − αÞgLH −
iffiffiffi
2

p L̄γ5ρLLA

− ½ŪðVCKMρ
DPR − ρUVCKMPLÞDHþ þ ν̄ρLPRLHþ þ H:c:�: ð1Þ

In Eq. (1), the κF’s (where F ¼ U, D, L) are the 3 × 3

diagonal matrices with the definition κF ≡ ffiffiffi
2

p
MF=v,

where the MF’s are the corresponding fermion mass
matrices. The detailed expressions of these matrices are

given in Ref. [32]. The Lagrangian given in Eq. (1) has the
freedom to choose an arbitrary value of ρF. However, the
allowed sizes of the off-diagonal elements in ρF have
stringent constraints, because nonzero elements instigate a

TABLE I. Relations between the fermion mass matrices and
Yukawa coupling matrices in four 2HDM models.

Type I Type II Type III Type IV

ρD κD cotðβÞ −κD tanðβÞ −κD tanðβÞ κD cotðβÞ
ρU κU cotðβÞ κU cotðβÞ κU cotðβÞ κU cotðβÞ
ρL κL cotðβÞ −κL tanðβÞ κL cotðβÞ −κL tanðβÞ
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Higgs-mediated FCNC transition at tree level. Just for the
sake of completeness, the connections between Yukawa
coupling matrices ρF and fermion mass matrices κF in four
different types of 2HDM models [32] are summarized in
Table I. The purpose of the present study is to look for the
constraints on all physical Higgs masses and coupling
parameters in the light of the rare B-meson decays. In the
framework of the 2HDM type-III Yukawa interaction,
the Cheng-Sher-Yuan (CSY) parametrization [33,34] for
the couplings εij ¼ mimj

v2 λij is useful, and among these, the
third-family couplings λbb and λtt are constrained, along
with the charged Higgs boson mass, from the branching
ratios of b → sγ and Bþ → lþν [35]. They have shown that
the most stringent constraints are coming from b → sγ, and
the pure leptonic decays can only exclude regions with
small λbb and small mH� . They have not used semileptonic
rare B decays, which we have applied in this article, and we
also use updated values of the branching ratios of radiative
and pure leptonic B decays. Here, in the given notation of
Yukawa couplings εij ¼ κFνij þ ρFμij,

Ha ¼ UabΦb ¼
�
ν�11 ν�12
μ�21 μ�22

�
Φb ¼

�
ν�11 ν�12
−ν12 ν11

�
Φb;

ð2Þ
where νij and μij relate the Higgs basis H and the generic
basis Φ [36].

B. Effective Hamiltonian

The phenomenology of the rare B-meson decays can be
studied by using the effective Hamiltonian approach,
where one can separate the short-distance physics
(encoded in Wilson coefficients) from the long-distance
(concealed in transition form factors). The effective
Hamiltonian for the rare radiative decay b → sγ and rare
semileptonic decays b → slþl− ðl ¼ e; μ; τÞ are given as
follows [37]:

Heffðb → sγÞ ¼ 4GFffiffiffi
2

p
X

p¼u;c;t

V�
psVpb

X8
i¼1

CiðμÞOiðμÞ;

ð3Þ

Heffðb → slþl−Þ

¼ −
4GFffiffiffi

2
p VtbV�

ts

�X10
i¼1

CiðμÞOiðμÞ þ
X10
i¼1

CQi
ðμÞQiðμÞ

�
:

ð4Þ

In Eqs. (3) and (4), OiðμÞ are the four quark local
operators, and CiðμÞ are the corresponding Wilson coef-
ficients which are evaluated at energy scale μ, which for
the B-meson decays is the b-quark mass ðmbÞ. The explicit
form of the operators responsible for the decays of the
B-meson can be summarized as follows [38]:

O1 ¼ ðs̄γμTaPLcÞðc̄γμTaPLbÞ; O2 ¼ ðs̄γμPLcÞðc̄γμPLbÞ;
O3 ¼ ðs̄γμPLbÞ

X
q

ðq̄γμqÞ; O4 ¼ ðs̄γμTaPLbÞ
X
q

ðq̄γμTaqÞ;

O5 ¼ ðs̄γμγνγρPLbÞ
X
q

ðq̄γμγνγρqÞ; O6 ¼ ðs̄γμγνγρTaPLbÞ
X
q

ðq̄γμγνγρTaqÞ;

