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We consider a vectorlike gauge theory of fermions that confines at themulti-TeV scale, and that realizes the
Higgs particle as a composite Goldstone boson. The weak interactions are embedded in the unbroken
subgroup Spð4Þ of a spontaneously broken SUð4Þ flavor group. The meson resonances appear as poles in the
two-point correlators of fermionbilinears, and include theGoldstone bosons plus amassive pseudoscalar η0, as
well as scalars, vectors and axial vectors. We compute the mass spectrum of these mesons, as well as their
decay constants, in the chiral limit, in the approximationwhere the hypercolor Spð2NÞ dynamics is described
by four-fermion operators, à la Nambu-Jona Lasinio. By resumming the leading diagrams in the 1=N
expansion, we find that the spin-one states lie beyond the LHC reach, while spin-zero electroweak-singlet
states may be as light as the Goldstone-boson decay constant, f ∼ 1 TeV.We also confront our results with a
set of available spectral sum rules. In order to supply composite top-quark partners, the theory contains
additional fermions carryingbothhypercolor andordinary color,with an associated flavor symmetry-breaking
pattern SUð6Þ=SOð6Þ. We identify and analyze several nontrivial features of the complete two-sector gauge
theory: the ’t Hooft anomaly matching conditions; the higher-dimension operator which incorporates the
effects of the hypercolor axial-singlet anomaly; the coupled mass-gap equations; the mixing between the
singlet mesons of the two sectors, resulting in an extra Goldstone boson η0, and novel spectral sum rules.
Assuming that the strength of the four-fermion interaction is the same in the two sectors, we find that the
colored vector and scalar mesons have masses ≳4f, while the masses of colored pseudo-Goldstone bosons,
induced by gluon loops, are≳1.5f. We discuss the scaling of the meson masses with the values of N, of the
four-fermion couplings, and of a possible fermion mass.
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I. INTRODUCTION

After the first LHC 13 TeV data have been analyzed, we
are left with a 125 GeV Higgs boson and no evidence for
other new states. Yet, it is too early to remove from
consideration sufficiently weakly-coupled new particles in
the sub-TeV range, or even newcoloredparticles in themulti-
TeV range. Even though the little hierarchy between the
Higgs mass and the new states seem to require an adjustment
of parameters, the theories addressing the quantum stability
of the electroweak scale may still solve larger hierarchy
problems. A classical possibility is a strongly coupled sector
that dynamically generates the electroweak scale. The
observation of a scalar state, significantly lighter than the
strong-coupling scale, suggests that the Higgs particle may
be composite and, in good approximation, a Nambu-
Goldstone boson (NGB) associated to the global symmetries
of the new sector [1–4]. While an effective description of the
compositeHiggs couplings is possiblewithout specifying the
strong dynamics, the spectrum of additional composite states
essentially depends on the underlying ultraviolet theory.
Barring extra space-time dimensions, the simplest, well-
understood, explicit realization is provided by a gauge theory
of fermions that confines at the multi-TeV scale, with

quantum chromodynamics (QCD) as a prototype. The
historical incarnation being technicolor [5,6], in recent years
models of this sort featuring the Higgs as a composite NGB
have been built [7–12] and classified in some generality
[11,13]. Alternative ultraviolet completions of composite
Higgs models are discussed in Refs. [14–17].
Our motivations to analyze in detail such a scenario are

manifold. A characterization of the spectrum of composite
states is critical to confront with the LHC program: does one
foresee StandardModel (SM) singlet resonances close to one
TeV? what are the expectations for the masses of the lightest
charged and color states? These intrinsically nonperturbative
questions are especially pressing, in order to compare with
the well-defined predictions of weakly-coupled theories. In
addition, a quantitative description of the composite masses
and couplings would allow for an explicit computation of the
Higgs lowenergyproperties, improving on the predictivity of
the composite Higgs effective theory. Furthermore, decades
of QCD studies have provided us with a notable collection of
nonperturbative, analytic techniques to study strongly-
coupled gauge theories, that have been hardly exploited in
the context of models for the electroweak scale. A partial list
includes anomaly matching [18], spectral sum rules [19],
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large-N expansions [20,21], and the Nambu-Jona Lasinio
(NJL) effective model [22,23] (see also Refs. [24,25]). With
this approach one can reach several nontrivial results,
holding within well-defined approximations, with a rela-
tively small computational effort, and thus one may broadly
characterize several, different, possible models. This is
complementary to lattice simulations, which are suitable
for potentially more precise computations, in specific and/or
simplified scenarios. Interestingly, we will also find that the
peculiar structure of composite Higgs models requires a
gauge theory that is qualitatively different from QCD, in a
handful of significant features.
We engage into this program by choosing, as a case study,

an electroweak sector with global symmetry SUð4Þ sponta-
neously broken to Spð4Þ. This is the most economical
possibility to obtain a Nambu-Goldstone Higgs doublet with
custodial symmetry, starting from a set of constituent
fermions. This model, with a hypercolor gauge group
Spð2NÞ, emerges as the minimal benchmark for an ultra-
violet-complete compositeHiggs sector. Themost significant
challenge facing this class of theories is to generate the large
top quark Yukawa coupling, as it requires nonrenormalizable
operators to couple the top to the electroweak symmetry
breaking (EWSB)order parameter.Apromisingway to circu-
mvent the potential suppression of the top Yukawa is partial
compositeness [26], which calls for composite fermion
resonances with the quantum number of the top quark. A
minimal realization of top partial compositeness is provided
by an additional sector of hypercolor fermions, which are
charged under QCD, with global symmetry SUð6Þ sponta-
neously broken to SOð6Þ. While this particular choice for the
color sector appears less compelling than the one for the
electroweak sector, wewill show that it is instructive to study
it explicitly in detail. Indeed, one needs to surmount a number
of model-building difficulties, which require quite technical
complications: on the one hand this assesses the price to pay
for top partners, on the other hand the interplay of the two
sectors reveals a few novel physical phenomena, whose
interest transcends the specific model under consideration.
Our analysis builds on an early, enlightening study [8],

which employed four-fermion operators to understand the
dynamics of this SUð4Þ × SUð6Þ model with hypercolor
group Spð2NÞ, in close analogy with the NJL description
of QCD (NJL techniques have been applied to different
ultraviolet-complete composite-Higgs models as well [15]).
We will provide the first, thorough computation of the
spectrum of the meson resonances in this scenario. To this
end, we will perform a detailed scrutiny of the symmetry
structure of the model, which allows for several nontrivial
consistency checks, as well as for an accurate determination
of the allowed range of parameters. In most of our analysis,
we will stick to the chiral limit, where the constituent
fermions have no bare masses, and the SM gauge and
Yukawa couplings are neglected. In this limit the Higgs
and the other NGBs are massless. When relevant, we will

discuss in some detail the effect of fermion masses and of
switching on the SM gauge fields, however wewill not study
the generation ofYukawa couplings and of theNGBeffective
potential: the usual effective theory techniques to address
these issues [27,28] hold in the present scenario as well, but
we leave for future work a more specific treatment of this
subject.
The paper is organized as follows. In Sec. II, we review

exact results on vectorlike gauge theories, especially con-
cerning the spontaneous breaking of the flavor symmetries,
the associated spectral sum rules, the NGB couplings to
external gauge fields. The reader more interested in the
phenomenology of a specific model may just consult this part
to inspect general formulas and conventions. In Sec. III, we
study the electroweak sector with coset SUð4Þ=Spð4Þ, in
terms of four-fermion operators, à la NJL. The symmetry
breaking is examined through the gap equation for the
dynamical fermion mass, while the spin-zero and spin-one
mesonmasses are extracted from the poles of resummed two-
point correlators. The spectrum of resonances is analyzed in
units of the NGB decay constant, and compared with
available lattice results, as well as with spectral sum rules.
This analysis of the electroweak sector in isolation is self-
sufficient and it already illustrates the main potentialities of
our approach. The following sections require some extra
model-building and rather technical computations, that how-
ever may be skipped to move directly to the phenomeno-
logical results. In Sec. IV, we introduce additional, colored
constituent fermions, in a different representation of Spð2NÞ,
to provide partners for the top quark. The consequences
include nontrivial anomaly matching conditions, mixed
sum rules across the two sectors, and mixed operators
induced by the hypercolor gauge anomaly. In Sec. V, we
study the system of coupled mass-gap equations for the
two sectors and derive the masses of colored mesons. In
addition, the mixing between the two flavor singlet (pseudo)
scalars leads to a peculiar mass spectrum and phenomenol-
ogy. Finally, in Sec. VI, we summarize themain results of the
analysis and delineate future directions. Technical material is
collected in the appendixes: the generators of the flavor
symmetry group in Appendix A, the relevant loop functions
in Appendix B, some details on the computation of two-point
correlators in Appendix C, and the Fierz identities relating
different four-fermion operators in Appendix D.

II. GENERAL PROPERTIES OF
FLAVOR SYMMETRIES IN VECTORLIKE

GAUGE THEORIES

The composite-Higgs model that we will study belongs
to the class of vectorlike gauge theories, namely an
asymptotically free and confining gauge theory, with a
set of Nf Dirac fermions transforming under a (possibly
reducible) self-contragredient (i.e. unitarily equivalent to its
complex conjugate) representation of the gauge group, in
such a way that it is possible to make all fermions massive
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in a gauge invariant way.1 Exact results concerning non-
perturbative dynamical aspects in these theories are scarce,
and in this section, we briefly review some of those that are
actually available. They concern issues related to the
spontaneous breaking of the global flavor symmetries
and the spectrum of low-lying bound states.

A. Restrictions on the pattern of spontaneous
symmetry breaking

An important result for the spontaneous breaking of the
global flavor symmetry groupG for fermions with vectorlike
couplings to gauge fields has been obtained by Vafa and
Witten [29]. The theorem they have proven makes the
following statement: in any vectorlike gauge theory with
massless fermions and vanishing vacuum angles, the sub-
group Hm of the flavor group G that corresponds to the
remaining global symmetry when all fermion flavors are
given identical gauge invariant masses, cannot be sponta-
neously broken. In other words, ifG undergoes spontaneous
breaking towards some subgroup H, then Hm ⊆ H
(in the absence of any vacuum angle). This theorem is
particularly powerful when Hm corresponds to a maximal
subgroup of G, since it then allows only two alternatives:
either G is not spontaneously broken at all, or G is
spontaneously broken towards Hm. This is actually what
happens in the three cases that we can encounter in vector-
like theories [31,32]: G ¼ SUðNfÞL × SUðNfÞR and
Hm¼ SUðNfÞV2; G¼ SUð2NfÞ and Hm ¼ SOð2NfÞ;
G ¼ SUð2NfÞ and Hm ¼ Spð2NfÞ.
Of particular interest for the discussion that follows are the

Noether currents J A
μ , corresponding to the generators TA of

the unbroken subgroup Hm, and J Â
μ , corresponding to the

generators TÂ in the coset G=Hm. Since the latter is a
symmetric space for the three cases that have just been listed,
we will usually refer to the currents J A

μ (J Â
μ ) as vector

(axial) currents. When the fermions transform under an
irreducible but real (ϵ ¼ þ1 below) or pseudoreal (ϵ ¼ −1)
representation of the gauge group, G ¼ SUð2NfÞ,
and Hm ¼ SOð2NfÞ or Hm ¼ Spð2NfÞ, respectively. In
these two cases, it is convenient to write the fermion
fields in terms of left-handed Weyl spinors ψα. The currents
are then defined as follow [ψ̄ i ≡ ψ†

jðΩεÞji, where i and j
denote gauge indices, while spinor and flavor indices are
omitted]:

J A
μ ¼ 1

2
ðΩεÞij½εψ̄ iσ̄μTAψ j − ψ iσμðTAÞT ψ̄ j�;

J Â
μ ¼ 1

2
ðΩεÞij½εψ̄ iσ̄μTÂψ j − ψ iσμðTÂÞT ψ̄ j�: ð2:1Þ

The gauge contraction Ωε is an invariant tensor under the
action of the gauge group, which is symmetric for ε ¼ þ1

and antisymmetric for ε ¼ −1, with ðΩ2
εÞij ¼ εδij. The

generators TA and TÂ are characterized by the properties

TAΣε þ ΣεðTAÞT ¼ 0; TÂΣε − ΣεðTÂÞT ¼ 0; ð2:2Þ

and are normalized as

TrðTATBÞ ¼ 1

2
δAB;

TrðTÂTB̂Þ ¼ 1

2
δÂ B̂;

TrðTATB̂Þ ¼ 0: ð2:3Þ

The 2Nf × 2Nf matrix Σε is an invariant tensor of the
subgroupHm of the flavor group. It plays for this subgroup a
role analogous to the role played byΩε for the gauge group.
In particular, it can be chosen real, it is symmetric for ε ¼ þ1

and antisymmetric for ε ¼ −1, and satisfies Σ2
ε ¼ ε1, where

1 denotes the 2Nf × 2Nf unit matrix in flavor space.

B. ’t Hooft’s anomaly matching condition

Whereas the theorem of Vafa and Witten restricts the
pattern of spontaneous breaking of the global flavor
symmetry groupG, it does not by itself provide information
on which alternative will eventually be realized. Additional
information is required to that effect. The anomaly match-
ing condition proposed by ’t Hooft [18] can prove helpful
in this respect. This condition uses the fact that the Ward
identities satisfied by the three-point functions of the
Noether currents corresponding to the symmetry group
G receive anomalous contributions from the massless
elementary fermions [33–35]

iðq1 þ q2Þρ
Z

d4x1

Z
d4x2eiq1·x1þiq2·x2

× hvacjTfJ A
μ ðx1ÞJ B

ν ðx2ÞJ Ĉ
ρ ð0Þgjvaci

¼ −
dHC

8π2
ϵμναβqα1q

β
2d

ABĈ; ð2:4Þ

with dABĈ ¼ 2trðfTA; TBgTĈÞ, where the trace is over the
flavor group only, and dHC denotes the dimension of the
representation of the gauge group under which the fermions
transform. These anomalous contributions imply that the
corresponding three-point functions have very specific
physical singularities at vanishing momentum transfer
[18,36,37]. Moreover, this type of singularities can only

1It is also possible to give all fermions gauge invariant masses in
the case of an odd number of Weyl fermions in the same real
representation of the gauge group. Such theories do not have a
conserved fermion number, and are not vectorlike [29,30].
Although it can provide interesting composite-Higgs models, as
discussed, for instance, in Ref. [10], this class of theories will not be
addressed here.

2The issue of the Uð1ÞV symmetry is somewhat subtle, but we
will not need to discuss it here.
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be produced by physical intermediate states consisting
either of a single massless spin zero particle, or of a pair
of massless spin one-half particles. If the symmetries of G
are not spontaneously broken, the first option is excluded.
If the theory confines, this then implies that it has to
produce massless spin one-half bound states (that we will
call baryons). These fermionic bound states will occur in
multiplets of G, and their multiplicities must be chosen
such as to exactly reproduce the coefficient of the singu-
larities in the current three-point functions. If it is not
possible to saturate this anomaly coefficient with the
exchange of massless fermionic bound states only, then
massless spin-zero bound states coupled to the currents of
G are required, and hence G is spontaneously broken. If
this anomaly matching condition can be satisfied with
massless spin one-half bound states only, the spontaneous
breaking of G towards Hm is not a necessity, but it cannot
be excluded either.
In particular, the global symmetry is necessarily sponta-

neously broken if, after confinement, the theory cannot
produce fermionic bound states at all. If we restrict
ourselves to constituent fermions in the fundamental
representation of the gauge group, this happens when
the gauge group is SUð2NÞ, SOð2NÞ, or Spð2NÞ. In these
cases, the flavor group G, therefore, necessarily suffers
spontaneous breaking towards Hm. On the contrary, fer-
mionic bound states can be formed in the case of SUðNÞ or
SOðNÞ gauge groups with N odd. Novel fermionic bound
states may be possible if one admits elementary fermions
transforming in other representations than the fundamental
under the gauge group. We will discuss one such scenario
below in Sec. IV.

C. Mass inequalities

Various inequalities [38–42] involving the masses of the
gauge-singlet bound states in confining vectorlike gauge
theories provide additional insight into the fate of flavor
symmetries in these theories, complementary to the con-
straints arising from the Vafa-Witten theorem and from
’t Hooft’s anomaly matching condition. The most rigorous
versions of these inequalities hold under the same positivity
constraint on the path-integral measure in euclidian space as
required for the proof of theVafa-Witten theorem, namely the
absence of any vacuum angle. A review on these inequalities
is provided by Ref. [43]. Of particular interest in the present
context is the inequality of the type [38,40–42]

M1=2 ≥ CðN;NfÞM0; ð2:5Þ

involving, on the one hand, themassM1=2 of any baryon state
and, on the other hand, the mass M0 of the lightest quark-
antiquark spin-zero state having the flavor quantum numbers
of the G=Hm currents. The precise value of the (positive)
constant CðN;NfÞ and its dependence on the number of
hypercolors N and/or number of flavors Nf is not so

important here, the main point being that such an inequality
again provides a strong indication that the flavor symmetryG
is necessarily spontaneously broken towards G=Hm.

D. Superconvergent spectral sum rules

Assuming that G is spontaneously broken towards Hm,
correlation functions that are at the same time order
parameters become of particular interest, since they enjoy
a smooth behavior at short distances. These improved high-
energy properties allow in turn to write superconvergent
sum rules for the corresponding spectral densities. The
paradigmatic example is provided by the Weinberg sum
rules [19], once interpreted [44] and justified in the
framework of QCD and of the operator-product expansion
[45], including nonperturbative power corrections [46].
Here we will consider two-point functions of certain

fermion-bilinear operators, when the fermions transform
under an irreducible but real or pseudoreal representation of
the gauge group. Specifically, these operators comprise the
Noether currents defined in Eq. (2.1), to which we add the
scalar and pseudoscalar densities defined as

SÂ ¼ 1

2
ðΩεÞij½ψ̄ iTÂΣεψ̄ j þ ψ iΣεTÂψ j�;

S0 ¼ 1

2
ðΩεÞij½ψ̄ iT0Σεψ̄ j þ ψ iΣεT0ψ j�;

PÂ ¼ 1

2i
ðΩεÞij½ψ̄ iTÂΣεψ̄ j − ψ iΣεTÂψ j�;

P0 ¼ 1

2i
ðΩεÞij½ψ̄ iT0Σεψ̄ j − ψ iΣεT0ψ j�: ð2:6Þ

The singlet densities are normalized consistently with the
other densities by taking T0 ¼ 1=ð2 ffiffiffiffiffiffi

Nf
p Þ. The two-point

correlation functions of interest are then defined as

ΠVðq2ÞδABðqμqν − ημνq2Þ

¼ i
Z

d4xeiq·xhvacjTfJ A
μ ðxÞJ B

ν ð0Þgjvaci;

ΠAðq2ÞδÂ B̂ðqμqν − ημνq2Þ

¼ i
Z

d4xeiq·xhvacjTfJ Â
μ ðxÞJ B̂

ν ð0Þgjvaci; ð2:7Þ

ΠSðq2ÞδÂ B̂ ¼ i
Z

d4xeiq·xhvacjTfSÂðxÞSB̂ð0Þgjvaci;

ΠPðq2ÞδÂ B̂ ¼ i
Z

d4xeiq·xhvacjTfPÂðxÞPB̂ð0Þgjvaci;

ð2:8Þ

where Â ≠ 0, B̂ ≠ 0, and
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ΠS0ðq2Þ ¼ i
Z

d4xeiq·xhvacjTfS0ðxÞS0ð0Þgjvaci;

ΠP0ðq2Þ ¼ i
Z

d4xeiq·xhvacjTfP0ðxÞP0ð0Þgjvaci: ð2:9Þ

The combinations

ΠV−Aðq2Þ≡ ΠVðq2Þ − ΠAðq2Þ; ð2:10Þ

ΠS−Pðq2Þ≡ ΠSðq2Þ − ΠPðq2Þ;
ΠS−P0ðq2Þ≡ ΠSðq2Þ − ΠP0ðq2Þ;
ΠS0−Pðq2Þ≡ ΠS0ðq2Þ − ΠPðq2Þ; ð2:11Þ

are order parameters3 for the spontaneous breaking of
SUð2NfÞ towards Hm for all values of q2. As a conse-
quence, these two-point functions behave smoothly at short
distances ðQ2 ≡ −q2 > 0Þ:

lim
Q2→þ∞

ðQ2Þ2 × ΠV−Að−Q2Þ ¼ 0;

lim
Q2→þ∞

Q2 × fΠS−Pð−Q2Þ;ΠS0−Pð−Q2Þ;ΠS−P0ð−Q2Þg ¼ f0; 0; 0g: ð2:12Þ

From these short-distance properties, one then derives the
following superconvergent spectral sum rulesZ

∞

0

dt ImΠV−AðtÞ ¼ 0;Z
∞

0

dtt ImΠV−AðtÞ ¼ 0; ð2:13Þ
Z

∞

0

dt ImΠS−PðtÞ ¼ 0;Z
∞

0

dt ImΠS0−PðtÞ ¼ 0;Z
∞

0

dt ImΠS−P0ðtÞ ¼ 0: ð2:14Þ

We will examine in the following to which extent these
Weinberg-type sum rules, whose validity is quite general in
view of the short-distance properties of asymptotically-free
vectorlike gauge theories, are actually satisfied in the
specific NJL four-fermion interaction approximation. For
the sake of completeness, let us mention that the two-point
function

ΠAPðq2ÞδÂ B̂qμ ¼
Z

d4xeiq·xhvacjTfJ Â
μ ðxÞPB̂ð0Þgjvaci;

ð2:15Þ

also defines an order-parameter. However, there is no
associated sum rule, since, as a consequence of the Ward

identities, this correlator is entirely saturated by the Gold-
stone-boson pole (hS0i denotes the vacuum expectation
value of S0)

ΠAPðq2Þ ¼
1

q2
hS0iffiffiffiffiffiffi
Nf

p : ð2:16Þ

It may be useful to stress, at this stage, that the sum rules
displayed above are only valid in the absence of any
explicit symmetry breaking effects. Introducing, for in-
stance, masses for the fermions would modify the short-
distance properties of these correlators, and thus spoil the
convergence of the integrals of the corresponding spectral
functions. Let us briefly illustrate the changes that occur by
giving the fermions a common mass m, so that the currents
belonging to the subgroup Hm remain conserved. For the
remaining currents, one now has

∂μJ Â
μ ¼ 2mPÂ: ð2:17Þ

As far as the current-current correlators are concerned,
while the two-point function of the vector currents remains
transverse, the correlator of two axial currents receives a
longitudinal part,

i
Z

d4xeiq·xhvacjTfJ Â
μ ðxÞJ B̂

ν ð0Þgjvaci

¼ δÂ B̂½ΠAðq2Þðqμqν − ημνq2Þ þ ΠL
Aðq2Þqμqν�: ð2:18Þ

If one considers only corrections that are at most linear in
m, then one can still write a convergent sum rule [47],Z

∞

0

dt½ImΠVðtÞ − ImΠAðtÞ − ImΠL
AðtÞ� ¼ Oðm2Þ: ð2:19Þ

3Concerning ΠS−Pðq2Þ, this statement and the ensuing sum
rule hold only to the extent that the tensor dÂ B̂ Ĉ ≡
2trðfTÂ; TB̂gTĈÞ does not vanish identically, which is not the
case, for instance, when G ¼ SUð2ÞL × SUð2ÞR and Hm ¼
SUð2ÞV , but also, more interestingly for our purposes, when
G ¼ SUð4Þ and Hm ¼ Spð4Þ.
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Notice that the Ward identities relate this longitudinal piece
to the two-point function of the pseudoscalar densities and
to the scalar condensate,

ðq2Þ2ΠL
Aðq2Þ ¼ 4m2ΠPðq2Þ þ 2m

hS0iffiffiffiffiffiffi
Nf

p : ð2:20Þ

The presence of a fermion mass m also shifts the masses of
the Goldstone bosons away from zero, by an amount
ΔmM2

G whose expression, at first order in m, actually
follows from this identity and reads

F2
GΔmM2

G ¼ − 2m
hS0iffiffiffiffiffiffi
Nf

p þOðm2 lnmÞ: ð2:21Þ

This formula involves the Goldstone-boson decay constant
FG in the limit where m vanishes, defined as

hvacjJ Â
μ ð0ÞjGB̂ðpÞi ¼ ipμFGδ

Â B̂; p2 ¼ 0: ð2:22Þ

Defining the coupling of the Goldstone bosons to the
pseudoscalar densities,

hvacjPÂð0ÞjGB̂ðpÞi ¼ GGδ
Â B̂; p2 ¼ 0; ð2:23Þ

the identity obtained in Eq. (2.16) implies

FGGG ¼ −
hS0iffiffiffiffiffiffi
Nf

p ; ð2:24Þ

in the massless limit.
In contrast to the symmetry currents and to quantities

derived from them, like FG or ΠV=Aðq2Þ for instance, the
(pseudo)scalar densities and their matrix elements, whether
ΠS=Pðq2Þ or GG, need to be multiplicatively renormalized,
and are, therefore, not invariant under the action of the
renormalization group. This dependence on the short-
distance renormalization scale does not impinge on the
validity or usefulness of the sum rules in Eqs. (2.14) or
(2.19), which hold at every scale. Likewise, this scale
dependence is exactly balanced out between the right- and
left-hand sides of relations like (2.16) or (2.24).

E. Coupling to external gauge fields

Eventually, some currents of the global symmetry group
G become weakly coupled to the standard model gauge
fields. If, in the absence of these weakly coupled gauge
fields, the global symmetry group G is spontaneously
broken towards Hm, turning on the gauge interactions will
produce two effects. First, the Goldstone bosons will
acquire radiatively generated masses. Second, transitions
of a single Goldstone boson into a pair of gauge bosons
are induced and, at lowest order in the couplings to the
external gauge fields, the amplitude describing the

transition towards a pair of zero-virtuality gauge bosons
is fixed by the anomalous Ward identities in Eq. (2.4). Let
us briefly discuss these two aspects in general terms.
Let jGÂðpÞi denote the massless Goldstone-boson states

corresponding to the generators TÂ spanning the (sym-
metric) coset spaceG=Hm. In the presence of a perturbation
that explicitly breaks the global symmetry, these Goldstone
bosons become pseudo-Goldstone bosons, and their masses
are shifted away from zero. At lowest order in the external
perturbation, these mass shifts are given by

ΔM2
GÂ

¼ − hGÂðpÞjΔLð0ÞjGÂðpÞi; p2 ¼ 0; ð2:25Þ

with ΔLðxÞ the symmetry-breaking interaction term in the
Lagrangian. We are interested in particular in an interaction
due to the presence of massless gauge fields that is
considered weak (in particular nonconfining) at the scale
under consideration, so that its effect can be considered as a
perturbation. These external gauge fields couple to some
linear combinations of the currents of the global symmetry
group G. For a single gauge fieldWμ, this interaction reads

Lint ¼ −igWWμJW
μ ;

JW
μ ¼ 1

2
ðΩεÞij½εψ̄ iσ̄μTWψ j − ψ iσμðTWÞT ψ̄ j�; ð2:26Þ

where TW is an element of the algebra of G. At first
nontrivial order in the corresponding coupling gW , one has

ΔLðxÞ¼ g2W
2

Z
d4q
ð2πÞ4

ημν

q2

Z
d4yeiq·yTfJW

μ ðxþyÞJW
ν ðxÞg:

ð2:27Þ

Decomposing TW as TW ¼ TW þ TŴ , where TW (TŴ) is a
linear combination of the generators TA (TÂ) of Hm
(of G=Hm), and taking further the soft-Goldstone-boson
limit in Eq. (2.25), then results in the following expressions
for the mass shifts [31,48]

ΔM2
GÂ

¼ −
3

4π
×

1

F2
G
×
g2W
4π

×
Z

∞

0

dQ2Q2ΠV−Að−Q2Þ

×

�X
B̂

ðfÂWB̂Þ2 −
X
B

ðfÂ Ŵ BÞ2
�
: ð2:28Þ

Again, FG refers to the Goldstone-boson decay constant in
the limit where any explicit symmetry-breaking effects
vanish, see Eq. (2.22), and we have used the short-hand
notation
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TrðTW ½TÂ; TB̂�Þ≡ 1

2i
fÂWB̂;

TrðTŴ ½TÂ; TB�Þ≡ 1

2i
fÂ Ŵ B; ð2:29Þ

with the generators normalized as in Eq. (2.3). Since,
according to the Witten inequality [39], −Q2ΠV−Að−Q2Þ is
positive, the sign of ΔM2

GÂ
, and hence the misalignment of

the vacuum, hinges on the sign of the last factor on the
right-hand side of Eq. (2.28). If it is positive, ΔM2

GÂ
is

positive, and the vacuum is stable under this perturbation
by a weak gauge field. If it is negative, then ΔM2

GÂ
is

negative, which signals the instability of the unperturbed
vacuum under this perturbation. In particular, if the gauge
field couples only to the currents J A

μ corresponding to the

unbroken generators (i.e. TŴ ¼ 0), then ΔM2
GÂ

≥ 0. This is
the case, for instance, of the electromagnetic field in QCD,
which gives the charged pions a positive mass [49] (see also
the discussion in Ref. [50]),

ΔM2
π� ¼ −

3

4
×

1

F2
π

α

π
×
Z

∞

0

dQ2Q2ΠQCD
V−Að−Q2Þ; ð2:30Þ

while the neutral pion remains massless. If several gauge
fields are present, the total mass shift is given by a sum of
contributions of the type (2.28), one for each gauge field,
and the stability of the vacuummay then also depend on the
relative strengths of the various gauge couplings. For
instance, if a subgroup HW of Hm is gauged, and if the
Goldstone bosons transform as an irreducible representa-
tion RW under HW, the (positive) induced mass shift can be
expressed [48] in terms of the quadratic Casimir invariant
of HW for the representation RW ,

ΔM2
GÂ

¼ −
3

4π
×

1

F2
G
×
g2W
4π

×
Z

∞

0

dQ2Q2ΠV−Að−Q2Þ

× CðHWÞ
2 ðRWÞ: ð2:31Þ

The expression (2.28) can also be rewritten as a contribu-
tion to the effective potential induced by a gauge-field loop.
In terms of the Goldstone field

UðxÞ ¼ eiGðxÞ=FGΣε; GðxÞ ¼ 2
X
Â

GÂðxÞTÂ; ð2:32Þ

the relevant terms of the effective low-energy Lagrangian
read [51]

Leff ¼
F2
G

4
h∂μU†∂μUi − CWhTWUðTWÞTU†i þ � � � ;

ð2:33Þ

with h� � �i denoting the flavor trace, and

CW ¼ −
3

8π
×
g2W
4π

×
Z

∞

0

dQ2Q2ΠV−Að−Q2Þ: ð2:34Þ

As a side remark, let us notice that the procedure used here in
order to determine the induced mass shifts of the Goldstone
bosons can also be applied in the casewhereΔL in Eq. (2.25)
stands for a mass term for the fermions, e.g.

ΔmL ¼ − 2
ffiffiffiffiffiffi
Nf

p
mS0: ð2:35Þ

Going successively through the same steps, one then
reproduces the expression given in Eq. (2.21).
We now turn to the second issue, namely the matrix

element for the transition of a Goldstone bosons into a pair
of external gauge bosons with zero virtualities. At lowest
order in the gauge couplings, and for q2 ¼ ðp − qÞ2 ¼ 0,
this matrix element reads

g2W × i
Z

d4xeiq·xhvacjTfJW
μ ðxÞJW

ν ð0ÞgjGÂðpÞi

¼ −
g2WdHC

8π2FG
ϵμνρσqρpσdWWÂ½1þOðmÞ�; ð2:36Þ

with dWWÂ ≡ 2TrðfTW; TWgTÂÞ, and dHC denotes the
dimension of the representation of the hypercolor gauge
group to which the fermions making up the current JW

μ ðxÞ
belong. Here we are assuming (this will be the case of
interest in the context of the composite Higgs models
discussed below) that only generators of Hm are weakly
coupled to the external gauge fields (i.e. TŴ ¼ 0). The
expression on the right-hand side is then obtained by
saturating the Ward identity in Eq. (2.4) with the
Goldstone poles. Again, if the fermions are given masses,
there are corrections, indicated as OðmÞ. At the level of the
low-energy theory, this coupling is reproduced by the
Wess-Zumino-Witten effective action [52–54]. Writing
only the relevant term, one has

LWZW
eff ¼ −

g2WdHC

64π2FG
ϵμνρσWμνðxÞWρσðxÞ

×
X
Â

dWWÂGÂðxÞ þ � � � : ð2:37Þ

III. THE ELECTROWEAK SECTOR

In this section, we analyze a composite model for the
Higgs sector of the SM. We consider a flavor symmetry
group G ¼ SUð4Þ≃ SOð6Þ, spontaneously broken
towards a subgroup Spð4Þ≃ SOð5Þ. The five Goldstone
bosons transform as ð1L; 1RÞ þ ð2L; 2RÞ under the custodial
symmetry SUð2ÞL × SUð2ÞR ⊂ Spð4Þ, corresponding to a
real scalar singlet plus the complex Higgs doublet.
Composite Higgs models based on this coset have been
studied in Refs. [55–57], as effective theories with a
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nonspecified strongly-coupled dynamics. A simple UV
completion is provided by a gauge theory with four
Weyl fermions ψa in a pseudoreal representation of the
gauge group, and which form a condensate hψaψbi ≠ 0.
Such a theory was considered in Refs. [7,9,13,58], as a
minimal hypercolor model. The first analysis of the low
energy dynamics of this theory in terms of four-fermion
interactions (à la NJL) was provided in Ref. [8]. We extend
this former study by deriving additional phenomenological
predictions. We will particularize the general results of
Sec. II to this specific case, and in addition we will compute
the masses of the spin-zero and spin-one bound states, as
well as their decay constants, by using NJL techniques.

A. Scalar interactions of fermion bilinears
and the mass gap

Let us consider a Spð2NÞ hypercolor gauge theory and
introduce four Weyl spinors ψa, in the fundamental
representation of Spð2NÞ, which is pseudoreal. The
transformation properties of these elementary fermions
are summarized in Table I. The dynamics of the
SUð4Þ=Spð4Þ spontaneous symmetry breaking can be
studied in terms of four-fermion interactions, constructed
out of hypercolor-invariant, spin-zero fermion bilinears, in
a NJL-like manner [22–25]. The Lagrangian reads [8]

Lψ
scal ¼

κA
2N

ðψaψbÞðψ̄aψ̄bÞ

−
κB
8N

½ϵabcdðψaψbÞðψcψdÞ þ H:c:�; ð3:1Þ

where a; b; � � � ¼ 1, 2, 3, 4 are SUð4Þ indices, ϵabcd is the
Levi-Civita symbol and κA;B are real, dimensionful cou-
plings. The phase of κB can be absorbed by the phase of ψ ,
so that we may take κB real and positive without loss of
generality.4 Each fermion bilinear between brackets is
contracted into a Lorentz and Spð2NÞ invariant quantity.
The hypercolor-invariant contraction is defined as

ðψaψbÞ≡ ψa
iΩijψ

b
j ¼ −ðψbψaÞ; ð3:2Þ

where Ω is the antisymmetric 2N × 2N matrix

Ω ¼
�

0 1N
−1N 0

�
: ð3:3Þ

The antisymmetry of the hypercolor contraction implies
antisymmetry in the flavor SUð4Þ indices. Other four-
fermion interactions, involving spin-one fermion bilinears,

are irrelevant for the discussion of spontaneous symmetry
breaking. We will introduce them later, in Sec. III C, when
we discuss spin-one resonances.
Note that for κB ¼ 0 there is an additional global Uð1Þψ

symmetry, which reflects a classical invariance of the
Spð2NÞ gauge theory, the associated Noether current being

J 0
ψμ ¼ −

1

2
Ωij½ψ̄ iσ̄μψ j þ ψ iσμψ̄ j�; ð3:4Þ

as follows from Eq. (2.1) upon taking ε ¼ −1 and a singlet
generator normalized to 14. At the quantum level, this
current has a hypercolor gauge anomaly,

∂μJ 0
ψμ ¼

Nψ
f g

2
HC

32π2
XNð2Nþ1Þ

I¼1

ϵμνρσG
I;μν
HCG

I;ρσ
HC ; ð3:5Þ

and the corresponding symmetry is explicitly broken by
instantons [59,60]. Here Nψ

f ¼ 2 denotes the number of
Dirac flavors. The effect of the instantons can be represented
by an effective vertex [59–61] that breaks the Uð1Þψ
invariance. The important observation here is that for 2Nψ

f ¼
4 Weyl fermions in the fundamental representation of the
Spð2NÞ gauge group, this effective vertex is precisely given
by the termproportional to κB. It is both quartic in the fermion
fields, which provides the amount of Uð1Þψ breaking
required, forNψ

f ¼ 2, by the index theorem and the instanton
solution with unit winding number, and invariant under the
SUð4Þ global symmetry [62]. It plays the same role as the
analogous six-fermion ’t Hooft determinant effective
Lagrangian [59–61] for QCD with three flavors, which
parametrizes the instanton-induced anomaly interactions,
explaining an η0 mass much larger than the masses of the
other Goldstone boson states. Such a term was originally
constructed in the quarkmodel [63], and later also introduced
in the NJL model [64,65], see also [66]. Similarly, in the
present case, κB ≠ 0 is, therefore, crucial in order to evade the
additional Uð1Þψ Goldstone boson.

