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We consider two quenched, chiral ensembles which are coupled in such a way that a combined chiral
symmetry is preserved. The coupling also links the topology of the two systems such that the number of
exact zero modes in the coupled system equals the sum of the number of zero modes in the two uncoupled
systems counted with sign. The canceled modes that turn nontopological due to the coupling become near-
zero modes at small coupling. We analyze the distribution of these would-be zero modes using effective
field theory. The distribution is universal and, in the limit of small coupling, the would-be zero modes are
distributed according to a finite size chiral Gaussian ensemble, where the width of the distribution scales as

the inverse square root of the volume.
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I. INTRODUCTION

Microscopic eigenvalues of Hamiltonians, scattering
matrices and Dirac operators hold vital information about
the systems from which they originate [1]. Because these
eigenvalues have a magnitude on the order of the inverse
size of the system, they are naturally linked to the long-
range properties, in particular the global symmetries and
the spontaneous breaking thereof [2-4]. Due to this
intimate relationship with the symmetries, the average
distribution of the microscopic eigenvalues takes a uni-
versal form determined by the pattern of symmetry
breaking in the present system. This has led to a range
of new analytic tools to analyze the properties of complex
systems. It allows us, for example, to study the effects of
dynamical fermions in lattice QCD [5-7], the effect of a
nonzero lattice spacing in lattice QCD [8-10], and the
mechanism for spontaneous breaking in non-Hermitian
systems [11-13].

Besides the microscopic eigenvalues, systems can have
exact zero modes of a topological origin. Topological zero
modes appear in high energy [14,15] as well as solid state
systems [16,17]. Because these zero modes only depend on
the topology of the system, they will remain intact under
any change that conserves topology. They stand out in
chiral systems where they, unlike the nonzero eigenvalues,
do not appear in pairs.

In this paper, we will consider two coupled chiral
systems, each with their own topology. The coupling
preserves a combined chiral symmetry, but couples the
topological zero modes. Our primary concern is the fate of
these zero modes. The total number of zero modes is
determined by the sum of the individual topologies counted
with sign, i.e. zero modes cancel each other if they are of
opposite chirality. These canceled, would-be zero modes
spread out as near-zero modes symmetric around the
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origin, and we will determine the exact distribution of
these near-zero modes. The coupled system considered is
motivated by topological nano-wires, but the results are
relevant for any system with the symmetries described in
detail below. An example is a system where two fermions
(e.g. quarks) interacting with separate gauge fields (e.g.
gluon fields) are in weak contact.

The eigenvalues near zero in chiral systems are inti-
mately connected to chiral symmetry; the density of
eigenvalues at the origin serves as the order parameter
for spontaneous breaking of the chiral symmetry [18].
Common to chiral systems that display a spontaneous
breaking of symmetry is the aforementioned universality of
the microscopic distribution of eigenvalues around zero
[5,19-27], and, as we will show explicitly, the eigenvalue
density of the near-zero modes is universal as well. It may
therefore come as a surprise that in the limit of small
coupling the microscopic density takes the form of a finite
size chiral Gaussian unitary ensemble (chGUE) for a
complex-valued operator and chiral Gaussian orthogonal
ensemble (chGOE) for a real-valued one. The choice of
weight is usually arbitrary, but the Gaussian weight is a
direct consequence of the unique quadratic term in the
effective Lagrangian of the coupled system and is thus
universal.

We will consider both the orthogonal and unitary
ensembles, which apart from real- or complex-valued
Hamiltonians correspond to two different patterns of
symmetry breaking [2—4,21]. The chiral unitary ensemble
(chUE) follows the pattern [28,29]

where the notation N is borrowed from QCD, where it

refers to the number of quark flavors. The chiral orthogonal
ensemble (chOE) follows the pattern [24,29]
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The broken group of the orthogonal ensemble is larger,
which makes the treatment of it more complicated. We
therefore start by showing the behavior of the simpler
chUE, before we move on to chOE.'

A good example of a theory exhibiting spontaneous
breaking of chiral symmetry is QCD. Because the massless
Dirac operator B anticommutes with ys, the eigenvalue
density is symmetric around zero with a number of
topological eigenvalues at zero. We shall use the low
energy effective theory techniques developed for QCD to
calculate the eigenvalue density of the two coupled chiral
systems.

In QCD, analysis of this symmetry breaking has led to a
thorough understanding of the propagation and loop dia-
grams of pseudo-Goldstone modes [30], treatment of QCD
at nonzero chemical potential [31-34], and calculation of
the microscopic eigenvalue density [26-28]. While the first
two are standard, the latter is less well known. The
eigenvalue density of the anti-Hermitian Dirac operator
—iP is obtained as follows: First we need a graded
generation functional [26]

Z(m,m") :/dA

where Syy; is the Yang-Mills action and A is the gauge
field, from which we can find the quenched chiral
condensate [26]

n) = O Zm. )y = (Te( ) )

The density of the eigenvalues E can in turn be obtained
from the discontinuity across the imaginary axis of the
quenched chiral condensate

det(—=iB+m) ¢
det(—iB+ ') € IS

lim S(iE+e) ~Z(iE ~e) :Zk:@(E-Ek» =p(E), (5)

where E, are the eigenvalues of /.

The challenge is to calculate (3) and, to do so, we use the
spontaneous symmetry breaking to set up a low energy
effective generating function [26,28]. By establishing a
counting scheme that favors the light Goldstone modes, we
consider the low energy regime, where the generating
function can be calculated in its entirety [19,26]. We extend
this approach to the coupled system and obtain in this way a
closed expression for the eigenvalue density. Furthermore,
we find that the analytic expression for eigenvalue density

n some parts of the literature, chUE is also known as Alll,
and chOE as BDI [3].
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dramatically simplifies in the limits of small and of strong
coupling.

The eigenvalue density for chGUE can also be found in
the microscopic limit of a chiral random matrix theory
given by [4,5,20]

7" (m) = / dWP(WW*‘)deth<,m+ iW) (6)

W m

with W being general (n+ v) x n matrices. This is not
surprising, as it has the same symmetries as the QCD
Lagrangian. The choice of weight P(WWT) is arbitrary as
long as it supports a nonzero eigenvalue density around
zero [25]. We will also show that the coupled system can be
expressed in terms of these random matrices by the
introduction of a coupled two random matrix theory. We
show that the random matrix partition function agrees with
the effective theory in the microscopic limit. Furthermore,
we use the coupled random matrix model to numerically
calculate the eigenvalue density and thus provide a crucial
independent check of the analytical computations.

A closely related effective partition function and random
matrix model are considered in [35] while studying stressed
Cooper pairing in QCD. That work focused on trivial
topology, whereas the focus of this work is, as mentioned
above, to consider the effects on the topology of coupled
the two sectors.

As mentioned above, the coupling considered here is
inspired by superconducting nano-wires carrying Majorana
modes. In this case, the symmetries of the Hamiltonian
correspond to the chiral orthogonal ensemble [36]. We may
therefore calculate universal properties such as the eigen-
value density in the effective theory. For the link between
the effective field theory and the Hamiltonian approach, see
[2] and [3]. As for chUE we compute the density for chOE
by performing a group integral over the corresponding
effective theory, introducing a two random matrix model,
considering the limits of weak and strong coupling, and
verifying the analytical results by numerical simulation
hereof.