O7 ¼
e

16π2
½s̄σμνðmsPL þmbPRÞb�Fμν; O8 ¼

g
16π2

½s̄σμνðmsPL þmbPRÞTab�Ga
μν;

O9 ¼
e2

ð4πÞ2 ðs̄γ
μbLÞðl̄γμlÞ; O10 ¼

e2

ð4πÞ2 ðs̄γ
μbLÞðl̄γμγ5lÞ;

Q1 ¼
e2

16π2
ðs̄αLbαRÞðτ̄τÞ; Q2 ¼

e2

16π2
ðs̄αLbαRÞðτ̄γ5τÞ;

Q3 ¼
g2

16π2
ðs̄αLbαRÞ

X
q

ðq̄βLqβRÞ; Q4 ¼
g2

16π2
ðs̄αLbαRÞ

X
q

ðq̄βRqβLÞ;

Q5 ¼
g2

16π2
ðs̄αLbβRÞ

X
q

ðq̄βLqαRÞ; Q6 ¼
g2

16π2
ðs̄αLbβRÞ

X
q

ðq̄βRqαLÞ;

Q7 ¼
g2

16π2
ðs̄αLσμνbαRÞ

X
q

ðq̄βLσμνqβRÞ; Q8 ¼
g2

16π2
ðs̄αLσμνbαRÞ

X
q

ðq̄βRσμνqβLÞ;

Q9 ¼
g2

16π2
ðs̄αLσμνbβRÞ

X
q

ðq̄βLσμνqαRÞ; Q10 ¼
g2

16π2
ðs̄αLσμνbβRÞ

X
q

ðq̄βRσμνqαLÞ: ð5Þ
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In Eq. (5), the operators Oiði ¼ 1;…; 10Þ are in the SM
basis, whereas the new operators Qiði ¼ 1;…; 10Þ corre-
spond to the contributions from neutral Higgs boson
(NHB) exchange diagrams, and they are depicted in
Fig. 1. The explicit form of the Wilson coefficients for
NHBs are given below [39]:

CQ1
ðmWÞ ¼

mbml

m2
h0

tan2β
1

sin2θW

x
4

×

�
ðsin2αþ hcos2αÞf1ðx; yÞ

þ
�
m2

h0

m2
W
þ ðsin2αþ hcos2αÞð1 − zÞ

�
f2ðx; yÞ

−
sin22α

4

ðm2
h0 −m2

H0Þ2
m2

h0m
2
H0

�
;

CQ2
ðmWÞ ¼ −

mbml

m2
A0

tan2β
1

sin2θW

x
4

×

�
f1ðx; yÞ þ

�
1 −

m2
H� −m2

A0

m2
W

�
f2ðx; yÞ

�
;

CQ3
ðmWÞ ¼

mbe2

mlg2
ðCQ1

ðmWÞ þ CQ2
ðmWÞÞ;

CQ4
ðmWÞ ¼

mbe2

mlg2
ðCQ1

ðmWÞ − CQ2
ðmWÞÞ;

CQi
ðmWÞ ¼ 0; i ¼ 5;…; 10;

where x ¼ m2
t =m2

W , y ¼ m2
t =m�

H
2, h ¼ m2

h=m
2
H, and

z ¼ x=y.

III. SCANNING TECHNIQUE FOR 2HDM
PARAMETERS AND EXPERIMENTAL

CONSTRAINTS FROM RARE
B DECAYS

In order to study the constraints on the parameters of the
2HDM, we use a two-Higgs-doublet model calculator
(2HDMC) which is a C++ code and is based on object-
oriented programming [40]. In the 2HDMCpackage, one has
a choice to tune the Higgs potential parameters, and in the
Yukawa sector it also gives us the freedom to enumerate the
couplings which lead to the FCNC. In this package, standard
choices of Yukawa couplings were used, and here types I to

IV represent different Yukawa couplings as demonstrated in
Table I. The 2HDMCalso examines the theoretical properties
of the 2HDM, such as the unitarity of the S-matrix and
positivity of the potential. As described earlier, in the present
study we perform the random scan on the 2HDM physical
basis parameters such as fmh;mH;mA;mH� ; m2