TABLE I. The transformation properties of the elementary
fermions, and of the spin-0 and spin-1 fermion bilinears, in
the electroweak sector of the model. Spinor indexes are under-
stood, and brackets stand for a hypercolor-invariant contraction of
the Spð2NÞ indexes.

Lorentz Spð2NÞ SUð4Þ Spð4Þ
ψa
i ð1=2; 0Þ □i 4a 4

ψ̄ai ≡ ψ†
ajΩji ð0; 1=2Þ □i 4̄a 4�

Mab ∼ ðψaψbÞ (0,0) 1 6ab 5þ 1

M̄ab ∼ ðψ̄aψ̄bÞ (0,0) 1 6̄ab 5þ 1

aμ ∼ ðψ̄aσ̄
μψaÞ ð1=2; 1=2Þ 1 1 1

ðVμ; AμÞba ∼ ðψ̄aσ̄
μψbÞ ð1=2; 1=2Þ 1 15ab 10þ 5

4In comparison to Ref. [8], we choose an opposite sign for κB,
and a different but equivalent vacuum alignment defined by
Eq. (3.6). Combining these two different conventions, the mass
gap defined by Eq. (3.17) has the same expression as in Ref. [8].
This is because the two vacua are related by aUð4Þ transformation
with determinant minus one, that changes the sign of ϵabcd.
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While this picture is essentially correct when considering
the electroweak SUð4Þ sector in isolation, we stress that it
will be significantly modified when a colored sector is
introduced, in order to provide composite partners for the
top quark, as we will discuss in Sec. IV. This sector also has
an anomalous extra Uð1ÞX symmetry, but one linear
combination of the two Uð1Þ currents remains anomaly
free, which implies that the effective ’t Hooft determinant
term is no longer given by the κB operator. This will have
some important consequences on the spectrum of reso-
nances, but at a first stage we prefer to neglect the mixing
with the colored sector, as the results are much more
transparent and it will be easy to generalize them.
We assume that the SUð4Þ global symmetry is exact, that

is, we work in the chiral limit where ψa has no elementary
mass term. The SUð4Þ Noether currents are given by
Eq. (2.1), with Ωϵ ¼ Ω defined in Eq. (3.3). The SUð4Þ
generators decompose into five broken ones, TÂ, living in
the SUð4Þ=Spð4Þ coset, and ten unbroken ones, TA, whose
explicit expressions are given in Appendix A. They satisfy
the conditions spelled out in Eq. (2.2), where Σϵ stands for

Σ0 ≡

0
BBBBB@

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

1
CCCCCA: ð3:6Þ

By introducing in a standard manner [8,24,25] an
auxiliary (antisymmetric) scalar field M, transforming as
a gauge singlet and a flavor SUð4Þ sextet, the Lagrangian
(3.1) can be rewritten equivalently as

Lψ
scal¼−

1

κAþ κB

��
κAM�

ab−
κB
2
ϵabcdMcd

�
ðψaψbÞþH:c:

�

−
2NκA

ðκAþ κBÞ2
MabM�

ab

þ1

2

NκB
ðκAþ κBÞ2

ðϵabcdMabMcdþH:c:Þ; ð3:7Þ

where the equation of motion for M gives

Mab ¼ −
κA þ κB
2N

ðψaψbÞ: ð3:8Þ

The matrix field M, being complex and antisymmetric, can
always be rotated by an SUð4Þ transformation into the form

M ¼

0
BBB@

0 0 m1 0

0 0 0 m2

−m1 0 0 0

0 −m2 0 0

1
CCCA: ð3:9Þ

Once a ðψaψbÞ condensate forms, M acquires a vacuum
expectation value (vev) and the Yukawa couplings induce
dynamical fermionmasses.One can derive fromEq. (3.7) the
one-loop Coleman-Weinberg effective potential [67], by
integrating over fermions, and study the occurrence of
spontaneous symmetry breaking by looking for a nontrivial
minimum with hm1;2i ≠ 0 [8]. One finds that spontaneous
symmetry breaking is only possible for 2hm1i¼2hm2i≡
Mψ , in agreement with the Vafa-Witten theorem. Below we
provide an alternative derivation of the same result, which
will also be useful for studying the spectrum of scalar
resonances.
It is convenient to introduce the combination

Mab ¼
1

κA þ κB

�
κAM�

ab −
κB
2
ϵabcdMcd

�
; ð3:10Þ

which can be expanded around the vacuum as

M ¼ 1

2
MψΣ0 þ ðσ þ iη0ÞΣ0T0

ψ þ ðSÂ þ iGÂÞΣ0TÂ:

ð3:11Þ
The matrix M decomposes, according to 6SUð4Þ ¼
ð1þ 5ÞSpð4Þ, into a scalar singlet σ, a pseudoscalar singlet

η0, a scalar quintuplet SÂ, and a pseudoscalar quintuplet
GÂ, which will be identified with the physical meson
resonances. Using the identity ϵabcd ¼ −ðΣ0ÞabðΣ0Þcdþ
ðΣ0ÞacðΣ0Þbd − ðΣ0ÞadðΣ0Þbc, and since, as already noted,
κB can be taken real and positive without loss of generality,
the Lagrangian (3.7) can be rewritten as

Lψ
scal¼−ðψMψþH:c:Þ−N½P−ðσ2þG2

Â
ÞþPþðη02þS2

Â
Þ�;

ð3:12Þ

where

P� ¼ κA
κ2A − κ2B

� κB
jκ2A − κ2Bj

¼ 1

κA ∓ κB
: ð3:13Þ

The sign in the last equality corresponds to the case
κ2A > κ2B, which will turn out to be the relevant region of
parameter space. Eqs. (3.11) and (3.12) define the Feynman
rules for the fermion Yukawa couplings to the mesons: the
four-fermion interactions mediated by σ and GÂ are
proportional to P−1

− , while the interactions mediated by
η0 and SÂ are proportional to P−1þ .
Indeed, the Lagrangian in Eq. (3.1) can be directly

written in terms of the fermion bilinears coupled to the
mesons, upon using Fierz identities for SUð4Þ and Spð4Þ,
derived in Appendix D. The replacements δcaδ

d
b − δdaδ

c
b ¼

4ðΣ0T0
ψÞabðT0

ψΣ0Þcd þ 4ðΣ0TÂÞabðTÂΣ0Þcd and ϵabcd ¼
−4ðΣ0T0

ψÞabðΣ0T0
ψ Þcd þ 4ðΣ0TÂÞabðΣ0TÂÞcd in Eq. (3.1),

lead to
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Lψ
scal ¼ 2

κA
ð2NÞ ½ðψΣ0T0

ψψÞðψ̄T0
ψΣ0ψ̄Þ

þ ðψΣ0TÂψÞðψ̄TÂΣ0ψ̄Þ�
þ κB
ð2NÞ ½ðψΣ0T0

ψψÞðψΣ0T0
ψψÞ

− ðψΣ0TÂψÞðψΣ0TÂψÞ þ H:c:�: ð3:14Þ

Most of the resonance spectrum calculations could be
performed directly from the four-fermion interactions in
Eq. (3.14). Nonetheless, the introduction of auxiliary fields
is convenient, because Eq. (3.11) identifies the relevant
scalar degrees of freedom, which will become dynamical
resonances upon 1=N resummation of the interactions in
their respective channels, as we will examine below.
The first important step for the dynamical calculations of

the resonance spectrum is to determine the mass gap,
namely whether a nontrivial dynamical fermion mass,
signalling the spontaneous breaking of SUð4Þ to Spð4Þ,
develops within the NJL approximation. Let us consider the
self-consistent mass gap equation [22,24,25], obtained
from the one-loop tadpole graph, as illustrated in Fig. 1.
It is well known that this is equivalent to computing the
minimum of the one-loop effective potential. Note that, just
like for the standard NJL model, only the σ exchange does
contribute, namely only the spin-zero, parity-even, Spð4Þ-
singlet fermion bilinear can take a vev. Therefore, the mass-
gap equation involves solely the inverse coupling P−. The
computation of the diagrams in Fig. 1 leads to a self-
consistent condition on the dynamical fermion mass Mψ ,

−iMψ ¼ 2

�
i
2P−1

−

8ð2NÞ
�
ð−2ÞTr½Ω2�Tr½Σ2

0�

×
Z

Λ d4k
ð2πÞ4

iMψ

k2 −M2
ψ þ iε

; ð3:15Þ

where the first factor 2 accounts for the normalization
Mψ ≡ 2hm1;2i, ð−2Þ is the trace over Weyl spinor indices in
the loop, Tr½Ω2� ¼ −2N is the trace over hypercolor, and
Tr½Σ2

0� ¼ −4 the one over flavor. Note that the factors 2N
cancel, thanks to the appropriate large-N normalization of
the original couplings κA;B in Eq. (3.14). Thus, one obtains

1 − 4P−1
− ~A0ðM2

ψÞ ¼ 0; ð3:16Þ

where the basic one-loop scalar integral ~A0 is defined in
Appendix B. In order to regularize the otherwise divergent
integral, we introduce a (covariant four-dimensional) cutoff
Λ, which parametrizes the scale at which the effective four-
fermion interaction ceases to be valid and all degrees of
freedom of the underlying gauge theory become relevant.
Computing the integral, the gap equation takes the explicit
form

1 −
M2

ψ

Λ2
ln

�
Λ2 þM2

ψ

M2
ψ

�
¼ 4π2

Λ2
P− ≡ 1

ξ
; ð3:17Þ

in full agreement with the minimization of the one-loop
effective potential in Ref. [8].
Equation (3.17) has a nontrivial solution,Mψ ≠ 0, as long

as ξ > 1, which implies κ2A > κ2B and P−1
− ¼ κA þ κB >

4π2=Λ2. The existence of a minimal, critical coupling to
realize spontaneous symmetry breaking is a characteristic
property of the NJL model. On the other hand, the con-
sistency requirementMψ=Λ≲ 1 implies an upper bound on
the coupling, ξ≡Λ2ðκAþκBÞ=ð4π2Þ≲ð1−ln2Þ−1≃3.25,
see also Fig. 3 below. Note that if the underlying Spð2NÞ
gauge theory confines, it necessarily breaks SUð4Þ into
Spð4Þ as a consequence of the anomaly matching discussed
in Sec. II B, because the fermions ψ cannot form baryons.
Thismeans that the true strong dynamics has to correspond to
a supercritical value of κA þ κB. This conclusionholds for the
ψ sector in isolation, but itmaynot be the casewhen a colored
X sector will be added in Sec. IV, and baryons become
possible, see the discussion in Sec. IVA.Note also that, in the
NJL large-N approximation, the mass gap Mψ and the
fermion condensate,

1

2
hðψaψbÞ þ ðψ̄aψ̄bÞi≡ hΨΨiΣab

0 ;

hΨΨi ¼ 1ffiffiffiffiffiffiffi
Nψ

f

q hSψ0 i; ð3:18Þ

corresponding to the tadpole in Fig. 1, are trivially related:

FIG. 1. Graphical illustration of the mass gap equation, in the leading 1=N-approximation. Thick and thin lines represent dressed and
bare fermion propagators, respectively.
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hΨΨi≡ −2ð2NÞMψ
~A0ðM2

ψ Þ ¼ −
N

κA þ κB
Mψ : ð3:19Þ

We have also indicated the direct relation between the quark
condensate and the vacuum expectation value hSψ0 i of the
singlet scalar density, at this level of NJL approximation,
with Sψ0 defined in Eq. (2.6).

B. Masses of scalar resonances

The masses and the couplings of the composite mesonic
resonances can be computed, at first order in 1=N, by
performing the resummation of the dominant large-N graphs
contributing to the two-point functions with the appropriate
quantum numbers, according to a well-known procedure
[22,24,25,66,68]. The resummation takes the form of a
geometric series, as illustrated in Fig. 2. For the two-point
functions defined in Eqs. (2.8) and (2.9), the outcome of this
procedure translates into the generic formula

Π̄ϕðq2Þ≡
~Πϕðq2Þ

1 − 2Kϕ
~Πϕðq2Þ

; ð3:20Þ

whereKϕ are combinations of the four-fermion couplings in
Eq. (3.14). The expressions of Kϕ and of the one-loop

correlators ~Πϕðq2Þ have been collected in Table II. They
involve the one-loop two-point function ~B0ðq2;M2

ψÞ defined
in Appendix B. In this section, wewill discuss the scalar and
pseudoscalar channels, while the spin-one channels will be
discussed in Sec. III D.

Before starting this discussion, we would like to make a
few remarks on the resummed correlators, some of which
being also relevant for the spin-one channels.

(i) Expression (3.20) is not applicable in this simple
form in the pseudoscalar channel, ϕ ¼ GÂ; η0, due to
the fact that, at one loop, the axial two-point function
also receives a longitudinal part, which will then mix
with the pseudoscalar two-point function when the
resummation in Fig. 2 is performed. For the time
being, we can ignore these aspects, which will be
treated in detail in Sec. III E, and, in the meantime,
we proceed with the general discussion of masses
and couplings on the basis of Eq. (3.20).

(ii) The corresponding resonance masses Mϕ are deter-
mined by the poles of the resummed propagators,

1 − 2Kϕ
~Πϕðq2 ¼ M2

ϕÞ ¼ 0: ð3:21Þ

In order to discuss somegeneral features of this type of
equation, let us point out that the functions ~Πϕðq2Þ can
be defined in the cut complex q2-plane, where the cut
lies on the real positive axis and starts at q2 ¼ 4M2

ψ .
The cut results from a logarithmic branch point, so that
the functions ~Πϕðq2Þ become multi-valued through
analytic continuation across the cut. These properties
simply reflect those of the function ~B0ðq2;M2

ψÞ itself.
In general, Eq. (3.21) has solutions for complex values
of q2, lying on the second Riemann sheet, which are
interpreted as resonances, generated dynamically
through the resummation procedure.

FIG. 2. Resummation of leading 1=N graphs for a mesonic two-point correlator, corresponding to a composite meson exchange.

TABLE II. The couplings Kϕ and the expressions of the one-loop spin-0 and spin-1 two-point functions. We also give the expression
of the mixed (one-loop) pseudoscalar-longitudinal axial correlator, that enters in the analysis of both the quintuplet and singlet sectors.
The explicit calculation of the correlators ~Πϕðq2Þ is detailed in Appendix C.

ϕ Kϕ ~Πϕðq2Þ
GÂ 2ðκA þ κBÞ=ð2NÞ

~ΠPðq2Þ ¼ ð2NÞ½ ~A0ðM2
ψ Þ − q2

2
~B0ðq2;M2

ψ Þ�η0 2ðκA − κBÞ=ð2NÞ
SÂ 2ðκA − κBÞ=ð2NÞ

~ΠSðq2Þ ¼ ð2NÞ½ ~A0ðM2
ψ Þ − 1

2
ðq2 − 4M2

ψ Þ ~B0ðq2;M2
ψ Þ�σ 2ðκA þ κBÞ=ð2NÞ

VA
μ −2κD=ð2NÞ ~ΠVðq2Þ ¼ 1

3
ð2NÞ½−2M2

ψ
~B0ð0;M2

ψ Þ þ ðq2 þ 2M2
ψ Þ ~B0ðq2;M2

ψ Þ�
AÂ
μ

−2κD=ð2NÞ ~ΠAðq2Þ ¼ 1
3
ð2NÞ½−2M2

ψ
~B0ð0;M2

ψ Þ þ ðq2 − 4M2
ψ Þ ~B0ðq2;M2

ψ Þ�
aμ −2κC=ð2NÞ ~ΠL

Aðq2Þ ¼ −2ð2NÞM2
ψ
~B0ðq2;M2

ψ Þ
AÂ
μ − GÂ

~ΠAPðq2Þ ¼ −ð2NÞMψ
~B0ðq2;M2

ψ Þaμ − η0
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(iii) Other solutions to Eq. (3.21) than poles on the
second sheet are possible. For instance, there can
exist a critical value Kcrit

ϕ , such that if the coupling
Kϕ satisfies Kϕ ≥ Kcrit

ϕ > 0, then Eq. (3.21) pos-
sesses (in addition) a real solution 0 ≤ Mϕ ≤ 2Mψ

[69], corresponding to a two-fermion bound state.
As we will see below, this situation arises in the
singlet pseudoscalar channel (and also in the vector
channel, but this time for Kϕ ≤ Kcrit

ϕ < 0). As Kϕ

moves towards Kcrit
ϕ from above, the bound-state

mass moves from zero towards the value 2Mψ .
When Kϕ < Kcrit

ϕ , this solution of Eq. (3.21) moves
back towards the origin, but now on the real axis of
the second Riemann sheet, and thus becomes a
“virtual-state” solution [69].

(iv) Another aspect concerning the solutions of Eq. (3.21)
is intimately connected to the fact that, in order to
make this equation meaningful, it has been necessary
to introduce a regularization for the function
~B0ðq2;M2

ψ Þ. As a consequence, there are solutions
corresponding to real, but negative, values of q2,
q2 ¼ −M2

gh-ϕ ≳ −3Λ2. These “ghost” singularities5

of the functions Π̄ϕðq2Þ occur quite far from the
physical region, and have only a small influence on,
for instance, the values of the resonance masses.
When determining the latter, we thus systematically
discard them. But they have to be taken into account
when considering more global properties of the
functions Π̄ϕðq2Þ, like the spectral sum rules of
Sec. II D. These will be discussed within the frame-
work of the NJL approximation below, in Sec. III G.

(v) From a practical point of view, resonance solutions to
Eq. (3.21) will not be determined by looking for poles
on the second sheet, but rather by solving a real
equation as follows. We rewrite the denominator of
Eq. (3.20) as 1−2Kϕ

~Πϕðq2Þ¼cϕ0 ðq2Þþcϕ1 ðq2Þq2,
where the q2 dependence of the coefficients
cϕ0;1ðq2Þ comes from the loop function ~B0ðq2;M2

ψÞ
only, see table II. The meson mass is then defined
implicitly by

M2
ϕ ¼ Re½gϕðM2

ϕÞ�;

gϕðq2Þ≡ −
cϕ0 ðq2Þ
cϕ1 ðq2Þ

: ð3:22Þ

The value Mϕ obtained this way remains a good
approximation to themass given by the real part of the
resonance pole, as long as the imaginary part of
gϕðM2

ϕÞ remains small,

���� Im½gϕðM2
ϕÞ�

Re½gϕðM2
ϕÞ�
���� < 1: ð3:23Þ

Indeed, the solution of Eq. (3.22) may be larger than
the threshold, M2

ϕ > 4M2
ψ , so that the loop function

~B0ðM2
ϕ;M

2
ψÞ develops an imaginary part. This may

happen in the case of the Spð4Þ-singlet pseudoscalar
state, see Eq. (3.26), and it always happens in the case
of the nonsinglet scalar state, see Eq. (3.28). This
imaginary part corresponds to the unphysical decay of
ameson into twoconstituent fermions, and reflects the
well known fact that the NJL model does not account
for confinement. Inwhat follows, itwill beunderstood
that resonance masses are defined as the solutions of
Eq. (3.22) and, in order to define a consistency
condition for the NJL approximation to be reliable,
we will require that Eq. (3.23) holds. Note also that,
when extracting the expressions of the pole masses, it
will be often convenient to take advantage of the gap
equation (3.16), in order to obtain a simpler form of
the solutions.

After these general considerations, we now turn to the
analysis of the scalar and pseudoscalar channels of the
model. The functions ~ΠS=Pðq2Þ correspond to the one-loop
estimates of the two-point functions ΠS=Pðq2Þ defined in
Eq. (2.8). Notice that one needs Kϕ ∝ 1=N, in order for the
1=N-expansion to be well defined. Indeed, according to
Sec. III A (see also Table II), we have Kσ;G ¼ 2ðκA þ
κBÞ=ð2NÞ and KS;η0 ¼ 2ðκA − κBÞ=ð2NÞ.
Let us consider first the pseudoscalar channels, ignoring,

for the time being, the issue of mixing with the longitudinal
part of the axial correlator. After taking the traces and
evaluating the momentum integral, the pseudoscalar two-
point correlator in the SUð4Þ sector takes the form

~ΠPðq2Þ ¼ ð2NÞ
�
~A0ðM2

ψÞ −
q2

2
~B0ðq2;M2

ψÞ
�
: ð3:24Þ

In the case of the Goldstone states GÂ, Eq. (3.21) becomes

1 − 4
ðκA þ κBÞ

2N
~ΠPðM2

GÞ

¼ 1 − 4ðκA þ κBÞ
�
~A0ðM2

ψÞ −
M2

G

2
~B0ðM2

G;M
2
ψÞ
�

¼ 2M2
GðκA þ κBÞ ~B0ðM2

G;M
2
ψÞ ¼ 0; ð3:25Þ

and the term proportional to ~A0 cancels out upon using the
mass-gap equation, Eq. (3.16), a well-known feature of the
standard NJL model [22,24]. As a consequence, one is left
with an exactly massless inverse propagator, MG ¼ 0, as it
should be for the Goldstone boson state.
A similar computation for the Spð4Þ-singlet pseudosca-

lar η0, using the information provided by Table II, leads to
5These pathologies are absent if the Pauli-Villars regularization

is adopted [70], but they reappear in another guise.
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M2
η0 ¼ gη0 ðM2

η0 Þ ¼
2 ~A0ðM2

ψ Þ
~B0ðM2

η0 ;M
2
ψÞ

�
1 −

Pþ
P−

�

¼ −
κB

κ2A − κ2B

1

~B0ðM2
η0 ;M

2
ψ Þ

; ð3:26Þ

where we have again used Eq. (3.16). In the above equation
and in the following expressions of the resonance masses, it
is implicitly assumed that only the real part of gϕðM2

ϕÞ is
taken into account, according to Eq. (3.22). Note that the
constraint κ2A > κ2B, needed for the existence of a nontrivial
solution of the gap equation, also ensures that M2

η0 is
positive. As it will be discussed in subsection V E, a similar
but stronger constraint holds when the colored sector is
introduced. To roughly estimate the expected range forMη0,
one may notice that ~B0ðq2;M2

ψÞ is real and has a rather
moderate q2 dependence for q2 ≪ 4M2

ψ , so that if M2
η0 lies

in this range, one can use the approximate expression

M2
η0 ≃−

κB
κ2A− κ2B

1

~B0ð0;M2
ψÞ

≃4

ξ

κB=κA
1− κB=κA

Λ2

lnðΛ2=M2
ψÞ−1

;

ð3:27Þ

where the expression for ~B0ð0;M2
ψ Þ is given in Eq. (B3).

Thus Mη0 may become arbitrarily small for κB=κA → 0, as
the extra Uð1Þψ symmetry is restored when κB ¼ 0, and η0

turns into the associated Goldstone boson. However, Mη0

rapidly increases with κB=κA to become of order Λ. Note
that, in the large-N limit, one expectsM2

η0 ∼ 1=N, as for the
η0 mass in QCD [71]. This indicates that the four-fermion
couplings, normalized as in Eq. (3.1), should scale as
κB=κA ∼ 1=N. Large-N arguments indicate that κA is N
independent, as the associated four-fermion operator is
generated from the hypercolor current-current interaction
(for details see Appendix D 1). Therefore, the correct
scaling is reproduced for κB ¼ κ̄B=ð2NÞ, with an
N-independent κ̄B, and the associated four-fermion oper-
ator, induced by the hypercolor anomaly, scales as 1=N2.
For the scalar channels, the two-point function is to be

found in Table II, and the corresponding scalar resonance
masses are

M2
σ ¼ 4M2

ψ ;

M2
S ¼ 4M2

ψ þM2
η0

~B0ðM2
η0 ;M

2
ψÞ

~B0ðM2
S;M

2
ψÞ

≃M2
σ þM2

η0 ; ð3:28Þ

where one recognizes the same relation Mσ ¼ 2Mψ , as in
the standard NJL model for QCD with two flavors. The
relationM2

S ≃M2
η0 þM2

σ holds again if one can neglect the

difference between the function ~B0ðp2;M2
ψÞ evaluated at

p2 ¼ M2
η0 and at p2 ¼ M2

S.

We stress that all previous expressions for the spectrum
of spin-zero resonances hold in the pure chiral limit, where
the SUð4Þ=Spð4Þ Goldstone bosons GÂ, including the
Higgs, are massless. Eventually, they will receive a nonzero
effective potential, radiatively induced by the SM gauge
and Yukawa couplings, which break explicitly the SUð4Þ
symmetry. In particular, the top quark Yukawa coupling is
generically expected to destabilize the vacuum, and to
trigger EWSB, see Refs. [27,28] for reviews. This implies
that the masses of some resonances, obtained in the NJL
large-N approximation, may receive corrections of order
Oðm2

top=Λ2Þ. These represent typically mild corrections for
the non-Goldstone resonances, whose masses ∼Λ are
significantly larger than the electroweak scale. Thus, the
qualitative features of the spectrum of meson resonances
are not expected to depart from those exhibited here, once
the effect of the explicit symmetry-breaking couplings is
added to the picture. One should also remember that, in any
case, the NJL large-N approximation already constitutes a
limitation to the precision that can be achieved. The
radiative contribution to the pseudo-Goldstone Higgs
mass, induced from the external electroweak gauge fields,
is given in Eq. (A7) (see also the general discussion in
Sec. II E). However, this contribution plays a secondary
role in EWSB: since it is positive, it cannot destabilize the
Spð4Þ-invariant vacuum, and it should be overcome by the
one from the top Yukawa coupling [27,28].
In the traditional NJL literature [22,24,25,66], the

resonance masses are determined from the resummed
scattering amplitudes for ψψ → ψψ in the various chan-
nels. These amplitudes involve the same couplings Kϕ and

functions ~Πϕðp2Þ as in Eq. (3.20). Moreover, they also
allow to define couplings between the elementary fermions
and the resonances. The interested reader will find a brief
discussion of these issues, not directly related to our main
purposes, in Appendix C.

C. Vector interactions of fermion bilinears

Let us now consider vector bilinears, in order to study
spin-one resonances. There are two independent four-
fermion vector-vector operators, that can be written as

Lψ
vect ¼

κ0C
2N

ðψ̄aσ̄
μψaÞðψ̄bσ̄μψ

bÞ þ κ0D
2N

ðψ̄aσ̄
μψbÞðψ̄bσ̄μψ

aÞ;
ð3:29Þ

where the coupling constants κ0C and κ0D are real. It turns out
that consistent (nontachyonic) spin-one resonance masses
are obtained for κ0C;D > 0, in the same way as for the NJL
vector interaction in QCD. Applying the SUð4Þ Fierz
identity given by Eq. (D22), the Lagrangian can be
rewritten in the ‘physical’ channels, corresponding to
definite Spð4Þ representations,
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Lψ
vect¼

κC
2N

ðψ̄T0
ψ σ̄

μψÞ2þ κD
2N

ðψ̄TAσ̄μψÞ2þ κD
2N

ðψ̄TÂσ̄μψÞ2;
ð3:30Þ

where κD ¼ 2κ0D, κC ¼ 8κ0C þ 2κ0D, and contracted flavor
indexes are understood, as well as summations over
generator labels A and Â. Introducing auxiliary vector
fields, the vector sector Lagrangian takes the form

Lψ
vect ¼ −aμðψ̄T0

ψ σ̄
μψÞ − VA

μ ðψ̄TAσ̄μψÞ − AÂ
μ ðψ̄TÂσ̄μψÞ

−
N
2κC

aμaμ −
N
2κD

ðVA
μVAμ þ AÂ

μAÂμÞ; ð3:31Þ

with vectors VA
μ ∼ 10Spð4Þ, and axial vectors ðaμ; AÂ

μ Þ∼
ð1þ 5ÞSpð4Þ. Their transformation properties are summa-
rized in Table I. This Lagrangian defines the strength of the
four-fermion interactions in the three physical channels
mediated by aμ, VA

μ and AÂ
μ .

We remark that additional spin-one resonances can be
associated to the fermion bilinear ðψaσμνψbÞ ∼ 10Spð4Þ, or
to its conjugate. However, one can check that the corre-
sponding four-fermion interactions vanish because of
Lorentz and/or SUð4Þ invariance. Therefore, to describe
these resonances one should consider higher-dimensional
operators. Although such an exercise is feasible with
analogous NJL techniques, it goes beyond the scope of
this paper.
In general, the couplings κC and κD are additional free

parameters with respect to those in the spin-zero sector, and
in the following we will provide expressions for the vector
masses and couplings as functions of these couplings.
However, κC and κD may be related to the scalar sector
coupling κA, if one assumes that the low-energy effective
interactions, between two hypercolor-singlet fermion
bilinears, originate from a one-hypergluon exchange cur-
rent-current interaction, as determined by the underlying
hypercolor gauge interaction. This may be justified in the
large-N approximation (or equivalently ‘ladder’ approxi-
mation for the current-current interaction) and it proves to
be a reasonably good approximation in the NJL-QCD case
[66,72]. Under such an assumption, one can apply Fierz
identities for Weyl, as well as for SUð4Þ and Spð2NÞ,
indices, as detailed in Appendix D, in order to relate the
coefficients of the various four-fermion operators. We
obtain that the vector couplings of Eq. (3.30) are simply
related to the scalar coupling of Eq. (3.14) by

κA ¼ κC ¼ κD: ð3:32Þ

An analogous relation holds in the NJL-QCD case [66],
where the couplings of the scalar-scalar and vector-vector
interactions are identical. We will use Eq. (3.32) as a
benchmark for numerical illustration, however one should

keep in mind that the true dynamics may appreciably depart
from this naive relation.

D. Masses of vector resonances

The vector meson masses can be computed, at leading
order in the 1=N expansion, similarly to the scalar meson
channels, from the resummed two-point functions, and the
geometric series illustrated in Fig. 2 now leads, in this
approximation, to the following expressions for the vector
or axial two-point correlatorsΠV;Aðp2Þ defined in Eq. (2.7),

Π̄V=Aðq2Þ≡ −
~ΠV=Aðq2Þ

q2½1 − 2KV=A
~ΠV=Aðq2Þ�

; ð3:33Þ

We have introduced one-loop correlators ~ΠV=Aðq2Þ with a
normalization that is more convenient for our purposes, so
that ~ΠV=Aðq2Þ≡ −q2ΠV=Aðq2Þj1−loop. Similarly, for the

one-loop axial longitudinal part we have ~ΠL
Aðq2Þ≡

q2ΠL
Aðq2Þj1−loop, where ΠL

Aðq2Þ is defined in Eq. (2.18).
More precisely, upon taking the traces over spinor indices,
flavor and hypercolor, the one-loop two-point vector and
axial correlators take the form,

~Πμν;AB
V ðqÞ ¼ ~ΠVðq2ÞTμνδAB;

~Πμν;Â B̂
A ðqÞ ¼ ½ ~ΠAðq2ÞTμν þ ~ΠL

Aðq2ÞLμν�δÂ B̂; ð3:34Þ

where the transverse and longitudinal projectors are
defined as

Tμν ¼ ημν −
qμqν

q2
; Lμν ¼ qμqν

q2
; ð3:35Þ

and where the expressions of the functions ~ΠV=Aðq2Þ and
~ΠL
Aðq2Þ are given in Table II. One should be cautious to

adopt a regularization that preserves SUð4Þ current con-
servation for the one-loop correlators, which is not the case
with the standard NJL cutoff regularization. There are
various ways to deal with this well-known problem [24],
the simplest being to use dimensional regularization for the
intermediate stages of the calculation. In this way the one-
loop vector correlator is automatically transverse. In the
final expression for the correlators, the formally divergent
loop function ~B0 can be written as a function of the D ¼ 4
cutoff Λ, see Eq. (B4). The latter is then interpreted as the
physical cutoff of the NJL model.
As compared to the two-point axial correlator in the

massless limit, defined by Eq. (2.7), and as already
mentioned in Sec. III B, the one-loop expression (3.34)
also exhibits a longitudinal part. This is a specific trait of
the NJL model, where the dynamically generated massMψ

acts here like an explicit symmetry-breaking term. We will
come back later on the manner this longitudinal piece is
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taken care of. For the time being, one may notice that the
transverse part of the two-point axial correlator reproduces
the expected physical features. Indeed, the resummed
function Π̄Aðq2Þ exhibits the massless pole6 due to the
contribution of the Goldstone bosons, but it also has a pole
from the axial-vector state AÂ

μ . This second pole mass is
extracted from Eq. (3.21), by injecting the coupling7 and
the transverse part of the correlator, ~ΠAðq2Þ. One obtains

M2
A ¼ −

3

4κD ~B0ðM2
A;M

2
ψÞ

þ 2M2
ψ

~B0ð0;M2
ψ Þ

~B0ðM2
A;M

2
ψ Þ

þ 4M2
ψ :

ð3:36Þ

The pole mass equation for the axial vector singlet aμ is
obtained with the replacements κD → κC and MA → Ma.
The VA

μ pole mass can likewise be extracted
from Eq. (3.21), with the replacements Kϕ → KV ¼
−2κD=ð2NÞ and ~Πϕðp2Þ → ~ΠVðp2Þ. This leads to

M2
V ¼ −

3

4κD ~B0ðM2
V;M

2
ψÞ

þ 2M2
ψ

~B0ð0;M2
ψ Þ

~B0ðM2
V;M

2
ψ Þ

− 2M2
ψ :

ð3:37Þ

In estimating the sizes of the spin-one resonance masses,
note that ~B0ðp2;M2

ψÞ is real for 0 ≤ p2 ≤ 4M2
ψ , and

negative in the physically relevant range of 0<M2
ψ<Λ2,

with j ~B0ðp2;M2
ψÞj ≥ j ~B0ð0;M2

ψ Þj. The term proportional to
1=κD on the right-hand side of Eqs. (3.37) and (3.36) is
positive for κD > 0, and gives the dominant contribution to
MV;A for, roughly, κDM2

ψ ≲ 4π2, that is ðMψ=ΛÞ2 ≲ 1=ξ
when one takes κD ≃ κA ≫ κB. By neglecting the differ-
ence between ~B0ðM2

V;M
2
ψÞ and ~B0ðM2

A;M
2
ψ Þ, we obtain the

usual NJL relation between the axial and vector masses,

M2
A ≃M2

V þ 6M2
ψ : ð3:38Þ

When one adopts the exact self-consistent pole mass
definitions, MA is somewhat below the prediction of
Eq. (3.38), by typically 5–10%. Also, the singlet mass
Ma is equal to MA when κD ¼ κC as in Eq. (3.32). As
already mentioned in the general considerations at the
beginning of Sec. III B, depending on the values of the
couplings, one may have resonance masses satisfying

M2
ϕ > 4M2

ψ , in which case ~B0ðM2
ϕ;M

2
ψ Þ develops an

imaginary part. Indeed, this is always the case for MA,
as one reads off Eq. (3.38). In such cases, the resonance
mass is obtained upon solving Eq. (3.22), and we consider
that the NJL predictions remain sensible as long as the
width Γϕ of the resonance, defined in Eq. (3.23), does not
exceed its mass.

E. Goldstone decay constant and
pseudoscalar-axial mixing

A key parameter of the composite sector is the Goldstone
boson decay constant FG, the analogous of Fπ in QCD. We
recall that, when the Higgs is a composite pseudo-
Goldstone boson, the electroweak precision parameters,
such as S, T (see Sec. III H), and the Higgs couplings
receive corrections of order ðv=fÞ2 with respect to their SM
value, where v≃ 246 GeV and f ≡ ffiffiffi

2
p

FG. Here f is the
Goldstone decay constant in the normalization that is
generally adopted in the composite Higgs literature.8

Thus, f is the physical scale most directly constrained
by precision measurements, f ≳ ð0.5–1Þ TeV, the exact
bound depending on the spontaneous symmetry breaking
pattern, as well as on the flavor representations of the spin-
one and spin-one-half composite resonances coupled to the
SM fields. Therefore, it will be convenient to express all the
resonance masses in units of f, and in the following we will
adopt the more conservative bound f ≳ 1 TeV.
The decay constant FG, as defined by Eq. (2.22), can

most directly be extracted from the two-point axial trans-
verse correlator, introduced in Eq. (2.7), through the
residue of the Goldstone boson pole. Identifying this
correlator in the NJL approximation with the resummed
correlator defined by Eq. (3.33) and using the explicit
expression in Table II, one obtains

F2
G ¼ lim

q2→0
½−q2Π̄Aðq2Þ�

¼
~ΠAð0Þ

1 − 2KA
~ΠAð0Þ

¼
~F2
G

1 − 2KA
~F2
G

¼ gAð0Þ ~F2
G; ð3:39Þ

where we have defined the axial coupling form factor

gAðq2Þ≡ ½1 − 2KA
~ΠL
Aðq2Þ�−1 ¼

�
1þ 4κD

2N
~ΠL
Aðq2Þ

�
−1

ð3:40Þ
6As expected, such a massless pole does not occur in Π̄Vðq2Þ,

defined in Eq. (3.33), since, as can be inferred from Table II,
~ΠVðq2Þ vanishes for q2 ¼ 0.