The paper is organized as follows. First, in Sec. II we
analyze the symmetries of the coupled system. We then use
these symmetry properties in Sec. III to set up an effective
theory, which we in Sec. IV use to obtain an the eigenvalue
density for a chiral unitary ensemble. In Secs. IVA
and IV B we calculate the large- and small coupling limits,
respectively. In Sec. V we repeat the derivation for a chiral
orthogonal ensemble and finally, in Sec. VI, we make
conclusions.

The new two random matrix model and technical
derivations can be found in the appendices.

II. SYMMETRIES OF THE COUPLED SYSTEM

We wish to consider the coupling of two otherwise
independent chiral systems. Using the standard approach in
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effective field theory [37], we establish a counting scheme
and, in this counting scheme, consider the lowest order
terms that break the symmetries in the same way as the
coupling.

The coupled system should retain a combined chiral
symmetry, which is achieved by adding off-diagonal terms
linking the left-handed (right-handed) part of one field to
the left-handed (right-handed) part of the other.” Because
the two systems at zero coupling are completely indepen-
dent, they can be in different topological sectors, i.e. have
different amounts of exact zero modes. When we apply a
coupling, the topology will also be coupled, and the total
number of zero modes is the sum of the two individual
counted with sign.

Let us start by investigating the symmetries of such a
system. We outline the symmetry argument within the
simplest chiral symmetry class chUE. The results for chOE
will follow by analogy in Sec. V. For simplicity, we
consider the symmetry properties and effective theory
for fermionic flavors before moving on to the generating
function of the quenched ensemble. In the fermionic theory
we have the determinant to the power N

Z(m) = / A det¥s (=i + m)e-Smd) . (7)

The determinant can be expressed as an integral over
Grassmann variables

Z(m) = / dAd dye? = iPHmw=Sna(A) (8)

and it is the symmetries of these N ;-component fields v, y
we analyze. (The quenched generating function will struc-
turally look the same, but with additional integration over
bosonic fields.)

A. Symmetries

We will consider two identical copies of the same
fermionic theory. Initially, when the two systems are
uncoupled, the global symmetries are

SUIR(Ny) x SU L (Ny) and  SUxr(Ny) x SUa(Ny),

©)

where the notation N is again borrowed from QCD. These
symmetries are spontaneously broken to respectively
SUIV(Nf) and SUzv(Nf), (10)

which gives us two sets of Goldstone fields

2Coupling left to right just corresponds to redefining left and
right for one of the ensembles. Making both couplings at the same
time does not preserve chiral symmetry.
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Uy € SUNN;) and U, € SU(N,).  (11)

The chiral transformations of these fields are respectively
Ui =g Uiglg and U = go Usgle.  (12)

In the two uncoupled systems the mass terms (y;my;+
W,myy,) in the Lagrangian are the source for the sponta-
neous symmetry breaking. In order to find the terms in the
effective theory with this breaking of symmetry, we use the
spurion technique, see for instance [28].

The first step is to identify the spurion transformations of
the masses. As usual we have, see e.g. [28]

my — glelg}LR and my — g2Lm2g§R' (13)

If the masses were to transform according to (13), the mass
term ymy would be invariant.

In order to ensure a chiral spectrum of the coupled
system, the coupling between the two sectors, 1 and 2, is
chosen such that it conserves a total SU;y (Ny) ¥
SUr(Ny) chiral symmetry of the Lagrangian, where
SU/,(Ny) denotes rotation of the two fields with the same
matrix, i.e. where

Giz =9 and  gig = Gag. (14)
This combined symmetry is the locked version of the 2
uncoupled unbroken symmetries (9). The corresponding
couplings must spurion transform as a flavor off-diag
vectorial term (yv,y,7y),

crp — glLCLLg;L and  cpg — glRCRRg;R' (15)

Again, if the coupling transformed in this way, the coupling
term would be invariant. A two random matrix model with
these symmetries is given in Appendix A.

III. EFFECTIVE THEORY

We will compute the effect of the coupling on the
microscopic density using low energy effective field
theory.3 Using the symmetries analyzed in the previous
section, we now set up the lowest order effective partition
function and analyze its transformation properties. These
will be related to the amount of exact zero modes in the two
uncoupled systems vy, v, [14]. The sign of vy and v,
indicates the chirality of the zero modes. By analyzing the
amount of transformation properties of the coupled system,
we obtain the combined topology of the two systems.

*We stress that the uncoupled ensembles are completely
independent and that no rotation between them can occur, i.e.
the uncoupled system has the symmetry (SUx(N) x SUL(N))?
rather than SUg(2N ;) x SU.(2N). This corresponds to Wy #
W, in (A1).
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The low energy effective theory is uniquely determined
by the requirement that it must break the symmetries in
exactly the same way as in the underlying theory. Using the
spurion transformations we get the standard mass terms,
see [[28], Eq. (4.32)]

by
L, ZEOTr(mlUT +miU,) (16)
and
_ X too
£2—7TT(MZU2+I’I12U2). (17)

Notice that these term are invariant under U — g, U g; and
the spurion transformation m — ngg;.

As the two uncoupled systems are identical, the same
low energy constant X, appears in both terms. We shall also
set m; = m, once we have analyzed the transformation
properties of the effective partition function.

The new term due to the coupling between the two
sectors is

Lo = KTr(Ujc Uscg + UreggUscyy ). (18)

The constant K is a low energy parameter not determined
by the symmetries. We explicitly see that

Tr(UU, + U, UY)
- Tr(glRU];g-iLLg2L UzglR + 911 UlgIRngUigiL) (19)

such that the term is invariant for g;; = g,; and g1x = gor-
Hence, the new term conserves the locked chiral symmetry
from (14).

These are the leading terms in the limit V — oo with the
counting scheme

1
aﬂ"’m, m,-ZOVNI, CZKV’\’], (20)

where ¢ = | /cggcy . This extends the standard e-counting
[19] (for which ¢ = 0) and we will simply refer to it as
the e-counting below. In the e-counting, the constant
part of U dominates the partition function at leading
order [19].

Using rescaled variables /i = mX,V, &> = c?KV the

leading order partition function in the e-regime is given by
the group integral

ZIZ}{;JZEJH (m] , My, C)
= / dUldUzdet”'(Ul)det”l(Uz)
U(N;)

ﬂ + ,’;,_2 ; A2 3 ‘
x 2 U +U)+75Tr(Ur+U,)+¢ Tr(UlU2+U1UZ)’ (21)
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where U; and U, denote the constant part, and the integers
v, and v, count the respective number of zero modes in the
two uncoupled systems and the sign indicates the chirality.
We shall omit the hat on the mass and coupling constant
from here on.

In the second half of Appendix A we show that the new
two random matrix model reduces to (21) in the micro-
scopic limit, as it should because it has the assumed
symmetry properties.