12; tan β;
sinðβ − αÞ; λ6; λ7; g in the following range:

124.0 ≤ mh ≤ 126.0 ðGeVÞ;
0 ≤ mH ≤ 1000 ðGeVÞ;
0 ≤ mA ≤ 1000 ðGeVÞ;
0 ≤ mH� ≤ 1000 ðGeVÞ;

−5000 ≤ m2
12 ≤ 5000 ðGeVÞ;

0 ≤ tan β ≤ 10;

−1 ≤ sinðβ − αÞ ≤ 1; ð6Þ
where mh is the SM-like Higgs boson, while mH, mA, and
mH� are the CP-even, CP-odd, and charged Higgs bosons,
respectively. m2

12 is a free parameter in the Yukawa
Lagrangian of the 2HDM as defined in Ref. [32], and
tan β is the ratio of the vacuum expectation values of the
two Higgs doublets. Making use of the Z2 symmetry on the
Yukawa Lagrangian, we set λ6 ¼ λ7 ¼ 0. As mentioned
above, our goal is to investigate the 2HDM parameters in
light of rareB decays; for this purposewe embed 2HDMCon
SuperIso v3.4 [41] to study the flavor physics observables
such as the branching ratios of b → sγ, Bs → μþμ− and the
zero crossing of the forward-backward asymmetry of
B → K�μþμ−. We then use values of these observables to
constrain the 2HDM parameter space. The following exper-
imental values of BRðB → XsγÞ, BRðBs → μþμ−Þ, and the
zero crossing q20 of the forward-backward asymmetry AFB of
B → K�μþμ− are used to constrain the 2HDM parameters:

BRðB → XsγÞ ¼ ð3.36� 0.23Þ × 10−4;

BRðBs → μþμ−Þ ¼ 3.0þ1.0
−0.9 × 10−9;

q20 ¼ 4.9� 0.9: ð7Þ

IV. RESULTS AND ANALYSIS

In this section, we present the scan over the 2HDM
parameter space given in Eq. (6). In all figures, the gray
region is consistent with the unitarity of the S-matrix

FIG. 1. Feynman diagrams of the three important rare decays involving the b quark.
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and the positivity of the potential of the 2HDM. The yellow
region is the subset of the gray region that satisfies the
constraint from BRðBs → μþμ−Þ, whereas the red region is
the subset of the yellow region that satisfies the constraints
from the zero position of AFB in B → K�μþμ−. The green
region is the subset of the red region that satisfies the
constraint from BRðB → XsγÞ. Figure 2 shows the effect of
the above mentioned decays on the mH�- tan β plane of the
2HDM. The most stringent constraints in all types of
2HDM arise from b → sγ decay. The second most impor-
tant constraint is from AFB of B → K�μþμ−, whereas the
effects of Bs → μþμ− onmH�- tan β in all 2HDM planes are
minimal. In general, the upper limit on mH� in 2HDM is
840 GeV (cf. Fig. 2). Figure 2(a) represents type I of the
2HDM. In this figure, one can see that for low values of
tan β (tan β ∼ 2), the value of mH� should be greater than
80 GeV, which is consistent with the LEP data [42] and
also with the value of mH� that is constrained from
BRðBs → μþμ−Þ. From the zero crossing of AFB of
B → K�μþμ−, the allowed value is tan β > 2.5, but this
value of tan β reduces to 1 when we increase mH� to
800 GeV. The constraints from BRðB → XsγÞ imply that
tan β ≤ 4.5 is not allowed for mH� ∼ 80 GeV, but this
lower bound also decreases when we increasemH� , and for
mH� ∼ 800 GeV the value of tan β ∼ 2.0.