7Note the relative minus sign between the four-fermion
couplings in the Lagrangian of Eq. (3.30) KA ¼ −2κD=ð2NÞ,
and the couplings KV;A that enter in the denominator of the
resummed correlators in Eq. (3.33). This follows from the proper
definition of the argument of the associated geometric series.

8The relation f ≡ ffiffiffi
2

p
FG follows from our definitions of FG,

see Eq. (2.22), and of the Goldstone matrix U, see Eq. (2.32).
After the gauging of the SM group, the covariant derivative acting
on the Goldstone bosons reads DμU ¼ ∂μU − iVμU − iUVT

μ ,
where the external source Vμ is defined by Eq. (A6). This
determines the nonlinear corrections to the electroweak precision
parameters in terms of v=f.
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and the one-loop decay constant

~F2
G ≡ ~ΠAð0Þ ¼ −2ð2NÞM2

ψ
~B0ð0;M2

ψ Þ ¼ ~ΠL
Að0Þ: ð3:41Þ

At this point, one should remark that ~FG would be the
complete NJL result for the Goldstone decay constant only
if one would consider the scalar sector in isolation, i.e. by
switching off the axial vector coupling κD. However, since
by definition the Goldstone boson couples to the axial
current, a nonzero κD implies a nontrivial mixing of the
pseudoscalar and axial vector channels, that affects the
expression of the decay constant. In order to take into
account this effect and to define consistently FG, one needs
to consider the resummed transverse axial-vector correlator
Π̄Aðq2Þ of Eq. (3.33), as shown in (3.39) above. This
equation gives the complete NJL approximation for FG,
which should be matched with its experimental value, once
it becomes available, as is the case of Fπ in the NJL
approximation of QCD [24,66].
The behavior of FG is illustrated in Fig. 3, as a function

of the dimensionless coupling ξ. Combining the definition
of ξ in Eq. (3.17) with the explicit form of ~B0ð0;M2

ψÞ given
in Eq. (B3), one obtains

~F2
G ¼ N

4π2
Λ2

�
ξ − 1

ξ
−

M2
ψ

Λ2 þM2
ψ

�
: ð3:42Þ

Closely above the critical coupling, ξ ¼ 1, the mass gap is
much smaller than the cutoff, Mψ ≪ Λ, and ~FG grows
rapidly with ξ. As ξ − 1 becomes of order one, the mass gap
approaches the cutoff, Mψ ≲ Λ, while ~FG stops growing

and remains below the cutoff by a factor of a few, ~f≡ffiffiffi
2

p
~FG ≃ ffiffiffiffi

N
p

Λ=10. The resummed FG, see Eq. (3.39), is
smaller, asKA is negative. In Fig. 3 we assumed Eq. (3.32) to
hold, so that KA ¼ −4π2ξ=½NΛ2ð1þ κB=κAÞ�, which leads
to f ≃ ð0.6–0.8Þ ~f.
As already mentioned at several places in this section, a

nonvanishing axial-vector coupling κD ≠ 0 implies a non-
trivial mixing between the pseudoscalar and the axial
longitudinal channel. Therefore, the definition of the
resummed pseudoscalar correlator Π̄Pðq2Þ in Eq. (3.20)
should be appropriately generalized in order to account for
this mixing. In the process, we will also define a resummed
axial longitudinal correlator Π̄L

Aðq2Þ, we will recover
consistency relations among the Goldstone decay con-
stants, and determine more precisely the properties of the
non-Goldstone pseudoscalar η0. We discuss first the quintu-
pletG − Aμ mixing, while the similar analysis of the singlet
η0 − aμ mixing is presented at the end of this section.
The mixing phenomenon is best described using a matrix

formalism, so that we are led to consider

KG ¼
�
KG 0

0 KA

�
;

Πðq2Þ ¼
� ~ΠPðq2Þ

ffiffiffiffiffi
q2

p
~ΠAPðq2Þffiffiffiffiffi

q2
p

~ΠAPðq2Þ ~ΠL
Aðq2Þ

�
: ð3:43Þ

Explicit expressions for all the entries of these matrices can
be found in Table II. Notice the appearance of ~ΠAPðq2Þ, the
one-loop expression of the mixed correlator ΠAPðq2Þ
introduced in Eq. (2.15), and of the one-loop longitudinal
axial correlator ~ΠL

Aðq2Þ defined in Eq. (3.34). Note that,
consistently with the normalization of ~ΠL

Aðq2Þ in Eq. (3.34),
the matrixΠðq2Þ has been defined so that all its entries have
the same dimensions, whence the factor of

ffiffiffiffiffi
q2

p
in front of

~ΠAPðq2Þ. The resummed large-N two-point matrix corre-
lator Π̄G in this basis is then given by

Π̄G ≡ΠþΠð2KGÞΠþ � � � ¼ ð1 − 2ΠKGÞ−1Π; ð3:44Þ

which is the analog of Eqs. (3.20) and (3.33). From
Eqs (3.43), (3.44) one then obtains

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

f N 2

f N 18

M

FIG. 3. The mass gap Mψ and the Goldstone decay constant
f ¼ ffiffiffi

2
p

FG, in units of the cutoff Λ, as a function of the
dimensionless coupling ξ≡ ðκA þ κBÞΛ2=ð4π2Þ. For ξ ≤ 1 there
is no spontaneous symmetry breaking, Mψ ¼ 0, while for ξ ≥
ð1 − ln 2Þ−1 ∼ 3.25 one has Mψ ≳ Λ and the NJL description is
no longer reliable. The decay constant f is proportional to

ffiffiffiffi
N

p
,

where Spð2NÞ is the hypercolor gauge group. In the complete
model including a colored sector (see Sec. IV), one finds that
N ≥ 2 is required to allow for fermion-trilinear top partners, and
N ≤ 18 is needed to preserve hypercolor asymptotic freedom [8].
One further needs N ≤ 6 to avoid Landau poles in the SM gauge
couplings below 100 TeV (see Sec. III F). The red dashed line
indicates the nonresummed decay constant ~f ¼ ffiffiffi

2
p

~FG, while the
upper (lower) red solid line corresponds to the resummed f, for
κD ¼ κA and κB ¼ 0 (κB ¼ κA).
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Π̄Gðq2Þ≡
�

Π̄Gðq2Þ
ffiffiffiffiffi
q2

p
Π̄AGðq2Þffiffiffiffiffi

q2
p

Π̄AGðq2Þ q2Π̄L
Aðq2Þ

�

¼ 1

DGðq2Þ

 
~ΠPðq2Þ½1 − 2KA

~ΠL
Aðq2Þ� þ 2KAq2 ~Π2

APðq2Þ
ffiffiffiffiffi
q2

p
~ΠAPðq2Þffiffiffiffiffi

q2
p

~ΠAPðq2Þ ~ΠL
Aðq2Þ½1 − 2KG

~ΠPðq2Þ� þ 2KGq2 ~Π2
APðq2Þ

!
; ð3:45Þ

with

DG ≡ detð1 − 2ΠKGÞ ¼ ð1 − 2KG
~ΠPÞð1 − 2KA

~ΠL
AÞ − 4KGKAq2 ~Π2

AP ¼ 2ðκA þ κBÞq2 ~B0ðq2;M2
ψ Þ: ð3:46Þ

The last expression in this equation is obtained after using the gap-equation (3.16) and the relation
~Π2
APðq2Þ ¼ −ð1=2Þð2NÞ ~B0ðq2;M2

ψÞ ~ΠL
Aðq2Þ. Using the relevant expressions in Table II, gives explicitly

Π̄Gðq2Þ ¼
1

2
ð2NÞ 2

~A0ðM2
ψÞg−1A ðq2Þ − q2 ~B0ðq2;M2

ψÞ
DGðq2Þ

; Π̄AGðq2Þ ¼
~ΠAPðq2Þ
DGðq2Þ

; Π̄L
Aðq2Þ ¼ 0: ð3:47Þ

Note in particular that the resummed longitudinal axial
correlator Π̄L

Aðq2Þ vanishes identically, thus consistently
recovering the conservation of the axial current in the exact
chiral limit, in spite of the nonzero mass gap, which induces
a nonvanishing longitudinal axial correlator at the one-loop
level, ~ΠL

A ∝ M2
ψ . Also the resummed mixed correlator

Π̄AGðq2Þ satisfies the relation (2.16), which shows that it
is entirely saturated by the Goldstone-boson pole.
Now one can extract the NJL prediction for the

Goldstone constants FG and GG, defined by Eqs. (2.22)
and (2.23), respectively. The residue of Π̄Gðp2Þ with
respect to the Goldstone boson pole gives the pseudoscalar
decay constant,

G2
G ¼ − lim

q2→0
q2Π̄Gðq2Þ ¼ −

ð2NÞ
8ðκA þ κBÞ2 ~B0ð0;M2

ψÞ
g−1A ð0Þ:

ð3:48Þ

Next, the residue of Π̄AGðq2Þ determines FGGG,

FGGG ¼ − lim
q2→0

q2Π̄AGðq2Þ ¼
ð2NÞ
2

Mψ

ðκA þ κBÞ
¼ 2ð2NÞMψ

~A0ðM2
ψÞ; ð3:49Þ

that satisfies Eq. (2.24), by taking the expression for hSψ0 i
derived from Eq. (3.19). Combining Eqs. (3.48) and (3.49),
and using the gap equation, one consistently recovers the
very same expression of FG in Eq. (3.39), as obtained from
the resummed axial transverse correlator. Note that, if one
had computed GG in the limit of vanishing axial-vector
coupling, κD ¼ 0, by taking the residue of Π̄P in Eq. (3.20),
one would have missed the (inverse) axial form factor
gAð0Þ, see Eq. (3.48). Such a correction is important e.g.

when analysing the possible saturation of the scalar spectral
sum rules, which will be discussed in Sec. III G.
Obviously, a similar pseudoscalar-axial mixing mecha-

nism also affects the singlet sector of the model, as soon
as the axial singlet coupling κC is nonvanishing. The
resummed correlator matrix for the singlet sector, Π̄η0 , is
defined in complete analogy with Eq. (3.44), by taking the
same one-loop correlator matrix Π, but replacing the
couplings, KG → Kη0 and KA → Ka (i.e. κD → κC), respec-
tively, for the pseudoscalar and axial-vector channels,
according to Table II. One main consequence of the mixing
is that the pseudoscalar singlet mass Mη0 is modified with
respect to Eq. (3.26), which holds for the pseudoscalar
sector “in isolation.” The η0 mass rather corresponds to the
pole of the determinant

Dη0 ≡detð1−2ΠKη0 Þ ¼ ð1−2Kη0 ~ΠPÞg−1a −4Kη0Kaq2 ~Π2
AP

¼ 8κB ~A0ðM2
ψÞg−1a

þ2ðκA− κBÞq2 ~B0ðq2;M2
ψÞ;

ð3:50Þ

where we defined an axial singlet form factor,

gaðq2Þ ¼
�
1þ 4κC

2N
~ΠL
Aðq2Þ

�
−1
; ð3:51Þ

in complete analogy with Eq. (3.40) for the nonsinglet
sector. Therefore, Eq. (3.26) gets modified (“renormal-
ized”) by the (inverse) axial singlet form factor,

M2
η0 ¼ −

κB
κ2A − κ2B

1

~B0ðM2
η0 ;M

2
ψÞ

g−1a ðM2
η0 Þ; ð3:52Þ
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which is the final expression that we will use in numerical
illustrations of the mass spectrum in the next subsection.

F. The mass spectrum of the resonances

The resonance masses have to be proportional to the
unique independent energy scale of the theory, which is
conveniently choosen as f ≡ ffiffiffi

2
p

FG, defined in Eq. (3.39),
as explained above. In order to fix the ideas, one can take f
just above the lower bound imposed by electroweak
precision tests, which is conservatively given by
f ¼ 1 TeV. Since the resonance masses are N independent
and f ∼

ffiffiffiffi
N

p
, in principle the resonances become lighter

and lighter in the large-N limit. However, if the model is
augmented with colored fermions to provide top partners,
as we will do in Sec. IV, the Spð2NÞ asymptotic freedom is
lost (at one loop) for N ≥ 19 [8]. Moreover, these colored
fermions are also charged underUð1ÞY, resulting in Landau
poles in the SM gauge couplings (α1 and α3) possibly too
close to the condensation scale of the strong sector. A naive
one-loop estimation of the running of the SM gauge
couplings in presence of the hypercolor fermions leads
to the appearance of Landau poles around 100 (500) TeV
for N ¼ 6 (5) while for N ¼ 4, the Landau poles appear
above 4 × 103 TeV. Then, a more reasonable interval for
the number of hypercolors is 2 ≤ N ≤ 6. For the numerical
illustration, we take the conservative value N ¼ 4.
The resonance masses are a function of the couplings

κA;B;C;D of the four-fermion operators. For the numerical
illustration, wewill assumeEq. (3.32) to hold, κC ¼ κD ¼ κA,
and we will trade the two remaining, independent cou-
plings for the dimensionless parameters ξ≡ ðκA þ κBÞΛ2=
ð4π2Þ and κB=κA.
Let us describe the main feature of the mass spectrum.

Since we work in the chiral limit approximation, the
resonances are complete multiplets of the unbroken

Spð4Þ symmetry, and the Goldstone bosons GÂ are mass-
less. In the spin-zero sector, there are three independent
massive states: the singlet scalar σ and the five-plet scalar
SÂ, see Eq. (3.28), as well as the singlet pseudoscalar η

0, see
Eq. (3.26). The latter is the would-be Goldstone boson of
the anomalous Uð1Þψ ; therefore, Mη0 vanishes when this
symmetry is restored, that is when κB=κA → 0. In the spin-
one sector, there are two independent masses: the singlet
axial vector aμ and the five-plet axial vector Aμ

Â
are mass-

degenerate as we assume κC ¼ κD, with mass given by
Eq. (3.36), while the ten-plet vector Vμ

A has a different
mass, see Eq. (3.37). Even though we neglect the mass
splitting among the different electroweak components, in
view of collider searches it is important to keep in mind
the electroweak charges of the resonances, that are fixed by
the decomposition of the Spð4Þ representations under the
SUð2Þw × Uð1ÞY gauged subgroup:

1Spð4Þ ¼ 10;

5Spð4Þ ¼ ð21=2 þ H:c:Þ þ 10;

10Spð4Þ ¼ 30 þ ð21=2 þ H:c:Þ þ ð11 þ H:c:Þ þ 10: ð3:53Þ

In Fig. 4 we display the five independent resonance
masses,Mσ;η0;S;V;A, as a function of ξ, for two representative
values of κB=κA. While Mσ ¼ 2Mψ grows over the entire
range for ξ, the other four masses follow a different pattern:
they appear to be several times larger than f when ξ is very
close to one (see the discussion in the next paragraph), then
they steeply decrease to reach a minimum value∼ð2–3Þf for
an intermediate value of ξ, and finally they grow roughly
linearly for ξ≳ 1.5. We recall the two approximate mass
relations, MS≃ðM2

σþM2
η0 Þ1=2 and MA≃ðM2

Vþ3M2
σ=2Þ1=2,

that hold neglecting pole mass differences in the loop form
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FIG. 4. The masses of the electroweak resonances in units of the Goldstone decay constant f, for N ¼ 4 (the masses scale with
1=

ffiffiffiffi
N

p
), as a function of the coupling ξ, for κB=κA ¼ 0.1 (left-hand panel) and κB=κA ¼ 0.5 (right-hand panel). We displayed the full

physical range for ξ, according to Fig. 3. Each curve is shaded when the corresponding pole mass equation develops a large, unphysical
imaginary part, jIm½gϕðM2

ϕÞ�=Re½gϕðM2
ϕÞ�j > 1. The dotted line is the cutoff of the constituent fermion loops.
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factor. As a consequence, one has always MA > MS > Mσ, with a similar asymptotic value at large ξ. On the contrary, MV
decreases until it becomes degenerate withMσ, then it grows with a weaker slope. Finally,Mη0 may also become smaller than
Mσ at large values of ξ, but only for a sufficiently small value of κB=κA. For example, taking f ¼ 1 TeV, N ¼ 4 and
κB=κA ¼ 0.1, the resonance masses for two representative values of ξ are

ξ ¼ 1.3∶ MA ≃ 6.6 TeV; MV ≃ 4.9 TeV; MS ≃ 4.6 TeV; Mσ ≃ 4.1 TeV; Mη0 ≃ 3.3 TeV;

ξ ¼ 2.0∶ MA ≃ 9.5 TeV; MV ≃ 6.4 TeV; MS ≃ 8.3 TeV; Mσ ≃ 8.1 TeV; Mη0 ≃ 4.9 TeV: ð3:54Þ

In general, electroweak resonances lighter than ≃4f ≃
4 TeV are possible in two cases: the scalar σ becomes light
when one approaches the critical coupling ξ ¼ 1, where the
mass gap vanishes; the pseudoscalar η0 becomes light as
κB=κA tends to zero, where the anomalous Uð1Þψ symmetry
is restored. These two singlet states, together with the SM
singlet Goldstone bosonG3̂, may be observed as the lightest
scalar resonances at the LHC, beside the 125 GeV Higgs
boson. In Sec.V Ewewill discuss themixing of σ and η0with
the analogous singlet states of the color sector, a feature that
will induce corrections to their masses.
A comment is in order on the region close to the critical

coupling. In the limit ξ → 1, one finds that Mσ=f ∼
½− logðξ − 1Þ�−1=2 vanishes, while the other resonance
masses diverge relatively to f, MV;A;S;η0=f ∼ ðξ − 1Þ−1=2.
The lightness of σ may be interpreted as the signal that scale
invariance is recovered below ξ ¼ 1, while all other
resonances decouple in this limit. However, we should
remark that, for some of these heavy resonances, the NJL
computation of their masses cannot be trusted close to the
critical coupling, because the pole of the resummed
propagator develops a large, unphysical imaginary part.
Recall, from the general discussion at the beginning of
Sec. III B, that the curves in Fig. 4 are the solution of
Eq. (3.22),9 where the imaginary part of gϕðM2

ϕÞ has been
neglected. The curves in Fig. 4 are shaded when
jIm½gϕðM2

ϕÞ�=Re½gϕðM2
ϕÞ�j > 1, where we consider that

the corresponding result cannot be trusted anymore. This
happens when ξ≲ ð1.2–1.3Þ, for the vector and axial-
vector resonances, with masses MV=A close to the cutoff of
the NJL model.
Let us also comment on the complementary limit where ξ

is so large that Mψ=Λ becomes of order one, as illustrated
in Fig. 3. In this case Fig. 4 shows that the resonances
become heavier than Λ (except for η0, if κB=κA is small
enough). This is not necessarily problematic: while the
mass Mψ of constituent fermions in the loops need to be
smaller than the loop cutoff Λ, external mesons heavier

than Λ do not harm the consistency of the NJL approxi-
mation. Indeed, in QCD the NJL model predicts rather
accurately resonance masses twice as large as the cutoff.
Nonetheless, we notice that, for Mϕ ∼ Λ, the value of the
two-point function ~B0ðM2

ϕ;M
2
ψÞ becomes sensitive to the

regularization chosen, defined in Appendix B, as the cutoff-
dependent finite terms become sizeable. As a consequence,
we observe that the mass values in this region may vary up
to a few 10% in different regularization schemes. This is an
intrinsic theoretical uncertainty of the NJL approximation.
The resonance masses in units of f ≡ ffiffiffi

2
p

FG may be
compared with recent lattice studies of the same model
[73,74], which provide scalar and vector masses in the
same units.10 Actually, the lattice simulations performed to
date for this model are available only for an underlying
SUð2Þ gauge theory, thus equivalent to the special case
Spð2Þ of our more general Spð2NÞ study. Let us recall that
the meson masses scale as Mϕ=f ∼ 1=

ffiffiffiffi
N

p
, where the

scaling originates solely from f (this statement holds for
a fixed value of the ratio κB=κA). Therefore, the mass values
illustrated forN ¼ 4 in Fig. 4 get enhanced by a factor 2 for
N ¼ 1, and these rescaled values can be directly compared
with the lattice results.
The lattice prediction for the vector masses in the chiral

limit isMV=f ¼ 13.1� 2.2,MA=f ¼ 14.5� 3.6 [73]. The
latter results, although affected with relatively large uncer-
tainties, indicate a more moderate V − Amass splitting than
is generally expected from the NJL model, see Eq. (3.38),
unless Mψ is rather small, which corresponds in the NJL
framework to rather small values of ξ. More precisely,
typically the previous central lattice values can be (approx-
imately) matched for ξ≃ 1.1, therefore not far above the
critical NJL coupling value, where on the other hand the
NJL calculation becomes less reliable, as already explained
above, since entering the ξ range where the V and A width
both become relatively large. But accounting for the lattice
uncertainties, the above values are also easily matched
alternatively for rather large ξ values, where the NJL
prediction is also more reliable: for example for N ¼ 1
and ξ ¼ 1.6 [ξ ¼ 1.9], MV=fjNJL ≃ 11½≃12.5�,

9The function Re ~B0ðq2;M2
ψ Þ develops a cusp at q2 ¼ 4M2

ψ .
Through the definition of the masses Mϕ adopted here, this cusp
naturally shows up in Fig. 4 (and in Fig. 7 below) as soon as the
value of a resonance mass goes through 2Mψ . In practice, this
only occurs for MV and Mη0 , at the cross-over from a bound state
to a genuine resonance.

10Our normalization of f, see footnote 8, appears consistent
with what is called FPS in the notations of Ref. [73] thus we
compare our NJL predictions in units of f directly with their
numbers, assuming that the same normalization has been used in
those lattice calculations.
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MA=fjNJL ≃ 15.3½≃18�. [NB recall that the V and A
masses are mildly dependent on κB, which enters only
indirectly through the mass gap. One should also keep in
mind that the Fierz-induced relation (3.32) is assumed for
the axial and vector coupling κD in Fig. 4, and since the
dominant contribution to the V, A masses scales as 1=κD, a
somewhat smaller (larger) κD would induce somewhat
larger (smaller) V, A masses, for a fixed value of ξ]. At
least one may tentatively conclude from this comparison
that intermediate ξ values, say 1.2≲ ξ≲ 1.6 approximately,
as well as very large ξ > 2, appear more disfavored.
Concerning the lightest scalar masses, Ref. [74] provides

the very recent lattice estimates Mσ=f ¼ 19.2ð10.8Þ,
Mη0=f ¼ 12.8ð4.7Þ, and MS=f ¼ 16.7ð4.9Þ, in the chiral
limit (where the scalar nonsinglet S is called a0 in Ref. [74]).
Compared with Fig. 4 (rescaled for N ¼ 1) and combined
with the results for theV andAmasses, ξ values very close to
1 appear disfavored by the σ mass, even when taking its
lowest lattice value above, because in this region the NJL
prediction forMσ is much smaller thanMV , as it is clear from
Mσ ¼ 2Mψ (see also Fig. 4). TheNJL (approximate) relation
M2

S ≃M2
σ þM2

η0 [see Eq. (3.28)], can be fulfilled within the
large lattice uncertainties, although the rather high lattice
central value ofMσ is in tension with this relation. So putting
all together it may indicate that relatively large values of
ξ≃ 1.6�2, well above the NJL critical coupling, are more
favored by lattice results. The η0 pseudoscalar mass, in the
NJL model, is very sensitive to the ratio κB=κA, see
Eq. (3.27). Modulo the large lattice uncertainties, the
comparison with lattice results appears to indicate inter-
mediate values for this ratio, κB=κA ≃ 0.2�0.4, such thatMη0

is comparable with MV .
In conclusion the comparison of NJL and lattice results

appears roughly consistent, at least the lattice results may
be matched for some definite values of the NJL parameters
ξ and κB=κA, with no strong tensions. But it appears still an
essentially qualitative comparison at the present stage,
given both the intrinsic NJL uncertainties amply discussed
previously, as well as the still relatively large lattice
systematic uncertainties, specially for the scalar resonan-
ces: so unfortunately it cannot be taken yet as giving tight
constraints on the effective NJL model parameters. Note
also that other recent lattice simulations of composite Higgs
model resonances are available in the literature (see e.g.
[75,76]), but are based on different gauge symmetries and/
or global symmetry breaking pattern, thus not directly
comparable with our results.

G. Comparison with spectral sum rules

Several authors [68,70,77] have addressed the issue of
spectral sum rules, discussed in general terms in Sec. II D, in
the context of theNJL approximation applied toQCD. In this
section, we will study them in the context of the NJL
approximation to the underlying Spð2NÞ gauge dynamics
of the present composite Higgs framework. The aim will be

to check whether these sum rules provide additional con-
straints on the parameters of the model, namely ξ and κB=κA.
It seems only natural to identify the spectral densities

appearing in the sum rules displayed inEqs. (2.13) and (2.14)
with the discontinuities of the resummed NJL two-point
correlators11 discussed in the preceding subsections, i.e.

ImΠV=AðtÞ ¼ lim
ϵ→0þ

Π̄V=Aðtþ iϵÞ − Π̄V=Aðt − iϵÞ
2i

; ð3:55Þ

or, in the singlet scalar and pseudoscalar channels,

ImΠS0=P0ðtÞ ¼ lim
ϵ→0þ

Π̄σ=η0 ðtþ iϵÞ − Π̄σ=η0 ðt − iϵÞ
2i

; ð3:56Þ

and analogous relations between ImΠS=PðtÞ and Π̄S=PðtÞ.
Before discussing the sum rules of Sec. II D under these
identifications, let us recall that the sum rules themselves
follow from the short-distance properties, which reflect the
properties of the underlying Spð2NÞ gauge dynamics, of the
two-point functions under consideration, and from general
properties of quantum field theories, here essentially invari-
ance under the Poincaré group and the spectral property. The
latter allow to extend the definitions of the functionsΠϕðtÞ to
functions in the complex t plane, with all singularities (poles
and branch points) confined to the positive real axis. The
former then allow to write down unsubtracted dispersion
relations for the appropriate combinations of two-point
correlators, from which the sum rules follow. The necessity
to introduce a regularization (here the cutoff Λ), in order to
render the one-loop correlators ~ΠϕðtÞ finite, and to perform
the resummation shown in Fig. 2, leads to functions Π̄ϕðtÞ
that will in general not respect all the required properties. For
instance, with the choice of regularization adopted in the
present study, ghost poles on the negative real q2-axis will
appear, as discussed at the beginning of Sec. III B. This
situation is well known in the context of the NJL approxi-
mation applied to QCD, where it has been examined quite
extensively by the authors of Ref. [70], and we refer the
reader to this article for additional details.

11At the level of one-loop two-point correlators, the spectral
sum rule (2.19) is trivially satisfied, provided one identifies m
with Mψ , due to the identity ~ΠVðq2Þ − ~ΠAðq2Þ ¼ − ~ΠL

Aðq2Þ. The
identities

~ΠSðq2Þ − ~ΠPðq2Þ ¼ ~ΠSðq2Þ − ~Πη0 ðq2Þ ¼ ~Πσðq2Þ − ~ΠGðq2Þ
¼ 2ð2NÞM2

ψ
~B0ðq2;M2

ψ Þ

allow only for the difference of the two last sum rules in
Eq. (2.14), involving ~ΠS−η0 − ~Πσ−G, to be satisfied at one-loop.
The sum rule involving ΠS−P is not expected to hold, since this
correlator does not constitute an order parameter for SUð4Þ=
Spð4Þ, see footnote 3.
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The spectral densities resulting from the identifications
in Eqs. (3.55) and (3.56) are shown in Figs. 5 and 6 (in
order to make the figure more readable, we have kept ϵ in
the definitions (3.55) and (3.56) very small, but finite). It is
most instructive to analyze them in conjunction with the
spectrum of the mesonic resonances, as given in Fig. 4, and
with the general discussion at the beginning of Sec. III B.
Figure 5 shows the vector and axial spectral functions for
two different values of the parameter ξ. In the axial case,
one recognizes the contribution from the pion pole at t ¼ 0,
and no other narrow bound state. Only a rather broad
resonance peak appears above the t ¼ 4M2

ψ threshold,

where the continuum starts. This is in agreement with
Fig. 4, which shows that MA is always greater than
Mσ ¼ 2Mψ . In the vector channel, a narrow bound state
appears below the 2Mψ threshold for ξ ¼ 2, but is absent (it
has moved to the real axis on the second Riemann sheet) for
ξ ¼ 1.3, and is replaced by a resonance peak. Again, this
agrees with Fig. 4, where one sees thatMV becomes greater
than 2Mψ when ξ takes values below ∼1.4.
For the nonsinglet scalar spectral density, shown on the

left panel of Fig. 6, there is no narrow bound state lying
below the threshold of the continuum, whatever the value of
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FIG. 5. The figure on the left shows the spectral functions ImΠVðtÞ (upper curves, in red) and −ImΠAðtÞ (lower curves, in blue), as a
function of t=ð2Mψ Þ2. The plotted quantities are dimensionless and scale like N. The solid and dashed lines correspond to ξ ¼ 1.3 and
ξ ¼ 2, respectively. The value of the parameter κB=κA has been taken equal to 0.1 in all cases. The narrow vector bound state below the
continuum starting at t ¼ ð2Mψ Þ2 (materialized on the figures by the vertical line) is present in ImΠVðtÞ when ξ ¼ 2, but disappears for
smaller values of ξ. The pion pole appears clearly in ImΠAðtÞ, but the axial-vector resonance has a mass that is always greater that 4M2

ψ ,
and therefore a narrow subthreshold peak never occurs. The figure on the right likewise shows the functions tImΠVðtÞ and tImΠAðtÞ.
The latter are in units of f2 and consequently are N independent.

0 1 2 3 4 5 6

1

0

1

2

t 2 M 2

Im
t

f²

0 1 2 3 4 5 6

1

0

1

2

t 2 M 2

Im
t

f²

Im tS

Im tG

Im t

Im t'

FIG. 6. The left-hand panel shows the nonsinglet spectral functions ImΠSðtÞ=10 (upper curves, in red) and −ImΠGðtÞ (lower curves, in
blue), as functions of t=ð2Mψ Þ2, for κB=κA ¼ 0.1, and for ξ ¼ 1.3 (solid lines) and ξ ¼ 2 (dashed lines). In the right-hand panel we fix
ξ ¼ 2 and show the singlet spectral functions ImΠσðtÞ (dashed red) and −ImΠη0 ðtÞ (dashed blue) for κB=κA ¼ 0.1, as well as ImΠσðtÞ
(solid red) and −ImΠη0 ðtÞ=20 (solid blue) for κB=κA ¼ 0.5. The narrow η0 bound state is present only for the smallest value of κB=κA.
A narrow σ pole appears in all cases right at the threshold t ¼ 4M2

ψ . Note that the spectral functions are all expressed in units of f2, such
that they are dimensionless and have no N dependence.
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ξ. However, the larger the value of ξ, the more the resonance
peak moves closer to the threshold. The shape of ImΠSðtÞ is
also sensitive to κB=κA. In the pseudoscalar nonsinglet
channel, only the massless pion pole shows up, and
ImΠPðtÞ is not sensitive to the value of κB=κA. The singlet
scalar spectral density, shown on the right panel of Fig. 6,
presents a narrow peak at the threshold, for any value of ξ and
κB=κA. In the pseudoscalar singlet channel, the features of the
spectral function become also sensitive to this second
parameter, as can already be inferred upon comparing the
two panels of Fig. 4. In particular, a narrow subthreshold
bound state is only present for smaller values of κB=κA.
An illustration of the two Weinberg-type sum rules of

Eq. (2.13), as well as the sum rules of Eq. (2.14), is
provided by Fig. 7. The integrals compared there, as
functions of the coupling ξ and for two values of κB=κA,
run over the whole positive t-axis, which means that, for the
sake of illustration, the NJL description has been kept even
beyond its expected range of validity. Of course, it is
certainly difficult to ascribe any physical meaning to the
spectral densities for values of, say, t=Λ2 ≳ 2 [note that, for
ξ close to the critical coupling, one has 2Mψ ≪ Λ; there-
fore, the NJL description holds up to a large value of
t=ð2MψÞ2]. Beyond this value of t, the NJL description
ceases to be appropriate, and we have to assume that the
underlying Spð2NÞ gauge dynamics takes over. However,
from the experience with QCD [78], it is expected that the
matching between the two regimes is not very smooth.
Keeping this proviso in mind, we show, on the left-hand
panel of Fig. 7, the ratio of the integrals

R
dt ImΠVðtÞ andR

dt ImΠAðtÞ, as well as the ratio of the integralsR
dttImΠVðtÞ and

R
dttImΠAðtÞ. Similarly, the right-hand

panel shows the ratios of the integrals
R
dt ImΠη0 ðtÞ and

R
dt ImΠSðtÞ, and of the integrals

R
dt ImΠGðtÞ andR

dt ImΠσðtÞ. If the sum rules were satisfied exactly for
all values of ξ, all these curves would be a constant equal to
one. This is obviously not the case. The general trend is that
the departure from the sum rules is more important for
larger values of ξ. This is in line with Fig. 4, from which we
infer that the continuum, corresponding to

ffiffi
t

p
> 2Mψ ,

starts close to the cutoff Λ when ξ≳ 1.5; therefore, the NJL
description becomes questionable soon after the threshold.
On the right-hand panel of Fig. 7 we also show the ratio of
the integrals

R
dt ImΠG and

R
dt ImΠS. SinceΠS-P is not an

order parameter of the SUð4Þ spontaneous breaking (see
footnote 3), there is no corresponding sum rule, and indeed
this ratio deviates significantly from unity, already for
lower values of ξ.
In view of the difficulties to interpret the meaning of the

sum rules, expressed in terms of the spectral densities
provided by the NJL description through Eqs. (3.55) and
(3.56), one may consider an alternative approach, at least
when Im ~ΠϕðM2

ϕÞ vanishes or is sufficiently small so that it
can be neglected. This happens, for instance, for the
Goldstone state, or for ~ΠVðM2

VÞ when there is a subthresh-
old vector bound state. In that case each correlator exhibits
a single real pole, or narrow resonance [except for Π̄Aðq2Þ,
which exhibits both the Goldstone pole and the axial-meson
resonance pole, the latter being not very narrow, though], and
one can saturate the sum rules with these narrow states.
Introducing, similarly to FG and to GG in Eqs. (2.22) and
(2.23), respectively, decay constants defined as

h0jJ A
μ ð0ÞjVBðp; λÞi≡ fVMVϵ

ðλÞ
μ ðpÞδAB;

h0jJ Â
μ ð0ÞjAB̂ðp; λÞi≡ fAMAϵ

ðλÞ
μ ðpÞδÂ B̂; ð3:57Þ
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FIG. 7. Left panel: the ratio of the integrals, taken over the whole positive t-axis,
R
dtImΠVðtÞ=

R
dtImΠAðtÞ (blue, upper curves) andR

dttImΠVðtÞ=
R
dttImΠAðtÞ (red, lower curves), as a function of the parameter ξ, and for κB=κA ¼ 0.1 (solid lines) and κB=κA ¼ 0.5

(dashed lines). Right panel: the ratio of the integrals, taken over the whole positive t-axis,
R
dtImΠη0 ðtÞ=

R
dtImΠSðtÞ (green, upper

curves),
R
dtImΠGðtÞ=

R
dtImΠσðtÞ (blue, middle curves) and

R
dtImΠGðtÞ=

R
dtImΠSðtÞ (red, lower curve), as a function of the

parameter ξ, for κB=κA ¼ 0.1 (solid lines) and κB=κA ¼ 0.5 (dashed lines, not shown in the G=S case). Note that the above ratios are
independent from N.
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where ϵðλÞμ ðpÞ is the polarization vector associated to V or A,
with

P
λϵ

ðλÞ
μ ðpÞϵðλÞ�ν ðpÞ ¼ −ðημν − pμpν=M2

V;AÞ, as well as

h0jSÂjSB̂ðpÞi ¼ GSδ
Â B̂;

h0jS0jσðpÞi ¼ Gσ;

h0jP0jη0ðpÞi ¼ Gη0 ; ð3:58Þ

the sum rules become, in this narrow-width, single-resonance
approximation,

f2VM
2
V − f2AM

2
A − F2

G ¼ 0;

f2VM
4
V − f2AM

4
A ¼ 0; ð3:59Þ

and

G2
σ −G2

G ¼ 0; G2
S −G2

η0 ¼ 0: ð3:60Þ

Now, taking the various expressions of the meson
masses, decay constants, as obtained from the NJL
large-N approximation above, one can check to which
extent these Weinberg-type and scalar sum rules are
actually saturated by the first resonance from each of the
available spectra. To proceed, one may first rewrite the
resummed two-point correlators of Eq. (3.33) in the pole-
dominance form: from Eqs. (3.33) and (3.57), the residues
of the vector and axial-vector channels are defined by

f2V=AM
2
V=A¼ lim

q2→M2
V;A

ðq2−M2
V=AÞΠ̄V=Aðq2Þ

¼ −1
ð2KV=AÞ2

�
M2

V=A

d ~ΠV=Aðq2Þ
dq2

����
q2¼M2

V=A

�
−1
;

ð3:61Þ

where in the second equality, we have expanded the
denominator of Π̄V=Aðq2Þ around the complex pole M2

V=A

and used Eq. (3.21). Similarly to the definition of the
resonance masses in Eq. (3.22), one should however adopt
a prescription to deal with the unphysical imaginary parts,
NJL artifacts of the lack of confinement properties. We
adopt the following prescription: (i) the residues are
evaluated at the real pole masses M2

V;A ¼ Re½gV;AðM2
V;AÞ�

defined by Eq. (3.22), and (ii) we similarly define f2V;A by
the real parts of their right-hand-side expressions in
Eq. (3.61). Of course, in the range of parameter space
where the left-over imaginary contributions in Eqs. (3.61)
become large, it puts a definite limit on the reliability of the
NJL calculation, as will be specified below. According to
this prescription, we obtain explicitly for the vector decay
constant,

f2V ¼ −
3ð2NÞ
16κ2DM

4
V

× Re

�
1

~B0ðM2
V;M

2
ψÞ þ ðM2

V þ 2M2
ψ Þ ~B0

0ðM2
V;M

2
ψÞ

�
:

ð3:62Þ

The axial decay constant f2A is obtained in a similar way
by making the following replacements MV → MA and
ðM2

V þ 2M2
ψ Þ → ðM2

A − 4M2
ψÞ in the previous equation.