A. Topology

Topological properties of zero modes in chiral systems
are closely related to transformation properties of the
partition function [14]. We therefore analyze the trans-
formation properties of the coupled system.

Single system: Let us start with a single uncoupled
system. The partition function is [5,14,19,26]

Zipyp(m) = L(N )dUdetD(U)e%Tr(mTU+mU#)' (22)
f

If we rotate m by e we can absorb this phase into
U — Ue'” and leave the mass term § Tr(m'U + mU")
invariant. The measure is invariant under the absorption of
the phase, but the determinant is not

det’(U) — e™Nr det*(U). (23)

Hence, the single uncoupled partition function transforms
as

ZYyp(me?) = e PNizy, o (m). (24)

This is exactly the same transformation properties as the
underlying theory [14]

Z = /dA detVr (—iB + m)e_SYM(A)

_ vN 2 F\N; ,—Sym(A
_/dAm TTES + mm)Nresmd) (25

o

J

where the product is over non-zero eigenvalues and v is the
number of E; = 0.

Two uncoupled systems: The case (21) for ¢> =0
follows in complete analogy with the single system. The
partition function is

Z. e (my,my, ¢ = 0)
- / dU1dU2det”1(U1)det”2(U2)
U(Nf)

% e%Tr(mTU]+mlU}I)-&-%Tr(m;Ug+sz;)‘ (26)
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If we rotate m, by e and m, by e'?2 we can again
absorb these phases into U; — U;e' and U, — U,e'®
respectively and leave the mass terms £, and £, invariant.
Again, the determinants are not invariant

det”t (Ul) det> (Uz) d eiyl¢]Nf+iy2¢2Nf det”! (Ul) det2 (Uz),
(27)

and the uncoupled partition function therefore transforms
as

VisVa i i 2 __
Ze(mye ¢ mye?, c* = 0)

— NN 70 (g my, 0 = 0). (28)

This transformation is again consistent with the trans-
formation of the two underlying uncoupled systems

[ ansanom T+ monmiyoms™

o

J

x (B3 + mams)Vre=Soudn=swmide),
k!

(29)

where the products are over nonzero eigenvalues.

Let us finally consider the transformation properties of
the coupled system.

Two coupled systems: For nonzero c, the coupling
Tr(UIU, + U,U}) in (21) is only invariant under the
absorption of the phases if ¢p; = ¢,. In the case ¢; = ¢,
the effective partition function transforms as

AN iq i 2\ — Lip(vi+vy)Ny7V1:V2 2
Zlis(mie®, mye'?, ) = etV Z (my, my, 2).

(30)

This strongly suggests that the density of the coupled
system will have |v; +v,| exact zero modes, which is
consistent with the two random matrix model in (Al),
where the coupling matrices have |v; + ;| rows (or
columns) with only zeros, see Appendix A. Of the original
|v1| + |v,| zero modes |v| + v5| survive in the presence of
the coupling. In particular, in the case v; = —v, there will
be no exact zero modes in the coupled system. We will
explicitly verify this below. Moreover, we will demonstrate
that the distribution of the |v|| + |v,| — || + v;| near-zero
modes takes a familiar, but perhaps surprising form
for ¢ < 1.

Now that we understand the transformation properties,
we no longer need m; and m, and shall set m; = m, = m.

IV. EIGENVALUE DENSITY OF CHUE

Let us now turn to the calculation of the spectral density
of the coupled system. As presented in the Introduction, we
start from a graded generating functional and find the
quenched chiral condensate as the derivative with respect to
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the mass. The spectral density is then obtained as the
discontinuity across the imaginary axis. We derive ana-
lytical expressions for the spectral resolvent for any ¢ and
greatly simplified expressions for the limiting cases ¢ > 1
and ¢ < 1. The expression for the density with any c is
somewhat complicated, but can be evaluated numerically.

The structure of the graded effective theory is the same as
(21) except that the proper domain is the general linear group
GI(1]1), see [26] and [38] for discussions of this. The graded
generating functional is

Z?iiujm (m,m',c)
= / dUldUzsdetvl(Ul)Sdetyz(UZ)
GI(1]1)

% e%Str(M(U]+U1‘1))+%Str(M(U2+U;1))JrczStr(U,U;lJrUzUl‘l)’

(31)

where Str and Sdet are the graded trace and determinant, see
[26] and [39].
Here the mass matrix is

m 0
M = .
0o m
At equal masses, m = m’ the generating function must
give the result 1, as the fermionic and bosonic determinants
in (3) cancel. This is also verified explicitly below.

To obtain the spectral density we need the quenched
chiral condensate

(32)

Eyl V2

— Vit
i1 (m, €)= 0 Z

1411 (33)

(m’ m/’ C)|m’=m'
The desired spectral density is then obtained as the
discontinuity of the resolvent across the imaginary axis

[2R7Z (E, C) _ % Re[zvl.vz (m =iE, C)] (34)

Piji+1)1 11411

In terms of the two random matrix model, this is the density
of the full matrix containing both the two flavors and the
coupling matrices. (See Appendix A.)

Note that for ¢ = 0 the spectral density automatically
reduces to that of chUE in the microscopic limit

e (E,c=

Pi+1)1 (35)

0) = pwe(E) + peue(E)

with [20,26]

P (E) =2 U2(E) = Jycr (N, (E)) + WI(E).  (36)
Note that in this case, where ¢ = 0, there are |v,| + |v;]

exact zero modes. We will perform the group integrals in
(31) by making use of the parametrization [26]
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Uj = exp =
0 e’i ﬂj 0

PHYSICAL REVIEW D 95, 074516 (2017)
eiej(l + %a]ﬂ])

37
o (7)

eia >
esf(l—%a]ﬂj) ’

Here a, a,, f3;, and f, are Grassmann variables and the angular variables 6, and 6, extend over [—z:z], while s; and
5 €] — 00 :oo[ are noncompact. The Berezinian is 1 [26]. We then evaluate the supertraces and superdeterminants and

perform the integrals.

See Appendix B for the full expression of the partition function. The quenched chiral condensate is

zv] B2

1 . .
1|1+H1(m’c> = W/dsldszdgldgzem(191—51)6U2(102—S2)

x exp[m cos(8,) + mcos(6,) — mcosh(s;) — mcosh(s,) + 2¢?(cos(0; — 6,) — cosh(s; — s,))]
x [1/4 cos(6,)(mcos(6,) + mcosh(sy)) + 1/4(mcos(6,) + m cosh(s;)) cos(6,)
+ (cos(0;) + cos(6,))(1/4(mcos(6,) + mcosh(s;))(mcos(6,) + mcosh(s,))

+ c? cos(6, — 6,)

+ ¢2/2(cos(0; — 0,) + cosh(s; — s5))(mcos(6,) + mcos(0,) + mcosh(s;) + mcosh(s,))

— c*(sin(@; — 0,) + isinh(s, — 51))?)]

and the density for any ¢ can be evaluated with standard
numerical packages such as Mathematica through the
relation (34).

Equation (38) is a main result of this paper, but also
rather complicated. In the limits ¢ > 1 and ¢ <1 the
expression simplifies dramatically as we show below.
See Figs. 1 and 2 for plots. The number of zero modes
is verified numerically.

