
Universal distribution of would-be topological zero modes in coupled
chiral systems

Adam Mielke and K. Splittorff
Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100,

Copenhagen Ø, Denmark
(Received 30 September 2016; published 26 April 2017)

We consider two quenched, chiral ensembles which are coupled in such a way that a combined chiral
symmetry is preserved. The coupling also links the topology of the two systems such that the number of
exact zero modes in the coupled system equals the sum of the number of zero modes in the two uncoupled
systems counted with sign. The canceled modes that turn nontopological due to the coupling become near-
zero modes at small coupling. We analyze the distribution of these would-be zero modes using effective
field theory. The distribution is universal and, in the limit of small coupling, the would-be zero modes are
distributed according to a finite size chiral Gaussian ensemble, where the width of the distribution scales as
the inverse square root of the volume.
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I. INTRODUCTION

Microscopic eigenvalues of Hamiltonians, scattering
matrices and Dirac operators hold vital information about
the systems from which they originate [1]. Because these
eigenvalues have a magnitude on the order of the inverse
size of the system, they are naturally linked to the long-
range properties, in particular the global symmetries and
the spontaneous breaking thereof [2–4]. Due to this
intimate relationship with the symmetries, the average
distribution of the microscopic eigenvalues takes a uni-
versal form determined by the pattern of symmetry
breaking in the present system. This has led to a range
of new analytic tools to analyze the properties of complex
systems. It allows us, for example, to study the effects of
dynamical fermions in lattice QCD [5–7], the effect of a
nonzero lattice spacing in lattice QCD [8–10], and the
mechanism for spontaneous breaking in non-Hermitian
systems [11–13].
Besides the microscopic eigenvalues, systems can have

exact zero modes of a topological origin. Topological zero
modes appear in high energy [14,15] as well as solid state
systems [16,17]. Because these zero modes only depend on
the topology of the system, they will remain intact under
any change that conserves topology. They stand out in
chiral systems where they, unlike the nonzero eigenvalues,
do not appear in pairs.
In this paper, we will consider two coupled chiral

systems, each with their own topology. The coupling
preserves a combined chiral symmetry, but couples the
topological zero modes. Our primary concern is the fate of
these zero modes. The total number of zero modes is
determined by the sum of the individual topologies counted
with sign, i.e. zero modes cancel each other if they are of
opposite chirality. These canceled, would-be zero modes
spread out as near-zero modes symmetric around the

origin, and we will determine the exact distribution of
these near-zero modes. The coupled system considered is
motivated by topological nano-wires, but the results are
relevant for any system with the symmetries described in
detail below. An example is a system where two fermions
(e.g. quarks) interacting with separate gauge fields (e.g.
gluon fields) are in weak contact.
The eigenvalues near zero in chiral systems are inti-

mately connected to chiral symmetry; the density of
eigenvalues at the origin serves as the order parameter
for spontaneous breaking of the chiral symmetry [18].
Common to chiral systems that display a spontaneous
breaking of symmetry is the aforementioned universality of
the microscopic distribution of eigenvalues around zero
[5,19–27], and, as we will show explicitly, the eigenvalue
density of the near-zero modes is universal as well. It may
therefore come as a surprise that in the limit of small
coupling the microscopic density takes the form of a finite
size chiral Gaussian unitary ensemble (chGUE) for a
complex-valued operator and chiral Gaussian orthogonal
ensemble (chGOE) for a real-valued one. The choice of
weight is usually arbitrary, but the Gaussian weight is a
direct consequence of the unique quadratic term in the
effective Lagrangian of the coupled system and is thus
universal.
We will consider both the orthogonal and unitary

ensembles, which apart from real- or complex-valued
Hamiltonians correspond to two different patterns of
symmetry breaking [2–4,21]. The chiral unitary ensemble
(chUE) follows the pattern [28,29]

SURðNfÞ × SULðNfÞ → SUVðNfÞ ð1Þ

where the notation Nf is borrowed from QCD, where it
refers to the number of quark flavors. The chiral orthogonal
ensemble (chOE) follows the pattern [24,29]
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Uð2NfÞ → Spð2NfÞ: ð2Þ

The broken group of the orthogonal ensemble is larger,
which makes the treatment of it more complicated. We
therefore start by showing the behavior of the simpler
chUE, before we move on to chOE.1

A good example of a theory exhibiting spontaneous
breaking of chiral symmetry is QCD. Because the massless
Dirac operator D anticommutes with γ5, the eigenvalue
density is symmetric around zero with a number of
topological eigenvalues at zero. We shall use the low
energy effective theory techniques developed for QCD to
calculate the eigenvalue density of the two coupled chiral
systems.
In QCD, analysis of this symmetry breaking has led to a

thorough understanding of the propagation and loop dia-
grams of pseudo-Goldstone modes [30], treatment of QCD
at nonzero chemical potential [31–34], and calculation of
the microscopic eigenvalue density [26–28]. While the first
two are standard, the latter is less well known. The
eigenvalue density of the anti-Hermitian Dirac operator
−iD is obtained as follows: First we need a graded
generation functional [26]