Similarly, for the spin zero channels, the residues are
defined by

G2
ϕ ≡ − lim

q2→M2
ϕ

ðq2 −M2
ϕÞΠ̄ϕðq2Þ

¼ 1

ð2KϕÞ2
�
d ~Πϕðq2Þ
dq2

����
q2¼M2

ϕ

�−1
: ð3:63Þ

From Eqs. (3.20) and (3.58), the scalar decay constants are
explicitly given by

G2
σ;S ¼ −

1

2ð2NÞK2
σ;S

Re

�
1

~B0ðM2
σ;S;M

2
ψ Þ þ ðM2

σ;S − 4M2
ψ Þ ~B0

0ðM2
σ;S;M

2
ψ Þ

�
; ð3:64Þ

while for the pseudoscalar decay constants we obtain

G2
G;η0 ¼ −

1

2ð2NÞK2
G;η0

Re

� g−1A;aðM2
G;η0 Þ

~B0ðM2
G;η0 ;M

2
ψÞ þM2

G;η0
~B0
0ðM2

G;η0 ;M
2
ψ Þ

�
; ð3:65Þ

where the axial-vector pseudoscalar mixing (see Sec. III E)
brings the factor g−1A;aðM2

G;η0 Þ for G and η0, respectively.
Generally, we cannot expect the sum rules in the narrow

width approximation to be very well satisfied, both because

of the already discussed inherent approximations of the
NJL framework, and also since the narrow width approxi-
mation itself is not justified in a substantial part of the
parameter range, as we will examine more precisely below.
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To be more specific, we will use the standard definition of
the width,

MϕΓϕ ¼ Im ~ΠϕðM2
ϕÞ

Re ~Π0
ϕðM2

ϕÞ
; ð3:66Þ

with ~Π0
ϕðq2Þ denoting the derivative of ~Πϕðq2Þ with respect

to q2. By evaluating explicitly Eq. (3.66) for the relevant
resonances one may control the range of validity of the
narrow width approximation.
Before a precise illustration of the deviations from the sum

rules relations in Eqs. (3.59) and (3.60) in the parameter
space of the model, it is instructive to examine more closely
the NJL expressions of the involved quantities, Eqs. (3.62),
(3.37) and (3.36).Namely, let us assumemomentarily thatwe
could crudely neglect the q2 dependence of ~B0, i.e. taking
~B0ðM2

V;M
2
ψÞ≃ ~B0ðM2

A;M
2
ψÞ≡ ~B0 (therefore, taking also

its derivative to vanish, ~B0
0ðq2Þ≃ 0). Within this approxi-

mation, the second sum rule in Eq. (3.59) is immediately
satisfied, see Eq. (3.62), while for the first sum rule, one can
write, after some simple algebra,

f2VM
2
V − f2AM

2
A ≃ f2Vð6M2

ψ Þ
�
1þO

�
M2

ψ

M2
V

��

≃ −F2
G

�
1þO

�
M2

ψ

M2
V

��
; ð3:67Þ

where in the first equality we used the fact that the relation in
Eq. (3.38) becomes exact in this approximation, and in the
last equality we used Eqs. (3.62) and (3.37) in the same
approximation, and identified F2

G from its expression in
Eq. (3.41). This simple exercise shows explicitly and rather
intuitively where the bulk of deviations from the Weinberg
sum rules (WSR) comes from: one infers that the sum rules in
Eq. (3.59) will, in general, not be satisfied, since the
quantities they involve are the pole masses, M2

V ¼
Re½M2

VðM2
VÞ� andM2

A ¼ Re½M2
AðM2

AÞ�, the Goldstone decay

constantF2
G ¼ F2

Gð0Þ, and the vector decay constants f2V;A in
Eq. (3.62), actually evaluated at the different V, A pole
masses and involving also the nonvanishing derivative
~B0
0ðM2

V=AÞ. Accordingly since the relevant expressions like

Eq. (3.62) are to be evaluated at different values of q2, this
implies not quite negligible differences in ~B0ðq2Þ, and in its
derivative. Only to the extent that they display a rather mild
q2 dependence will the narrow-width version (3.59) of the
sum rules approximatively hold12 Moreover, the crudely
neglected termsOðM2

ψ=M2
VÞ in Eq. (3.67) are actually not so

negligible, the less when ξ increases, just as M2
A=M

2
V also

increases with ξ. Thus, we generally expect stronger devia-
tions from Eq. (3.59) for larger ξ values.
In order to illustrate more precisely the deviations from the

Weinberg-like sum rules ofEq. (3.59), takingnow the “exact”
expressions of fV=A,MV=A according to our NJL calculations
and prescriptions above, we consider the two ratios

WSR1 ≡ f2VM
2
V

F2
G þ f2AM

2
A
; WSR2 ≡ f2VM

4
V

f2AM
4
A
; ð3:68Þ

which would both equal unity if the sum rules were satisfied
in their narrow-width versions. Similarly, for the scalar sum
rules we consider the two ratios G2

G=G
2
σ and G2

η0=G
2
S. The

behavior of these ratios with respect to ξ and κB=κA are
illustrated in the left and right panels of Fig. 8 for the
Weinberg and scalar sum rules, respectively.We also indicate
some specific values of the relevant resonance widths,
calculated from Eq. (3.66) for the reference value
κB=κA ¼ 0.1. The corresponding shaded regions thus indi-
cate approximately the range where the narrow width
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WSR2M

M
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M
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FIG. 8. Left panel: the two ratios ðf2VM2
VÞ=ðF2

G þ f2AM
2
AÞ (WSR1, blue lines) and ðf2VM4

VÞ=ðf2AM4
AÞ (WSR2, red lines) as functions of

the coupling ξ, for κB=κA ¼ 0.1 (solid lines) and κB=κA ¼ 0.5 (dashed lines). Right panel: the analog for scalar sum rules. Also indicated
are the values of the most relevant resonance widths, calculated from Eq. (3.66) for κB=κA ¼ 0.1.

12We note that those finding and observations are qualitatively
similar to the WSR results for the NJL model applied to low
energy QCD in ref. [78], although those authors used somewhat
different approximations than ours.
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approximation can be trusted or not. Note that the V and A
widths are very weakly sensitive to the values of κB=κA, so
that the indicated ranges are also approximately valid for
κB=κA ¼ 0.5. In contrast the η0 and S widths grow rapidly
with κB, such that the indicated limit ΓS=MS ¼ 1=5
(ΓS=MS ¼ 1=10) is pushed, for κB=κA ¼ 0.5, towards larger
values of ξ, ξ≃ 1.7 (ξ≃ 2, respectively).
The two sum rules of Eq. (3.59) are actually reasonably

satisfied in some specific ranges of ξ, respectively, either
for intermediate values 1.6≲ ξ≲ 2, or for ξ very close to 1.
Conversely the deviations appear maximal in the range ξ≃
1.2�1.6 and again for very large ξ. Most of these features
can be understood more intuitively with the help of the
above analysis. The intermediate range, where the devia-
tions are the smallest, corresponds to a range where, at the
same time, the narrow width approximation is well justi-
fied, and the relevant pole-mass differences are still
moderate such that the relevant q2 arguments of
~B0ðq2;M2

ψÞ are not very different. Then for very large
values of ξ, while the A width is becoming smaller, one
enters the regime of increasingly large differences in the
relevant ~B0ðM2

A=V;M
2
ψÞ functions, thus increasing the

deviations, although the first WSR remains relatively well
satisfied. The second WSR sum rule shows more rapidly
increasing and important deviations for larger values of ξ,
as intuitively expected since the fourth power of the masses
enhances the increasingMA=MV ratio. TheWSR values are
not very sensitive to the ratio κB=κA, but depend mostly on
ξ: a larger κB value essentially shifts the values of the sum
rules in Fig. 8, as it implies larger values of κA þ κB.
Conversely for decreasing values of ξ, the narrow width
approximation becomes totally unreliable, say for ξ≲ 1.6
in the case of ΓA, where, correspondingly, the deviations
are seen to be maximal. Moreover, when approaching
(from below) the threshold M2

V ¼ 4M2
ψ , ΓV is vanishing,

but Re½ ~B0
0ðM2

V;M
2
ψ Þ� tends toward infinity, so that f2V → 0,

see Eq. (3.62). This happens around ξ≃ 1.4 (1.5) for
κB=κA ¼ 0.1 (0.5). This peculiar feature can be understood
as follow. When moving towards the threshold from below,
the residue of the vector resonance, f2VM

2
V , tends to zero,

because its contribution to the spectral function is pro-
gressively transferred from the subthreshold to the con-
tinuum part of the spectral function. Since in the pole
dominance approximation one only considers the lightest
resonances, just below the threshold, the continuum con-
tribution is not included within Eq. (3.62); therefore, the
crossing of the threshold appears problematic in our NJL
approximation. Of course, this pathological behavior is not
present in Fig. 7, where we consider the complete two-point
functions, which include also the continuum contributions.
Finally, very close to the critical coupling ξ≃ 1, although
both ΓV;A are large, the mass gap in this region is relatively
very small, Mψ ≪ Λ, such that MA −MV is minimal, and
FG ≃Mψ is also relatively small. Thus taking the real
contributions prescriptions according to Eq. (3.62), one is

again very close to the ideal approximation discussed
above, leading to Eq. (3.67).
From these results, if considering that the best possible

matching of the Weinberg-type sum rules, established on
more general dynamical grounds, may be more important
than the possible limitations of the NJL model approxi-
mation (somewhat in the spirit of Ref. [78]), one could be
tempted to infer some preferred range of ξ values, where
both deviations are minimal (although as clear from the
figure it is not possible to satisfy the two WSR exactly for
the same value of ξ). However, given the limitations of the
NJL dynamical approximation, partly responsible for the
nonperfectly matched Weinberg-type sum rules, we con-
sider this only as an indicative trend rather than a genuine
dynamical constraint on the couplings.
Concerning next the scalar sum rules, note that the above

relations in Eqs. (3.64) and (3.65) do not lead to G2
Gðq2Þ −

G2
σðq2Þ ¼ 0 and G2

η0 ðq2Þ − G2
Sðq2Þ ¼ 0, which would be

valid only if all expressions were evaluated at the same
value of q2. This is due to the pseudoscalar axial mixing,
i.e. a term proportional to gA;aðq2Þ does not vanish in the
difference. In addition, for G2

Gðq2Þ −G2
Sðq2Þ, there is a

term proportional to κB that indicates that this difference
does not satisfy a convergent sum rule, consequently the
discrepancy increases with κB. Indeed, as can be seen on
Fig. 8, some of the scalar sum rules are approximately
satisfied very close to ξ ¼ 1, but are rapidly and badly
invalidated for larger values of ξ, even though the narrow
width approximation is justified in this region. This is
mainly due to very large differences in the argument of the
relevant functions ~B0ðq2;M2

ψ Þ, and also, as discussed
above, due to the nonvanishing of κB. Note that, similarly
to what is discussed above for the WSRs, the scalar sum
rule associated to the η0 may exhibit a pathological
behavior, when the lightest resonances do not incorporate
the dominant contributions. Indeed, the η0 mass crosses the
threshold for κB=κA ¼ 0.1 and the associated ratio G2

η0=G
2
S

tends to zero in this regime, which lies around ξ ¼ 1.1.
In summary, the mismatch between the NJL predictions

and the spectral sum rules resides in the gap between the
contribution of the low-lying resonances and the full
spectral functions. Given these limitations in the compari-
son of our results with the spectral sum rules, and since our
interest is mostly the phenomenology of the lightest
composite states, in the following we will keep studying
the full range for the parameters ξ and κB=κA.

H. Evaluation of the oblique parameter S13

In the absence of explicit symmetry breaking effects,
like, for instance, the coupling to the external electroweak
gauge fields, the vacuum state jvaci0 is left invariant by the

13We thank Alex Pomarol for encouraging us to estimate the
ultraviolet correction to S in the present model.
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Spð4Þ subgroup of the SUð4Þ flavor symmetry defined by
the generators TA satisfying Eq. (2.2), where Σϵ stands for
Σ0 as given in Eq. (3.6). After electroweak symmetry
breaking through misalignment, the vacuum state becomes
jvaciv. It is left invariant by a different Spð4Þ subgroup,
whose generators TA

v ¼ UvTAU†
v now satisfy14

TA
vΣv þ ΣvðTA

v ÞT ¼ 0; ð3:69Þ
with Σv and the SUð4Þ transformation Uv given by

Σv¼UvΣ0UT
v ;

Uv¼ei
ffiffi
2

p hhiT 1̂=f¼ cos

�hhi
2f

�
þ2

ffiffiffi
2

p
isin

�hhi
2f

�
T 1̂: ð3:70Þ

The expression of the transformation Uv conveys the
information that the Higgs field G1̂ takes a vev hhi.
The shift in the oblique parameter S [79] induced by the
composite electroweak sector is given by

ΔS ¼ 16π
dΠðvÞ

3Y ðq2Þ
dq2

����
q2¼0

; ð3:71Þ

where the two-point correlator ΠðvÞ
3Y ðq2Þ has the following

expression (cf. Appendix A 1)

ΠðvÞ
3Y ðq2Þ

�
ημν −

qμqν
q2

�

¼ i
2

Z
d4xeiq·xvhvacjTfðJ4μðxÞ − J3μðxÞÞðJ4νð0Þ

þ J3νð0ÞÞgjvaciv: ð3:72Þ

Expressing the generators T3 and T4 in terms of TA
v and TÂ

v ,
T3 ¼ cosðhhi=fÞT3

v − sinðhhi=fÞT 2̂
v, T4 ¼ T4

v, leads to
15

ΔS ¼ 8π
v2

f2
d
dq2

ðq2ΠV-Aðq2ÞÞj
q2¼0

;

v
f
¼ sin

�hhi
f

�
: ð3:73Þ

Notice that the Goldstone pole at q2 ¼ 0 does not con-
tribute to this expression. The corresponding shift in the
oblique parameter T vanishes, due to custodial symmetry.

In the NJL approximation the resummed correlator
Π̄V−Aðq2Þ is defined according to Eq. (3.33), that implies

ΔSNJL ¼ 2N
9π

v2

f2

�
1

2
þ g2Að0Þ −

3

2

�
1

1þ xψ
− ln

1þ xψ
xψ

�

× ð1 − g2Að0ÞÞ
�
¼ 2N

6π

v2

f2
ð1þOðxψÞÞ; ð3:74Þ

where xψ ≡M2
ψ=Λ2, the axial form factor gAðq2Þ is defined

in Eq. (3.40), and its value at q2 ¼ 0 reads

1

gAð0Þ
¼ 1 −

κD=κA
1þ κB=κA

2xψ

�
1 − xψ ln

1þ xψ
xψ

�
−1

×

�
1

1þ xψ
− ln

1þ xψ
xψ

�
: ð3:75Þ

The left panel of Fig. 9 shows the variation of ΔSNJL as a
function of ξ, that is in one-to-one correspondence with xψ ,
according to Eq. (3.17). As expected, ΔSNJL decreases
when the strong sector decouples, i.e. with the increase
of f. More precisely, for ξ → 1 we have xψ → 0 and
ΔSNJL ≃ 2N=ð6πÞðv2=f2Þ. As ξ increases, the factor
ð1 − g2Að0ÞÞ becomes nonzero, and ΔSNJL first grows mod-
erately, and then decreases as xψ approaches one. In the range
of parameter space where the narrow-width approximation
applies, one may saturate the above correlator with the first
light resonances, see Eq. (A8) with q2 ¼ −Q2, and in this
case one obtains [50,79] ΔSNJL ≃ 8πðv2=f2Þðf2V − f2AÞ.
The composite sector will also modify the couplings of

the Higgs boson to the electroweak gauge bosons by a
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=f2

p
. This modification will upset the can-

cellation of logarithmic divergences in the gauge-boson
self-energies, and induce model independent shifts in both
S and T [81]. These contributions from low energies are
given by [27,28]

ΔSIR ¼ 1

6π

v2

f2
ln

�
μ

Mh

�
;

ΔTIR ¼ −
3

8π

1

cos2θW

v2

f2
ln

�
μ

Mh

�
¼ −

9

4

ΔSIR
cos2θW

; ð3:76Þ

One finds ΔSIR ¼ ð0.045; 0.022; 0.014Þ and ΔTIR ¼
ð−0.17;−0.08;−0.05Þ, for f ¼ ð0.5; 0.75; 1Þ TeV, if the
cutoff scale is taken equal to 4πFG ¼ 2

ffiffiffi
2

p
πf, leading to

non-negligible contributions. Notice that Goldstone boson
loops contribute to the low-q2 end of theΠV-Aðq2Þ function,
but only at subleading order in the 1=N expansion. The NJL
approximation only provides leading-order contributions,
and thus cannot remove this subleading (in the 1=N
expansion) cutoff dependence in ΔSIR and ΔTIR.
The right panel of Fig. 9 shows the combined contri-

butions from Eqs. (3.74) and (3.76) to the S and T

14Similarly, the generators of the coset space SUð4Þ=Spð4Þ
corresponding to this new orientation of the Spð4Þ subgroup are
given by TÂ

v ¼ UvTÂU†
v, and satisfy TÂ

vΣv − ΣvðTÂ
v ÞT ¼ 0.

15One can repeat the same exercice when in addition the singlet
Goldstone boson G3̂ takes a vev hηi. This will leave the
expression for ΔS unchanged, the relation between v and the
two vev’s being given by

v
f
¼ hhiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhi2 þ hηi2
p sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhi2 þ hηi2

p
f

�
:
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parameters as a function of f, for different values of ξ and
of κB=κA. When linear couplings between the top quark and
the fermions of the strong sector are introduced, one
expects in general additional contributions, which could
significantly affect the S and T parameters. These fermionic
contributions, as well as other order 1=N corrections than
ΔSIR and ΔTIR, are beyond the scope of this paper. The
right panel of Fig. 9 thus displays only a specific kind of
contributions, and does by no means constitute a complete
prediction of the model under discussion as far as S and T
are concerned.

IV. ADDING THE COLORED SECTOR

An appealing way to couple the SM fermions to the
composite Higgs is to introduce a linear coupling between
each SM fermion and a composite fermion resonance with
the same quantum numbers. Such an approach, known as
fermion partial compositeness [26,82], is especially attrac-
tive in the case of the top quark: relatively light composite
top partners allow to induce the required, large top Yukawa
coupling. In order for the composite sector to contain
partners for the top (and possibly the other SM quarks), one
needs to introduce constituent fermions Xf that are charged
under the color group SUð3Þc. It is not possible to construct
a “baryon” (a hypercolor invariant spin-1=2 bound state) if
Xf transforms under the fundamental, pseudoreal repre-
sentation of Spð2NÞ. Following [8], we rather assume that
Xf transforms under the two-index, real representation of
Spð2NÞ that is antisymmetric, Xf

ij ¼ −Xf
ji, and traceless,

Xf
ijΩji ¼ 0. This irreducible representation has dimension

ð2N þ 1ÞðN − 1Þ. In order to embed a SUð3Þc triplet-
antitriplet pair, one has to introduce six such fermions,
f ¼ 1;…; 6. Then, the theory acquires a flavor symmetry
SUð6Þ ⊃ SUð3Þc, with Xf ∼ 6SUð6Þ ¼ ð3þ 3̄ÞSUð3Þc . The
addition of such an X sector modifies several results that
we have derived for the ψ sector in isolation, because the
underlying Spð2NÞ gauge dynamics connects the two
sectors in a highly nontrivial way, as we now describe.
Once both types of fermions ψa and Xf are in presence,

the flavor symmetry group becomes G ¼ SUð4Þ×
SUð6Þ × Uð1Þ, where Uð1Þ is the nonanomalous linear
combination of the two axial symmetries Uð1Þψ and
Uð1ÞX, which separately are both anomalous with respect
to Spð2NÞ. The current corresponding to the Uð1Þψ trans-
formations and its divergence were already given in
Eqs. (3.4) and (3.5), respectively. In the case of the Uð1ÞX
transformations, the corresponding expressions read [a sum
over the flavor indices is understood, gauge and spinor
indices are omitted]

J 0
Xμ ¼

1

2
½ðX̄σ̄μXÞ − ðXσμX̄Þ�; ð4:1Þ

∂μJ 0
Xμ ¼ 4

ffiffiffi
3

p
mXP0

X þ 2ðN − 1ÞN
X
f g

2
HC

32π2

×
XNð2Nþ1Þ

I¼1

ϵμνρσG
I;μν
HCG

I;ρσ
HC ; ð4:2Þ

where the factor NX
f ¼ 3 accounts for the number of flavors

in theX sector. In the above, X̄, as defined in Table III below,
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FIG. 9. On the left, the contribution to theS parameter from the composite electroweak sector in theNJL approximation [see Eq. (3.74)] as
a function of the dimensionless coupling ξ, and for three representative values of f, f ¼ ð0.5; 0.75; 1Þ TeV. The value of the parameter
κB=κA has been taken equal to 0.1 (solid blue curves) and to 0.5 (dashed red curves), while the number of hypercolors is fixed toN ¼ 4 and
the vector coupling is given by κD ¼ κA. The best fit for S is indicated by the horizontal line at 0.05 and the region above the 3σ limit,
assumingT ¼ 0, is shaded.On the right, the precedingUVcontribution, evaluated in theNJL approximation, aswell as the IR contributions
coming from the nonlinear realization of the EWSB (i.e.ΔSNJL þ ΔSIR andΔTIR), as a function of f. The black dots correspond to f ¼ 0.5,
0.75 and 1 TeV, and the curves stand for two representative values, ξ ¼ 1.3 and ξ ¼ 2, with κB=κA ¼ 0.1, N ¼ 4 and κD ¼ κA. The 68%
(red), 95% (orange) and 99% (yellow) C.L. ellipses in the S − T plane are extracted from the fit of Ref. [80]. As stressed in the text, one
expects in general additional contributions, which could significantly impinge on the values of S and T.
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transformsunder theSpð2NÞgaugegroup in the sameway as
X, and the gauge-invariant bilinear fermion contractions
between X and X are defined as

ðXfXgÞ≡ Xf
ijΩjkX

g
klΩli ¼ trðXfΩXgΩÞ: ð4:3Þ

Contractions like ðX̄fX̄gÞ and ðX̄fXgÞ are defined in the same
way. For later use we have also introduced a flavor inde-
pendent mass term for the X fermions,

LX
m ¼ −2

ffiffiffi
3

p
mXS0

X; ð4:4Þ

with

S0
X ¼ 1

2
½ðX̄T0

XΣc
0X̄Þ þ ðXΣc

0T
0
XXÞ�;

P0
X ¼ 1

2i
½ðX̄T0

XΣc
0X̄Þ − ðXΣc

0T
0
XXÞ�; ð4:5Þ

in agreement with the general definitions given in Eq. (2.6)
and the normalization adopted there for the singlet scalar and
pseudoscalar densities, that is T0

X ¼ 1=ð2 ffiffiffi
3

p Þ. Note that the
singlet contraction of two fermions in the (anti)fundamental
of SUð6Þ is realized through the matrix

Σc
0 ¼

�
0 13
13 0

�
; ð4:6Þ

which determines the SUð6Þ=SOð6Þ vacuum direction. The
two conditions in Eq. (2.2) are satisfied withΣϵ ¼ Σc

0 and the
SUð6Þ generators TF and TF̂ defined in Appendix A 2.
Examining the respective Uð1Þψ and Uð1ÞX anomaly

coefficients, it is easily seen that the combination of the two
axial singlet currents given by

ð4:7Þ

is free from the gauge anomaly,

∂μJ 0
μ ¼ 4

ffiffiffi
3

p
mXP0

X; ð4:8Þ

where the Dynkin index lðrÞ of the representation r of the gauge group Spð2NÞ gives the normalization of the Spð2NÞ
generators TIðrÞ in this representation,

ð4:9Þ

Consequently, the axial singlet transformation of both the ψ
and X fermions, with charges satisfying

qψ ¼ −3ðN − 1ÞqX; ð4:10Þ

is a true symmetry of the theory, even at the quantum level,
in the limit where mX vanishes.
The introduction of fermions in the two-index antisym-

metric representation of the Spð2NÞ gauge group has
another consequence. The first coefficient of the β-function
of the gauge coupling gHC now reads

b0 ¼
11

3
C2ðadjÞ −

4

3

X
i¼ψ ;X

Ni
flðriÞ

¼ 2

3
ð11 − 4NX

f Þ
�
N þ 1 − 2

4NX
f − Nψ

f

4NX
f − 11

�
: ð4:11Þ

Therefore, as soon as NX
f ≥ 3, b0 stays positive and

asymptotic freedom is preserved (at one loop) only if
the number of colors N is bounded from above,

N < 2
4NX

f − Nψ
f

4NX
f − 11

− 1 ½NX
f ≥ 3�; ð4:12Þ

TABLE III. The transformation properties of the elementary
fermions, the spin-0 and spin-1 fermion bilinears, in the color
sector of the model. Spinor indexes are understood, and brackets
stand for a hypercolor-invariant contraction of the Spð2NÞ
indexes.

Lorentz Spð2NÞ SUð6Þ SOð6Þ
Xf
ij

ð1=2; 0Þ 6f 6

X̄fij ≡ ΩikX
†
fklΩlj ð0; 1=2Þ 6̄f 6

Mfg
c ∼ ðXfXgÞ (0,0) 1 21fg 200 þ 1

M̄cfg ∼ ðX̄fX̄gÞ (0,0) 1 2̄1fg 200 þ 1

aμX ∼ ðX̄f σ̄μXfÞ ð1=2; 1=2Þ 1 1 1
ðVμ

c; A
μ
cÞgf ∼ ðX̄fσ̄

μXgÞ ð1=2; 1=2Þ 1 35
f
g 15þ 200
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which, in the case at hand (Nψ
f ¼ 2 and NX

f ¼ 3), means
N ≤ 18. This upper bound prevents us from considering the
limit N → ∞ at the level of the fundamental hypercolor
theory once the sector of X fermions has been introduced.
Notice, however, that independently from the existence of
this upper bound on N, the anomalous contribution on the
left-hand side of Eq. (4.2) would not vanish in the ’t Hooft
limit N → ∞, with Ng2HC staying constant. Despite the
absence of a well-defined large-N limit at the level of the
fundamental theory, it remains useful to keep the naive
counting in powers of 1=N at the level of the NJL
description of the dynamics, since it allows, for instance,
to identify contributions which will be numerically sup-
pressed even for already moderate values of N. Therefore,
when, in the sequel, we mention or use the 1=N expansion,
it will thus always be understood that it refers to the NJL
context.

A. The pattern of flavor symmetry breaking

Concerning the pattern of spontaneous symmetry break-
ing, there are now two possible fermion bilinears that may
form a condensate. A nonzero hψaψbi would break
SUð4Þ × Uð1Þ to Spð4Þ, with NGBs transforming as
ð5þ 1ÞSpð4Þ. A nonzero hXfXgi would break SUð6Þ ×
Uð1Þ to SOð6Þ, with NGBs in the representation
ð200 þ 1ÞSOð6Þ ¼ ð8þ 6þ 6̄þ 1ÞSUð3Þc . Light colored sca-
lars are phenomenologically problematic because of the
strong bounds from collider searches. An important con-
tribution to their mass is induced by gluon loops, as
discussed in Sec. II E, in Appendix A 2 and in Sec. V B.
Another possibility to lift the colored NGBs from the low
energy spectrum is to introduce the mass term (4.4), which
explicitly breaks SUð6Þ ×Uð1Þ to SOð6Þ. Alternatively, if
SUð6Þ does not undergo spontaneous breaking, colored
NGBs would be absent. However, we will show below that
the matching of anomalies would then require massless,
colored fermions, that again call for a large radiative mass
or for mX ≠ 0.
Since we have adopted the same fermion content as in

Ref. [8], let us stress some differences with respect to the
discussion of flavor symmetries in that paper. First, the
nonanomalous axial Uð1Þ symmetry was not discussed: we
will show that it has several phenomenological conse-
quences. Second, the color triplet and antitriplet compo-
nents of Xf were treated separately, and the global
symmetry was identified with SUð3Þ × SUð3Þ × Uð1ÞV ,
broken by a mass term to SUð3Þc ×Uð1ÞV . However, these
are just maximal subgroups of the complete global sym-
metry SUð6Þ, and of the complete unbroken subgroup
SOð6Þ, respectively. The pattern is different from QCD,
because there quarks and antiquarks transform under
different representations of the gauge group, while here
the six copies of Xf transform in the same way under
Spð2NÞ. Note that Uð1ÞV was introduced in Ref. [8] in

order to provide top partners with the appropriate SM
hypercharge, but remarkably enough such a symmetry is
automatically present, as one of the unbroken generators
within SOð6Þ.
Once both the elementary fermions ψa and Xf are

introduced, one can form several baryons. As a consequence,
the anomaly matching condition provides nontrivial con-
straints on the spontaneous symmetry breaking, as discussed
in Sec. II B. If one denotes by V the conserved currents
associated to the Hm generators, and by A the conserved
currents associated to the generators of the cosetG=Hm (see
Sec. II A), one needs only consider the anomaly matching
constraints that arise from the hVVAi correlators. Then, to
each fermion transforming in the representation r of G is
associated an anomaly coefficient AðrÞ, which is defined by

2tr½TÂðrÞfTBðrÞ; TCðrÞg� ¼ AðrÞdÂBC; ð4:13Þ

where TAðrÞ and TÂðrÞ are the generators of Hm and of
G=Hm, respectively, in the representation r, and dÂBC is an
invariant tensor that depends on G. The generators of the
fundamental representation r0 are normalized as in Eq. (4.9),
and its anomaly coefficient is fixed to Aðr0Þ ¼ 1. The
anomaly matching condition can be written as

X
i

niAðriÞ ¼
X
i

n0iAðriÞ; ð4:14Þ

where the left-hand (right-hand) sum runs over the repre-
sentations of the constituent (composite) fermions, andni (n0i)
are theirmultiplicities. If this equality cannot be satisfied, then
G necessarily undergoes spontaneous symmetry breaking.
In the model under investigation, the possible trilinear

baryons consist of

Ψabf ¼ ðψaψbXfÞ; Ψab
f ¼ ðψaψbX̄fÞ;

Ψaf
b ¼ ðψaψ̄bXfÞ; Ψfgh ¼ ðXfXgXhÞ;

Ψfg
h ¼ ðXfXgX̄hÞ; ð4:15Þ

plus their conjugates, where the brackets stand for a spin-
1=2, hypercolor-singlet contraction (multiple, independent
contractions of this kind may be possible). Each Ψ
decomposes in several irreducible representations ðr4; r6Þ
of SUð4Þ × SUð6Þ, each corresponding to an independent
baryon state: for example Ψabf ∼ ½ð6; 6Þ þ ð10; 6Þ�. In
addition, exotic baryons are also possible, formed by a
larger, odd number of constituent fermions.
Let us begin with the SUð4Þ3 anomaly. As ψ lies in the

fundamental representation of SUð4Þ, its anomaly coef-
ficient is A4ð4Þ ¼ 1. The SUð4Þ representations contained
in ψaψb or ψaψ̄b have coefficients A4ð1Þ ¼ A4ð6Þ ¼
A4ð15Þ ¼ 0 and A4ð10Þ ¼ 8. Therefore, the anomaly
matching between ψ and the trilinear baryons Ψ reads
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2N · A4ð4Þ ¼ 2N ¼
X
ðr4;r6Þ

nðr4;r6ÞA4ðr4Þ · dimðr6Þ

¼ nð10;6Þ6 · 8; ð4:16Þ

where the sum runs over the various massless baryon states,
and nðr4;r6Þ are their multiplicities. One can generalize the
result to include exotic baryons: in full generality, hyper-
color invariance requires the total number of ψ and ψ̄
fermions to be even; then, in order to obtain a fermion, one
needs that the total number of X and X̄ is odd. One can
check [83] that (i) the anomaly coefficient of any SUð4Þ
representation, contained in 4 × � � � × 4 an even number of
times, is a multiple of 8, and (ii) the dimension of any
SUð6Þ representation, contained in 6 × � � � × 6 an odd
number of time, is a multiple of 2. As a consequence,
the right-hand side of Eq. (4.16) generalizes to a multiple of
2 · 8, and the matching is possible only for N ¼ 8n, with n
integer. An example with N ¼ 8 is provided by one exotic
baryon ðψψXXXÞ ∼ ð10; 20Þ plus three copies of
ðψ̄ ψ̄ XÞ ∼ ð1̄0; 6Þ. In summary, for N ≠ 8n SUð4Þ neces-
sarily spontaneously breaks to Spð4Þ and the correspond-
ing NGB decay constant FG is nonzero. Strictly speaking,
the other order parameters, such as the condensate hψψi,
may still vanish, for instance if a discrete symmetry
subgroup leaves the vacuum invariant but not the ðψψÞ
operator [84]. This is, however, a rather unlikely situation
to happen [85], and we will assume that the spontaneous
symmetry breaking of the SUð4Þ flavor group (towards its
Spð4Þ subgroup) is due to the formation of a nonvanishing
hψψi condensate. This corresponds actually to the dynami-
cal situation described by the NJL framework, where
SUð4Þ order parameters like the condensate are propor-
tional to FG.
Next, let us consider the SUð6Þ3 anomaly. The crucial

observation is that there are baryons, contained either in
ðψψ̄XÞ or ðXXX̄Þ, that transform under the representation
(1,6). These states have evidently the same anomaly
coefficient A6ð6Þ ¼ 1 as the constituent fermion X; there-
fore, the matching is trivially possible for any value of N,

ð2N þ 1ÞðN − 1Þ · A6ð6Þ ¼
X
ðr4;r6Þ

nðr4;r6Þ dimðr4Þ · A6ðr6Þ

¼ nð1;6Þ1 · A6ð6Þ þ � � � ; ð4:17Þ

where the ellipsis stands for the contribution from larger
representations, which are not relevant in the present
context. As a consequence, from the point of view of
the anomaly condition, the spontaneous breaking of SUð6Þ
is not a necessity, and in particular it allows the possibility
that hXXi ¼ 0. However, the mass inequalities mentioned
in Sec. II C require, in the case where massless baryons are
present in the bound state spectrum, massless spin-zero
bound states, coupled to the currents associated with the

generators of the SUð6Þ=SOð6Þ coset, which is tantamount
to the spontaneous breaking of SUð6Þ towards SOð6Þ.
Note that the massless baryons required by anomaly

matching carry color and are phenomenologically
excluded. Once these baryons are made heavy by explicit
symmetry breaking, there are no exact NGBs either, and
again one cannot tell whether the dynamics breaks sponta-
neously SUð6Þ or not. Indeed, in either case an explicit
symmetry breaking mass term mXXX is required for
specular reasons: in the unbroken phase, one needs it to
give a sufficiently large mass to the colored baryons; in
the broken phase, the mass term is necessary to make the
colored NGBs sufficiently heavy. Ref. [86] argues that the
mass of the top partners can be controlled by the parameter
mX, if one assumes to be in the unbroken phase.
Finally, one should consider the anomalies involving the

nonanomalousUð1Þ. The anomaly forUð1ÞSUð6Þ2 is easily
matched for any N, by the same set of baryons that matches
theSUð6Þ3 anomaly.We also proved that the other anomalies
involving Uð1Þ, that is Uð1ÞSUð4Þ2 and Uð1Þ3, can be
matched for anyN aswell, but using a different set of baryons
in each case. It is highly nontrivial to match all Uð1Þ
anomalies at the same time, and thus preserve this symmetry
from spontaneous breaking. As we have already argued
though, it is quite unlikely that the spontaneous breaking of
the SUð4Þ flavor symmetry happens without, at the same
time, also triggering the spontaneous breaking of the Uð1Þ
symmetry.
In the following sections, we will apply the NJL tech-

niques to the complete model including the electroweak and
the color sector. In particular, we will study the mass gap
equations that determine hψψi and hXXi in terms of the
coefficients of the four-fermion operators. For N ≠ 8n, only
the phase hψψi ≠ 0 of the NJL model should be considered
as a good approximation of the full dynamics, while hXXi is
not constrained by the matching of anomalies. For N ¼ 8n,
both condensates may or may not vanish.