QU

[

[}

=

S o

c

)

2o

2 0.

2

go

Rescaled Eigenvalues 2nE

FIG. 1. Inthe strong coupling limit of the two coupled chUE, the

coupled ensemble behaves like a single, uncoupled ensemble with
twice the volume and hence E — 2E. Plotted is the eigenvalue
density as a function of E scaled by 2n ~ X,V from a simulation of
the two random matrix model (A1) with f = 2 and parameters
¢ =0.1,n = 1000, and v; = —v, = 1. The large c-approximation
of the spectral density of chUE (41) has been plotted on top. The
relation 2n ~ X,V can be obtained from comparing (21) to (A12).
The result is independent of the exact value of c.

(38)

A. Large c2-approximation for chUE

In the limit of large c, the generating function can be
evaluated by saddle point approximation, as follows: First
we integrate out the Grassmann variables in our partition
function. The remaining term in the exponential related to
c? will be (see Appendix B)

Bulk modes

Full Spectrum Near-zero modes

80

o
3

70

o
o

60

o
&)

50

40

o
w

30

Density of Eigenvalues p
o
i

o
S

201

o
o

0
-5 0 5 -5 0 5 -0.05 0 0.05
Rescaled Eigenvalues 2nE

FIG. 2. The main result of this paper for chUE. Because the
zero modes are counted with sign, zero modes may cancel each
other. For small coupling the would-be topological modes spread
out according to a chiral Gaussian unitary ensemble. Plotted is the
eigenvalue density as a function of E scaled by 2n ~ X,V from a
simulation of the two random matrix model (A1) with g = 2 for
¢ =0.001, n = 30, and v; = —v, = 1 on different scales. Center:
The full spectrum. Left: Zoom-in on the unchanged bulk modes.
Right: Zoom-in on the would-be zero modes that spread out as
finite Gaussian ensemble. The small c-approximation of the
spectral density of chUE (61) has been plotted on top.
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2(cos(6 — 6,) — cosh(s; —s5)). (39)

The maximum of this occurs at 8, = 0,, s; = s,. In other
words: Where the compact and noncompact variables of the
two systems are the same respectively, i.e. U = U,. At this
saddle point the generating function thus becomes

zh (Moe>1)

1|1+1\1

= / dUSdet 2 (U)eStMUHUT)  (40)
GI(11

This has exactly the same form as the supersymmetric
version of (22) except for a factor of 2 on the mass. Using
the definitions (33) and (34) we therefore automatically
obtain

pﬂl’ﬁm(E, ¢ 1) =204 (2E) = 2E(J7 ., (2E)

- Ju]+u2+l (ZE)JU]JHJZ_] (ZE))
+ lv1 + 12|6(E), (41)

where the factor of 2 in front comes from normalization.
Notice the explicit analytical verification of |v; + 15| as the
number of zero modes in the coupled system. This limiting
function is compared numerically to the corresponding
random matrix ensemble (Al) with f =2 for large ¢ in
Fig. 1. The relation between physical and numerical
parameters can be found in (A14).

B. Small c2-approximation for chUE

As we now show, in the limit of small coupling between
the two systems only the topological modes are affected
(the bulk modes” are only affected at next to leading order
in c). We stress that by the small ¢2-limit we mean small
values of the rescaled variable KV c?.

Furthermore, we show that the near-zero modes behave
according to a finite size chGUE of size n’ = W
and with v = v + v,, where the width of the Gaussian part
is determined by c. In other words, we will prove the
factorization

Ifilﬁl\lw\/l cxl)

n' v M u u
= ZGuE (2\/? ) chUI;) lk(MMj) chUlI:3 lk(MMT>

(42)

where Zgl;’éUE is the quenched version of the finite size
chiral, unitary ensemble from random matrix theory with a
Gaussian weight. It will also carry the zero modes of our

total ensemble Z’l'“i”jlll. As suggested above, we are left

*We use the term bulk for the nonzero and non-would-be
topological eigenvalues.
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with |v; + ;| true zero modes, whereas the remaining
lvi1| + |va] = |v1 + v,| modes spread out as 2n’ near-zero
modes (n’ on each side), which makes the size of the finite
matrix n’ = w We show this explicitly.

The finite size quenched generating function for chGUE
can also be written in the more convenient form [5,24]

Zacue(M) = / dAe™"S"AA Sdet (AT + M)

x Sdet" (A + M), v>0 (43)

or

Zaoue(M) = / dAe™"S™A Sdet" (AT + M)

x Sdet" (A + M),

The two Zﬁhij?lk are also chiral random matrix unitary
ensembles, but in the microscopic limit, which makes the
choice of weight unimportant [25]. We have removed
the zero modes by hand in the following way, leaving
only the bulk (nonzero) part of Z*!:*2. ., which we shall call

11+1]1°
),bulk
chUEll (MM )

v<0. (44)

Zie (M) = Sdet! (M)ZE™ (MMT), 120
(45)
Zie(M) = Sdet* (MO ZERM (MMT), v <.
(46)

The superdeterminant prefactor leads to a %—term in the
spectral resolvent, which in turn leads to a |v|6(E)-term in
the density, as can be seen in (36). The transformation
properties of Zgl)UE(M) in (24) and the |v|6(E) term in the
density are due to the Sdet’(M). As the argument MM

suggests, ZﬁhU?lk(MMT) is invariant under rotation of the
mass matrix because the effect of such a transformation is
dependent on the amount of zero modes.

Our goal is to separate the zero modes from the rest
and identify them as the determinants of Eqgs. (43) and (44).

Let us return to our original generating functional:
24, (M) = /G o AU Se (U)o (01)
X exp B Str(MTU, + MUTY)
+ %Str(/\/l"' U, + MU3")

+ S (U, U5 + U,UTY | (47)
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To linearize it, we make two Hubbard-Stratonovich

transformations
¢S / dae_suét%wtr(Qﬁ) (48)
e~Su(Q) o / d&e_sn%”s“@é) (49)
with @ = LUt g g = DUl here
(,_(a 1) 5-(? X) (50)
n ib noib

and a,b,a,b € R. We ignore an overall constant and
get

(SR
Zl|1+1\1

M)_/ddd(}/ dU]dUzSdetD'(Ul)
Gl(1]1)

2, =2
x Sdet*2(U,) exp [—Str (0 +20 ﬂ
4c
1 ;
xexp{EStr(MrUl + MUY
1
-i-EStr(MTUz —I—MU;I)}
xexp{Str(Z(Ul + U+ U, + U3 ))

+Str<i§(U1 -U7'+ U, - U;l)ﬂ.
(51)

We now define A = 6 + i6 and A" = 6 — i5 leading to
'Iilyjm M) = /dA/ dUdU,Sdet"1 (U;)Sdet*2(U,)
GI(1]1)
AAT
X exp | —=Str vl
1
X exp {EStr((/\/lT +A) U+ (M + AT UTY)

+%Str((/\/ﬁ +A)U, + (M +AT)U51)].