Zðm;m0Þ ¼
Z

dA
detð−iDþmÞ
detð−iDþm0Þ e

−SYMðAÞ; ð3Þ

where SYM is the Yang-Mills action and A is the gauge
field, from which we can find the quenched chiral
condensate [26]

ΣðmÞ ¼ ∂m lnZðm;m0Þjm¼m0 ¼
�
Tr

�
1

−iDþm

��
: ð4Þ

The density of the eigenvalues E can in turn be obtained
from the discontinuity across the imaginary axis of the
quenched chiral condensate

lim
ϵ→0

ΣðiEþ ϵÞ−ΣðiE− ϵÞ¼
X
k

hδðE−EkÞi≡ρðEÞ; ð5Þ

where Ek are the eigenvalues of D.
The challenge is to calculate (3) and, to do so, we use the

spontaneous symmetry breaking to set up a low energy
effective generating function [26,28]. By establishing a
counting scheme that favors the light Goldstone modes, we
consider the low energy regime, where the generating
function can be calculated in its entirety [19,26]. We extend
this approach to the coupled system and obtain in this way a
closed expression for the eigenvalue density. Furthermore,
we find that the analytic expression for eigenvalue density

dramatically simplifies in the limits of small and of strong
coupling.
The eigenvalue density for chGUE can also be found in

the microscopic limit of a chiral random matrix theory
given by [4,5,20]

Zn;νðmÞ ¼
Z

dWPðWW†Þ detNf

�
m iW

iW† m

�
ð6Þ

with W being general ðnþ νÞ × n matrices. This is not
surprising, as it has the same symmetries as the QCD
Lagrangian. The choice of weight PðWW†Þ is arbitrary as
long as it supports a nonzero eigenvalue density around
zero [25]. We will also show that the coupled system can be
expressed in terms of these random matrices by the
introduction of a coupled two random matrix theory. We
show that the random matrix partition function agrees with
the effective theory in the microscopic limit. Furthermore,
we use the coupled random matrix model to numerically
calculate the eigenvalue density and thus provide a crucial
independent check of the analytical computations.
A closely related effective partition function and random

matrix model are considered in [35] while studying stressed
Cooper pairing in QCD. That work focused on trivial
topology, whereas the focus of this work is, as mentioned
above, to consider the effects on the topology of coupled
the two sectors.
As mentioned above, the coupling considered here is

inspired by superconducting nano-wires carrying Majorana
modes. In this case, the symmetries of the Hamiltonian
correspond to the chiral orthogonal ensemble [36]. We may
therefore calculate universal properties such as the eigen-
value density in the effective theory. For the link between
the effective field theory and the Hamiltonian approach, see
[2] and [3]. As for chUE we compute the density for chOE
by performing a group integral over the corresponding
effective theory, introducing a two random matrix model,
considering the limits of weak and strong coupling, and
verifying the analytical results by numerical simulation
hereof.
The paper is organized as follows. First, in Sec. II we

analyze the symmetries of the coupled system. We then use
these symmetry properties in Sec. III to set up an effective
theory, which we in Sec. IV use to obtain an the eigenvalue
density for a chiral unitary ensemble. In Secs. IVA
and IV B we calculate the large- and small coupling limits,
respectively. In Sec. V we repeat the derivation for a chiral
orthogonal ensemble and finally, in Sec. VI, we make
conclusions.
The new two random matrix model and technical

derivations can be found in the appendices.

II. SYMMETRIES OF THE COUPLED SYSTEM

We wish to consider the coupling of two otherwise
independent chiral systems. Using the standard approach in

1In some parts of the literature, chUE is also known as AIII,
and chOE as BDI [3].
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effective field theory [37], we establish a counting scheme
and, in this counting scheme, consider the lowest order
terms that break the symmetries in the same way as the
coupling.
The coupled system should retain a combined chiral

symmetry, which is achieved by adding off-diagonal terms
linking the left-handed (right-handed) part of one field to
the left-handed (right-handed) part of the other.2 Because
the two systems at zero coupling are completely indepen-
dent, they can be in different topological sectors, i.e. have
different amounts of exact zero modes. When we apply a
coupling, the topology will also be coupled, and the total
number of zero modes is the sum of the two individual
counted with sign.
Let us start by investigating the symmetries of such a

system. We outline the symmetry argument within the
simplest chiral symmetry class chUE. The results for chOE
will follow by analogy in Sec. V. For simplicity, we
consider the symmetry properties and effective theory
for fermionic flavors before moving on to the generating
function of the quenched ensemble. In the fermionic theory
we have the determinant to the power Nf