B. Sum rules and pseudoscalar decay constants
in the flavor-singlet sector

As a last point to be discussed in this section, let us recall
that in Sec. II D we introduced the spectral sum rules for a
simple group G that undergoes spontaneous breaking. That
discussion applies to the ψ sector alone, with coset
SUð4Þ=Spð4Þ, as well as to the X sector in isolation,
with coset SUð6Þ=SOð6Þ. In the complete model, one can
also construct correlation functions involving simultane-
ously the two sectors and that are order parameters
for the whole symmetry group SUð4Þ × SUð6Þ × Uð1Þ,
i.e. involving also the nonanomalous axial singlet trans-
formations. This leads to additional sum rules that may
constrain the resonance spectrum. At the level of two-point
functions, the relevant order parameters involving the two
sectors are
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ΠψX
S0
ðq2Þ ¼ i

Z
d4xeiq·xhvacjTfS0

ψðxÞS0
Xð0Þgjvaci;

ΠψX
P0 ðq2Þ ¼ i

Z
d4xeiq·xhvacjTfP0

ψðxÞP0
Xð0Þgjvaci:

ð4:18Þ

From them we derive two additional spectral sum rules,
valid in the limit where mX vanishes:

Z
∞

0

dt ImΠψX
S0

ðtÞ ¼ 0;
Z

∞

0

dt ImΠψX
P0

ðtÞ ¼ 0; ð4:19Þ

which, respectively, constrain the spectrum of scalar and
pseudoscalar singlets resonances.
One could examine the realization of these sum rules in

the NJL framework, similarly to what we did for the
electroweak sector in Sec. III G, for instance investigating
whether the first low-lying resonances in each channel
saturate them. Here we rather describe some of the expected
features in general terms, independently from the NJL
approximation. In the singlet pseudoscalar channel, we
expect two states. The first one is the Goldstone boson η0
produced by the spontaneous breaking of the nonanoma-
lous axial Uð1Þ symmetry. The second one is a massive
pseudoscalar state η0, which corresponds to the second
Goldstone boson that would be present in the absence of the
gauge anomaly in the divergences of the Uð1Þψ and Uð1ÞX
currents. These states both couple to the (partially) con-
served Uð1Þ current, defined in Eq. (4.7) above,

hvacjJ 0
μð0Þjη0ðpÞi ¼ iFη0pμ;

hvacjJ 0
μð0Þjη0ðpÞi ¼ iFη0pμ: ð4:20Þ

In the limit where mX vanishes, Fη0 remains nonzero and
Fη0 ∼OðmXÞ, whereas for the masses M2

η0 ∼OðmXÞ while
M2

η0 does not vanish. Of course, there are also couplings to
the individual, nonconserved, Uð1Þψ and Uð1ÞX currents,
defined in Eqs. (3.4) and (4.1), respectively,

hvacjJ 0
ψμð0Þjη0ðpÞi ¼ iFψ

η0pμ;

hvacjJ 0
ψμð0Þjη0ðpÞi ¼ iFψ

η0pμ;

hvacjJ 0
Xμð0Þjη0ðpÞi ¼ iFX

η0pμ;

hvacjJ 0
Xμð0Þjη0ðpÞi ¼ iFX

η0pμ: ð4:21Þ

According to the expressions given in Eqs. (3.4), (4.1),
and (4.7), these four decay constants are related to the
ones in the preceding equation through Fη0;η0 ¼ FX

η0;η0
−

3ðN − 1ÞFψ
η0;η0

. Both η0 and η0 states also couple to the
singlet pseudoscalar densities,

hvacjP0
ψð0Þjη0ðpÞi ¼ Gψ

η0 ;

hvacjP0
ψð0Þjη0ðpÞi ¼ Gψ

η0 ;

hvacjP0
Xð0Þjη0ðpÞi ¼ GX

η0 ;

hvacjP0
Xð0Þjη0ðpÞi ¼ GX

η0 ; ð4:22Þ

and through Eq. (4.8) the two following relations hold:

Fη0M
2
η0 ¼ 4

ffiffiffi
3

p
mXGX

η0 ; Fη0M2
η0 ¼ 4

ffiffiffi
3

p
mXGX

η0 : ð4:23Þ

Although they do not lead to sum rules, it is both
interesting and useful to consider two-point correlators
involving the axial singlet current and the singlet pseudo-
scalar densities, defined in analogy to Eq. (2.15) for the
nonsinglet case,

Πψ
A0P0ðq2Þqμ ¼

Z
d4xeiq·xhvacjTfJ 0

μðxÞP0
ψ ð0Þgjvaci;

ΠX
A0P0ðq2Þqμ ¼

Z
d4xeiq·xhvacjTfJ 0

μðxÞP0
Xð0Þgjvaci:

ð4:24Þ

Πψ
A0P0ðq2Þ and ΠX

A0P0ðq2Þ are order parameters of SUð4Þ ×
Uð1Þ and of SUð6Þ ×Uð1Þ, respectively, and in the limit
where the current J 0

μðxÞ is conserved they are both
saturated by the massless η0 pole, as in Eq. (2.16). In
the presence of the mass mX, this is no longer true, and the
Ward identities give

q2Πψ
A0P0ðq2Þ ¼ 4

ffiffiffi
3

p
mXΠ

ψX
P0 ðq2Þ − 6ðN − 1ÞhS0

ψi;
q2ΠX

A0P0ðq2Þ ¼ 4
ffiffiffi
3

p
mXΠX

P0ðq2Þ þ 2hS0
Xi: ð4:25Þ

These lead, in particular, to the constraints

4
ffiffiffi
3

p
mXΠ

ψX
P0 ð0Þ ¼ 6ðN − 1ÞhS0

ψi;
4
ffiffiffi
3

p
mXΠX

P0ð0Þ ¼ −2hS0
Xi; ð4:26Þ

as well as

Fη0G
ψ
η0 ¼ 6ðN − 1ÞhS0

ψi þOðmXÞ;
Fη0G

X
η0 ¼ −2hS0

Xi þOðmXÞ; ð4:27Þ

which provide useful cross-checks for the NJL calculation.

C. Effective couplings induced by the
hypercolor gauge anomaly

In order to study, in the NJL framework, the anomalous
divergence of Eq. (4.2), induced by the Spð2NÞ hypercolor
gauge interaction, let us first discuss the X sector in
isolation. The sector of gauge configurations with unit
winding number now induces 2ðN − 1Þ fermionic zero
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modes per flavor (in the present case,NX
f ¼ 3) for the Dirac

operator corresponding to the X and X̄ fermions (the
uninteresting case N ¼ 1 is, of course, discarded).
Through the index theorem, these zero modes induce a
violation of theUð1ÞX charge by 12ðN − 1Þ units, which, as
already discussed in Sec. III A for the electroweak sector,
has to be reproduced by the effective ’t Hooft vertex. In the
case of an Spð4Þ gauge group (N ¼ 2), it is straightforward
to construct an operator OX that induces this violation of
the invariance under Uð1ÞX, while at the same time
preserving the invariance under the SUð6Þ flavor group:

OX ¼ −
1

6!
ϵf1���f6ϵg1���g6ðXf1Xg1Þ � � � ðXf6Xg6Þ

¼ − detðXfXgÞ; ð4:28Þ
where the determinant is taken in the six-dimensional
flavor space. For N > 2 and only 6 Weyl fermions at
our disposal, one obvious extension of the above operator
satisfying the required properties would consist in taking
ON−1

X . One should, however, be aware that, on the one
hand, this simple procedure might not comply with the
properties of the ’t Hooft vertex as arising from the
Grassmann integration over the fermionic collective coor-
dinates,16 and, on the other hand, that the ’t Hooft vertex
could also involve derivatives of the fermion fields. An
example where this second feature is known to happen is
provided by the case of an SUð2Þ≃ Spð2Þ gauge group
with fermions in the adjoint representation [90]. Delving
more deeply into these issues would, however, lead us too
far astray. Moreover, dealing with a term involving deriv-
atives of the fermion fields is beyond the NJL framework as
it is usually understood. From the point of view of the latter,
the term ON−1

X , possessing all the required symmetry
properties, is quite appropriate, and henceforth we will
assume that at the level of the NJL approach, it provides the
required description of the explicit breaking of the Uð1ÞX
symmetry by quantum effects.
The preceding discussion considered the SUð6Þ sector in

isolation and, apart from some subtle aspects due to the
representation of the gauge group under which the X
fermions transform, has essentially paralleled the related
discussion for the SUð4Þ sector in Sec. III A. We will now
bring the two sectors together and, aswas already the case for
the discussion of the anomaly matching conditions in
Sec. IVA, we will find that when acting together the two
sectors unravel new features. Indeed, the structure of
anomaly-driven effective terms is actually different, as one
should take into account that a combination of Uð1ÞX and
Uð1Þψ transformations, as given in Eq. (4.10), remains
nonanomalous. This drastically changes the form of appro-
priate effective interactions generalizing the ’t Hooft terms
usually being given by a (flavor) determinant, since ψ and X

are not in the same representation. Combining this informa-
tion with the discussion above and in Sec. III A, the lowest
dimensional operator that breaks both Uð1Þψ and Uð1ÞX
axial singlet symmetries, while preserving the Uð1Þ sym-
metry generated by the combination (4.7), reads

LψX ¼ AψX
Oψ

ð2NÞ2
�

OX

½ð2N þ 1ÞðN − 1Þ�6
�ðN−1Þ

þ H:c:;

ð4:29Þ

with OX defined in Eq. (4.28) and Oψ the antisymmetric
four-fermion operator in Eq. (3.1),

Oψ ¼ −
1

4
ϵabcdðψaψbÞðψcψdÞ: ð4:30Þ

The constant AψX can be taken real and positive by adjusting
the phase of ψ . Its normalization in Eq. (4.29) has been
conveniently chosen in order to compensate the different
powers ofN contained in the condensates, see Eqs. (3.19) and
(5.4). This normalization, with an N-independent coefficient
AψX, would reproduce the correct behavior of the Uð1Þψ ;X
anomaly in the large-N limit, would the latter exist, see the
discussion around Eqs. (4.11) and (4.12). Indeed, Eq. (4.2)
shows that the effect of the anomaly would not vanish in this
limit, as ðN − 1Þg2HC ∼ ðN − 1Þ=N ∼ 1. As we will see in
Sec. V E, a trace of this feature appears in the mass of the η0,
which is proportional to AψX, M2

η0 ∼ AψX½1þOð1=NÞ�.
After formation of the two condensates hψψi and hXXi,

the interaction (4.29) will generate effective four-fermion
interactions for ψ and X, as well as a mixed ψψXX term,
upon replacing appropriate number of fermion bilinears
by their respective condensate (i.e. closing the loops).
To identify these four-fermion interactions, relevant for
the computation of the meson spectrum, let us first consider
for simplicity the SUð6Þ → SOð6Þ sector. The fermion
bilinear can be decomposed as

ðXfXgÞ≡ 2ðT0
XΣc

0ÞgfðXΣc
0T

0
XXÞ þ 2ðTF̂Σc

0ÞgfðXΣc
0T

F̂XÞ;
ð4:31Þ

in terms of the SOð6Þ singlet and the two-index symmetric
traceless components. Then, taking into account combinato-
rial factors, the operator of Eq. (4.28) can be decomposed as17

OX ¼
1

27
½ðXΣc

0T
0
XXÞ6

−3ðXΣc
0T

0
XXÞ4ðXΣc

0T
F̂XÞðXΣc

0T
F̂XÞþ �� ��; ð4:32Þ

16Useful introductions to instantons areprovidedbyRefs. [87–89].

17The coefficient of ðXΣc
0T

0
XXÞ6 in detðXfXgÞ is26 detðΣc

0T
0
XÞ ¼

−1=27, and the coefficient of ðXΣc
0T

0
XXÞ4ðXΣc

0T
F̂XÞðXΣc

0T
ĜXÞ is

26 detðΣc
0T

0
XÞð2

ffiffiffi
3

p Þ2 1
2
½trðTF̂ÞtrðTĜÞ − trðTF̂TĜÞ� ¼ 1

9
δF̂ Ĝ.

BIZOT, FRIGERIO, KNECHT, and KNEUR PHYSICAL REVIEW D 95, 075006 (2017)

075006-32



where a sum over the SUð6Þ generators TF̂ belonging to the
SUð6Þ=SOð6Þ coset is understood. For the SUð4Þ → Spð4Þ
sector, the similar appropriate decomposition into Spð4Þ-
invariant bilinears reads

Oψ ¼ðψΣ0T0
ψψÞðψΣ0T0

ψψÞ− ðψΣ0TÂψÞðψΣ0TÂψÞ:
ð4:33Þ

Next we insert the results (4.32) and (4.33) into the full
effective Lagrangian Eq. (4.29), and obtain

LψX ¼
AψX

ð27ÞN−1

��
ψΣ0T0

ψψ

2N

�
2
�

XΣc
0T

0
XX

ð2Nþ1ÞðN−1Þ
�
6ðN−1Þ

−
�
ψΣ0TÂψ

2N

�2� XΣc
0T

0
XX

ð2Nþ1ÞðN−1Þ
�
6ðN−1Þ

−3ðN−1Þ
�
ψΣ0T0

ψψ

2N

�
2
�

XΣc
0T

0
XX

ð2Nþ1ÞðN−1Þ
�
6ðN−1Þ−2

×

�
XΣc

0T
F̂X

ð2Nþ1ÞðN−1Þ
�2	

þ�� � ; ð4:34Þ

where the ellipsis denotes other interaction terms, of no
relevance for our purposes. The overall constantAψX remains
arbitrary, but the ratio of the coefficients of the three effective
XXXX, ψψψψ , and ψψXX terms are fixed. All effective
couplings in the singlet and nonsinglet sectors are thus related
to the unique coupling AψX in Eq. (4.29), times appropriate
powers of the two condensates and combinatorial factors (see
Sec. VA below).

V. SPECTRUM OF MESON RESONANCES
IN PRESENCE OF THE COLORED SECTOR

In this section, we will compute the condensates and the
masses of mesons, once the colored sector is added to the
electroweak sector, including their mixing through
Eq. (4.34). The two sectors share the same Spð2NÞ
hypercolor gauge interaction; therefore, one can, in prin-
ciple, relate the sizes of the effective four-fermion operators
in the two sectors. One may assume, in particular, that the
effective interactions between hypercolor-singlet fermion
bilinears originate from Spð2NÞ current-current operators
(see Appendix D). In this approximation one can link, to
some extent, the couplings of the colored operators to the
electroweak ones. In this way the mass gap and the
spectrum in the SUð6Þ sector are connected to the ones
in the SUð4Þ sector.

A. The mass gap in a theory with two sectors

Let us begin with the colored scalar operators, which are
relevant for the mass gap and for the spin-zero mesons.
Besides the anomalous operator (4.34), there is one more
independent four-fermion operator that describes the

dynamics in analogy with the electroweak sector
Lagrangian in Eq. (3.1),

LX
scal ¼

κA6
ð2N þ 1ÞðN − 1Þ ðX

fXgÞðX̄fX̄gÞ

−
1

2
mX½ðXΣc

0XÞ þ ðX̄Σc
0X̄Þ�; ð5:1Þ

where the coupling constant κA6 is real and its normaliza-
tion by an inverse factor ð2N þ 1ÞðN − 1Þ has been
conveniently chosen to compensate for the factors of N
induced by the trace over hypercolor in the X-fermion one-
loop two-point functions (see Appendix C). In contrast with
the electroweak sector, we also include in Eq. (5.1) an
explicit symmetry-breaking massmX, already introduced in
Eq. (4.4), which can be chosen real and positive by tuning
the phase of X. Note that also AψX in Eq. (4.34) can be
chosen real and positive, by tuning the phase of ψ . Such a
mass term may be phenomenologically necessary to raise
the masses of the colored pNGBs, in order to comply with
direct collider detection limits [91]. More generally, a
nonzero mX leads to several qualitative effects that are
worth to be explored. As the contraction over Spð2NÞ
indices in Eq. (4.3) is symmetric in hypercolor space, the
scalar bilinear ðXfXgÞ must be symmetric in flavor space,
that is, it transforms as the 21s representation of SUð6Þ, to
be compared with ðψaψbÞ, which transforms as the 6a of
SUð4Þ. Since 21SUð6Þ ¼ ð1þ 200ÞSOð6Þ, one can rewrite the
Lagrangian (5.1) in the physical basis, as

LX
scal¼

2κA6
ð2Nþ1ÞðN−1Þ ½ðXΣ

c
0T

0
XXÞðX̄T0

XΣc
0X̄Þ

þðXΣc
0T

F̂XÞðX̄TF̂Σc
0X̄Þ�−

1

2
mX½ðXΣc

0XÞþðX̄Σc
0X̄Þ�;
ð5:2Þ

where TF̂ are the 20 broken generators spanning the
SUð6Þ=SOð6Þ coset.
Combining the effect of the operators in Eqs. (3.14),

(4.34) and (5.2), one can derive a system of two coupled
gap equations for the SUð4Þ and SUð6Þ sectors,

(
1 − 4ðκA þ κBÞ ~A0ðM2

ψÞ ¼ 0;

1 − 4ðκA6 þ κB6Þ ~A0ðM2
XÞ − mX

MX
¼ 0;

ð5:3Þ

which determine the dynamical masses Mψ and MX as
functions of the four couplings κA;B;A6;B6 and of the mass
mX. More precisely, when mX ≠ 0 the scale MX is not
entirely generated by the dynamics, see Fig. 12. Just as in
the electroweak sector, Mψ can be traded for hΨΨi, see
Eq. (3.19), the NJL dynamical mass MX is also related to
the condensate hXXi in the colored sector,
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hXXi≡ 1ffiffiffiffiffiffiffi
NX

f

q hSX0 i ¼ −2ð2N þ 1ÞðN − 1ÞMX
~A0ðM2

XÞ;

ð5:4Þ

where the factor ð2N þ 1ÞðN − 1Þ comes from the trace
over hypercolor. The two mass gap equations are coupled
because the first operator in Eq. (4.34) induces both the κB
and κB6 terms in Eq. (5.3). These contributions are obtained
by closing all but one fermion bilinears into a tadpole loop,
as illustrated in Fig. 10 for the case of the ψ sector. This
amounts to replacing each bilinear by the associated
condensate, and to add a combinatorial factor 2 in κB, as
one ψ-bilinear out of 2 is not closed, and 6ðN − 1Þ in κB6,
as one X-bilinear out of 6ðN − 1Þ is not closed. Therefore,
the anomalous terms in the gap equations are related to the
original anomaly coefficient AψX by

κB ≡ AψX

2 · 27N−1

�
4NX

f hXXi2
ð2N þ 1Þ2ðN − 1Þ2

�3ðN−1Þ 2

2N

¼ ½4MX
~A0ðM2

XÞ�6ðN−1Þ AψX

2N
; ð5:5Þ

κB6 ≡ AψX

2 · 27N−1

�
4Nψ

f hψψi2
ð2NÞ2

��
4NX

f hXXi2
ð2N þ 1Þ2ðN − 1Þ2

�3ðN−1Þ−1

×
6ðN − 1Þ

ð2N þ 1ÞðN − 1Þ

¼ 4N
2N þ 1

M2
ψ

M2
X

~A2
0ðM2

ψ Þ
~A2
0ðM2

XÞ
κB: ð5:6Þ

The combinatorial factors will be essential, among other
things, in order to recover the singlet Goldstone boson; see
Sec. V E. The effective couplings κB;B6 are normalized such
as to contribute to the gap equations (5.3) as for a single
sector in isolation. However, since they are functions of
both dynamical masses, κB;B6 ¼ κB;B6ðM2

ψ ;M2
XÞ, the two

gap equations are actually coupled in a nontrivial way.

Let us analyze in some detail the system (5.3) of two
coupled gap equations, because it is qualitatively different
from the canonicalNJLgap equationofQCD, and, to the best
of our knowledge, it was not studied in the existing literature.
It is convenient to take the effective coupling κB as the free
parameter characterizing the effect of the hypercolor
anomaly, that is, to express κB6 as a function of κB according
to Eq. (5.6). This choice makes it easier to compare with the
electroweak sector in isolation, and it also simplifies the
algebraic form of the solutions of Eq. (5.3). As we have seen
in Sec. III A, the SUð4Þ sector forms a condensate and a
nonzero dynamical mass Mψ is generated when ξ≡ ðκA þ
κBÞΛ2=ð4π2Þ is above the critical value ξ ¼ 1. Similarly, in
the chiral limit mX ¼ 0, a nonzero dynamical mass MX is
generated when ξc ≡ ðκA6 þ κB6ÞΛ2=ð4π2Þ > 1. Beyond
that, the general resolution of the set of equations (5.3)
coupled through Eq. (5.6) is very involved, especially for
mX ≠ 0, and it can only be solved numerically. Still, it is
instructive to consider a few special cases.

1. Case mX = 0, κB = 0

When κB ¼ 0, i.e. AψX ¼ 0, the two gap equations
decouple. It is convenient to introduce dimensionless
variables and functions in order to rewrite them in the form�

1 − ξAĀðxψ Þ ¼ 0;

1 − ξA6ĀðxXÞ ¼ 0;
ð5:7Þ

where xψ ;X≡M2
ψ ;X=Λ2, ξA;A6 ≡ ðΛ2=4π2ÞκA;A6, and ĀðxÞ≡

1 − x lnð1þ 1=xÞ. The solutions of the two equations in
(5.7) are simply related as

xψ ðξAÞ ¼ xXðξA6Þ: ð5:8Þ
The result is to restrict the range of the allowed values
of ξjκB¼0 ¼ ξA, as compared to the case of one sector
in isolation. Indeed, imposing that both conditions
0 ≤ xψðξAÞ ≤ 1 and 0 ≤ xXðξA6Þ ≤ 1 be satisfied simulta-
neously requires

FIG. 10. Graphical illustration of the mass-gap equation in the ψ sector. The convention for the propagator lines are the same as in
Fig. 1. The first term, proportional to κA, remains the same as in the electroweak sector in isolation. The second term, proportional to
AψX, is obtained by closing one loop of ψ fermions and 6ðN − 1Þ loops of X fermions in Eq. (4.34). The mass-gap equation in the X
sector is obtained in an analogous way, with an additional term proportional to the explicit fermion mass mX .
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max

�
1;

κA
κA6

�
≤ ξ ≤ min

�
1;

κA
κA6

�
1

1 − ln 2
ðκB ¼ 0Þ:

ð5:9Þ
Hence, for κA=κA6 > 1 the minimal value of ξ is larger than
unity, whereas for κA=κA6 < 1, the highest value allowed for
ξ is reduced, see Fig. 12. These considerations do not depend
explicitly on the value ofN, although the actual values of κA
and of κA6, being determined by the hypercolor dynamics,
will depend on N.
Thus, although the two gap equations are decoupled, the

presence of the second one impinges on the possible values
allowed for the coupling of the second one, and vice-versa.
This simply illustrates the fact that while the two gap
equations may be decoupled, they nevertheless share the
same effective-theory cutoff Λ.

2. Case mX = 0, κB ≠ 0

By treating κB as an extra free parameter, the first
equation in the system (5.3) is formally identical to the
gap equation for the electroweak sector in isolation,
Eq. (3.17), with solution xψ ¼ xψ ðξÞ. Then, rewriting
κB6 as a function of κB according to Eq. (5.6), the second
gap equation becomes a self-consistent relation for xX, that
depends on N, ξ, ξA6, and ξB ≡ ðΛ2=4π2ÞκB:8<
:

1− ξĀðxψ Þ ¼ 0;

GðxX; ξA6Þ≡ xXĀðxXÞ½1− ξA6ĀðxXÞ� ¼
4N

2Nþ 1
ξB

xψðξÞ
ξ2

:

ð5:10Þ

Note that the second equality assumes a consistent
solution of the first equation, xψðξÞ, which requires
1 < ξ < 1=ð1 − ln 2Þ. In practice we solve numerically
the first equation for xψ ðξÞ, then we use it as an input to
solve numerically the second one for xXðξÞ.
In Fig. 11 we plot Gðx; ξA6Þ as a function of x, for a few

representative values of ξA6, as well as the right-hand side of
the second equation in (5.10), for two values of N and ξB,
assuming for simplicity two equal mass gaps, xψ ¼ xX ¼ x.
The intersection between the dashed and solid curves
determines the solutionxX ¼ xXðN; ξ; ξA6; ξBÞ. The function
Gðx; ξA6Þ vanishes at x ¼ 0 and, for any fixed value
0 < x < 1, it decreases with ξA6. For ξA6 ≤ 1, Gðx; ξA6Þ
increases in thewhole interval0 ≤ x ≤ 1, while for ξA6 > 1 it
decreases to negative values for small x, then increases as x
moves towards unity, becoming positive before x ¼ 1, as
long as ξA6 < 1=ð1 − ln 2Þ. On the other hand, the function
xψ ðξÞ=ξ2 satisfies 0 ≤ xψ ðξÞ=ξ2 ≲ 1=10 for 0 ≤ x ≤ 1.
Since ξB ≥ 0, there is, therefore, no solution to the second
equation in (5.10) in the interval 0 ≤ xX ≤ 1 when
ξA6≥1=ð1−ln2Þ. In contrast, for values 1<ξA6<
1=ð1−ln2Þ there is always a nontrivial solution with

xX < 1, as long as the right-hand side of the second equation
in (5.10) is sufficiently small. Finally, for 0 < ξA6 < 1 the
occurrence of a solution happens only for a sufficiently large
ξB, also depending onN. The latter properties actually reflect
the critical value ξA6 þ ξB6 > 1, necessary in order to obtain
a nontrivial mass-gap, here somewhat disguised by the
change of variables. Note that for fixed values of N, ξ and
ξB, the value of xX increases with ξA6.
One can make one more step in the analytical study of

the two coupled gap equations. Moving the term propor-
tional to ξB in the first equation of (5.10) to its right-hand
side, one may now eliminate ξB between the two equations,
and obtain

Gðxψ ; ξAÞ ¼
�
1

2
þ 1

4N

�
GðxX; ξA6Þ: ð5:11Þ

A few simple remarks follow from this relation. First, if one
of the masses, sayMX, has been determined as a function of
ξA, ξA6 and ξB, then the relation ofMψ toMX involves only
ξA, ξA6 and N, and not ξB. Second, this relation becomes
rapidly independent of N as N increases. Third, the
relatively simple Eq. (5.11) precisely gives the exact
dependence of the ratio of the two mass gaps, MX=Mψ ,
as functions of the basic input parameters (although it is an
implicit relation, due to the nonlinearity in the masses MX,
Mψ ), as illustrated for a few representative case in Fig. 12.
More precisely, Eq. (5.11) may be trivially expressed as

M2
ψ

M2
X
¼
�
1

2
þ 1

4N

�
Ā2ðxXÞ½1 − ξA6ĀðxXÞ�
Ā2ðxψÞ½1 − ξAĀðxψ Þ�

: ð5:12Þ

This indeed shows that, as long as M2
ψ ;M2

X ≪ Λ2 [which
implies ĀðxXÞ≃ĀðxψÞ since ĀðxÞ≡ 1 − x lnð1þ 1=xÞ≃
1þM2=Λ2 lnðΛ2=M2Þ], one obtains Mψ < MX, at least
for ξA ≃ ξA6. Indeed, the peculiar case of equal mass gaps,
xψ ¼ xX, that is the one illustrated in Fig. 11, can only be
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1 2 , N 4B

1 10 , N 2B

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. Dotted curves: the function Gðx; ξA6Þ for three repre-
sentative values of ξA6 as indicated. Thick curves: right-hand side
of the second equation in (5.10) for two values of N and ξB as
indicated, and taking xψ ¼ x.

NONPERTURBATIVE ANALYSIS OF THE SPECTRUM OF … PHYSICAL REVIEW D 95, 075006 (2017)

075006-35



obtained for significantly different values of ξA and ξA6 (for
instance when N ¼ 4, ξA6 ¼ 1=2 and ξB ¼ 1=2, one has
xψ ¼ xX ≃ 0.13, that corresponds to ξA ≃ 0.9).
In the above considerations we have kept κA and κA6

(equivalently, ξA and ξA6) arbitrary. Let us now examine
more precisely a few typical situations concerning those
parameters. When κA6 is larger than κA, the SUð6Þ sector
first forms a condensate for ξ < 1 (see Fig. 12), and then
MX > Mψ . In the opposite case where κA6 is smaller than
κA, the SUð6Þ sector forms a condensate for a value ξ > 1,
andMX < Mψ . If ξA6 ≫ ξA, the mass gap grows rather fast,
so that one eventually obtains a very large MX ∼ Λ, and
conversely a very large Mψ if ξA6 ≪ ξA. Thus to obtain
predictive calculations in both sectors from the NJL model,
it requires that ξA ∼ ξA6 are roughly of the same magnitude.
In this way, there is a nonzero interval for the values of ξ
where the NJL predictions can be trusted (ξ; ξc > 1 and
Mψ ;X < Λ) in both sectors. Note that apart from these NJL
consistency considerations, in principle no value of the
ratio ξA=ξA6 is theoretically excluded, but the case Mψ ¼ 0

andMX ≠ 0 evidently does not describe a composite Higgs
model since then the spectrum of resonances does not
contain a pNGBHiggs doublet. For ξA ¼ ξA6, i.e. κA ¼ κA6,
and still formX ¼ 0, the ratioMX=Mψ thus depends only of
the value of κB and N, as given precisely by the relation in

Eq. (5.12). When ξB is close to zero, one gets Mψ ≃MX,
since the two gap equations are almost decoupled. Next,
when ξB increases, there is a complicated balance between
the N, Mψ and MX dependence in Eq. (5.6), to determine
κB6=κB, but the ratio MX=Mψ is consistently determined
from the relatively simple relation in Eq. (5.12). This
implies κB6 > κB and MX slightly above Mψ , with a
MX=Mψ ratio that increases rather slowly with ξB, and
is also a slowly increasing function of N. For instance for
N ¼ 2, MX=Mψ ≃ 1.14–1.21 for κB=κA ¼ 0.01–0.5.
Finally, let us briefly discuss the most general case

mX ≠ 0. The above considerations give of course only
approximate relations, which however remains relatively
good as long asmX remains moderate,mX ≪ MX. FormX ≠
0 there is no critical coupling ξc in the SUð6Þ sector, as the
minimal value of MX is obviously nonzero, being equal to
mX. A nonzero mX evidently leads to MX > Mψ for
equivalent coupling values in the two sectors; see Fig. 12.
A couple of remarks are in order. In Sec. V E, we will see

that the scalar singlet sector is consistent only for a very small
value of κB=κA, see Eqs. (5.31) and (5.40). This is due to the
requirement of vacuum stability, which is not apparent in the
mass-gap equations (5.3). For example, this upper bound
implies that a value ξB ¼ 1=2, as illustrated in Fig. 11, is
actually not possible. This in turns sets a lower bound on ξA6,
in order to stay above the critical value, ξA6 þ ξB6 > 1, and to
obtain a nonzero value of MX. Let us now comment on
the dynamical relation between κB and the original anoma-
lous parameter AψX, given in Eq. (5.5), and which involves
MX and N. In the whole allowed range 1 < ξ <
ð1 − ln 2Þ−1 ≃ 3.25, even when MX ≃ Λ for large ξ, the
factor in square brackets in Eq. (5.5) is small in Λ3 units,
essentially because of the loop-suppression, 4MX

~A0ðM2
XÞ≃

ð4 − 8Þ × 10−3Λ3 (with moderate dependence on κB=κA
and N). This implies a strong suppression of the effective
coupling ξB due to the large power 6ðN − 1Þ in Eq. (5.5),
even for the minimal value N ¼ 2. Unfortunately, the
original Lagrangian parameter AψX originates from non-
perturbative dynamics that is not under control at the present
stage, so that its size is essentially arbitrary, see also the
discussion in subsection IV C after Eq. (4.28). Therefore, we
can just remark that, whatever the actual size of AψX, the
corresponding value of κB is strongly suppressed by the
dynamics. This may help to comply with the upper bound
from vacuum stability on κB=κA, which behaves as 1=N for
sufficiently largeN, as we shall discuss in Sec. V E, because
the effective coupling κB in Eq. (5.5) contains a power-N
suppression factor.

B. Masses of colored scalar resonances

The scalar and pseudoscalar resonances associated to
X-fermion bilinears transform under the flavor symmetry as
21SUð6Þ ¼ ð1þ 200ÞSOð6Þ. In analogy with the ψ-fermion

sector, we can define a matrix Mc in flavor space,

0 1 2 3 4

M

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 12. Comparison between the mass gap Mψ of the electro-
weak sector (black dotted line) and themass gapMX of the colored
sector for few representatives cases. When κA6 ¼ κA, mX ¼ 0 and
κB=κA ¼ 0, the two dynamical masses are equal, Mψ ¼ MX. To
illustrate the behavior ofMX with respect to the free parameters of
the theory (ξ, κB=κA, κA6=κA, mX and N) we illustrate small
departures from this particular case. The solid (dashed) red line
corresponds to κA6 ¼ 2ð1=2ÞκA with κB=κA ¼ 0, mX ¼ 0 and
N ¼ 4. In these cases, the critical coupling of the colored sector
is, respectively, smaller or larger than the one in the electroweak
sector (ξ ¼ 1). Next, the solid blue (green) line corresponds to
κA6 ¼ κA, N ¼ 4 with κB=κA ¼ 0 (κB=κA ¼ 0.1) andmX ¼ Λ=10
(mX ¼ 0). In the casewhere there is an explicit symmetry-breaking
mass mX , there is no critical coupling in the colored sector as the
lowest value of MX is simply mX. Finally note that MX is almost
independent of the number of hypercolor N.
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Mc ¼
1

2
MXΣc

0 þ ðσX þ iηXÞΣc
0T

0
X þ ðSF̂c þ iGF̂

c ÞΣc
0T

F̂;

ð5:13Þ
where the components σX (ηX) and SF̂c (GF̂

c ) are, respec-
tively, the SOð6Þ-singlet and twenty-plet (pseudo)scalars.
The relevant operators for the computation of the spin-zero
meson masses are those given in Eq. (5.2), plus the effective
four-fermions operators ψ4, X4 and ψ2X2, which are
induced by the anomalous Lagrangian of Eq. (4.34), after
spontaneous symmetry breaking,

Leff
ψX ¼ κB

2N
½ðψΣ0T0

ψψÞðψΣ0T0
ψψÞ

− ðψΣ0TÂψÞðψΣ0TÂψÞ þ H:c:�
þ κB6
ð2N þ 1ÞðN − 1Þ ½ð6N − 7ÞðXΣc

0T
0
XXÞðXΣc

0T
0
XXÞ

− ðXΣc
0T

F̂XÞðXΣc
0T

F̂XÞ þ H:c:�
þ κψX

2N
½ðψΣ0T0

ψψÞðXΣc
0T

0
XXÞ þ H:c:�; ð5:14Þ

where κB and κB6, defined in Eq. (5.5) and (5.6), respec-
tively, are the same couplings that appear in the gap
equations. Note the factor (6N − 7) that multiples κB6,
because here two X-fermion bilinears out of 6ðN − 1Þ are
not closed into a loop, which implies a combinatorial factor
6ðN − 1Þ½6ðN − 1Þ − 1�=2. The additional coupling κψX is
defined by

κψX ≡ AψX

27N−1

�
4Nψ

f hψψi2
ð2NÞ2

�1
2
�

4NX
f hXXi2

ð2N þ 1Þ2ðN − 1Þ2
�3ðN−1Þ−1

2

×
2 · 6ðN − 1Þ

ð2N þ 1ÞðN − 1Þ ¼
8
ffiffiffi
6

p
N

2N þ 1

Mψ

MX

~A0ðM2
ψ Þ

~A0ðM2
XÞ

κB;

ð5:15Þ
and it controls the mixing between the Spð4Þ and SOð6Þ
(pseudo)scalar singlets σψ (ηψ ) and σX (ηX), which will be
treated separately in Sec. V E. Note that all three effective
couplings vanish if hXXi ¼ 0. When hXXi ≠ 0 both κB6
and κψX are fully determined as a function of Mψ , MX and
κB. From Eqs. (5.2) and (5.14) one can derive the four-
fermion couplings for each physical channel,

KσXðηXÞ ¼ 2
½κA6 � ð6N − 7ÞκB6�
ð2N þ 1ÞðN − 1Þ ;

KScðGcÞ ¼ 2
½κA6 ∓ κB6�

ð2N þ 1ÞðN − 1Þ ; ð5:16Þ

For convenience, all the relevant four-fermion couplings for
the X-sector spin-zero and spin-one mesons are collected in
Table IV, together with the associated one-loop two-point
functions.
We now calculate the masses of the scalar and pseudo-

scalar nonsinglet resonances SF̂c and GF̂
c . As already

mentioned above, for the scalar and pseudoscalar singlet
σX and ηX, there is a mixing with the corresponding

TABLE IV. The four-fermion couplings Kϕ in the X sector, and the associated one-loop two-point functions ~ΠX
ϕðq2Þ. The latter are

related to the two-point functions of the ψ sector as follows: ~Πψ
ϕðq2Þ ¼ ~Πϕðq2;M2

ψ ; 2NÞ and ~ΠX
ϕðq2Þ ¼ ~Πϕ½q2;M2

X; ð2N þ 1ÞðN − 1Þ�,
where ~Πϕðq2;M2

ψ ; 2NÞ are defined in Table II. We also give the expression of the mixed (one-loop) pseudoscalar-longitudinal axial
correlator, as well as those of the couplings mixing the singlet scalars of the two sectors, σψ and σX , and the singlet pseudoscalars ηψ and

ηX . The explicit calculation of the correlators ~ΠX
ϕðq2Þ is detailed in Appendix C.