(52)
Using (22), this allows us to write
AAT
Z (M) = /dAexp[ Str(4 2)}
X thflﬁE(M + A7) chUE(M + A%, (53)

PHYSICAL REVIEW D 95, 074516 (2017)

If welet A — 2v/n/cA, we may pull out a factor in front and
identify the Gaussian part of Egs. (43) and (44). Note that
this results in the argument of ZchGUE(2 %C), as we have
written in Eq. (42).

Depending on the signs of v; and v,, we will get a
different determinant from the zero modes, when we split
the two microscopic limit random matrix ensembles into
zero modes and nonzero parts, see Eqgs. (45) and (46).

Inserting from Egs. (45) and (46), we can identify the
different cases of n and v from Egs. (43) and (44)
depending on the sign of v + v5.

1. For vy, v; >0

Let us examine the case vy, v, >0 in detail. From
Eq. (45) we have

Zijiiip(M) = / dAeXp[ Str(ﬁA )]Sdetvl+Vz(M + A')
C

x ZENR (M + AT M + A))

x ZUe"™ (M + ATIMT + A)).

The next step is crucial and highly nontrivial: (54) is an
integral of the form

(54)

/dAf(A, c)g(A) (55)
with
ﬂA”ZS“W”%M+AUwP{&«iﬂH
g(A) = ZEIN (M + ATIMT + A))
x Z8EP (M 4 ATIMT + A)). (56)

Note that A ~ ¢ because of the Gaussian term, so Taylor-
expanding these two functions around ¢ = 0 corresponds
to a Taylor-expansion around A = 0. (Recall we are after
the ¢ < 1 limit.)

The constant term in the expansion of f is suppressed
because of the Gaussian part, whereas the partition func-
tions of g stay finite. So the leading term is the zeroth order
term from g. Since g is even in (M + AT), ¢(0) =0 as
well, which is why we also include the first order of f as the
subleading term. (And why this choice of f and g was a
good one.) So

f(A,c)g(x) = f(A, €)g(0). (57)
This approximation corresponds to
AAT
I;ilﬁl\l(M ck1)= /dA exp [—Str <E>}
x Sdet1 T2 (./\/l _i_AT)ZEI;llI}],I:aqu
X (MM ZEI (MM),
(58)
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This step is common to all cases of topology and is the
reason for the factorization. A similar factorization appears
for the continuum limit of Wilson fermions in [27].

Since vy + v, > 0, we can directly identify n’ = 0 and
v=v; +v, from Eq. (43), which is consistent with
n = W Note that n’ = 0 simply implies that
sign(v;) = sign(v,), where there is no cancellation of
zero modes.

The other cases can be found in Appendix C.

2. Spectral density of small c-limit

To recap, in the small c-limit we have established the
factorization

Zj 0 Me < 1)
n' v M ).bulk T ),bulk ¥
= ZGuE (2 ﬁ ) chUE (MM ) chUE (MM )

(59)

with n/ = alellitnl ang ) — ) 4 4, and the width of

the finite ensemble 2v/nc.
This makes the quenched chiral condensate

m
e (me<<1) =X pl ——
l|1+1\1( ) chGUE (2\/_’C>

(vy).bulk

Jbulk
+ ZO () + 5L (m). (60)

The spectral density then becomes

1, E
P (E.c < 1) = pigue (2\/’—17)

(v1).bulk

).bulk
+ PentE ‘

(E) + pli™ (). (61)

Comparing to (35) we see that indeed only the would-be
zero modes are affected for ¢ <« 1. Adapting the finite n
spectral density solution from [20] and using the width
calculated above, we have

n'!

cI'(n +v)

% e—ﬂz (/12)y+1/2<Lu | (12)L;I+_11 (/12)

= Ly ()L 5 (2)) (62)

Pencue(Es ) =

where we have used the shorthand

E2

2=z
202

(63)

Note that it is normalized to 2n’. A comparison with a
simulation of the random 2 matrix model (A1) with f =2
can be seen in Fig. 2. As expected, the analytical result from

PHYSICAL REVIEW D 95, 074516 (2017)

the effective theory agrees with the simulation of the micro-
scopic limit of the random two matrix model. Note that
¢? « V, which makes the width of the near-zero density scale
as ﬁ This is distinct from the bulk modes for which the

1

width of the individual eigenvalues distribution scale as 5.

C. A note on universality

The coupled partition function Z’l"l'jil M) is a univer-

sal object based on the symmetries of tLe system and the

same goes for the microscopic limit of chUE, Zgh)UE(./\/l),
because the choice of weight is unimportant in the micro-
scopic limit [25].

This makes is particularly interesting that the finite size
chGUE appears for ¢ < 1. It contains a clear choice of
weight, but is nevertheless universal as it is chosen by the
symmetries at leading order. Something similar happens in
the aforementioned continuum limit of [27]. In both cases,
this is because the leading order generating functional only
contains up to quadratic terms of U.

V. COUPLED CHOE

Let us now turn to the universality class chOE. In this
case the uncoupled system is [21,24,27]

ZS\Z(M) Z/ dUSdetD/Z(U)e%Str(MwH\/,U_l) (64)
2(212)

where the quark mass matrix is

m12 0
M= < ) ) (65)
0 m 12

and 2(2|2) = U(2|2)/UOSp(2|2). Just as for chUE the
corresponding coupled version is

1/1112 (M C)

Zyhiap
= / dU,dU,Sdet"/?(U,)Sdet>/*(U,)
Z(22)

% eSEMIUHMU)HSa(MT U+ MU, ) +E2Su(U7 Uy +U, U5

(66)

The transformation properties are just like those for chUE
and hence we expect the same number of exact zero modes
and near-zero modes for small ¢2. To do this group integral,
we can make use of the parametrization [27]

ipj * *
e 0 a; P

0 €% —a; —p;
U, = diag(1,, 0;) . -/ i diag(1,, 0T)
' ‘ a; a; eV

g B 0 el

(67)
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o o
=) ©

Density of Eigenvalues p
o
=

0.2

Rescaled Eigenvalues nE

FIG. 3. The strong coupling limit of coupled chOE, where the
coupled ensemble behaves like a single, uncoupled ensemble
with E — 2E. Plotted is the eigenvalue density as a function of
nE~Z%yVE from a simulation of the two random matrix
model (Al) with p=1 for ¢=0.1, n=1000, and
vy = —v, = 1. The large c-approximation of the spectral density
of chOE (71) has been plotted on top. The relation n ~ X,V
for chOE comes from (A15). Again, the result is independent
of the exact value of c.

where O; € O(2). We parametrize the orthogonal matrix
by adding the possibility of reflection to a SO(2) matrix:

o= (iey wion)o 5"

0, € [-n. x| k; € {0,1}. (68)
One can then, like chUE, evaluate the supertraces and
perform the integrals, but the full expression is prohibi-
tively cumbersome. For the large ¢? approximation we will

need the action part of the coupling, which is

4cos(p, — @,) —2cos?(0, — 6,) cosh(s, — s5)
—2cos?(6, — 0,) cosh(t; — t,)
—2sin%(0; — 0,) cosh(s; — 1)
—25sin?(0; — 0,) cosh(t; — s,). (69)

The arguments are in general very similar to chUE, so we
shall merely sketch the procedure.