ZðmÞ ¼
Z

dA detNfð−iDþmÞe−SYMðAÞ: ð7Þ

The determinant can be expressed as an integral over
Grassmann variables

ZðmÞ ¼
Z

dAdψ̄dψeψ̄ð−iDþmÞψ−SYMðAÞ; ð8Þ

and it is the symmetries of these Nf-component fields ψ̄ ;ψ
we analyze. (The quenched generating function will struc-
turally look the same, but with additional integration over
bosonic fields.)

A. Symmetries

We will consider two identical copies of the same
fermionic theory. Initially, when the two systems are
uncoupled, the global symmetries are

SU1RðNfÞ × SU1LðNfÞ and SU2RðNfÞ × SU2LðNfÞ;
ð9Þ

where the notation Nf is again borrowed from QCD. These
symmetries are spontaneously broken to respectively

SU1VðNfÞ and SU2VðNfÞ; ð10Þ

which gives us two sets of Goldstone fields

U1 ∈ SUðNfÞ and U2 ∈ SUðNfÞ: ð11Þ

The chiral transformations of these fields are respectively

U1 → g1LU1g
†
1R and U2 → g2LU2g

†
2R: ð12Þ

In the two uncoupled systems the mass terms (ψ̄1m1ψ1þ
ψ̄2m2ψ2) in the Lagrangian are the source for the sponta-
neous symmetry breaking. In order to find the terms in the
effective theory with this breaking of symmetry, we use the
spurion technique, see for instance [28].
The first step is to identify the spurion transformations of

the masses. As usual we have, see e.g. [28]

m1 → g1Lm1g
†
1R and m2 → g2Lm2g

†
2R: ð13Þ

If the masses were to transform according to (13), the mass
term ψ̄mψ would be invariant.
In order to ensure a chiral spectrum of the coupled

system, the coupling between the two sectors, 1 and 2, is
chosen such that it conserves a total SU12LðNfÞ ×
SU12RðNfÞ chiral symmetry of the Lagrangian, where
SU12ðNfÞ denotes rotation of the two fields with the same
matrix, i.e. where

g1L ¼ g2L and g1R ¼ g2R: ð14Þ

This combined symmetry is the locked version of the 2
uncoupled unbroken symmetries (9). The corresponding
couplings must spurion transform as a flavor off-diag
vectorial term (ψ̄vμγμτ1ψ),

cLL → g1LcLLg
†
2L and cRR → g1RcRRg

†
2R: ð15Þ

Again, if the coupling transformed in this way, the coupling
term would be invariant. A two random matrix model with
these symmetries is given in Appendix A.

III. EFFECTIVE THEORY

We will compute the effect of the coupling on the
microscopic density using low energy effective field
theory.3 Using the symmetries analyzed in the previous
section, we now set up the lowest order effective partition
function and analyze its transformation properties. These
will be related to the amount of exact zero modes in the two
uncoupled systems ν1, ν2 [14]. The sign of ν1 and ν2
indicates the chirality of the zero modes. By analyzing the
amount of transformation properties of the coupled system,
we obtain the combined topology of the two systems.

2Coupling left to right just corresponds to redefining left and
right for one of the ensembles. Making both couplings at the same
time does not preserve chiral symmetry.

3We stress that the uncoupled ensembles are completely
independent and that no rotation between them can occur, i.e.
the uncoupled system has the symmetry ðSURðNfÞ × SULðNfÞÞ2
rather than SURð2NfÞ × SULð2NfÞ. This corresponds to W1 ≠
W2 in (A1).
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The low energy effective theory is uniquely determined
by the requirement that it must break the symmetries in
exactly the same way as in the underlying theory. Using the
spurion transformations we get the standard mass terms,
see [[28], Eq. (4.32)]

L1 ¼
Σ0

2
Trðm1U

†
1 þm†

1U1Þ ð16Þ

and

L2 ¼
Σ0

2
Trðm2U

†
2 þm†

2U2Þ: ð17Þ

Notice that these term are invariant under U → gLUg†R and
the spurion transformation m → gLmg†R.
As the two uncoupled systems are identical, the same

low energy constant Σ0 appears in both terms. We shall also
set m1 ¼ m2 once we have analyzed the transformation
properties of the effective partition function.
The new term due to the coupling between the two

sectors is

Lc ¼ KTrðU†
1cLLU2c

†
RR þ U1cRRU

†
2c

†
LLÞ: ð18Þ

The constant K is a low energy parameter not determined
by the symmetries. We explicitly see that