ϕ Kϕ ~ΠX
ϕðq2Þ

GF̂
c

2ðκA6þκB6Þ
ð2Nþ1ÞðN−1Þ

~ΠX
Pðq2Þ ¼ ð2N þ 1ÞðN − 1Þ½ ~A0ðM2

XÞ − q2

2
~B0ðq2;M2

XÞ�ηX 2½κA6−ð6N−7ÞκB6�
ð2Nþ1ÞðN−1Þ

ηψ − ηX
−κψX
ð2NÞ

SF̂c
2ðκA6−κB6Þ

ð2Nþ1ÞðN−1Þ
~ΠX
S ðq2Þ ¼ ð2N þ 1ÞðN − 1Þ½ ~A0ðM2

XÞ − 1
2
ðq2 − 4M2

XÞ ~B0ðq2;M2
XÞ�σX 2½κA6þð6N−7ÞκB6�

ð2Nþ1ÞðN−1Þ

σψ − σX
κψX
ð2NÞ

VμF
c

−2κD6

ð2Nþ1ÞðN−1Þ ~ΠX
Vðq2Þ ¼ 1

3
ð2N þ 1ÞðN − 1Þ½−2M2

X
~B0ð0;M2

XÞ þ ðq2 þ 2M2
XÞ ~B0ðq2;M2

XÞ�

AμF̂
c

−2κD6

ð2Nþ1ÞðN−1Þ ~ΠX
Aðq2Þ ¼ 1

3
ð2N þ 1ÞðN − 1Þ½−2M2

X
~B0ð0;M2

XÞ þ ðq2 − 4M2
XÞ ~B0ðq2;M2

XÞ�
aμX

−2κC6
ð2Nþ1ÞðN−1Þ ~ΠXL

A ðq2Þ ¼ −2ð2N þ 1ÞðN − 1ÞM2
X
~B0ðq2;M2

XÞ

AμF̂
c − GF̂

c ~ΠX
APðq2Þ ¼ −ð2N þ 1ÞðN − 1ÞMX

~B0ðq2;M2
XÞaμX − ηX
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resonances σψ and ηψ of the electroweak sector, so that the
whole singlet sector will be treated separately in Sec. V E.
Concerning the nonsinglet pNGB Gc, we should also

consider more generally a nontrivial pseudoscalar-axial
vector mixing for nonvanishing vectorial four-fermion
couplings, as we anticipate will be introduced below in
Sec. V C, in analogy with the electroweak sector discussed
in Sec. III E. With the additional explicit breaking mass
term mX of Eq. (5.1), the pseudoscalar axial-vector mixing
formalism of Sec. III E can easily be generalized with
explicitly mX-dependent resummed matrix correlator
Π̄Gc

ðmXÞ, the analogue of Eqs. (3.44) and (3.47) for the
colored sector. Note that all of the one-loop two-point
functions ~Πðq2;M2

XÞ≡ ~ΠX
ϕðq2Þ of the SUð6Þ sector can be

obtained from those in table II with the following replace-
ments: Mψ → MX and ð2NÞ → ð2N þ 1ÞðN − 1Þ (see
Appendix C for details). Accordingly the pNGB obviously
gets a nonzero mass, whose expression is obtained from the
zero of the determinant, analogous to (3.46) for the SUð4Þ
sector, as

DGc
¼ mX

MX
g−1Ac

þ 2ðκA6 þ κB6Þ ~B0ðp2;M2
XÞp2

≡ 2ðκA6 þ κB6Þ ~B0ðp2;M2
XÞðp2 −M2

Gc
Þ: ð5:17Þ

The calculation of the scalar SF̂c mass is simpler and
follows the same derivation as for the scalar mass of the
SUð4Þ sector. Thus we obtain

M2
Gc

¼ −
�
mX

MX

�
g−1Ac

ðM2
Gc
Þ

2ðκA6 þ κB6Þ ~B0ðM2
Gc
;M2

XÞ
;

M2
Sc
¼ 4M2

X −
8κB6 ~A0ðM2

XÞ þ mX
MX

2ðκA6 − κB6Þ ~B0ðM2
Sc
;M2

XÞ
: ð5:18Þ

where as before the pole masses are defined as M2
Gc

¼
M2

Gc
ðp2 ¼ M2

Gc
Þ. Accordingly, similarly toM2

η in Eq. (3.52),
when a nonvanishing colored sector vector coupling κD6 is
considered (see Sec. V C), the pseudoscalar Goldstone mass
M2

Gc
is renormalized by the (inverse) axial form factor

g−1Ac
ðp2 ≡M2

Gc
Þ≡ 1�2KAc

~ΠLX
A ðM2

Gc
Þ whereKAc

is defined
in Table IV.
Note that there is another source of explicit symmetry

breaking which may a priori lead to sizable contributions to
the masses. Indeed, when we switch on the SM gauge
interactions, new contributions to the masses of the colored
states arise. In the following, we will only consider the
gauge corrections to the masses of the pNGB states, since
the latter are the lightest resonances of the colored sector.
Therefore, those corrections are more relevant than e.g. for
the other scalar states. The gauge contributions to the
pNGB masses are given in general terms in Sec. II E and in
Appendix A 2 for the particular case of the SUð6Þ sector.

The pNGB GF̂
c decompose as an octet Oc ∼ 80 and two

sextet ðSc þ S̄cÞ ∼ ð64=3 þ 6̄−4=3Þ under SUð3Þc ×Uð1ÞD
[Uð1ÞD is the hypercharge component in the X sector, and
is also defined in Appendix A 2]. Consequently, there are
two sources of gauge contributions which lead to a mass
splitting between the octet and sextet components: one
from the gauging of QCD and one from the gauging of the
hypercharge. However, from Eq. (A14) one can see that the
QCD corrections are almost the same for the two compo-
nents as ΔM2

Oc
=ΔM2

Sc
jQCD ¼ 9=10. For simplicity we will

neglect this small difference. In addition, the contribution
coming from the gauging of Uð1ÞY is subdominant com-
pared to the one from QCD, and we will safely neglect it.
This is due to the small value of the ratio g0=gs at the energy
scale of a few TeVs we are interested in. Then the gauge
contributions mainly originate from QCD and to evaluate
the latter, we need to compute the integral in Eq. (A14)
within the NJL framework. To do that, we simply cut the
integral at Q2 ¼ Λ2, where Λ stands for the cutoff of the
NJL model, and FGc

is given by the expression

F2
Gc

¼ −2ð2N þ 1ÞðN − 1ÞM2
X
~B0ðM2

Gc
;M2

XÞgAc
ðM2

Gc
Þ;
ð5:19Þ

which can easily be inferred adapting Eqs. (3.41) and (3.39)
to the SUð6Þ sector. Note that, for simplicity, the massMGc

in the right-hand side is taken without gauge corrections.
The resulting radiative pNGB masses, obtained from
Eq. (A14), are illustrated in the left panel of Fig. 13, where
by definition M2

Gc
¼ ΔM2

Oc
, as mX ¼ 0. These numerical

results will be discussed in more details in Sec. V D. Let us
just mention that this gauge-induced mass could be
sufficient by itself to comply with the lower collider
bounds [91].

C. Masses of colored vector resonances

In order to calculate the masses of the vector and axial-
vector resonances present in the colored sector, we start
from the following vector-vector four-fermion operators

LX
vect ¼

κC6
ð2N þ 1ÞðN − 1Þ ðX̄T

0
Xσ̄

μXÞ2 þ κD6

ð2N þ 1ÞðN − 1Þ
× ½ðX̄TFσ̄μXÞ2 þ ðX̄TF̂σ̄μXÞ2�; ð5:20Þ

where as in the electroweak sector, due to the global SUð6Þ
symmetry, the four-fermions coupling κD6 of the vector
channel is the same as the axial nonsinglet channel. From
the above operators we obtain the vector and axial-vector
four-fermions couplings KVc

; KAc
and KaX (see table IV)

and we derive the masses of the vector VF
c and axial AF̂

c ; aX
resonances
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M2
Vc

¼ −
3

4κD6
~B0ðM2

Vc
;M2

XÞ
þ 2M2

X

~B0ð0;M2
XÞ

~B0ðM2
Vc
;M2

XÞ
− 2M2

X;

ð5:21Þ

M2
Ac

¼ −
3

4κD6
~B0ðM2

Ac
;M2

XÞ
þ 2M2

X

~B0ð0;M2
XÞ

~B0ðM2
Ac
;M2

XÞ
þ 4M2

X:

ð5:22Þ

Just like in the electroweak sector, if one neglects the p2

dependence of the ~B0 function, one obtains the usual NJL
relation between the axial and vector masses, that is
M2

Ac
≃M2

Vc
þ 6M2

X. The mass of the axial singlet aμc is
obtained by making the replacements Aμ

c → aμX and κD6 →
κC6 in Eq. (5.22). Note that we have not considered the
following operator

LψX
vect ¼

κVψX
ð2NÞ ðψ̄T

0
ψ σ̄

μψÞðX̄T0
Xσ̄μXÞ; ð5:23Þ

which induces a mixing between the axial singlets of the
two sectors, aμψ and aμX. This mixing term respects all
symmetries of the theory and should be present in general.
However, we neglected it as it is not generated by applying
a Fierz transformation to the Spð2NÞ current-current
operators in Eq. (D8).
Note also that, in principle, the spin one masses receive

SM gauge contributions as Vμ
c ∼ 15SOð6Þ ¼ ð1þ 8þ 3þ

3̄ÞSUð3Þc and Aμ
c ∼ 200SOð6Þ ¼ ð8þ 6þ 6̄ÞSUð3Þc . However,

following the discussion of Sec. V B for the scalar masses,
we will not consider such contributions here.

D. The mass spectrum of the colored resonances

In general the couplings of the four-fermion operators are
free parameters. However κA6 and κC6;D6maybe related ifwe
assume that the dynamics is induced by Spð2NÞ current-
current operators. In this case, as in the ψ sector, we find that
the scalar and vector four-fermion couplings are equal, see
Appendix D 4. However, we also find that the size of these
couplings relatively to the ones in the electroweak sector is
not fixed by the current-current approximation. The reason is
that, contrary to the case of theψ sector, theX-sector current-
current operator cannot be recast in terms of Spð2NÞ singlet-
singlet operators only; see Appendix D 4. Nonetheless, in
this section, for the sake of illustration, we will take equal
couplings in the two sectors

κA6 ¼ κC6 ¼ κD6 ¼ κA: ð5:24Þ

With this choice, as shown in Fig. 12, the range of validity of
the NJL approximation is approximatively the same in the
two sectors.
The resonance masses of the colored sector are illustrated

in Fig. 13. To ease the comparison with the electroweak
sector, the masses are in units of f ¼ ffiffiffi

2
p

FG ≳ 1 TeV, and
are plotted as functions of the coupling ξ defined by
Eq. (3.17). Note that in Sec. III F, for the SUð4Þ sector in
isolation, the only constraint from vacuum stability was
κB=κA < 1: here we anticipate a similar but stronger bound,
see Eqs. (5.31) and (5.40) below. Consequently the value of
κB=κA is fixed to 0.01 for illustration, which is safely below
this upper bound in the caseN ¼ 4. Then, if one assumes that
Eq. (5.24) holds, there is just one additional free parameter
compared to the SUð4Þ sector in isolation, namely the
explicit symmetry-breaking mass term mX. We illustrate
two representative cases: one with no explicit breaking,
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FIG. 13. The masses of the colored resonances in units of the Goldstone decay constant f ≡ ffiffiffi
2

p
fG, for N ¼ 4 (the masses scale as

1=
ffiffiffiffi
N

p
), as a function of the coupling ξ, for κB=κA ¼ 0.01, κA6 ¼ κA, mX ¼ 0 (left-hand panel) and mX ¼ f=10 (right-hand panel). We

displayed the full physical range for ξ, according to Fig. 3. Each curve is shaded when the corresponding pole mass develops a large,
unphysical imaginary part, jImgϕðM2

ϕÞ=RegϕðM2
ϕÞj > 1, as defined from Eq. (3.23). The dotted line is the cutoff of the constituent

fermion loops. The Goldstone mass MGc
include the radiative corrections as discussed in Sec. V B.
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mX ¼ 0, and another one with explicit symmetry breaking,
for which we take as a representative value mX ¼ 0.1f.
In the case with no explicit breaking (left panel of

Fig. 13), the behavior of the masses is qualitatively similar
to the SUð4Þ sector, except for the pNGBs Gc. This is due
to the relations between the couplings of the four-fermion
interactions: κA ¼ κA6 and κB ∼ κB6 ≪ κA. The pNGB of
the colored sector receive a significant contribution to their
masses from the gauging of the color group, as discussed in
Sec. V B. As it can be seen from Fig. 13, this contribution
satisfies ΔMGc

≳ 1.3f, which is enough to comply with the
present collider bounds, as long as f ≳ 1 TeV. Thus, we
conclude that it is actually possible to introduce top quark

partners without the need of an explicit mass term mX for
the colored fermions. On the other hand, if we want to raise
the mass of colored pNGBs, while keeping a low mass
scale of the theory, f ¼ 1 TeV, one needs to introduce a
nonzero mX, as illustrated in the right panel of Fig. 13 for
mX ¼ 0.1f. As all the colored masses receive a contribu-
tion from mX, for sufficiently large values of mX one could
even decouple the colored sector from the electroweak
sector.
Finally, we display here the masses of the color reso-

nances for the same parameters as in Eq. (3.54), N ¼ 4,
ξ ¼ 1.3 and ξ ¼ 2, fixing κB=κA ¼ 0.01 and for the two
representative values of mX:

ξ ¼ 1.3; mX ¼ 0∶ MAc
≃ 6.6 TeV; MVc

≃ 5.1 TeV; MSc ≃ 4.3 TeV; MGc
≃ 1.3 TeV;

ξ ¼ 1.3; mX ¼ 0.1 TeV∶ MAc
≃ 7.0 TeV; MVc

≃ 5.2 TeV; MSc ≃ 4.9 TeV; MGc
≃ 2.0 TeV: ð5:25Þ

ξ ¼ 2.0; mX ¼ 0∶ MAc
≃ 9.7 TeV; MVc

≃ 6.3 TeV; MSc ≃ 8.4 TeV; MGc
≃ 1.4 TeV;

ξ ¼ 2.0; mX ¼ 0.1 TeV∶ MAc
≃ 9.9 TeV; MVc

≃ 6.4 TeV; MSc ≃ 8.5 TeV; MGc
≃ 1.8 TeV: ð5:26Þ

E. Flavor-singlet sector

The ψ − X mixing in the (scalar and pseudoscalar)
singlet sector, induced by the Lagrangian (4.34), is most
conveniently treated in matrix formalism. Furthermore,
since our model includes nonvanishing singlet axial-vector
couplings both in the SUð4Þ and SUð6Þ sectors, we should
take into account the additional pseudoscalar-axial mixing,
similarly to the case of the SUð4Þ sector in isolation treated
in Sec. III E. Accordingly, we shall consider 2 × 2 and
4 × 4 matrix equations for the correlators in the scalar and
pseudoscalar sectors, respectively.

1. Scalar-singlet mixing

Let us start with the scalar sector and consider the
diagonal one-loop scalar-correlator matrix ΠσψσX and the
matrix of scalar couplings KσψσX ,

ΠσψσX ¼
� ~Πψ

S 0

0 ~ΠX
S

�
; KσψσX ¼

�
Kσψ KψX

KψX KσX

�
;

ð5:27Þ

where Kσψ , KσX and KψX ≡ κψX=ð2NÞ are collected in
Tables II and IV. Note that when KψX ¼ 0 (equivalently
AψX ¼ 0) there is no mixing between the singlets σψ and
σX. For simplicity, we have introduced the shorthand
notations ~Πψ

i ≡ ~Πiðp2;M2
ψÞ and ~ΠX

i ≡ ~Πiðp2;M2
XÞ for

the one-loop correlators. From the above matrices, one
can now define the resummed matrix correlator Π̄σψσX

Π̄σψσX ¼ ΠσψσX þΠσψσXð2KσψσXÞΠσψσX þ � � �
¼ ð1 − 2ΠσψσXKσψσXÞ−1ΠσψσX ; ð5:28Þ

and the resonance mass eigenvalues are obtained as the
roots of the equation detð1 − 2ΠσψσXKσψσXÞ ¼ 0, where

detð1 − 2ΠσψσXKσψσXÞ
¼ 1 − 2Kσψ

~Πψ
S − 2KσX

~ΠX
S þ 4ðKσψKσX − K2

ψXÞ ~Πψ
S
~ΠX
S

¼ cS0ðp2Þ þ cS1ðp2Þp2 þ cS2ðp2Þðp2Þ2: ð5:29Þ

The coefficients cSi ðp2Þ are functions of the couplings Ki,
and of the loop functions ~A0ðM2

ψ Þ, ~A0ðM2
XÞ, ~B0ðp2;M2

ψ Þ,
and ~B0ðp2;M2

XÞ. It is convenient to write the determinant as
if it were a quadratic form in p2, because the p2 dependence
of the coefficients cSi ðp2Þ, through the loop functions
~B0ðp2;M2

ψ ;XÞ, does not induce additional pole structure.
Then, the scalar-singlet pole masses are obtained as
the roots of this quadratic equation, evaluated at a self-
consistent value of p2,

M2
σ0;σ0

¼ Re½gσ0;σ0 ðM2
σ0;σ0

Þ�;

gσ0;σ0 ðp2Þ≡ −cS1ðp2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cS1ðp2Þ�2 − 4cS2ðp2ÞcS0ðp2Þ

q
2cS2ðp2Þ :

ð5:30Þ
The explicit expressions of the two scalar singlet masses
M2

σ0 ;M
2
σ0 are straightforwardly derived from the above
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equations, but are not very simple or telling, even in the
chiral limit mX ¼ 0, so that we refrain from giving them
here. In the numerical illustrations below we use these exact
expressions.
As we will examine quantitatively below, the lightest

scalar mass Mσ0 is a decreasing function of r≡ κB=κA, at
least as long as Mψ ;X ≪ Λ, and it can even vanish at a
critical value rc, becoming formally tachyonic beyond.
This critical value should, therefore, be considered as an
intrinsic upper bound, since for r ≥ rc the minimum of the
effective scalar potential is destabilized, that is, the solution
of the NJL mass-gap equations becomes unreliable. It is
clear that Mσ0 can only vanish if cS0ð0Þ ¼ 0 in Eq. (5.29)

(irrespective of the additional p2 dependence from the ~B0

functions). The latter condition determines rc as a function
of the parameters N, MX and Mψ , once one eliminates the
coupling κA6 using Eq. (5.3), as well as κB6 and κψX using
Eqs. (5.6) and (5.15). Then, in the chiral limit mX ¼ 0, the
condition cS0ð0Þ ¼ 0 takes the form

1þ 2

�
1þ f6

B6ð0Þ
A4

M2
X

M2
ψ

M2
X

2Nð3N − 4Þ
2N þ 1

�
r

þ
�
1 −

2f6
B6ð0Þ

A4

M2
X

M2
ψ

M2
X

2Nð3N − 2Þ
2N þ 1

−
6f6

B6ð0ÞB4ð0Þ
A2
4

M4
X

2NðN − 1Þ
2N þ 1

�
r2 ¼ 0; ð5:31Þ

where f6 ≡ 1þ 2B6ð0ÞM2
X=A6, and we are using the

shorthand notations A4 ≡ ~A0ðM2
ψÞ, A6 ≡ ~A0ðM2

XÞ, and
similarly for the functions B4;6ðp2Þ. The mass of σ0
vanishes as long as Eq. (5.31), that is quadratic in r, has
a real and positive root rc, whose value depends on the
dynamical massesMψ ;X and onN. For example, if one fixes
κA6 ¼ κA, one finds that ξ≲ 1.4–1.5 implies κB=κA ≤ rc ≪
1 already for N ¼ 2, and the upper bound becomes more
stringent proportionally to ∼1=N. FormX ¼ 0 and ξ ¼ 1.3,
one finds rc ≃ 0.103 for N ¼ 2, and rc ≃ 0.024 for N ¼ 4.
However, for larger values of ξ≳ 1.7–1.8, Eq. (5.31) has no
longer a real positive root, instead Mσ0ðξ; rÞ has a positive
minimum, at increasingly large values of r as ξ increases.
As we will see in the next subsection, there is another upper
bound on κB=κA, Eq. (5.40), originating from the pseudo-
scalar-singlet mixing, also related to vacuum stability.
Assuming again κA6 ¼ κA, one finds that for ξ≲ 1.4 the
bound from Eq. (5.40) has a numerical value very close to
the solution rc of Eq. (5.31), although its analytic form is
different. For larger values of ξ, the bound from Eq. (5.40)
is much more stringent and, therefore, supersedes the
condition r < rc. As we will examine in concrete illus-
trations below, these bounds put stringent restrictions on
the singlet mass spectrum. As further explained below
for the pseudoscalar case, these constraints should be

viewed as an appropriate generalization of the constraint
κB=κA < 1, that applies to the SUð4Þ sector in isolation.
Concerning the scalar decay constants, defined as in

Eq. (3.58) with the obvious replacement S → Sψ0 ; S
X
0 , they

can be derived by generalizing the procedure explained in
Sec. III G. They are defined by the residues of the diagonal
elements of Π̄σψσX at the respective pole masses,

ðGψ
σ0Þ2 ≡ − lim

p2→M2
σ0

ðp2 −M2
σ0ÞΠ̄11

σψσXðp2Þ;

ðGX
σ0Þ2 ≡ − lim

p2→M2
σ0

ðp2 −M2
σ0ÞΠ̄22

σψσXðp2Þ; ð5:32Þ

and analogously for σ0 → σ0. These decay constants
enter in the scalar sum rules in combination with
the other (pseudo)scalar decay constants. We refrain
here to give their explicit expressions, which are not
simple. The results obtained from Eq. (5.32) can be
crosschecked with the off-diagonal elements of Π̄σψσX , as

Gψ
σ0G

X
σ0 ¼ −limp2→M2

σ0
ðp2 −M2

σ0ÞΠ̄12
σψσXðp2Þ, and similarly

for σ0.

2. Pseudoscalar singlet mixing

Considering now the more involved pseudoscalar sector,
we start from the complete 4 × 4 matrix coupling and
correlator to account both for singlet mixing and pseudo-
scalar-axial singlet vectors aμψ ; a

μ
X mixing. The latter mix-

ing is treated similarly to the pseudoscalar axial-vector
mixing for the Goldstone boson sector as considered in
Sec. III E. Accordingly we have

Kηψ ηX ¼

0
BBB@

Kηψ −KψX 0 0

−KψX KηX 0 0

0 0 Ka 0

0 0 0 Kac

1
CCCA;

Πηψ ηX ¼

0
BBBBB@

~Πψ
P 0

ffiffiffiffiffi
p2

p
~Πψ
AP 0

0 ~ΠX
P 0

ffiffiffiffiffi
p2

p
~ΠX
APffiffiffiffiffi

p2
p

~Πψ
AP 0 ~ΠLψ

A 0

0
ffiffiffiffiffi
p2

p
~ΠX
AP 0 ~ΠLX

A

1
CCCCCA;

ð5:33Þ

where all the relevant pseudoscalar and axial-vector corre-
lators and couplings for the SUð4Þ and SUð6Þ sectors are
given, respectively, in Tables II and IV (and we have used in
Eq. (5.33) the same short-hand notation as in Sec. V E 1).
From the above matrices, we obtain the resummed two-
point correlator defined as

Π̄ηψηX ¼ ð1 − 2ΠηψηXKηψ ηXÞ−1ΠηψηX : ð5:34Þ
According to the previous equation, the pseudoscalar mass
eigenvalues are given by the zeros of the determinant of
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1 − 2Kηψ ηXΠηψηX , which we give explicitly only in the
chiral limit mX ¼ 0 for simplicity. Note that the latter
determinant keeps the form of a quadratic equation, apart
from further p2 dependence from the ~B0 function appearing
in the coefficients. After using the relevant relations,
Eqs. (5.5), (5.6) and (5.15), and the mass gap equa-
tions (5.3) in order to express all the effective four-fermion
couplings κi in terms of κB alone, we obtain

det½1 − 2KηψηXΠηψηXðp2Þ� ¼ p2½cP1 ðp2Þ þ p2cP2 ðp2Þ�;
ð5:35Þ

where in notations similar to the scalar case, we define the
relevant coefficients of the quadratic equation as

cP1 ðp2Þ¼ 4
κBA4

ð2Nþ1ÞA6M2
X
½12NðN−1ÞB4ðp2ÞM2

ψg−1ac ðp2Þ

þð2Nþ1ÞB6ðp2ÞM2
Xg

−1
a ðp2Þ�; ð5:36Þ

cP2 ðp2Þ ¼ −
B4ðp2ÞB6ðp2Þ
ð2N þ 1ÞA2

6M
2
X
½24NðN − 1ÞκBA4M2

ψ

− ð2N þ 1ÞðκA − κBÞA6M2
X�: ð5:37Þ

The appearance of the axial singlet form factors ga, gac is a
result of the mixing between the singlet pseudoscalar axial-
vector

g−1a ðp2Þ ¼ 1þ 4κC
2N

~ΠLψ
A ðp2Þ;

g−1ac ðp2Þ ¼ 1þ 4κC6
ð2N þ 1ÞðN − 1Þ

~ΠLX
A ðp2Þ: ð5:38Þ

The pseudoscalar analogue of the term cS0ðp2Þ in the
determinant of 1 − 2Kηψ ηXΠηψ ηX vanishes in the chiral limit
mX ¼ 0, as is explicit from Eq. (5.35), after nontrivial
cancellations using the gap equations (5.3), and Eqs. (5.5)
and (5.6), thereby exhibiting the remaining singlet
Goldstone boson associated with the nonanomalous com-
bination of Uð1Þψ and Uð1ÞX transformations. Obviously,
the other pseudoscalar singlet has a nonvanishing mass
even for mX ¼ 0, with a relatively compact expression,

M2
η0 ¼ Re½gη0 ðM2

η0 Þ� þOðmXÞ;

gη0 ðp2Þ≡ −
cP1 ðp2Þ
cP2 ðp2Þ : ð5:39Þ

Note that for sufficiently large N (but keeping in mind
N ≤ 18), M2

η0 is of order OðN0Þ, using that κB ≃ 1=N,
while the not-shown OðmXÞ term is of order 1=N. This is
naively compatible with the behavior of the anomaly, which
also goes like a constant for sufficiently large values of N,
see Eq. (4.2) (considering that g2HC ≃ 1=N).

An important, interesting feature of the whole model
emerges from the examination of Eq. (5.39): for any p2, the
function gη0 ðp2Þ has a pole at a particular value of κB=κA, as
follows from Eq. (5.37),

κB=κA
1 − κB=κA

¼ 1

24

2N þ 1

NðN − 1Þ
A6M2

X

A4M2
ψ
: ð5:40Þ

In other words, the η0 mass grows rapidly and decouples
when approaching from below the critical value of κB=κA
defined by Eq. (5.40). This is not unexpected, as it is simply
a generalization of a property already observed in the
SUð4Þ sector in isolation. In the latter case, recall that the
mass-gap equation (3.16) has solutions only for κ2B < κ2A, as
discussed after Eq. (3.17): as also explained in Ref. [8], and
apparent in Eqs. (3.12) and (3.13), for κB > κA the effective
potential is destabilized around the origin, already at tree
level and, although one could expect a spontaneous
symmetry breaking of some of the symmetries, one cannot
perform a proper minimization to determine the vacuum,
within the NJL framework. This feature is reflected also
directly in the resonance mass spectrum, where the η0 mass
(for the SUð4Þ sector in isolation) of Eq. (3.26) clearly has a
pole for κB ¼ κA and becomes tachyonic for large κB.
Now the critical value in the full model, determined by
Eq. (5.40), should be considered accordingly as an absolute
upper bound on κB=κA. It takes a more involved dynamical
form (depending also on the values of the mass gaps Mψ

and MX) precisely because the mixing, as induced by the
effective operators in Eq. (4.34), couples the two sectors,
mass gaps and couplings, in a nontrivial way and involves
N-dependent combinatorial factors. Note that, upon using
the relation (5.6), the critical coupling in (5.40) translates
into a simpler upper limit on κB6, approximately:

κB6
κA

<
1

6ðN − 1Þ
A4

A6

; ð5:41Þ

(upon neglecting higher order terms in κ2B6), in which the
combinatoric factor 6ðN − 1Þ can be understood upon
comparing with Eq. (5.14), so that Eq. (5.41) is a more
transparent analogue of the limit κB < κA in the SUð4Þ
sector in isolation (let aside the presence of the loop
functions A4=A6, that reflects the nontrivial dynamical
connection between the two sectors). The bottom line is
that Eq. (5.40) gives a tight upper bound on κB=κA, due in
particular to the small coefficient 1=24. To get an idea,
consider the chiral limit mX ¼ 0 and fix κA6 ¼ κA: as
discussed in Sec. VA, thenMX lies slightly aboveMψ , with
e.g. MX=Mψ ≃ 1.15 for N ¼ 2 and small κB=κA. Thus,
neglecting for simplicity the relatively small differences in
the ~A0 loop functions, Eq. (5.40) gives typically κB=κA <
5=48ðM2

X=M
2
ψÞ≃ 0.12 for N ¼ 2, and the latter ratio

decreases quite rapidly for larger N due to the ∼1=N
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behavior of Eq. (5.40), for instance κB=κA <
1=32ðM2

X=M
2
ψÞ≃ 0.04 for N ¼ 4.

More precisely, the physical upper bound on κB=κA is even
more stringent. As the “running”mass gη0 ðp2Þ grows rapidly
when approaching from below the limiting value of κB=κA
defined by Eq. (5.40), the corresponding pole-mass self-
consistent equation for M2

η0, given in Eq. (5.39), ceases to
have a solution for a slightly smaller value of κB=κA.
Moreover a large width develops much below this bound,
which turns out to rapidly exceed thepolemass.Accordingly,
the NJL description of the η0 mass looses its validity for even
smaller values of κB=κA. For a not too small mX ≠ 0, as
discussed above, MX can be substantially larger than Mψ ;
therefore, the bound in Eq. (5.40) is delayed to larger κB=κA.
Still, it remains quite constraining as long as mX remains
moderate with respect to Λ. A hierarchy among the mass
gaps, MX ≫ Mψ , can be also realized by taking κA6 > κA,
again relaxing the upper bound on κB=κA. In summary, the
detailed structure of the mixing sets the maximal allowed
value of κB=κA, with important consequences for the reso-
nance mass spectrum, as we will illustrate below.
For mX ≠ 0, the exact expressions of the two pseudo-

scalar singlet masses Mη0 ;Mη0 (used in our numerical
analysis) become rather involved: Eq. (5.35) is modified
to a “quadratic” polynomial equation in p2 (i.e. upon
formally neglecting the additional p2 dependence coming
from the loop functions, entering the polynomial coeffi-
cients). This is then more similar to the eigenvalue equation
of the scalar case above, see Eqs. (5.29) and (5.30), now
with coefficients cPi ðp2Þ which depends on mX, where the
coefficient of ðp2Þ0 takes the form

cP0 ¼ 8A4κB
mX

MX
g−1a g−1ac : ð5:42Þ

Indeed, the pNGB η0 mass is given to a very good
approximation by the first order expansion in cP0 , namely

M2
η0 ¼ −

cP0 ðM2
η0Þ

cP1 ðM2
η0Þ

; ð5:43Þ

which essentially captures its correct behavior as long as
κB=κA is moderate andmX ≪ Λ. For large values of N,M2

η0
is of order 1=N.
Once having determined the η0 and η0 masses, one can

proceed to extract all relevant pseudoscalar decay constants
from the pole mass residues of the matrix elements
Π̄ij

ηψηXðq2Þ (i; j ¼ 1;…; 4), where the resummed two-point
correlator Π̄ηψηXðq2Þ is defined in Eq. (5.34). The procedure
is similar to the one explained in Sec. III E for the simpler
nonsinglet case. More precisely, from the definitions of the

decay constants FψðXÞ
η0 , GψðXÞ

η0 in Eqs. (4.21) and (4.22), one
obtains in general for mX ≠ 0

lim
q2→M2

η0

ðq2 −M2
η0ÞΠ̄11ð22Þ

ηψηX ðq2Þ≡ −ðGψðXÞ
η0 Þ2;

lim
q2→M2

η0

ðq2 −M2
η0ÞΠ̄12;21

ηψηX ðq2Þ≡ −Gψ
η0G

ψ
η0 ; ð5:44Þ

lim
q2→M2

η0

ðq2 −M2
η0Þffiffiffiffiffi

p2
p Π̄13;31

ηψηX ðq2Þ≡ −
Gψ

η0F
ψ
η0

2
ffiffiffi
2

p ;

lim
q2→M2

η0

ðq2 −M2
η0Þffiffiffiffiffi

p2
p Π̄14;41

ηψηX ðq2Þ≡ −
Gψ

η0F
X
η0

2
ffiffiffi
3

p ;

lim
q2→M2

η0

ðq2 −M2
η0Þffiffiffiffiffi

p2
p Π̄23;32

ηψηX ðq2Þ≡ −
GX

η0F
ψ
η0

2
ffiffiffi
2

p ;

lim
q2→M2

η0

ðq2 −M2
η0Þffiffiffiffiffi

p2
p Π̄24

ηψηXðq2Þ≡ −
GX

η0F
X
η0

2
ffiffiffi
3

p ; ð5:45Þ

as well as

lim
q2→M2

η0

ðq2 −M2
η0Þ

q2
Π̄33

ηψηXðq2Þ≡ −
ðFψ

η0Þ2
8

;

lim
q2→M2

η0

ðq2 −M2
η0Þ

q2
Π̄44

ηψηXðq2Þ≡ −
ðFX

η0Þ2
12

;

lim
q2→M2

η0

ðq2 −M2
η0Þ

q2
Π̄34;43

ηψηX ðq2Þ≡ −
Fψ
η0F

X
η0

4
ffiffiffi
6

p ; ð5:46Þ

where the factors 2
ffiffiffi
2

p
and 2

ffiffiffi
3

p
take into account the

normalization of the Uð1Þψ and Uð1ÞX currents, respec-
tively. Similar expressions hold for the η0 with the obvious
replacement η0 → η0. Notice that the information on both
diagonal and nondiagonal terms allow to extract unambig-

uously the signs of GψðXÞ
η0ðη0Þ and F

ψðXÞ
η0ðη0Þ. In the chiral limit, the

pole of the η0 migrates from the longitudinal to the
transverse axial correlator. Consequently, in that case

one can not extract the decay constants FψðXÞ
η0 from

Eq. (5.46), but only from Eq. (5.45).
In the following, for reasons of simplicity, we present

analytical results only for the chiral limit mX ¼ 0. Let us
consider the resummed axial longitudinal correlators, given

by q2Π̄L
aψðXÞ ðq2Þ ¼ 8ð12ÞΠ̄33ð44Þ

ηψηX ðq2Þ and q2Π̄L
aψaXðq2Þ ¼

4
ffiffiffi
6

p
Π̄34;43

ηψηX ðq2Þ, see Eq. (5.46). One can check that the linear
combination corresponding to the conserved Uð1Þ current,
vanishes for any q2

Π̄L
0 ðq2Þ¼ 9ðN−1Þ2Π̄L

aψ ðq2Þ−6ðN−1ÞΠ̄L
aψaXðq2Þ

þ Π̄L
aXðq2Þ¼ 0; Π̄L

aψaX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Π̄L

aψ Π̄
L
aX

q
: ð5:47Þ

This is an important check, since the Uð1Þ current is
conserved, despite the nonzero mass gap spoiling the
Ward identity at the naive one-loop level. Then, once fully
resummed, there is no longitudinal part in the corresponding
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axial two-points function, generalizing, for the more
involved singlet sector, the results obtained in Sec. III E
for the simpler SUð4Þ sector in isolation with (Goldstone)
pseudoscalar-axial mixing. Coming now to the decay

constants defined from Eqs. (5.44) and (5.45), using the
gap equations (5.3) and the constraints among the effective
couplings in Eqs. (5.5), (5.6) and (5.15), and after some
algebra, one obtains (in the chiral limit)

ðGψ
η0Þ2 ¼

−12ð2NÞ2ðN − 1ÞA2
4M

2
ψg−1a ð0Þg−1ac ð0Þ

12NðN − 1ÞB4ð0ÞM2
ψg−1ac ð0Þ þ ð2N þ 1ÞB6ð0ÞM2

Xg
−1
a ð0Þ ; ðGX

η0Þ2 ¼
ð2N þ 1Þ2A2

6M
2
X

6ð2NÞ2A2
4M

2
ψ

ðGψ
η0Þ2; ð5:48Þ

ðFψ
η0Þ2 ¼

−96ð2NÞ2ðN − 1ÞB2
4ð0ÞM4

ψgað0Þg−1ac ð0Þ
12NðN − 1ÞB4ð0ÞM2

ψg−1ac ð0Þ þ ð2N þ 1ÞB6ð0ÞM2
Xg

−1
a ð0Þ ¼

~ΠLψ
A ð0Þgað0Þ

�
1 − 4κB

A4B6ð0Þg−1a ð0Þ
A6cP1 ð0Þ

�
; ð5:49Þ

ðFX
η0Þ2¼

−24ðN−1Þð2Nþ1Þ2B2
6ð0ÞM4

Xgað0Þ−1gacð0Þ
12NðN−1ÞB4ð0ÞM2

ψg−1ac ð0Þþð2Nþ1ÞB6ð0ÞM2
Xg

−1
a ð0Þ¼

~ΠLX
A ð0Þgacð0Þ

�
1−24κB

ð2NÞðN−1ÞB4ð0ÞA4M2
ψg−1ac ð0Þ

ð2Nþ1ÞA6M2
Xc

P
1 ð0Þ

�
:

ð5:50Þ

Notice from the second expressions of Eqs. (5.49) and
(5.50) that the naive expressions of these decay constants,
namely when the two sectors are in isolation, are, respec-
tively, recovered for MX → 0 (Mψ → 0) as intuitively
expected. One can compute in a similar way the decay
constants associated with the η0. We do not explicitly give
them because the η0 is not a pNGB and these expressions
are rather involved. The conserved Uð1Þ current J μ

0 of
Eq. (4.7) implies

Fη0;η0 ¼ FX
η0;η0

− 3ðN − 1ÞFψ
η0;η0

: ð5:51Þ

From Eqs. (5.49) and (5.50), we obtain the decay constant
of the η0 in the chiral limit

F2
η0 ¼ −24ðN − 1Þ½12NðN − 1ÞB4M2

ψgað0Þ
þ ð2N þ 1ÞB6M2

Xgacð0Þ� þOðmXÞ;
F2
η0 ¼ OðmXÞ: ð5:52Þ

As expected on general grounds (see Sec. IV B), Fη0 is
nonzero in the chiral limit, while Fη0 vanishes. Furthermore,
one can also check, after some algebra, that the generally
expected relations in Eq. (4.23) are indeed well satisfied (at
least up to terms of higher orders inmX) by our expressions
above, which is a very nontrivial crosscheck of the NJL
calculations. Likewise the general relations given in
Eq. (4.27) are also well satisfied, providing an additional
nontrivial crosscheck.
Actually, in the chiral limit the decay constants Fη0 for

the true Goldstone can be more directly calculated from the
resummed transverse axial correlator Π̄aψ ðq2Þ and Π̄aXðq2Þ
evaluated at q2 ¼ 0, in direct analogy with the nonsinglet
calculation of FG. From Eq. (3.39), one obtains

F2
η0 ≡ lim

q2→0
½−q2Π̄0ðq2Þ�

¼ − lim
q2→0

q2½9ðN − 1Þ2Π̄aψ ðq2Þ þ Π̄aXðq2Þ�; ð5:53Þ

where the second equality comes from Eq. (4.7), taking into
account that there is no mixing for the transverse contri-
butions, i.e. Π̄aψaXðq2Þ ¼ 0. The transverse resummed
correlators are simply given by expressions similar to
the one in Eq. (3.39): −q2Π̄aψ ðq2Þ ¼ 8 ~Πψ

Aðq2ÞgAðq2Þ and

−q2Π̄AX
ðq2Þ ¼ 12 ~ΠX

Aðq2ÞgAc
ðq2Þ. Thus using the expres-

sion of the one-loop functions ~ΠψðXÞ
A ð0Þ from Table II and

Table IV directly gives

F2
η0 ¼ 9ðN − 1Þ2½−16ð2NÞM2

ψ
~B0ð0;M2

ψ Þgað0Þ�
þ ½−24ð2N þ 1ÞðN − 1ÞM2

X
~B0ð0;M2

XÞgacð0Þ�;
ð5:54Þ

which is consistent with Eq. (5.52).