A. Large c2-approximation for chOE

In complete analogy with chUE for large ¢? the saddle
point approximation effectively sets ¢, s, 1,0 = @,
S, 15, 6,, which we assume to be the same as U, = U,.
The generating function for the eigenvalue density thus
becomes

PHYSICAL REVIEW D 95, 074516 (2017)

Z\lzyfzp(M c>1)

— /dUSdet(ul+u2)/2(U)eStr(M(U+U—1))’ (70)

and it follows from the definitions of the resolvent and
eigenvalue density, (33) and (34), that

pgzﬁz\z(Ev ¢ 1) = 2p4or (2E), (71)
with [40-42]

= E/2(J3)(E) = J 1 (E)J )y (E))

+%J|y|(E)(1 —AE dxjvl(x)>- (72)

Again the factor of 2 in front comes from normalization. A
numerical comparison to the corresponding random matrix
ensemble [Eq. (A1) for # = 1] for large ¢ can be found in
Fig. 3. Again perfect agreement (within statistical errors) is
observed.

Penoe(E)

B. Small ¢2-limit for chOE

In the limit ¢> < 1 we expect analogous to chUE that the
partition function factorizes in the way

7357, (M e < 1)

2|2+2\2
n v M u. u
= ZhGoE (m) chO}IEJ lk(MM )Z chO]s lk(MM ):
(73)

again with n’' = w The factor of v/2 in the
argument of ZChGOE( \//‘i) compared to (42) comes

from differences in the corresponding random matrix
ensembles.

To show this factorization, let us consider the
coupled partition function (66). We make the same two
Hubbard-Stratonovich  transformations from (52), but
with 0,6 € £(2|2), where X(2|2) may be parametrized
as follows [27]

where O € O(2) and u, v,w € R. We find
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vy U
Zzizjm(M)

— / dA / dU,dU,Sdet (U, )Sdet? (U,)
2(2)2 212)

<o |-su ()
exp | =Str{ —
4c

1
X exp {2Str((,/\/ﬁ +A) U, + (M + AU

1
+§Str((/\/ﬁ +A)U, + (M +AT)U51)] (75)
AAT
= dA St
/(2|2) exp{ r<4 2)]
X cht/llOE(M + AT) chOE(M + AT) (76)

because the microscopic limit of chGOE is [24]

v . n,v 1
ZhoeM) = lim Z .60 <M ~ )

n

= / dUSdets(U)eStMUAMU™) - (77)
Splitting this into zero modes and bulk modes like before,

v>0

v)
Z 011/10E

(M) = {SdetﬂM) Zho (MM,

Sdet 4 (MH)ZUP(MMT), v <0

(78)

we can identify the Gaussian part and determinants from the
finite chGOE

Zaoe(M) = / dAe™5544 Sdet™ (AT + M)
x Sdet2(A + M), v>0 (79)
or
Zaor(M) = / dAeSm S et (AT + M)
x SdetT(A+ MT),  v<0.  (80)

The factors of % cancel and we arrive directly at

’ M
;izﬁz\zm/l c < 1) =Zg60r (ﬁ)
).bulk ).bulk
Xch;lIOEu (MMT)Z chOEu (MMT)
(81)
with n' = w and v =v; + v, and the width

of the finite ensemble proportional to ¢, by the same
procedure as in Sec. IV B 1.
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Bulk modes 60 Full Spectrum 0 Near-zero modes
0.7 140 1 140
< 0.6 120 1 1 120
%]
[}
p=}
© 0.5 100 - 1 100}
>
C
S
i 04 80T 1 8or
—
(=]
203 60 - { eof
(2}
j
[
Qo2 40 F 4 40t
0.1 201 1 20
0 0 0
- -5 0 5 -0.05 0 0.05

Rescaled Eigenvalues nE

FIG. 4. The main result of this paper for chOE. For small
coupling the canceled topological modes behave according to a
chiral Gaussian orthogonal ensemble. Plotted is the eigenvalue
density as a function of nE of a simulation of the two random
matrix model (Al) with f=1 for ¢ =0.001, n =30, and
vy = —v, = 1. The small c-approximation of the spectral density
of chOE (83) has been plotted on top. The results stays consistent
for different small values of c.

Again the transformation properties of a U(1) trans-
formation of M in Zj (M) are contained in the factor
Sdet>(M). This factorization makes the chiral condensate

VIV

2 iap(m.c < 1)

n m (v1),bulk (1>),bulk
=X — | + 2y +Z 82
hGOE< /_Zn’c> hoE (M) woe  (m)  (82)
and spectral density

p;iz’ﬁz‘z(E, cxl)

n'.w m v;),bulk v,).bulk
= PchGOE (ﬁ) +P£hgﬁ (E) +p£h2(%E (E). (83)

The finite n eigenvalue density for chGOE was worked
out for even n in [22]. For odd n the general expressions
may be found in [40,43]. The explicit results for n = 1
and v = 0 respectively v =1 can be calculated directly.
They are

n=1v= 1 £
Pl (E) = =72 (84)
nc
and
1 52
n=1,v=1
E) =_——5Ee +’. 85
Pancoe (E) 202 e 2 (85)

Again they are both normalized to 2n. A comparison with
the two random matrix model (A1) for f# = 1 can be found
in Fig. 4.
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As for the unitary ensemble, we find a cancellation of
topological zero modes based only on the symmetries of the
partition function. We also find an analogous behavior of
the would-be zero modes in both the strong and the weak
coupling limit. Again the width of the near-zero distribution

1
scales as N

VI. CONCLUSIONS

The studies of microscopic eigenvalues have lead to a
deep understanding of for example the effects of dynamical
fermions in lattice QCD [5-7], the effect of topology in
lattice QCD [20], the mechanism for spontaneous breaking
in non-Hermitian systems [11-13]. Here we have presented
the first study of the effect on the microscopic eigenvalue
density when topological chiral systems are coupled. One
explicit realization of a coupled system with the sym-
metries considered is a system with two quark flavors
where each live in separate gauge fields, but are coupled by
an external off-diagonal vector source. The microscopic
eigenvalue density of the coupled chOE ensemble calcu-
lated in Sec. V is inspired by superconducting nano-wires
carrying Majorana modes. The very characteristic micro-
scopic eigenvalue density found is universal since it follows
from symmetry considerations alone, and we hope it will be
of an equal practical use for this coupled system as similar
results for the uncoupled systems have been. In particular
the characteristic scaling with the inverse square root of the
volume, can be used to distinguish the would-be topologi-
cal modes from other small eigenvalues. A similar scaling
of near-zero modes found in [8,9], explained the unusual
scaling with the volume observed in [44]. A related scaling
was also found in [45].