In Fig. 2(b), we present type II of the 2HDM, in which
tan β ≤ 1 is not allowed for all above mentioned con-
straints. We can see from this figure that mH� < 125 GeV
is not allowed from the constraint of the zero crossing of
AFB. However, things get more interesting from the
constraints of the branching ratio of the decay B → Xsγ,
as in this case, the lower limit of mH� ∼ 460 GeV, and so
the allowed band for mH� narrows (460 GeV ≤ mH� ≤
840 GeV). This is in accordance with the bounds given on
mH� by doing NNLO calculations for B → Xsγ decay by
Misiak et al. [43]. In Fig. 2(c), we discuss type III of the
2HDM, in which the effects of constraints on mH� are
similar to those of type II. The only difference is for
mH� < 85 GeV, which anyhow is not allowed by LEP.
Similarly, most of the limits on these two parameters in
type IV of the 2HDM are in accordance with those of
type I. The possible differences are only for tan β < 1 and
mH� < 85 GeV, which in any case are out of the possible
allowed region. The similarity in the above results is due to
the fact that for pure leptonic decay, the Yukawa coupling
ρL is the same for types I and III, so the trends of constraints
from the branching ratio of Bs → μþμ− are the same for
these two types. Likewise, the Yukawa coupling ρL is the
same in types II and IV. In contrast to this, the Yukawa
coupling ρD is the same in types I and IV, and likewise for

FIG. 2. The effects of constraints on the tan β vs mH� plane that stem from the branching ratio of B → μþμ−, the zero crossing (q20) of
forward-backward asymmetry of B → K�μþμ−, and the branching ratio of b → sγ are shown in yellow, red, and green shading,
respectively.
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type-II and type-III versions of 2HDM. Therefore, the
constraints from the zero crossing of AFB and from the
branching ratio of B → Xsγ are same for type I and type IV,
while they are similar for type II and type III. In Fig. 3, we
display our results in the mH- tan β plane. From these plots,
one can see that while increasing the value of tan β, the
upper limit of mH decreases. To be precise, for the value of
tan β ∼ 6,mH cannot be higher than 500 GeV. We also infer
the effects of constraints from the above mentioned rare B-
meson decays which are similar in types I and IVof 2HDM,
whereas these constraints have no effect on types II and III.
Also, from Figs. 3(a) and 3(d), the value of tan β ≤ 1 is not
allowed due to the constraints of the zero crossing of AFB,
and similar to this, tan β ≤ 2 is forbidden by the constraints
of BRðB → XsγÞ decay. In Fig. 4, we show the behavior of
a pseudoscalar Higgs boson ðmA0Þ with tan β. As long as
the mass of the pseudoscalar Higgs is concerned, one can
notice that almost all the mass range of mA∘ is allowed in
the type-I and type-III versions of the 2HDM. But at the
same time, we can see that tan β < 2 is not allowed in type I
[cf. Fig. 4(a)]. From Fig. 4(b), the lower bound on mA∘ can
be predicted to be 60 GeV and 120 GeV from the
constraints of the zero crossing of AFB and BRðB → XsγÞ,
respectively.
Now, let us discuss the behavior of coupling λtt with the

mass of the charged Higgs boson ðmH�Þ in all four types of
the 2HDM. As we have already mentioned, the most

stringent constraints on the masses of the 2HDM param-
eters stem from BRðB → XsγÞ, and the least stringent
constraint is coming from BRðBs → μþμ−Þ. This trend
persists for the couplings λtt and jλbbj. In Fig. 5(a), it can be
observed that the constraints on λtt from the branching ratio
Bs → μþ μ− allow almost all values of λtt. However, things
change when we constrain these two parameters from the
other two observables. For example, one can see that the
allowed range of λtt, from the constraint coming from
the zero crossing of AFB, linearly increases from 0.3 to 1 as
we increase mH� . From the constraints of BRðB → XsγÞ,
the allowed range for coupling λtt is more restricted, and the
upper limit is 0.55 when mH� ≈ 800 GeV. At 80 GeV,
the range of the allowed values of λtt increases linearly,
with the maximum value of 1.55 at mH� ≈ 800 GeV. In
Fig. 5(c), we can see that the constraints onmH� are similar
to those of type II. Likewise, the trend of λtt and mH� is
similar to type I in the type-IV version of the 2HDM
[cf. Fig. 5(d)].
Another interesting thing is to look for the allowed

region of λtt when it is plotted against the mass of the
CP-even neutral Higgs boson ðmHÞ in all four Yukawa
types of the 2HDM. In the case of types I and IV of the
2HDM, as depicted in Figs. 6(a) and 6(d), respectively,
for mH ≤ 500 GeV, the value of λtt cannot be greater then
1 when constrained by the zero crossing of AFB. Also, we
can see that λtt > 0.5 is not allowed from constraints

FIG. 3. The effects of constraints on the mH vs tan β plane. Color coding is the same as in Fig. 2.
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FIG. 5. The effects of constraints on the λtt vs mH� plane. Color coding is the same as in Fig. 2.