3. The mass spectrum of the singlet resonances

We now study the mass spectrum of the scalar and
pseudoscalar singlet resonances. Before turning to the more
involved case including the mixing between the resonances
from the electroweak and the colored sectors, let us
consider the instructive no-mixing case, where AψX ¼ 0
and consequently κB ¼ κB6 ¼ κψX ¼ 0. From Eq. (5.29) we
obtain for the scalar singlet masses

AψX ¼ 0∶M2
σ0 ¼ 4M2

ψ ¼M2
σψ ;

M2
σ0 ¼ 4M2

X −
mX

MX

1

2κA6B6ðM2
σ0 Þ

¼M2
σX ; ð5:55Þ

which of course reproduce the masses in isolation. As
discussed above, in our benchmark case where κA6 ¼ κA we
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have Mψ ≤ MX, so that in the no-mixing case we have
M2

σ0 ≤ M2
σ0 where the equality is valid for mX ¼ 0. In the

same way, from Eq. (5.35) we obtain for the pseudoscalar
masses

AψX ¼ 0∶ M2
η0 ¼ 0 ¼ M2

ηψ ;

M2
η0 ¼ −

mX

MX

g−1ac
2κA6B6

¼ M2
ηX : ð5:56Þ

Again, the latter expressions reproduce those in isolation,
and M2

η0 ≤ M2
η0 , where the equality is valid for mX ¼ 0.

Once we switch on the mixing, important new features
arise, as discussed above: in particular, the upper bound on
κB=κA from Eq. (5.40), and the corresponding rapid growth
of Mη0 when approaching from below the critical value of
κB=κA. This is illustrated in Fig. 14 for N ¼ 2 and N ¼ 4,
as usual assuming κA6 ¼ κA. Consequently, the η0 mass may
be of order f for κB=κA ≪ 0.01, but once κB=κA grows to
larger values, already well below the bound of Eq. (5.40), η0
decouples rapidly.
Another interesting feature is implicit in the η0 mass

expression Eq. (5.43): namely, Mη0 rapidly reaches an
asymptotic limit for moderate κB=κA values, for fixed N,

and this (approximate) maximum decreases as 1=N for
large N, as also illustrated in Fig. 14. More precisely, in the
approximation of neglecting the differences in momenta of
the loop functions, one obtains for large N values

M2
η0 ≃ −

A6

B6

1

3N
mX

MX

M2
X

M2
ψ
þOð1=N2Þ: ð5:57Þ

Of course η0 being a pNGB, M2
η0 vanishes linearly in mX.

This shows in addition that Mη0 is approximately κB=κA-
independent, once this ratio takes moderately large values,
as shown in Fig. 14. Its mass can be well below f, for
sufficiently large N and/or small mX.
The two scalar singlet masses are defined implicitly by

Eq. (5.30). The heaviest state σ0 always lies in the multi-
TeV range, as illustrated in Figs. 14 and 15. More
interestingly, as explained in Sec. V E 1, for ξ≲ 1.7–1.8
the lightest scalar mass Mσ0 is a decreasing function of
κB=κA and vanishes at a critical value given by the
(positive) root of Eq. (5.31). This critical value is different
from the one defined by Eq. (5.40), but for ξ≲ 1.4 it is
numerically very close to the latter, more precisely it lies
(slightly) below, for any N ≥ 2. This is illustrated in Fig. 14
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FIG. 14. Singlet scalar and pseudoscalar meson masses in units of f, for a fixed value of the couplings ξ ¼ 1.3 and κA ¼ κA6, as a
function of r≡ κB=κA, for N ¼ 2 (top) and N ¼ 4 (bottom), and for mX ¼ 0 (left) and mX ¼ f=10 (right). The Goldstone boson η0 is
massless in the chiral limit.
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for N ¼ 2 and N ¼ 4. Beyond the critical value of κB=κA,
σ0 becomes tachyonic and the effective scalar potential is
destabilized; therefore, Mσ0 can be very small just before
reaching the critical value of κB=κA. Recall, however, that
for ξ≳ 1.7, the solution Mσ0 ¼ 0 at positive κB=κA dis-
appears, being replaced by a minimum positive pass, that is
reached for an increasing value of κB=κA as ξ increases.
But, in this range for ξ, the bound from Eq. (5.40) is more
stringent, restricting κB=κA to be much smaller and, there-
fore, rendering nonphysical the behavior ofMσ0ðκB=κAÞ for
larger values of κB=κA.
Finally, we also illustrate in Fig. 15 the ξ dependence of

the scalar and pseudoscalar singlet masses, for represen-
tative values of N, and for κB=κA fixed safely below the
upper bound in Eq. (5.40). Notice that Mσ0 vanishes for a
sufficiently low value of ξ, where one saturates the
condition of Eq. (5.31), because the positive root of this
equation decreases with ξ. As a consequence, the whole
meson mass spectrum should not be trusted for ξ smaller
than this critical value, as the vacuum becomes unstable.
To conclude this section, let us briefly discuss the

η0 couplings to the SM gauge bosons. The collider
phenomenology of this singlet has already been discussed
in general in Ref. [92]. As mentioned at the end of Sec. II E,
in the chiral limit the anomalous coupling of a pseudo-
Goldstone boson to a pair of gauge bosons is fully
determined by the Wess-Zumino-Witten effective action.
While the SUð4Þ=Spð4Þ [SUð6Þ=SOð6Þ] pseudo-
Goldstone bosons may couple only to the electroweak
(color) gauge bosons, the η0 is specially interesting as it
couples to both, because it couples to both the ψ and
X-fermion number currents J 0

ψμ and J 0
Xμ. The two currents

have a Uð1ÞY anomaly, and J 0
ψμ [J 0

Xμ] has a SUð2ÞL
[SUð3Þc] anomaly as well. Then, specializing Eq. (2.37) to
our model, the η0 couplings to the SM gauge bosons take
the form

LWZW
eff;η0

¼ −
1

16π2
ð2NÞ½−3ðN − 1Þ�

×
η0
Fη0

ðg2Wiμν
~Wμν
i þ g02Bμν

~BμνÞ

−
1

16π2
ð2N þ 1ÞðN − 1Þ

×
η0
Fη0

�
2g2sGaμν

~Gμν
a þ 16

3
g02Bμν

~Bμν

�

¼ η0½k0γγe2Aμν
~Aμν þ k0ggg2sGaμν

~Gμν
a þ � � ��; ð5:58Þ

where the first (second) line is the contribution of the ψ (X)
fermion loops, and the dots stand for couplings involving
the Z or W field strengths. Here ~Fμν ≡ ϵμνρσFρσ=2 and the
coefficients k0γγ;gg are straightforwardly computed using
Bμν ⊃ cwAμν, W3μν ⊃ swAμν, and e ¼ gsw ¼ g0cw, and
similarly for couplings involving the Z orW field strengths.
The decay widths into massless gauge bosons are

Γðη0 → γγÞ ¼ 4πα2emM3
η0ðk0γγÞ2;

Γðη0 → ggÞ ¼ 32πα2sM3
η0ðk0ggÞ2: ð5:59Þ

Note that these rates are determined only by group theory
factors, up to the decay constant Fη0 . The latter can be
computed in the NJL approximation, and the result is given
in Eq. (5.52). Thus, the golden channel for the discovery of
η0 at the LHC is production via gluon-gluon fusion and
decay into two gauge bosons: di-jet, di-photon, γZ, ZZ and
WW final states. We recall that the mass of η0 is induced by
the explicit breaking of the anomaly-free Uð1Þ symmetry:
this is due either to an explicit mass term for the constituent
fermions, mX ≠ 0, or to the proto-Yukawa couplings of the
SM fermions to the composite sector, that we do not specify
in this paper. Our NJL result forMη0 is given in Eqs. (5.43),
(5.57). The corrections to Eq. (5.58), that strictly holds in
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FIG. 15. Singlet scalar and pseudoscalar meson masses in units of f, as a function of ξ for N ¼ 4, κA ¼ κA6, κB=κA ¼ 0.01, mX ¼ 0
(left panel) and mX ¼ f=10 (right panel). The Goldstone boson η0 is massless in the chiral limit.
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the chiral limit, are expected to be subleading, as long as η0
is significantly lighter than the non-Goldstone resonances.
Note that the ratio Γðη0→ggÞ=Γðη0→γγÞ¼18ð2Nþ1Þ2=
ðN−4Þ2 ·α2s=α2em is independent from Fη0 and Mη0 , and is
larger than 2 × 104 for any N. Thus a discovery appears
more likely in the di-jet channel. Indeed, the alleged di-
photon resonance at 750 GeV could not be fitted by η0,
because the gluons-to-photons ratio is too large [93].

F. Comments on spectral sum rules

In this section, we comment on the spectral sum rules
when both the electroweak and the colored sectors are
included. We will not enter in the details here but rather
focus on themain differences as compared to the electroweak
sector in isolation. The latter has been extensively discussed
in Sec. III G. A few modifications are worth noticing. While
in the electroweak sector the sum rule involvingΠψ

S−Pðq2Þ is
not expected to hold (see footnote 3), in the colored sector
ΠX

S−Pðq2Þ is an order parameter; therefore, the first sum rule
in Eq. (2.14) is operative as well. On the other hand, the
presence of an explicit symmery-breaking mass term
mX ≠ 0 spoils the convergence of the integrals in
Eqs. (2.13) and (2.14), so that one can only write the
convergent sum rule of Eq. (2.19). Therefore, the saturation
of the colored-sector sum rules is expected to worsen asmX
increases. Recall that the NJL approximation already
implies large departures from the sum rules as shown,
for the electroweak sector, in Figs. 7 and 8.
Another qualitative difference is induced by the interplay

between the two sectors. Indeed, the mixings, defined by
Eqs. (5.28) and (5.34), between the (pseudo)scalar singlets
of the two sectors modify the two-point (pseudo)scalar
singlet correlators as compared to their expressions when
considered in isolation. As a consequence, the singlet two-
point correlators develop two poles, corresponding to the
σ0 and σ0 (η0 and η0) in the (pseudo)scalar case. Let us
assume that mX ¼ 0 and take the example of the order

parameters ΠψðXÞ
S0−P0ðq2Þ, which involves only the singlets

densities S0ψ ;X and P0
ψ ;X. The corresponding sum rules are

then given by

Z
dt ImΠ̄ψðXÞ

S0−P0
ðtÞ≡

Z
dt½ImΠ̄11ð22Þ

σψσX ðtÞ− ImΠ̄11ð22Þ
ηψηX ðtÞ� ¼ 0

¼ðGψðXÞ
σ0 Þ2þðGψðXÞ

σ0 Þ2

− ðGψðXÞ
η0 Þ2− ðGψðXÞ

η0 Þ2¼ 0; ð5:60Þ

where the second line has been obtained by assuming the
saturation, in the narrow-width approximation, of the
correlators by the first light resonances. The expressions

of the scalar decay constants GψðXÞ
i can be obtained from

Secs. V E 1 and V E 2.

When the two sectors are present, an additional Uð1Þ
symmetry is also preserved, and leads to two additional
sum rules (see Sec. IV B). For simplicity, in the sequel we
focus only on the scalar sum rule, in order to avoid the
complications coming from the pseudoscalar-axial mixing.
The corresponding sum rule takes the following formZ

dt ImΠ̄ψX
S0

≡
Z

dt ImΠ̄12
σψσXðtÞ ¼ Gψ

σ0G
X
σ0 − Gψ

σ0G
X
σ0 ¼ 0;

ð5:61Þ

where in the last equality the saturation of the correlator by
the first light resonances has been assumed. Let us focus on
this sum rule, as all the new features induced by the
interplay between the two sectors are contained in the
correlator Π̄ψX

S0
ðq2Þ. First, one clearly sees the two poles

associated to σ0 and σ0 in the spectral density, which is
displayed in Fig. 16 for different values of ξ and N ¼ 4.
Increasing the value of ξ, the two poles become closer and
closer in agreement with Fig. 15. In principle there are two
distinct thresholds above which the loops involving the
fermions ψ or X develop an imaginary part. However, as the
mixing parameter κB=κA is small, these two thresholds are
very close (see Fig. 12) and one can consider in a good
approximation only one threshold located around
4M2

ψ ≃ 4M2
X. While in the spectral density the second

pole associated to the σ0 remains always close to this
threshold, one sees that the σ0 pole moves continuously
from p2 ≃ 4M2

ψ (for large values of ξ) down to p2 ¼ 0 (for
ξ≃ 1.15) when the σ0 becomes massless (see Fig. 15).
From Eq. (5.61), one also sees that the residues of the two
poles in the spectral density should have an opposite sign in
order to respect the sum rule. This is in agreement with the
left panel of Fig. 16. As the scalar singlets are narrow and
the continuum part of the spectral density is small, one
expects the sum rule of Eq. (5.61) to be well respected by
the NJL approximation and the saturation by the first light
resonances to be a good approximation.18

The saturation of the sum rule (5.61) is illustrated in the
right panel of Fig. 16. We plot the absolute value of the ratio
of integrals

R t0
0 dt ImΠψX

S0
ðtÞ= R∞t0 dt ImΠψX

S0
ðtÞ, as a func-

tion of ξ and for two different values of the number of
hypercolors, N ¼ 4 and N ¼ 2. In the true theory, this ratio
is predicted to be one regardless of the value of the
parameter t0. In our NJL approximation of the strong
dynamics, the result of the integration may depend on the
value of t0, that we conventionally choose as the value of t
where the spectral density vanishes. In this way, one
compares the positive and negative parts of the spectral
densities, in the same spirit as for the saturation of the sum

18Note that in the electroweak sector in isolation, the con-
tinuum of the scalar singlet density is also small and the pole is
narrow. However, there is no sum rule involving only scalar
singlets, so that the above argument does not apply.
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rule with the two lightest resonances. To illustrate the latter,
we plot the absolute value of the ratio ðGψ

σ0G
X
σ0Þ=ðGψ

σ0G
X
σ0 Þ,

that is obtained in the same way as in Sec. III G, but the
explicit expression is more involved due to the mixing and
we refrain from giving it here. Below the critical value ξ≃
1.15 (ξ≃ 1.04) for N ¼ 4 (N ¼ 2), this ratios becomes
meaningless, as the σ0 pole disappears from the spectral
density, such that a large departure from one is observed. In
summary, the right panel of Fig. 16 shows that the ratio of
integrals (of decay constants) is smaller (larger) than one,
but this departure from the sum-rule prediction is reason-
ably small as long as ξ is well above the instability region
(see Sec. III G for a detailed discussion of the limitations of
the NJL approximation with regard to the sum rules).

VI. CONCLUSION

The general idea of a composite, Nambu-Goldstone
Higgs particle provides a very attractive framework for
the EWSB. We considered an asymptotically-free gauge
theory confining at the multi-TeV scale and that has the
potential to provide a self-consistent, ultraviolet-complete
framework to study the composite Higgs phenomenology.
The minimal model features four flavors of constituent

fermions ψa, which condense as the hypercolor interaction
becomes strong. The first, remarkable result is that,
unavoidably, the corresponding SUð4Þ flavor symmetry
breaks spontaneously to Spð4Þ, as required in order to
generate a NGB Higgs. This follows from general results
on vectorlike gauge theories, reviewed in Secs. II A–II B.
Furthermore, such a dynamical symmetry breaking is

successfully described by a four-fermion operator, à la
NJL: when the four-fermion coupling exceeds a critical
value, a nonzero mass gap develops, as shown in Sec. III A.
The meson resonances are described by two-point corre-
lators of fermion bilinears. The meson spins (zero or one)
and their representations under the flavor group are
determined by the quantum numbers of the associated
hypercolor-singlet fermion bilinears. Following the stan-
dard NJL approach, we computed all the relevant two-point
correlators, resummed at leading order in the number of
hypercolors N: the meson mass is determined by the
correlator pole, while the residue at the pole fixes the
meson decay constant. In Sec. III E, we have shown that
the NGB decay constant f is almost 10 times smaller than
the cutoff of the constituent fermion loops; therefore,
our effective theory is well under control up to meson
masses of order ∼10f. Recall that electroweak precision
measurements require f ≳ 1 TeV and that fine-tuning
in the composite Higgs potential is proportional to the
ratio v2=f2. In order to correlate the various meson
masses, we made the hypothesis that the hypercolor
dynamics is dominated by current-current interactions,
see Appendix D 1, and we used Fierz transformations to
relate the different four-fermion operators. In particular, in
Sec. D 4, we derived some Spð2NÞ Fierz identities which,
to the best of our knowledge, are not available elsewhere in
the literature.
In Sec. III F, we illustrated our results for the mass

spectrum of electroweak mesons: for a reasonably small
number of hypercolors, say 2N ≲ 10, the spin-one mesons
are always heavier than 5f, while the spin-zero mesons can
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FIG. 16. Left panel: The spectral function ImΠψX
S0

ðtÞ as a function of t=ð2Mψ Þ2 for three values ξ ¼ 1.15 (solid green line), ξ ¼ 1.3
(dashed blue line) and ξ ¼ 2 (solid red line). The other parameters are fixed to N ¼ 4, κA6=κA ¼ 1, κB=κA ¼ 0.01 and mX ¼ 0. One
clearly sees the two poles, associated with the σ0 and σ0 scalar singlets, which become closer and closer as ξ increases. In the opposite
limit where ξ decreases, the σ0 becomes lighter and lighter up to be massless for ξ≃ 1.15while the σ0 always stays close to the threshold
4M2

ψ ≃ 4M2
X. The residues of the poles have an opposite sign in agreement with the expectation from the associated sum rule. Right

panel: The absolute value of the ratio of the integral
R t0
0 dtImΠψX

S0
ðtÞ= R∞t0 dtImΠψX

S0
ðtÞ (lower blue lines) as a function of ξ for two values

of the number of hypercolors N ¼ 4 (solid line) and N ¼ 2 (dashed line). As explained in the text, t0 is the value above which the
spectral density becomes negative. Also shown is the absolute value of the ratio ðGψ

σ0G
X
σ0Þ=ðGψ

σ0G
X
σ0 Þ (upper red solid and dashed lines).

The other parameters are fixed to κA6=κA ¼ 1, κB=κA ¼ 0.01 and mX ¼ 0.
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be as light as f, and therefore accessible at the LHC, in the
following special cases. The singlet scalar mass Mσ

vanishes when the four-fermion coupling approaches its
critical value, that is, when the condensate vanishes. The
singlet pseudoscalar mass Mη0 is induced by the axial
anomaly: the anomalous contribution is expected to scale as
M2

η0 ∼ 1=N, but we did not attempt to quantify its absolute
size. Therefore, we cannot exclude a very light value for
Mη0 . Note that these results for σ and η0 hold for the
electroweak sector in isolation: the effects of the mixing
with the singlets of the color sector are summarized below.
The nonsinglet scalar S can also be light if both σ and η0 are,
as M2

S ≃M2
σ þM2

η0 . In addition, one should keep in mind
that the set of NGB is formed by the Higgs doublet plus a
SM singlet η; their masses arise only from SM loops, which
we did not study here, and are expected to lie at or below
the scale f. In Sec. III G, we performed an important test of
the accuracy of our methods, by comparing our results with
spectral sum rules, that have to be satisfied by the exact
two-point correlators. We thus identified the values of the
four-fermion coupling that best reproduce the sum rules.
Conversely, our results in the effective NJL approximation
depart significantly from the sum rules, when the con-
tinuum part of the spectral function becomes sizable. We
also compared our results with available lattice simulations
for N ¼ 1, finding a fair agreement within the large error
bars, with a preference for certain values of the four-
fermion couplings; however our methods are expected to be
more accurate when N is large. In Sec. III H, we estimated
the contribution of the composite sector to the oblique
parameter S, demonstrating that it is under control.
In order to provide composite partners for the top quark,

one needs to introduce additional constituent fermionsXf, in
a different hypercolor representation, such that fermion-
trilinear baryons can be formed, with the quantum numbers
of the top quark. A gauge theory with fermions in two
different representations presents qualitatively new features,
such as one nonanomalous Uð1Þ flavor symmetry, with an
associated Nambu-Goldstone meson η0. In Sec. IV B, we
showed that this implies two additional sum rules, as well as
amixing between the singlet scalars andpseudoscalars of the
two sectors. In addition, the axial anomaly should only
generate operators that respect the nonanomalous Uð1Þ
symmetry. As a consequence, we demonstrated in
Sec. IV C that the effect of the anomaly is described
by an operator of very large dimension, involving 4þ
12ðN − 1Þ fermions. Our analysis of this operator correctly
takes into account all the symmetries of the model, and thus
provides fully coherent results, and its large dimension may
indicate that the effects of the anomaly are suppressed in
such a scenario. On the other hand, we cannot exclude that
such suppression is an artifact of our approximation of the
true dynamics, in terms of fermionic operators only.
The dynamics of spontaneous flavor symmetry breaking

also complicates in the presence of two sectors. Our

analysis of anomaly matching in Sec. IVA shows that the
condensate hψψi necessarily forms, with the possible excep-
tion of the case when N is a multiple of 8. However the
condensate hXXi may not form in the presence of light,
colored baryons. Indeed, in Sec. VA, we showed that the
system of two coupledmass-gap equations is very sensitive to
the relative size of four-fermion couplings in the two sectors.
As the NJL techniques can provide information on the
spectrum of colored mesons only in the case of a non-
vanishing mass gap, we focused on the region of parameters
where a nonzero hXXidevelops aswell. Let us remark that the
solution of the gap equations corresponds to a stable mini-
mumof the effective potential only for some rangeof the four-
fermion couplings, and of course meson masses are under
control only within this range. In the present case, it turns out
that the potential is stable (no tachyons) as long as the
operators induced by the axial anomaly are suppressed with
respect to the others, by a factor of ten to one hundred, as
described in Sec. V E. Therefore, we concentrated on the
mass spectrum in this region of parameters.
We computed the masses of colored mesons with the

same techniques described for the electroweak sector. The
results are illustrated in Sec. V D. Once again, spin-one
mesons are extremely heavy, above ∼5f. The situation is
much more interesting for the colored NGBs Gc, organ-
ized as a real QCD octet and a complex sextet, which are
massless in the chiral limit. We computed the contribution
to their masses from gluon loops, and we found
MGc

≳ 1.5f, as long as 2N ≲ 10. This may be sufficiently
large to comply with present collider searches. Therefore,
contrary to common lore, it is not strictly necessary to
introduce an explicit mass term mXXX. Nonetheless, we
studied also the case mX ≠ 0, as some qualitative features
of the mass gap and of the meson spectrum are very
sensitive to this parameter. In particular, the singlet
pseudoscalar η0 is an exact NGB in the chiral limit;
therefore, its mass is controlled by the size of mX (and by
the size of the couplings to external SM fermions), as
discussed in Sec. V E. A prominent opportunity for the
discovery of composite NGBs at the LHC is offered by
their anomalous couplings to two SM gauge bosons,
determined by the Wess-Zumino-Witten term. We pro-
vided the general formula for these couplings, and we
specifically discussed the phenomenological consequences
for the η0 state. The mass of the other singlet pseudoscalar
η0 is extremely sensitive to the effective anomaly coef-
ficient: one may have Mη0 ≲ f for κB=κA ≪ 0.01, but as
soon as κB=κA ∼ 0.1 this state decouples, Mη0 ≳ 10f.
Finally, the heaviest singlet scalar σ0 always lies in the
multi-TeV range, while the lightest singlet scalar σ0 may
be as light as f. Indeed, we already remarked that the
vacuum provided by the mass-gap equations is stable only
within specific ranges of the effective four-fermion cou-
plings. Whenever the latter are close to the boundary of
the stability region, Mσ0 vanishes. In Sec. V F, we

NONPERTURBATIVE ANALYSIS OF THE SPECTRUM OF … PHYSICAL REVIEW D 95, 075006 (2017)

075006-49



commented on the spectral sum rules in the presence of
two sectors, illustrating in particular the interplay among
the singlet spectral functions.
We presented the first thorough analysis of the spectrum

of meson resonances, in a confining gauge theory with
fermions in two different representations of the gauge
group. The main limitation of this study is the absence
of interactions with external fermion fields. The interest of
such interactions is twofold: to generate Yukawa couplings
between the composite Higgs and the SM fermions, and to
induce radiatively a Higgs potential that realizes EWSB.
As a matter of fact, the colored sector of the model is
engineered to contain fermion-trilinear bound states, which
may mix linearly with the SM fermions. The mass spectrum
of these baryons and their couplings to the mesons can be
computed by generalizing the techniques used in this paper.
Indeed, in the QCD literature, several analytical predictions
for the masses and couplings of baryons are consistent with
experiments and with lattice simulations. Thus, one may
predict the properties of composite top quark partners that
reside in definite representations of the flavor group, and
then compute the Higgs effective potential induced by the
top sector loops. Such a theory has a lesser number of free
parameters than a generic composite Higgs model with no
specific ultraviolet completion; therefore, the challenge will
be to reproduce the Higgs mass with a minimal amount of
fine tuning of the parameters. We aim to study the fermion
bound states of the theory in a separate publication [94].
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APPENDIX A: GENERATORS OF THE FLAVOR
GROUP AND EMBEDDING OF THE SM GROUP

In this appendix, we give explicit representations for the
generators of the flavor groups SUð4Þ and SUð6Þ and
describe how the SM gauge fields are coupled to the
elementary fermion fields. There are general procedures to
construct a basis of the Gell-Mann type for any SUðnÞ
group, starting from the well-known representations of the
generators for the cases n ¼ 2 and n ¼ 3, see for instance
[95]. The relations in Eq. (2.2) allow to distinguish the
generators TA for the unbroken subgroups, Spð4Þ and
SOð6Þ, from the generators TÂ in the corresponding coset
spaces. For n ¼ 2Nf flavors, choosing the 2Nf × 2Nf

matrix Σε in the form

Σε ¼
�

0 1

ε1 0

�
; ðA1Þ

the general solution of Eq. (2.2) can be expressed as [31]

TA ¼
�

AA BA

BA† −ðAAÞT
�
; TÂ ¼

�
CÂ DÂ

DÂ† þðCÂÞT
�
;

ðA2Þ

where the Nf × Nf submatrices AA and CÂ are Hermitian,

with CÂ traceless, whereas ðBAÞT ¼ −εBA and ðDÂÞT ¼
þεDÂ.

1. The SUð4Þ sector
According to the preceding discussion, the 15 SUð4Þ

generators can be chosen as follows. The 10 generators of
the subgroup Spð4Þ read

T1;2;3;4 ¼ 1

2
ffiffiffi
2

p
�
σ1;2;3;0 0

0 −σT1;2;3;0

�
;

T5;6;7 ¼ 1

2
ffiffiffi
2

p
�

0 σ1;3;0

σ1;3;0 0

�
;

T8;9;10 ¼ 1

2
ffiffiffi
2

p
�

0 iσ1;3;0
−iσ1;3;0 0

�
; ðA3Þ

where σi, i ¼ 1, 2, 3 denote the Pauli matrices while σ0
stands for the 2 × 2 unit matrix. The corresponding coset
SUð4Þ=Spð4Þ is then generated by the 5 matrices

T 1̂;2̂;3̂ ¼ 1

2
ffiffiffi
2

p
�
σ1;2;3 0

0 σT1;2;3

�
;

T 4̂ ¼ 1

2
ffiffiffi
2

p
�

0 σ2

σ2 0

�
;

T 5̂ ¼ 1

2
ffiffiffi
2

p
�

0 iσ2
−iσ2 0

�
: ðA4Þ

The set of generators

T1;2;3
L;R ¼ T7 ∓ T6ffiffiffi

2
p ; −

T10 ∓ T9ffiffiffi
2

p ;
T4 ∓ T3ffiffiffi

2
p ðA5Þ

constitute a SUð2ÞL × SUð2ÞR subalgebra of Spð4Þ, and
provide the generators for the electroweak interaction
and the custodial symmetry.With this convention, amultiplet
ψa in the fundamental ofSUð4Þ and ofSpð4Þ decomposes as
ðψ1ψ3ÞT ∼ ð1L; 2RÞ and ðψ2ψ4ÞT ∼ ð2L; 1RÞ. The generator
T 3̂ is associated with a NGB singlet under SUð2ÞL×
SUð2ÞR, whereas the remaining four generators of the
SUð4Þ=Spð4Þ coset correspond to the Higgs bidoublet H,
transforming as ð2L; 2RÞ. Under the diagonal SUð2ÞV
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subgroup, generated by Ta
L þ Ta

R, the generators T
2̂, T 4̂, T 5̂

transform as a triplet, and T 1̂ as a singlet.
The external electroweak gauge fieldsW1;2;3

μ and Bμ will
then couple to the ψ fermions through the combination

−iVμ ≡ −igðW1
μT1

L þW2
μT2

L þW3
μT3

LÞ − ig0BμT3
R: ðA6Þ

According to Eq. (2.28), the masses of the NGBs that are
radiatively induced by the gauging are given by

ΔM2
H ¼ ΔM2

1̂;2̂;4̂;5̂

¼ −
3

4π
×

1

F2
G

Z
∞

0

dQ2Q2Πψ
V−Að−Q2Þ

×
1

16π
ð3g2 þ g02Þ;

ΔM2
3̂
¼ 0: ðA7Þ

Of course, this positive contribution to the Higgs doublet
mass should be overcome by a negative one from the top
quark couplings, in order to trigger EWSB.
One can estimate quantitatively ΔM2

H from the
explicit form of the correlator Πψ

V−Að−Q2Þ as computed
in the NJL approximation. If one assumes further that
the lightest resonances saturate in good approximation
the correlator (see Sec. III G), the integrand takes the
simplified form

−Q2Π̄ψ
V−Að−Q2Þ≃F2

Gþf2AM
2
A

Q2

Q2þM2
A
−f2VM

2
V

Q2

Q2þM2
V
;

ðA8Þ

where the expressions of the resonance masses and
decay constants are explicitly given Secs. III D, III E
and III G. Integrating Eq. (A8) over Q2 up to the NJL
cutoff Λ2, one obtains

−
Z

Λ2

0

dQ2Q2Π̄ψ
V−Að−Q2Þ

≃ ðF2
G þ f2AM

2
A − f2VM

2
VÞΛ2 þ f2VM

4
V ln

Λ2 þM2
V

M2
V

− f2AM
4
A ln

Λ2 þM2
A

M2
A

: ðA9Þ

Assuming that the Weinberg sum rules (3.59) hold, the
first term proportional to Λ2 vanishes while the remain-
ing terms simplify and lead to

ΔM2
H ≃ 3

64π2
1

F2
G
ð3g2 þ g02Þf2VM4

V ln
M2

A

M2
V
: ðA10Þ

This estimation of ΔM2
H is of course relevant only if the

V − A correlator is well saturated by the lightest
resonances and the Weinberg sum rules hold.

2. The SUð6Þ sector
We decompose the 35 SUð6Þ generators according to the

SOð6Þ subgroup and the coset SUð6Þ=SOð6Þ. We denote
by λa, a ¼ 1; 2;…8, the SUð3Þ Gell-Mann matrices, and
we also define λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
diagð1; 1; 1Þ. A convenient basis

for the 15 unbroken generators is given by

T1;…;8;9 ¼ 1

2
ffiffiffi
2

p
�
λ1;…;8;0 0

0 −λT1;…;8;0

�
;

T10;11;12 ¼ 1

2
ffiffiffi
2

p
�

0 λ2;5;7

λ2;5;7 0

�
;

T13;14;15 ¼ 1

2
ffiffiffi
2

p
�

0 iλ2;5;7
−iλ2;5;7 0

�
: ðA11Þ

The eight generators T1;…;8 together with T9 form a
SUð3ÞC ×Uð1ÞD maximal subalgebra, that can accommo-
date the strong interaction gauge group, as well as a part of
the hypercharge gauge group Uð1ÞY , with Y ¼ T3

R þD,
where T3

R is defined in Eq. (A5) and D ¼ ð4= ffiffiffi
3

p Þ · T9. The
20 broken generators read

T 1̂;…;8̂ ¼ 1

2
ffiffiffi
2

p
�
λ1;…;8 0

0 λT1;…;8

�
;

T 9̂;…;1̂4 ¼ 1

2
ffiffiffi
2

p
�

0 λ1;3;4;6;8;0

λ1;3;4;6;8;0 0

�
;

T 1̂5;…;2̂0 ¼ 1

2
ffiffiffi
2

p
�

0 iλ1;3;4;6;8;0
−iλ1;3;4;6;8;0 0

�
: ðA12Þ

The generators T 1̂;…;8̂ are associated to the NGBs multiplet
Oc ∼ 80 under SUð3ÞC ×Uð1ÞD, while T 9̂;…;2̂0 correspond
to the NGBs ðSc þ S̄cÞ ∼ ð64=3 þ 6̄−4=3Þ.
The constituent fermions X transform as ð32=3 þ 3̄−2=3Þ

under SUð3ÞC ×Uð1ÞD, where the normalization of the
D-charge is chosen to reproduce the correct hypercharge
of top quark partners. Therefore, the external color gauge
fields G1;…;8

μ and Bμ couple to the X fermions through the
combination

−igc
ffiffiffi
2

p
Ga

μTa − ig0
4ffiffiffi
3

p BμT9: ðA13Þ

According to Eq. (2.28), the masses of the NGBs that are
radiatively induced by the gauging are given by
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ΔM2
Oc

¼ ΔM2
1̂;…;8̂

¼ −
3

4π
×

1

F2
Gc

Z
∞

0

dQ2Q2ΠX
V−Að−Q2Þ × 3

4π
g2s ;

ΔM2
Sc
¼ ΔM2

9̂;…;2̂0

¼ −
3

4π
×

1

F2
Gc

Z
∞

0

dQ2Q2ΠX
V−Að−Q2Þ

×
1

4π

�
10

3
g2s þ

16

9
g02
�
: ðA14Þ

The quantitative estimate of the integral of the V − A two-
point function is discussed in Sec. V B.