To be specific, we have considered the coupling of two
otherwise identical quenched chiral ensembles. The cou-
pling preserves a combined chiral symmetry, but changes
the overall topological charge to v = v; + v,. This holds
true for unitary and orthogonal ensembles alike. Our main
objective has been the density of eigenvalues, which we
have found through the effective low energy theory. We
find an analytical solution for the cases ¢ << 1 and ¢ > 1
and numerical ways of determining the full expression. For
a large coupling the ensembles behave like a single system,
but with twice the volume and common topology
v=uv; +1v,. Small coupling leads us to a factorization
of the partition function that leaves the bulk eigenvalue
density unchanged, but spreads out the canceled |v;|+
|vs| = [v1 + 15| zero modes as near-zero modes according
to a finite size random matrix ensemble with a Gaussian
weight and n' = W Perhaps surprisingly, this
weight is universal because it originates from the quadratic
term in the effective Lagrangian.

Interestingly, a closely related effective partition function
and random matrix model appears in [35] for stressed
Cooper pairing in QCD.

PHYSICAL REVIEW D 95, 074516 (2017)

It would be most interesting to repeat this analysis for a
chiral symplectic ensemble. We expect this to be straight-
forward, because the factors of i in the effective theory
cancel the same way the factors of % do in chOE. Notice
that, as long as the Hubbard-Stratonovich matrices are of
the correct group, we make no assumptions about the group
of integration.

We are also currently working on the case of coupling
two flavors already in the same gauge field. This corre-
sponds to a 7;Ur;U~" term in the Lagrangian with U €
GI(2]2) and corresponds to W; = W, in the two random
matrix model (A1).
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APPENDIX A: COUPLED RANDOM
MATRIX MODEL

The effective theories in the e-regime are directly linked
to random matrix theory through the symmetries properties
[2]. A two random matrix model that displays the sym-
metry properties discussed in Sec. II is given by
ZeiGEr 1 (ms€)

nmy lWl 0 ic
Wl omyic 0
= /dWlszdetN/ . .
0 ic my W,
ic 0 W) m

p
X o BT W\ Wi+W, W)

(A1)
where W; are separate random (n + v;) x n matrices with
real (complex) entries for f=1 (f=2), and ¢ is an
identity matrix times a parameter that determines the
coupling strength. For v; < 0, W, is an n x (n — v;) matrix
instead, and for v; # 0, ¢ is padded with zeros.

For instance, in the case vy =0, v, = 1, and n = 2, the
upper right-hand block is

0O 0 0 ic O
0O 0 O ic
(A2)
ic 0 0 0 O
0 ic O 0

and the lower left-hand block is the transposed of this.
Notice that ¢ enforces the locked symmetry from Eq. (14)
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and that the coupling matrices have |v; + v,| rows or
columns of zeros, which leads to the |v; + v;| zero modes.

Having different W and W, corresponds to coupling
two ensembles that are completely separate. For ¢ = 0, the
partition function factorizes into the product of two single
ensembles.

In the following section we shall derive the microscopic
limit of this two random matrix model and show that it
agrees with the low energy effective theory in (21). This
includes comparison of the physical parameters to the
numerical counterparts.

The microscopic limit is defined by the limit n — oo,
while keeping m = O(n™!). As n can be related to the
volume of our system [25], this corresponds to the low
energy limit. We shall extend this definition to ¢>=0O(n"").
(For a review of two matrix models as used in QCD at
nonzero chemical potential see [46]).

In the quenched limit we do not consider the determinant
of (A1), but compute eigenvalues of matrices of the form

my lWl 0 ic
iw, my ic 0

: . (A3)
0 ic my, iW,

ic 0 W, m
with the elements of W;, W, drawn from the weight
e B TH W\ W+ WoWh)

(A4)

We retain information about the form of the matrix, but do
not consider the determinants.

PHYSICAL REVIEW D 95, 074516 (2017)

1. Effective theory of the coupled random matrix
model for f=2

We set m; = my =m as in Sec. II, and f# = 2 in (Al)

ZaGUE, 141 (M- €)

m W, O ic
W}L m ic 0
= /dW]dW2 deth . .
ic m iW,
ic 0 W) m
% e~ (W Wi +WaW)) (A5)
We express the determinant as fermionic integrals

n,vy,vy
ZChGUE, 1+1

= / AW (AW, dp' dgPdy dyr>e="T VW W2 W)
y'\NT/m iw, 0 ic w!
P! Wi m ic 0 P!
w2 0 ic m W, %
¢ ic 0 Wy m /) \¢?
(A6)

X exp

where each field y/, ¢/ has an implied index that runs over
the number of flavors. With the notation W; = a; + ib; we
integrate out the matrices.

Z’C’}’l"clji'jglﬂ = / da,da,db,db,d¢' dp*dy dy® exp{—n(a%lj + b%ij + a%ij + b%ij)

+ ialij(‘//}*fﬁjl- - ‘//11415,1'*) + iaﬁj(l//?*fﬁjz- - 1//,2453*) - blij(wzl*¢jl' + l//ilflﬁ]l-*) - b2ij(l//12*¢5 + W,zfﬁjz*)
+m(yl ] + Qo ity 4+ @7 7)) +ic(] i +wltdr + dFwl +witgl)}

1 X * * * *
= [ @ iy an? exo s vg 0]+ v ) ] g v )

n

iy 4y + v/?*d)})}

1
= / dep' dg*dy dy’ eXp{E ((wi*wl + o) wiw) + @i ) — (wity! — ¢l d)) (Wi y) — ¢ ¢))

+ WPyl + 7D (wiwd + 479 — (it}

M e A ) R U R R T A G T ) )}.

— PPN (Wi — ¢ P3)

(A7)

One should be careful here, because the vectors ¢! and y? are not necessarily the same length. Since ¢ is padded with zero
as seen in (A2), it is implied that spare entries, which correspond to the rows or columns with only zeros, have been removed
in the coupling part. We make four Hubbard-Stratonovich transformations and get
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ZehGubis1 = / do\do,dG de,dg' dg*dy' dy? exp{—nTrt(0\06] + 0,65 +615] +5263) + o1 (w; W] + ¢*P})

+ 61 (wi Wl = b)) + oo (wityi + b7 h7) + iy (witwi — b7 h3)
+m(yl ] + ol wityi @7 - ic( Wi+ wite + byl e (A8)

where 6;,6; are general, real Ny X N, matrices [24].

. - . T .
Defining A; = 0, + i6; and Aj =0, — i6;, we have

Ziti 1 = [ dA1dAAp Py exp-nTe(AA] + A2AD) +yl (A4 mly]+ ) (4] + m))

Fy? (A + my? + ¢F (AL + m)p? + ic(pPy? +yl ¢t + pPul +yPph)). (A9)

We assume v; > 0 and perform the n + v; integrals over y/, and thereafter the n integrals over ¢/

Z ke = /dAldA2d¢ld¢2 det"™1 (A| + m) det"™2 (A, + m) exp{—nTr(AlAI + AZAE)

+ PP (A + m)T P + P (A] + m)g)
+ (A + m)T g+ pF (A + m)p? )

= / dA dA, exp{—nTr(A|A] + A,A])} det"™ ™1 (A} + m) det" ™2 (A, + m)
x det" (AT + m + c2(Ay + m)~) det" (A} + m + 2(A, + m)™)
= / dA,dA, exp{—nTr(A;A] + A,A])} det' (A, + m) det2 (A, + m)
x det (A + m)(A] +m) + ) det" (A, +m)(A] +m) + )
= / dA dA, exp{—nTr(A|A] + A,A])} det”' (A, + m) det2 (A, + m)
x det” (mA, + mA] + AyAl + ¢2)(mA, + mA] + A AL + ¢2)). (A10)

The other cases of v; follow analogously. We are interested in the microscopic limit as defined above, so we have ignored

terms of O(m?) in the final step above. In the following, we also ignore terms of the kind ¢?>m and c*, as these are O(n~?) in
this counting scheme.