FIG. 4. The effects of constraints on the mAo vs tan β plane. Color coding is the same as in Fig. 2.
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FIG. 7. The effects of constraints on the λtt vs mAo plane. Color coding is the same as in Fig. 2.

FIG. 6. The effects of constraints on the λtt vs mH plane. Color coding is the same as in Fig. 2.
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arising due to BRðB → XsγÞ. On the other hand, in the
case of types II and III of the 2HDM, as displayed in
Figs. 6(b) and 6(c), respectively, there is no constraint on
these parameters from the input B-meson decays. Also,
for higher values of mH (i.e., for mH ≃ 700 GeV),
λtt < 0.5 is not allowed in any of the four types of the
2HDM. In Fig. 7, we display the variation of λtt with the
mass of a pseudoscalar Higgs boson ðmAoÞ. In the case of
types I and IV, the constraints on λtt from q20 and b → sγ
are similar. For example, taking into account the con-
straints from q20, for mA∘ < 200 GeV, there is a linear
increase in the λtt up to λtt ≃ 1; and for mA∘ > 200 GeV,
λtt can attain values up to 1. Likewise, from b → sγ, for
mA∘ ≤ 160 GeV, there is again a linear (almost) increase
in the allowed range of λtt that can go to λtt ≃ 0.5 in this
mass range. However, for the rest of the mass range, λtt
can have any value less than 0.5. Now, from Bs → μþμ−,
by looking at the trend of λtt, it can be noticed that this
decay does not give any particular effects in the case of
type I of the 2HDM. For type IV, the allowed range of λtt
increases as we increase mA∘ , but the upper limit for λtt
for this type is λtt ≃ 1.75. However, for type II of the
2HDM, in Fig. 7(b), λtt cannot be greater than 1.6;
whereas for type III, as plotted in Fig. 7(c), there is no
bound on λtt formA∘ ≤ 400 GeV, and formA∘ > 400 GeV,
λtt should be less than 1.75.

The constraints on jλbbj with mH� from the above
mentioned B-meson decays are plotted in Fig. 8. In
Fig. 8(a), we can observe that from Bs → μþμ− decay,
in the case when mH� > 85 GeV, the entire range of
jλbbj≃ 0.05 is allowed. However, when we bring in q20,
there is a linear increase in the allowed range of jλbbj as
we increase mH� . One can see that jλbbj≃ 0.028 is the
maximum possible value for mH� ≃ 800 GeV. Similarly,
when we try to apply constraints from b → sγ decay, again
the trend of jλbbj is linearly increasing, and jλbbj≃ 0.016
for mH� ≃ 800 GeV. Now, for type II of the 2HDM, in
Fig. 8(b), the upper bound on jλbbj is jλbbj≃ 0.27. The
same is the case for type III, as can be seen in Fig. 8(c).
In case of type IV, shown in Fig. 8(d), the constraints from
q20 and b → sγ are similar to those in Fig. 8(a). But when
the constraints from Bs → μþμ− are applied, there is also a
linear increase in the allowed range of jλbbj for the relative
increment in mH� > 85 GeV, and the maximum possible
value is jλbbj≃ 0.046.
We next show our results in the jλbbj-mH plane in Fig. 9.

In the case of types II and III of the 2HDM [cf. Figs. 9(b)
and 9(c), respectively], the upper bound on jλbbj is jλbbj≃
0.27 formH ≃ 550 GeV.However, formH > 550 GeV, this
allowed range decreases very sharply, and for the highest
allowed value of mH in our analysis (i.e., mH ≃ 750 GeV),
jλbbj ¼ 0.05 is fixed. There is a slightly lower bound on jλbbj

FIG. 8. The effects of constraints on the jλbbj vs mH� plane. Color coding is the same as in Fig. 2.
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FIG. 9. The effects of constraints on the jλbbj vs mH plane. Color coding is the same as in Fig. 2.