APPENDIX B: LOOP FUNCTIONS

The one-loop integrals relevant for our purposes are the
one- and two-point functions,

~A0ðm2Þ≡ i
Z

d4k
ð2πÞ4

1

k2 −m2 þ iϵ
;

~B0ðp2; m2Þ≡ i
Z

d4k
ð2πÞ4

1

ðk2 −m2Þ½ðpþ kÞ2 −m2� : ðB1Þ

[We adopted the notation ~A0 and ~B0 in order to avoid
confusion with the standard one-loop functions A0 and B0

[96], which are defined in Euclidean metric and dimen-
sional regularization, and differ also from the above by an
overall factor ið16π2Þ in D ¼ 4 dimensions.]
In the context of the NJL model, the one-point function is

regularized by introducing a cutoff Λ on the Euclidean
four-momentum,

~A0ðm2Þ ¼ Λ2

16π2

�
1 −

m2

Λ2
ln
Λ2 þm2

m2

�
: ðB2Þ

The zero-momentum two-point function is given by

~B0ð0; m2Þ ¼ d ~A0ðm2Þ
dm2

¼ 1

16π2

�
Λ2

Λ2 þm2
− ln

Λ2 þm2

m2

�

¼ 1

16π2

�
1 − ln

Λ2

m2
þO

�
m2

Λ2

��
: ðB3Þ

For the finite, p2-dependent part of the two-point function,
we adopt the simple regularization

~B0ðp2; m2Þ ¼ ~B0ð0; m2Þ þ 1

32π2
f

�
p2

4m2

�
; ðB4Þ

where

fðrÞ¼

8>>><
>>>:
4ð1−rr Þ1=2arctanð r

1−rÞ1=2−4 ðfor 0<r<1Þ
4ðr−1r Þ1=2½lnð ffiffiffi

r
p þ ffiffiffiffiffiffiffiffiffi

r−1
p Þ− iπ

2
�−4 ðfor 1<rÞ

4ðr−1r Þ1=2½lnð ffiffiffiffiffiffi
−r

p þ ffiffiffiffiffiffiffiffiffi
1−r

p Þ�−4 ðfor r<0Þ:
ðB5Þ

We remark that the finite terms are regularization depen-
dent; therefore, our expression may differ from analogous
ones in the NJL literature at order p2=Λ2.

APPENDIX C: TWO-POINT CORRELATORS OF
FERMION BILINEARS AT ONE LOOP

In this appendix, we present the detailed computation
of the five one-loop two-point functions ~Πϕðq2;M2

fÞ ¼
~Πf
ϕðq2Þ where ϕ ¼ fS; P; V; A; APg andMf is the dynami-

cal mass of the hypercolor fermions f ¼ ψ , X. These two-
point functions are crucial quantities in the NJL model as
they are involved in the estimation of the masses and decay
constants of the electroweak and colored composite reso-
nances (see Secs. III and V). For the two-component Weyl
spinors, we follow the conventions of Ref. [97] (ψ and ψ†

propagate in the loops). The Feynman rules appearing in
the vertices can be extracted from the currents and densities
given, respectively, in Eqs. (2.1) and (2.6).
Let us first focus on the electroweak sector. In the scalar

and pseudoscalar nonsinglet channels we get

i ~Πψ
SðPÞðq2ÞδÂ B̂ ¼ ð−1Þ

Z
Λ d4k
ð2πÞ4 Tr

�
iΣ0TÂΩΓSðPÞ

iσ · k
k2 −M2

ψ
iTB̂Σ0ΩΓ

†
SðPÞ

iσ̄ · ðkþ qÞ
ðkþ qÞ2 −M2

ψ

�

þ ð−1Þ
Z

Λ d4k
ð2πÞ4 Tr

�
iΣ0TÂΩΓSðPÞ

iMψΣ0Ω
k2 −M2

ψ
iΣ0TB̂ΩΓSðPÞ

iMψΣ0Ω
ðkþ qÞ2 −M2

ψ

�
; ðC1Þ
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where the first (second) integral corresponds to the loop
involving the kinetic (massive) part of the propagators. The
factors ΓSðPÞ ¼ 1ðiÞ, which distinguish the scalar and pseu-
doscalar channels, are a consequence of Eq. (2.6). These

factors are the equivalent of the γ5 matrix in Dirac notation
and they give a relative sign between the two channels in the
second term of Eq. (C1), exactly like in QCD. Similarly for
the vector and axial-vector two points functions one obtains

i ~Πμν;ABðÂ B̂Þ
VðAÞ ðq2;M2

ψ Þ ¼ ð−1Þ
Z

Λ d4k
ð2πÞ4 Tr

�
iTAðÂÞσ̄μ

iσ · k
k2 −M2

ψ
iTBðB̂Þσ̄ν

iσ · ðkþ qÞ
ðkþ qÞ2 −M2

ψ

�

þ ð−1Þ
Z

Λ d4k
ð2πÞ4 Tr

�
iTAðÂÞσ̄μ

iMψΣ0Ω
k2 −M2

ψ
ð−iTBðB̂ÞÞTσν iMψΣ0Ω

ðkþ qÞ2 −M2
ψ

�
; ðC2Þ

where the functions ~Πμν;ABðÂ B̂Þ
VðAÞ ðq2Þ are defined in Eq. (3.34). The vector and axial-vector channels only differ by the flavor

trace [see Eqs. (2.2) and (2.3)] which again gives a relative sign between the two channels in the second integral. Finally, for
the axial pseudoscalar two-point function one has

i ~Πμ;Â B̂
AP ðq2;M2

ψÞ≡ i ~Πψ
APðq2ÞpμδÂ B̂ ¼ ð−1Þ

Z
Λ d4k
ð2πÞ4 Tr

�
iTÂσ̄μ

iσ · k
k2 −M2

ψ
iTB̂Σ0ΩΓP

iMψΣ0Ω
ðkþ qÞ2 −M2

ψ

�

þ ð−1Þ
Z

Λ d4k
ð2πÞ4 Tr

�
iTÂ · σ̄μ

iMψΣ0Ω
k2 −M2

ψ
iΣ0TB̂ΩΓ†

P
iσ · ðkþ qÞ

ðkþ qÞ2 −M2
ψ

�
; ðC3Þ

where this time the integrals contain both the kinetic and
the massive parts of the propagators. Evaluating the
Lorentz, flavor and hypercolor traces, one can check that
the above equations are quite consistent with the ones
given in table II. Note that the correlators in the singlet
channels are obtained by replacing the generators TÂ by the
normalized identity matrix T0

ψ which only changes the
flavor tensor structure of the loops, leading to the same
result for the two-point functions ~Πf

ϕðq2Þ.
Let us now turn to the correlators of the colored SUð6Þ

sector. The latter can be derived in complete analogy with
the ones in the electroweak sector. Besides the obvious
replacements Mψ → MX, Σ0 → Σc

0 and T0
ψ → T0

X, the
major modification originates from the hypercolor traces.
Indeed, the fermions X are in the two-index antisymmetric
and traceless representation of Spð2NÞ. Consequently,
the hypercolor traces give a factor ð2N þ 1ÞðN − 1Þ
[instead of ð2NÞ19] which of course corresponds to the
dimension of the hypercolor X− representation. Note that
this difference with respect to the electroweak sector can
easily be inferred by considering the vector form XÎ

[Î ¼ 1;…; ð2N þ 1ÞðN − 1Þ] defined in Eq. (D6). Then,
the one-loop two-point functions ~ΠX

ϕðq2Þ, summarized

in table IV, are related to the ones in the electroweak
sector as follow

~Πψ
ϕðq2Þ ¼ ~Πϕðq2;M2

ψ ; 2NÞ;
~ΠX
ϕðq2Þ ¼ ~Πϕ½q2;M2

X; ð2N þ 1ÞðN − 1Þ�: ðC4Þ

As explained in Sec. III B, the resummation of the above
one-loop two-point functions, at leading order in 1=N,
gives the NJL resummed correlators, Π̄ϕ, from which the
masses and decay constants of the composite resonances
are extracted. Usually, in the NJL literature, one considers
the T-matrix element T̄ϕðq2Þ, rather than Π̄ϕðq2Þ. As
illustrated in Fig. 17, the geometrical series that defines
T̄ϕ starts with the four-fermion interaction Kϕ, instead of

the one-loop two-point function ~Πf
ϕðq2Þ, see Fig. 2.

Consequently the T-matrix element is given by

T̄ϕðq2Þ ¼
Kϕ

1 − 2Kϕ
~Πf
ϕðq2Þ

: ðC5Þ

The poles of T̄ϕðq2Þ and of Π̄ϕðq2Þ are of course identical
and are given by 1 ¼ 2Kϕ

~Πf
ϕðM2

ϕÞ. The only difference
comparing Eqs. (3.20) and (C5) comes from the numerators
of the series, which lead different to residues. The residues
of Π̄f

ϕ have been extensively studied in Secs. III and V,
while the residues of the T matrix are the couplings gϕff of
the physical resonance ϕ to the fundamental fermions f. In
analogy with Eq. (3.63), these couplings are given by

19More precisely, due to the antisymmetry of the hypercolor
singlet contractions, the corresponding traces of the electroweak
sector contribute to the one-loop functions with a factor �ð2NÞ
where the sign corresponds to a particular (massive or kinetic)
loop in a given channel. The minus sign is always compensate by
the flavor trace which contains in that case Σ2

0 ¼ −1. On the
contrary, the hypercolor and flavor contractions in the colored
sectors are symmetric and always positive.
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g2ϕff ¼ − lim
q2→M2

ϕ

ðq2 −M2
ϕÞT̄ϕðq2Þ ¼

�
2
d ~Πf

ϕðq2Þ
dq2

����
q2¼M2

ϕ

�−1
:

ðC6Þ

They behave like ≃1=
ffiffiffiffi
N

p
, as expected from general

large-N considerations.

APPENDIX D: RELATING FOUR-FERMION
OPERATORS BY FIERZ IDENTITIES

The couplings of the various four-fermions operators
may be related under some assumption on the underlying
dynamics (see Refs. [66,98] for the case of QCD). In this
way one can predict the relative strength of the various
physical channels (spin-zero versus spin-one, electroweak
sector versus color sector, etc.). We will start from Spð2NÞ
current-current operators, that encode the ultraviolet
dynamics in the “ladder” approximation, that holds when
N is (moderately) large, and we will use Fierz trans-
formations to generate the various Spð2NÞ singlet-singlet
operators. We will also take this opportunity to summarize
general results on Fierz transformations associated to the
SUðNÞ and Spð2NÞ groups.

1. Hypercolor current-current operators

Let us derive the Spð2NÞ current-current operators from
the covariant derivatives of the fermions ψ and X. They
belong to the fundamental representation, ψ ∼□, and to
the two-index, traceless (XijΩji ¼ 0) and antisymmetric
(Xij ¼ −Xji) representation, X∼ . The covariant deriva-
tives read

ðDμψÞi ¼ ½∂μδij − igHCðTIÞijGμ
I �ψ j; ðD1Þ

ðDμXÞij ¼ ∂μXij − igHC½ðTIÞikXkj þ ðTIÞjkXik�Gμ
I

¼ ½∂μδikδjl − igHCðTI
XÞijklGμ

I �Xkl; ðD2Þ

where Gμ
I are the hypergluon fields, and gHC is the hyper-

color gauge coupling. The hypercolor generators acting on
ψ j, ðTIÞij, and on Xkl, ðTI

XÞijkl ≡ ðTIÞikδjl − δilðTIÞjk, are
normalized as

ðD3Þ

The nonderivative terms in Eqs. (D1) and (D2) determine
the coupling of the technigluons to the Spð2NÞ-currents
J μI

ψ and J μI
X , which transform under the adjoint represen-

tation ,

LUV ¼ gHCðJ μI
ψ þ J μI

X ÞGμI; ðD4Þ

where

J μI
ψ ¼ ψðΩTIÞσμψ̄ ;

J μI
X ¼ 2Tr½XðΩTIÞσμX̄Ω�: ðD5Þ

Here Ωij is the Spð2NÞ invariant tensor, the trace is taken
over Spð2NÞ indexes, and the expression of J μI

X has been
simplified using Tr½XΩσμX̄ðΩTIÞ� ¼ −Tr½XðΩTIÞσμX̄Ω�.
It is understood that each fermion flavor ψa (Xf) behaves
equally with respect to the Spð2NÞ dynamics, that is, the
Spð2NÞ currents are flavor singlets. It will be useful to
rearrange the fermion components Xij as a vector XÎ, with
one index Î of the representation ,

Xij ¼
ffiffiffi
2

p
ðTÎΩÞijXÎ; XÎ ¼ −

ffiffiffi
2

p
ðΩTÎÞijXji; ðD6Þ

so that the second current in Eq. (D5) can be written in
terms of the generators in the representation , that are
given by SUð2NÞ structure constants,

ðD7Þ

We assume that the confining strong dynamics can be
described, in first approximation, by the exchange of one
hypergluon which acquired a dynamical mass, which is the
usual NJL assumption in QCD [24]. Then, the strong
dynamics is supposed to generate, in the “ladder” approxi-
mation, Spð2NÞ current-current operators only,

FIG. 17. Resummation of leading 1=N graphs for a mesonic T-matrix element, T̄ϕ, corresponding to a composite meson exchange.
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Leff ¼
κUV

2N
½J μI

ψ J I
ψμ þ J μI

X J
I
Xμ þ 2J μI

ψ J I
Xμ�; ðD8Þ

where κUV=ð2NÞ ∼ g2HC=Λ2 stands for the exchange of one
“massive” hypergluon. The large-N scaling of the gauge
coupling is gHC ∼ 1=

ffiffiffiffiffiffiffi
2N

p
, while κUV and Λ are N

independent. The operators in Eq. (D8) are the product
of fermion bilinears in the adjoint representation of
Spð2NÞ. In order to study physical resonances, which
correspond to Spð2NÞ-singlet fermion bilinears, we need to
rewrite these operators by using Fierz transformations in
the Lorentz, flavor and hypercolor spaces. Note that the last
operator in Eq. (D8) does not contribute to any meson
resonance, because by a Fierz transformation one obtains
only ‘diquark-diquark’ operators, such as ðψXÞðψ̄ X̄Þ,
which are not hypercolor singlets, and therefore are not
relevant for our analysis.
The Fierz transformations of Weyl indices are deter-

mined by the well-known identities

ðσμÞα _αðσμÞβ _β ¼ −ðσμÞα _βðσμÞβ _α ¼ 2εαβε _α _β: ðD9Þ

The SUðNÞ and Spð2NÞ Fierz transformations, relevant for
flavor and hypercolor indexes, respectively, are presented
in Secs. D 3 and D 4 below.

2. General properties of Fierz transformations

In this section, we derive general properties of the
coefficients in Fierz transformations. For a given irreduc-
ible representation R of the symmetry group under con-
sideration, let us construct the tensor products R ⊗ R̄ ¼P

A RA and R ⊗ R ¼ ~P
ARA, where the index A runs

over the irreducible representations contained in the prod-
uct. One can choose [99] a set of matrices fΓA

a g (f ~ΓA
a g),

with a ¼ 1;…; dimRA, which form a basis of the vector
space R ⊗ R̄ (R ⊗ R). In the following, we will add a
tilde wherever there is no conjugate in the tensor product.
Such matrices have size dimR × dimR and satisfy the
orthogonality relations

TrðΓA
a ΓB

b Þ ¼ αδABgAab;

Trð ~ΓA
a
~ΓB†
b Þ ¼ αδABgAab; ðD10Þ

where α is a normalization constant and gAab is a generic
metric (in particular, gAabg

Abc ¼ δca and ΓaA ≡ gAabΓA
b ).

Any dimR × dimR matrix M can be decomposed on the
basis fΓA

a g as

M ¼
X
A

X
a

caAΓA
a ¼

X∼
A

X
a

daA ~ΓA
a ;

caA ¼ 1

α
TrðΓaAMÞ; daA ¼ 1

α
Trð ~ΓaA†MÞ: ðD11Þ

Replacing the explicit form of caA and daA inM we obtain
the completeness relations

X
A

X
a

ðΓaAÞijðΓA
a Þkl ¼

X∼
A

X
a

ð ~ΓaAÞijð ~ΓA†
a Þkl ¼ αδilδkj:

ðD12Þ

which are relevant to derive the Fierz coefficients.
Let us consider an interaction among four objects

transforming as ðR ⊗ R̄ÞAðR ⊗ R̄ÞA, where the sub-
scripts indicate that each pair is contracted in the compo-
nent RA. Then, the Fierz transformations can be written as

X
a

ðΓaAÞijðΓA
a Þkl ¼

X
B

CAB

X
b

ðΓbBÞilðΓB
b Þkj

¼
X∼
B

DAB

X
b

ð ~ΓbBÞikð ~ΓB†
b Þjl; ðD13Þ

where CAB and DAB are the Fierz coefficients for the
channels j ↔ l and j ↔ k, respectively. In terms of
“quarks” ∼R and “antiquarks” ∼R̄, one can dub them
the “quark-antiquark” and the “quark-quark” channels,
respectively. Analogously, for the interaction ðR ⊗ RÞA×
ðR̄ ⊗ R̄ÞĀ, the Fierz transformations read

X
a

ð ~ΓaAÞijð ~ΓA†
a Þkl ¼

X
B

~CAB

X
b

ðΓbBÞilðΓBT
b Þkj

¼
X
B

~DAB

X
b

ðΓbBÞikðΓB
b Þjl: ðD14Þ

One can derive several, general constraints on the Fierz-
coefficient matrices C;D; ~C; ~D. Applying twice a Fierz
transformation on the same indexes, the original contrac-
tion is recovered; therefore, one obtains

X
B

CABCBC ¼ δAC;
X∼
B

DAB
~DBC ¼ δAC;X

B

~CABDBC ¼ sAδAC;
X
B

~DABDBC ¼ δAC; ðD15Þ

where sA ¼ þ1 (−1) when the representation RA belongs
to the (anti)symmetric part of the tensor product R ⊗ R,
and correspondingly the matrices ~ΓA

a are (anti)symmetric.
Therefore, one has C ¼ C−1, while both ~C and ~D can be
fully determined in terms of the matrix D. The contraction
associated to the singlet representation, R• ⊂ R ⊗ R̄, can
be chosen as Γ•

ij ¼ δij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α= dimR

p
. Therefore, Eq. (D12)

determines the first row of C and D,
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C•A ¼ 1

dimR
; ∀ RA ⊂ R ⊗ R̄;

D•A ¼ sA
dimR

; ∀ RA ⊂ R ⊗ R: ðD16Þ

Indeed, from Eq. (D13) one can obtain explicit expressions
of the Fierz coefficients,

CAB ¼ 1

α2
X
a

Tr½ΓaAΓB
bΓA

a ΓbB�;

DAB ¼ 1

α2
X
a

Tr½ΓaAð ~ΓB
b ÞTðΓA

a ÞT ~ΓbB†�; ðD17Þ

which are valid for every b. The direct computation of such
expressions, however, may be very complicated in practice.
By summing over b the two identities in Eq. (D17), one
obtains quantities invariant under the exchanges A ↔ B
and C ↔ C−1 (D ↔ D−1); therefore, one concludes that

CAB dimRB ¼ CBA dimRA;

DAB dimRB ¼ ðD−1ÞBA dimRA: ðD18Þ

In particular, Eq. (D16) implies CA• ¼ C•A dimRA ¼
dimRA= dimR.
In the special case of a (pseudo)real representation R,

taking ψ ∼R and ψ† ∼ R̄, one has ψ̄ i ≡ ψ†
jðΩϵÞji ∼R,

where Ωϵ is the invariant tensor establishing the equiv-
alence of R and R̄, which is symmetric (ϵ ¼ þ1) or
antisymmetric (ϵ ¼ −1) in the case of real or pseudoreal
representations, respectively. Therefore, the set of matrices
fΓA

a g and f ~ΓA
a g can be identified, according to

~ΓA
a ¼ ΓA

a Ωϵ. In addition, the equality Ωϵ
~ΓA†
a ¼ ϵ ~ΓA

a Ωϵ

holds, which implies in particular ðψ ~ΓA
a ψÞ† ¼ ϵψ̄ ~ΓA

a ψ̄.
Then, it is convenient to rewrite the Fierz transformations
in Eq. (D13) [or, equivalently, Eq. (D14)] in terms of the
interaction ðR ⊗ RÞAðR ⊗ RÞA,
X
a

ð ~ΓaAÞijð ~ΓA
a Þkl ¼

X∼
B

CAB

X
b

ð ~ΓbBÞilð ~ΓB
b Þkj

¼ ϵ
X∼
B

DAB

X
b

ð ~ΓbBÞikð ~ΓB
b Þjl: ðD19Þ

It follows immediately that the two sets of Fierz coefficients
are related as

ϵDAB ¼ sACABsB; ðD20Þ

where sA;B ¼ �1 denotes, once again, the (anti)symmetry
ofRA;B withinR ⊗ R. In this (pseudo)real case the singlet
contraction corresponds to ~Γ•

ij ¼ ðΩϵÞij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α= dimR

p
; there-

fore, s• ¼ ϵ, and one recovers Eq. (D16).

3. SUðNÞ Fierz transformations

Let us derive the Fierz transformations associated to the
fundamental representation of SUðNÞ (see e.g. [100]). In
our model, they are relevant for the flavor indexes, as the
fermions ψa and Xf transform in the fundamental of SUð4Þ
and SUð6Þ, respectively.
In the “quark-antiquark” channel, ðN̄aNbÞðN̄cNdÞ →

ðN̄aNdÞðN̄cNbÞ, one can employ the completeness relation
of Eq. (D12) for N̄ ⊗ N,

XN2−1

I¼1

ðTIÞabðTIÞcd þ ðT0ÞabðT0Þcd ¼
1

2
δadδ

c
b; ðD21Þ

where TI are the ðN2 − 1Þ generators of SUðNÞ,
T0 ≡ 1=

ffiffiffiffiffiffiffi
2N

p
, and α ¼ lðNÞ=2 ¼ lðN̄Þ=2 ¼ 1=2 as we

adopted the normalization TrðTITJÞ ¼ δIJ=2. The first row
of the Fierz-coefficient matrix CAB is simply obtained by
reshuffling the indexes in Eq. (D21),

ðT0ÞabðT0Þcd ¼
1

N
ðT0ÞabðT0Þcd þ

1

N

X
I

ðTIÞadðTIÞcb;

ðD22Þ

The second row can be determined by imposing C2 ≡ 1, as
follows from Eq. (D15). Thus, one concludes that

 ðT0ÞabðT0ÞcdP
I
ðTIÞabðTIÞcd

!
¼C

 ðT0ÞadðT0ÞcbP
I
ðTIÞadðTIÞcb

!

¼
 

1
N

1
N

N2−1
N − 1

N

! ðT0ÞadðT0ÞcbP
I
ðTIÞadðTIÞcb

!
:

ðD23Þ

In the ‘quark-quark’ channel, ðN̄aNbÞðN̄cNdÞ →
ðN̄aN̄cÞðNbNdÞ, one needs also the completeness relation
for N ⊗ N, that involves NðN þ 1Þ=2 symmetric matrices
ΓI
S, and NðN − 1Þ=2 antisymmetric matrices ΓI

A,

XNðNþ1Þ=2

I¼1

ðΓI†
S ÞabðΓI

SÞcd þ
XNðN−1Þ=2

I¼1

ðΓI†
A ÞabðΓI

AÞcd ¼
1

2
δadδ

b
c:

ðD24Þ

A convenient basis of (anti)symmetric matrices is provided
by Γ0 ≡ ΣϵT0, ΓI ≡ ΣϵTI , and ΓÎ ≡ ΣϵTÎ , where ðΣϵÞab is
the invariant tensor of a maximal SUðNÞ subgroup, which
is SOðNÞ in the case ϵ ¼ þ1, and SpðNÞ in the case
ϵ ¼ −1 (present only for N even). Here the index I runs
over the subgroup generators only, and the index Î spans
the coset. When ϵ ¼ þ1ð−1Þ, Σϵ is a symmetric (antisym-
metric) matrix and, according to Eq. (2.2), Γ0 and ΓÎ are
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symmetric (antisymmetric), while ΓI are antisymmetric
(symmetric). Using this basis for the matrices ΓI

S;A, one can
construct explicitly the Fierz-coefficient matrix DAB,

 ðT0ÞabðT0ÞcdP
I
ðTIÞabðTIÞcd

!
¼D

0
B@
P
I
ðΓI†

S ÞacðΓI
SÞbdP

I
ðΓI†

A ÞacðΓI
AÞbd

1
CA

¼
 

1
N − 1

N
N−1
N

Nþ1
N

!0B@
P
I
ðΓI†

S ÞacðΓI
SÞbdP

I
ðΓI†

A ÞacðΓI
AÞbd

1
CA:

ðD25Þ

For example, the first row of DAB can be obtained from
Eq. (D22) by contracting with ðΣϵÞdd0 ðΣϵÞc0c, and inverting
appropriate pairs of (anti)symmetrized indexes: the result
agrees with Eq. (D16). The second row is determined e.g.
by Eq. (D18), up to an overall sign, that can be fixed once
again by (anti)symmetrizing over appropriate indexes.

4. Spð2NÞ Fierz transformations

Let us derive the Fierz transformations associated to the
hypercolor representations of the fermions ψ i and Xij, that
is, □ and , respectively. The group Spð2NÞ is a subgroup
of SUð2NÞ, corresponding to the vacuum direction
Σ− ≡Ω, defined in Eq. (3.3). Taking advantage of
Eq. (2.2), one can decompose the Uð2NÞ completeness
relation (D21) into two parts, corresponding to the Spð2NÞ
subalgebra and its coset,

XNð2Nþ1Þ

I¼1

ðTIÞijðTIÞkl ¼
1

4
ðδilδkj −ΩikΩjlÞ∶ Spð2NÞ;

ðD26Þ

Xð2Nþ1ÞðN−1Þ

Î¼1

ðTÎÞijðTÎÞkl þ ðT0ÞijðT0Þkl

¼ 1

4
ðδilδkj þΩikΩjlÞ∶ Uð2NÞ=Spð2NÞ: ðD27Þ

The product of two fundamental representations of
Spð2NÞ reads

ðD28Þ

where the bullet stands for the singlet and the subscripts
indicate whether the contraction is symmetric or antisym-
metric under the exchange of the two factors. These
representations have dimensions

ðD29Þ

Note that, for N ¼ 1, the two-index antisymmetric repre-
sentation is absent. The two indexes in□i□j are contracted

by an appropriate set of (anti)symmetric matrices ~Γa
A, that

can be conveniently chosen as

ðD30Þ

in one-to-one correspondence with the generators of
Uð2NÞ. Multiplying (D26) and (D27) by ΩmiΩnk, one
obtains useful equalities to determine the Fierz trans-
formations of ð□i□jÞð□k□lÞ. Thus, the matrix of Fierz
coefficients for the channel ðilÞðkjÞ, CAB, can be fully
determined in agreement with the general results of
Sec. D 2:

0
BBBBB@

ðΩT0ÞijðΩT0ÞklP
I
ðΩTIÞijðΩTIÞklP

Î

ðΩTÎÞijðΩTÎÞkl

1
CCCCCA ¼

0
BB@

1
2N

1
2N

1
2N

2Nþ1
2

− 1
2

1
2

ð2Nþ1ÞðN−1Þ
2N

N−1
2N − Nþ1

2N

1
CCA

×

0
BBBBB@

ðΩT0ÞilðΩT0ÞkjP
I
ðΩTIÞilðΩTIÞkjP

Î

ðΩTÎÞilðΩTÎÞkj

1
CCCCCA;

ðD31Þ

According to Eq. (D20), the Fierz coefficients in the
channel ðikÞðjlÞ are given by DAB ¼ −CAB when both
A and B are (anti)symmetric contractions, andDAB ¼ CAB
otherwise.
We can now determine the coefficients κA;C;D of the four-

fermion operators in the ψ sector, which are defined by
Eqs. (3.14) and (3.30), assuming that the dynamics is well
approximated by the ψ-sector current-current operator of
Eq. (D8), with coefficient κUV . Note that the ’t Hooft
operator with coefficient κB, defined by the second line of
Eq. (3.14), is not generated by the current-current inter-
action, as the latter preserves the anomalous Uð1Þψ
symmetry; therefore, the size of κB is unrelated to κUV .
On the contrary, the sizes of κA;B;C can be related to κUV by
performing the pertinent set of Fierz transformations over
Lorentz, SUð4Þ flavor, and Spð2NÞ hypercolor indexes.
Naively, with this procedure the current-current operator is
recast into a sum over several operators: those with two
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hypercolor-singlet fermion bilinears, which correspond to
physical meson states, plus those with two hypercolor-
nonsinglet fermion bilinears. The former operators receive
a coefficient

κA ¼ κC ¼ κD ¼ 2N þ 1

4N
κUV: ðD32Þ

However, the latter operators could also contribute to these
couplings, by further Fierz transformations. Therefore, the
above equalities cannot be firmly established on this basis.
Fortunately, there exists a unique way to express the
current-current operator in terms of hypercolor-singlet
fermion bilinears only, by using the identity

X
I

ðΩTIÞijðΩTIÞkl ¼
1

4
ðΩilΩkj − ΩikΩjlÞ; ðD33Þ

which is obtained e.g. by considering the first row of
Eq. (D31) and symmetrizing over the indexes ðilÞ, or
equivalently by multiplying the Spð2NÞ completeness
relation (D26) by Ωi0iΩk0k. Employing this relation we
obtain

κA ¼ κC ¼ κD ¼ 1

2
κUV: ðD34Þ

Therefore, in the current-current approximation, the scalar
coupling κA and the vector couplings κC;D are equal and N
independent when N becomes large, as κUV is. Notice that
the naive relations in Eq. (D32) were correct al leading
order in 1=N. The equality between vector and scalar
couplings also holds in the standard NJL model for
QCD [8].
Let us now analyze the product of two Spð2NÞ two-

index traceless antisymmetric representations , that exist
only for N > 1, and are relevant for the color sector of our
model. The tensor product,

ðD35Þ

contains three four-index representations, of dimensions

ðD36Þ

These numbers can be derived taking into account the
symmetry properties of each representation in Eq. (D35),
and subtracting the dimensions of the smaller representa-
tions, obtained by taking traces, as given in Eq. (D29).
Note that, forN ¼ 2, the third, fifth and sixth representation
on the right-hand side of Eq. (D35) are absent:
5 × 5 ¼ 1s þ 10a þ 14s. For N ¼ 3, the fifth representa-
tion only is absent: 14×14¼1sþ21aþ14sþ90sþ70a.
Finally, for N > 3 all the components of the tensor
product exist.
The indexes in ij kl are contracted into the represen-

tationR by a set of tensors ð ~Γa
RÞijkl, with a ¼ 1;…; dimR.

Equivalently, one can use a single index running over the
ð2N þ 1ÞðN − 1Þ components of ,

Xlið ~Γa
RÞijklXjk ¼ XÎð ~Γa

RÞÎ ĴXĴ: ðD37Þ

where Xij and XÎ are related by Eq. (D6). In this notation,
the completeness relation reads

ðD38Þ

In fact, the set of matrices f ~Γa
Rg corresponds to the

generators of the group U½ð2N þ 1ÞðN − 1Þ�, normalized
as . Let us provide the explicit form of these matrices for
the smallest representations. The singlet contraction is
given by

ð ~Γ•Þijkl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p ΩijΩkl;

ð ~Γ•ÞÎ Ĵ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p δÎ Ĵ : ðD39Þ

The adjoint contraction, already employed in Sec. D 1, is
given by

ðD40Þ

The two-index antisymmetric contraction has a similar
structure, with the unbroken generators TI replaced by the
broken ones TÎ ,

ðD41Þ
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One can easily check that the symmetry properties of the contractions in Eqs. (D39), (D40) and (D41) agree with those
indicated in Eq. (D35).
The singlet Fierz coefficients in the channel ðÎ L̂ÞðK̂ ĴÞ, C•R, are easily determined from the completeness relation (D38),

in agreement with Eq. (D16). The coefficients CR• are determined in turn by Eq. (D18). Thus, we can write

ðD42Þ

One needs further algebraic manipulations to determine the
nonsinglet Fierz coefficients CRR0 , which anyhow will not
be needed for our purposes. For concreteness, let us display
the explicit result in the case N ¼ 2, where there are only
three representations in the tensor product . Using
repeatedly the completeness relation and the (anti)symmet-
rization over appropriate pairs of indexes, we conclude that
the matrix C in the case N ¼ 2 takes the form

ðD43Þ

The Fierz coefficients DRR0 in the channel ðÎ K̂ÞðĴ L̂Þ are
determined by Eq. (D20), with ϵ ¼ þ1 as is a real
representation. Since we aim to rewrite the X-sector
current-current operator of Eq. (D8) in terms of hyper-
colur-singlet fermion bilinears, the relevant Fierz coeffi-
cients are

ðD44Þ

In analogy with the above procedure in the ψ sector, one
can try to determine the coefficients κA6;C6;D6 of the four-
fermion operators in the X sector, which are defined by
Eqs. (5.1) and (5.20). If one applies a pertinent Fierz
transformation, over Lorentz, SUð6Þ and Spð2NÞ indexes,
to the X-sector current-current operator in Eq. (D8), one
obtains

κA6 ¼ κC6 ¼ κD6 ¼ κUV: ðD45Þ

This indicates that the scalar and vector operators of the
colored sector receive the same coefficient, that is twice as
large as for the corresponding operators of the electroweak
sector; see Eq. (D34). However, at the same time κUV also
contributes to other operators that involve hypercolor-
nonsinglet fermion bilinears; therefore, the above relations
are ambiguous, as they rely on a specific recasting of the
current-current operator, that is not unique. Another pos-
sible recasting is obtained by antisymmetrizing Eq. (D38),
with respect to the pair of indexes ðK̂ L̂Þ, to remove the
symmetric components of Eq. (D35),

ðD46Þ

NONPERTURBATIVE ANALYSIS OF THE SPECTRUM OF … PHYSICAL REVIEW D 95, 075006 (2017)

075006-59



This relation is the analog of Eq. (D33), associated to the
tensor product □ ×□. In general, this procedure does not
allow to express the current-current contraction in terms of
singlet-singlet contractions only, because the product
contains another antisymmetric representation, besides the
adjoint. The exception is the case N ¼ 2, where the second
term on the left-hand side of Eq. (D46) is absent. If one
neglects this second term even for N > 2, the relation
between the current-current operator and the singlet-singlet
operators becomes

κA6 ¼ κC6 ¼ κD6 ¼
ð2N þ 1ÞðN − 1Þ2

2N
κUV: ðD47Þ

Note that these couplings can be much larger than those in
Eq. (D45), whenN is large. The problem is that the current-
current operator contains terms leading in 1=N, that cannot
be written as singlet-singlet contractions only, except

for N ¼ 2. In the latter case, Eq. (D47) is exact and its
right-hand side reads 5κUV=4, to be compared with
Eq. (D34) in the electroweak sector.
We conclude that, for N > 2, the strength of the colored-

sector couplings cannot be fixed in terms of κUV , and we
treat it as a free parameter. In particular, κA6 is independent
from the strength of the electroweak-sector coupling κA: in
our phenomenological analysis we take κA6 ∼ κA, such that
the domain of validity of the NJL calculations is similar in
the two sectors, and the NJL predictions can be compared.
On the other hand, the equality between the scalar and
vector couplings in each sector is a solid prediction of the
current-current approximation, that holds independently
from their absolute sizes. Finally, we remind that all
predictions discussed in this appendix depend on the
validity of the effective Lagrangian of Eq. (D8), that relies
on the “ladder” approximation for the hypercolor dynam-
ics. Therefore, significant departures from these predictions
cannot be excluded.
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