ZoGt 141 = /dAldAz exp{—nTr(A,A] + A,AD)} det* (A| 4 m) det*2(A, 4+ m)
x det" (mA,A AL + mAATAL + mA, + mAL + 2(A,AT + 4,A)) +1)
= / dA dA, exp{—nTr(A]AI + AQAE)} det’' (A + m) det*2(A, + m)

x exp{nTr(In(mA,A| A} + mA,ATA] + mA, + mA]
+ 2 (AA] + AAD) + 1] (A1)

A saddle point approximation effectively sets A; equal to a Ny x Ny unitary matrix, which we call U;. We then rewrite the
determinants as the trace of a logarithm and expand this logarithm
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Zidihai = / dU,dU, det (U, + m) det*>(U, + m)

x exp{nTr[In(mU,U,U} + mU,U U} + mU, + mU}

+ A(ULUT + U UY) + 1]}

= /dUldUzdet”'(Ul + m)det> (U, + m)

x exp {nTr[mU, U, U} + mU,UTUS + mU, + mU + (U, UT + U U}

= /dUldUzdet”l(Ul + m)det2 (U, + m)

x exp {nTe[mU, + mU| + mU, + mU} + (U,U} + U,Ub)]}.

(A12)

Letting n — oo while keeping 2nm ~ 1 and nc? ~ 1 yields our final effective partition function

ZUI V2

which is the same effective theory as obtained in Eq. (21)
with the identification

VEGE ~2nE and KVc? ~nc? (A14)
for chUE. For chOE we have
» 1,
VEE~nE and KVc ~5ne (A15)

because of the square root on the determinants in Egs. (79)
and (80).

Note the implications of this: When comparing the
limiting cases to numerics, we are actually considering
the regimes v/nc > 1 and /nc < 1 respectively in terms
of numerics.

In the strong coupling limit we choose to make the size
of the matrix large rather than c¢. Merely making ¢ large
moves all eigenvalues away from the origin and close to
+ic. Then the random matrices W, W, provide only
perturbations around +ic. We require eigenvalues around
|

Zyjipap(m,m’, c) =

(27)

e = / dU,dU,det (U, )det*2 (U,) exp {5 Tt[U, + Ul + U, + Ul] + SATe[U,UT + UIU;]}

1 ) )
— / ds,ds,d0, dQQeul(lal—Sl)el/z(l@z—fz)

(A13)

the origin if the microscopic limit is to be consistent with
the low energy effective theory [25].

APPENDIX B: EXPLICIT CALCULATION OF
THE GROUP INTEGRAL

In this appendix, we evaluate the graded generating
function (31). We choose the parametrization [26]

el 1—|—la-[)’» e
j — ( ( N 27 /) N 1/ ) (Bl)
e‘fﬂj €f<1—§ajﬁj)
which makes
e (1 +1ap; —e Yiq;
U;l:( (_»2’/3]) ! ) (B2)
e Sfﬂj e Sf(l _Eajﬂj)

evaluation of the super traces and integration of the four
Grassmanian variables results in the generating function

x exp[m cos(0,) + mcos(6,) — m’ cosh(s;) — m’ cosh(s,) + 2c*(cos(8; — ;) — cosh(s; — s5))]
x (1/4(mcos(8,) + m’ cosh(s;))(m cos(0,) + m’ cosh(s,)) + ¢?/2(cos(8; — ;) — cosh(s; — s5))
+ ¢?/2(cos(0; — 0,) + cosh(s; — s5,))(mcos(8;) + mcos(6,) + m' cosh(s;) + m’ cosh(s,))

— c*(sin(0, — 6,) + isinh(s, — s51))?).

(B3)

We have checked explicitly that this expression for the generating function equals one when evaluated at m = nt'.
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Differentiation with respect to m yields the resolvent

ZD] V2

et /dsldSngldgzelfl(ial—fl)evz(iaz—sz)

1
"9 = aap
x exp[m cos(6,) + mcos(6,)
x [1/4 cos(@

— mcosh(s,) + 2¢2(cos(8, — 6,) — cosh(s,
1/4(mcos(6;) + mcosh(s;)) cos(6s)

— mcosh(s;)

1)(mcos(0,) + mcosh(s,)) +

PHYSICAL REVIEW D 95, 074516 (2017)

= 52))]

+ (cos(0;) + cos(6,))(1/4(mcos(6,) + mcosh(s;))(m cos(6,) + m cosh(s,))

+ ¢ cos(8, — 6,) + ¢2/2(cos(0;

The eigenvalue density is now obtained readily from (34).

APPENDIX C: DIFFERENT CASES OF v; AND v,

1. For v, v, <0

For vy, v, < 0 we have

VLV, AAT
Zliijm(/\/l) = /Gl(ll)dAexp [_Str<ﬂ>}

x Sdet™1 ™2 (M + A)
x ZEIPR (M + ATIIMT + A])
x ZERN (M + ATMT +A])  (C1)

which for ¢ < 1 becomes

ARZ AAT
Z1i1’j1\1(/\/1) = /G[(H)dAexp [_Str<ﬁ>}

x Sdet™1 72 (M" + A)
ZER N MM ZE M (MM (C2)

Since vy + v, < 0, we can again directly identify n = 0
and v = v| 4+ v, from (44).

2. Forv; >0and v, <0

For 11 > 0 and v, < 0 we have

—0,) + cosh(s; —s,))(mcos(6,) + mcos(6,)
+ mcosh(s;) + mcosh(s,)) — c¢*(sin(6, — 6,) + isinh(s, — 5,))?)].

AAT
zi (M) = / dA ex [—Str(—)}
e (M) GI(1)1) P 4c?

x Sdet’' (M + A")Sdet™> (M + A)
X Zgar (M + ATM + 4))

x ZEIMN (M + AT IMT +4])  (C3)

which for ¢ << 1 becomes

aneo|-su(35)|
ex r
GI(1|1) P 4c?

x Sdet! (M + AT)Sdet™ (M + A)
Ze" (MM ZEE"™ (MMT).
(C4)

l/l N%3 (M)

Zijiin

a. Assuming v{ +v, > 0

We compare this to Eq. (43) and find n = —v, and
n + v = v, which is consistent with what we seek.

b. Assuming v; +v, < 0

We compare this to Eq. (44) and find n =1,

and n—v = —v,, which is also consistent with n =
|py [+[wa|=|vy )
5 .

We can let v; <> v, and repeat the arguments.
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