FIG. 10. The effects of constraints on the jλbbj vs mAo plane. Color coding is the same as in Fig. 2.
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for these two types, as for type II jλbbj≃ 0.02, and for type III
jλbbj≃ 0.01. In the case of types I and IVof the 2HDM, the
trends ofB-physics observables are similar.Bs → μþμ− has a
very marginal effect on these plots. However, q20 allows
jλbbj≃ 0.026 for mH ≤ 400 GeV, and this limit slightly
decreases to jλbbj≃ 0.024 for 400 < mH < 500 GeV. For
mH > 500 GeV, the allowed range of jλbbj increases linearly
up to jλbbj≃ 0.024.
We next present our results in the jλbbj-mA0 plane for the

four types of the 2HDM in Fig. 10. In Fig. 10(a), one can
notice that Bs → μþμ− has no notable constraint on this
plot, whereas q20 allows jλbbj ≤ 0.026 for the mass range
of mA0 > 80 GeV. In the case of putting constraints on
jλbbj from B → Xsγ, the allowed range is jλbbj ≤ 0.014.
Figures 10(b) and 10(c) display the jλbbj-mAo plane for
types II and III of the 2HDM. The upper limit on jλbbj is
jλbbj≃ 0.27, which is 10 times higher than the allowed
limit for jλbbj in type I by q20 and almost 19 times higher
than the allowed limit of jλbbj by b → sγ. There is also
some difference in the humps, which corresponds to the
lower limit on jλbbj, between type-II and type-III planes for
mA∘ ≤ 350 GeV. In the case of type IV, Fig. 10(d),
constraints from q20 and b → sγ have similar effects to
those of type I in Fig. 10(a). For Bs → μþμ−, the trends are
different for mA∘ ≤ 400 GeV.

V. CONCLUSIONS

In this work, we scanned the parametric space of all
four types of the 2HDM by imposing Z2 symmetry on
the Yukawa Lagrangian and by incorporating the exper-
imental constraints from the different observables of rare
B-meson decays. In addition to these conditions, the
theoretical constraints from the unitarity of the S-matrix
and positivity of the potential of 2HDM are also incorpo-
rated. The observables which were taken into account to
constrain the 2HDM parameters are the branching ratios of
Bs → Xsγ, Bs → μþμ− and the zero crossing of the for-
ward-backward asymmetry in B → K�μþμ− decay. Among
these three observables, the most stringent constraints come
from the branching ratio of Bs → Xsγ that is studied at two
loops theoretically in Ref. [43]. The main outcomes of our
study can be summarized as follows:
(1) It is observed that for all types of the 2HDM, the upper

limit of a charged Higgs boson mH�∼840GeV. For
type I of the 2HDM in themH�- tan β plane, it is found
from the experimental value of the branching ratio of

the decay Bs → μþμ− that the lower bound of
mH� > 80 GeV and is in agreement with LEP data
[42] for tan β ∼ 2. However, for type II of 2HDM, in
the same plane, it is found from the experimental
value of Bs → Xsγ that the allowed range of mH� is
460≤mH�≤840GeV, and this bound agrees with the
theoretical calculations done by Misiak et al. [43].

(2) For the CP-even Higgs boson mass mH, the upper
limit is 500 GeV, and for the CP-odd Higgs boson
mass mA0 , the upper bound is 840 GeV in all four
types of the 2HDM. In the case of the CP-even
Higgs boson mass, it is observed that as the value
of tan β increases, the upper bound onmH decreases.

(3) From our analysis of the λtt-mH� , λtt-mH, and
λtt-mA0 planes, it can be observed that there are
severe bounds on λtt from the radiative decay of the
B meson, and its value cannot be greater than 1 for
types I and IVof the 2HDM. However, for type II of
the 2HDM, the upper bound on λtt is 1.55; but for
type III, there are no constraints on the upper bounds
of λtt.

(4) From our results for jλbbj, we infer that the upper
bound on jλbbj is 0.015 from the branching ratio of
the decay B → Xsγ for types I and IVof the 2HDM.
Furthermore, the upper bound on jλbbj in types II
and III of the 2HDM is 0.27—that is, an order of
magnitude larger than it is for types I and IV of
the 2HDM.

In our analysis, we used the current data of LHCb for the
branching ratios of radiative and leptonic decays of B
mesons and the zero crossing of forward-backward
asymmetry for the decay B → K�μþμ− to predict the
allowed ranges of 2HDM parameters. We hope that the
findings of the present study can be tested in future data
from LHC.
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