TrðU†
1U2 þ U1U

†
2Þ

→ Trðg1RU†
1g

†
1Lg2LU2g

†
2R þ g1LU1g

†
1Rg2RU

†
2g

†
2LÞ ð19Þ

such that the term is invariant for g1L ¼ g2L and g1R ¼ g2R.
Hence, the new term conserves the locked chiral symmetry
from (14).
These are the leading terms in the limit V → ∞ with the

counting scheme

∂μ ∼
1

V1=4 ; miΣ0V ∼ 1; c2KV ∼ 1; ð20Þ

where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRRcLL

p
. This extends the standard ϵ-counting

[19] (for which c ¼ 0) and we will simply refer to it as
the ϵ-counting below. In the ϵ-counting, the constant
part of U dominates the partition function at leading
order [19].
Using rescaled variables m̂ ¼ mΣ0V, ĉ2 ¼ c2KV the

leading order partition function in the ϵ-regime is given by
the group integral

Zν1;ν2
chUE;1þ1ðm1; m2; cÞ

¼
Z
UðNfÞ

dU1dU2detν1ðU1Þdetν2ðU2Þ

× e
m̂1
2
TrðU1þU†

1
Þþm̂2

2
TrðU2þU†

2
Þþĉ2TrðU†

1
U2þU1U

†
2
Þ; ð21Þ

where U1 and U2 denote the constant part, and the integers
ν1 and ν2 count the respective number of zero modes in the
two uncoupled systems and the sign indicates the chirality.
We shall omit the hat on the mass and coupling constant
from here on.
In the second half of Appendix A we show that the new

two random matrix model reduces to (21) in the micro-
scopic limit, as it should because it has the assumed
symmetry properties.

A. Topology

Topological properties of zero modes in chiral systems
are closely related to transformation properties of the
partition function [14]. We therefore analyze the trans-
formation properties of the coupled system.
Single system: Let us start with a single uncoupled

system. The partition function is [5,14,19,26]

Zν
chUEðmÞ ¼

Z
UðNfÞ

dUdetνðUÞe1
2
Trðm†UþmU†Þ: ð22Þ

If we rotate m by eiϕ we can absorb this phase into
U → Ueiϕ and leave the mass term 1

2
Trðm†U þmU†Þ

invariant. The measure is invariant under the absorption of
the phase, but the determinant is not

detνðUÞ → eiνϕNf detνðUÞ: ð23Þ

Hence, the single uncoupled partition function transforms
as

Zν
chUEðmeiϕÞ ¼ eiϕνNfZν

chUEðmÞ: ð24Þ

This is exactly the same transformation properties as the
underlying theory [14]

Z ¼
Z

dA detNfð−iDþmÞe−SYMðAÞ

¼
Z

dAmνNf

Y
j0
ðE2

j0 þmm†ÞNfe−SYMðAÞ ð25Þ

where the product is over non-zero eigenvalues and ν is the
number of Ej ¼ 0.
Two uncoupled systems: The case (21) for c2 ¼ 0

follows in complete analogy with the single system. The
partition function is

Zν1;ν2
chUE;1þ1ðm1; m2; c ¼ 0Þ

¼
Z
UðNfÞ

dU1dU2detν1ðU1Þdetν2ðU2Þ

× e
1
2
Trðm†

1
U1þm1U

†
1
Þþ1

2
Trðm†

2
U2þm2U

†
2
Þ: ð26Þ
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If we rotate m1 by eiϕ1 and m2 by eiϕ2 we can again
absorb these phases into U1 → U1eiϕ1 and U2 → U2eiϕ2

respectively and leave the mass terms L1 and L2 invariant.
Again, the determinants are not invariant

detν1ðU1Þ detν2ðU2Þ → eiν1ϕ1Nfþiν2ϕ2Nf detν1ðU1Þ detν2ðU2Þ;
ð27Þ

and the uncoupled partition function therefore transforms
as

Zν1;ν2
chUEðm1eiϕ1 ; m2eiϕ2 ; c2 ¼ 0Þ
¼ eiϕν1Nfþiϕ2ν2NfZν1;ν2

chUEðm1; m2; c2 ¼ 0Þ: ð28Þ

This transformation is again consistent with the trans-
formation of the two underlying uncoupled systems

Z
dA1dA2m

νNf

1

Y
j0
ðE2

1;j0 þm1m�
1ÞNfm

ν2Nf

2

×
Y
k0
ðE2

2;k0 þm2m�
2ÞNfe−SYMðA1Þ−SYMðA2Þ; ð29Þ

where the products are over nonzero eigenvalues.
Let us finally consider the transformation properties of

the coupled system.
Two coupled systems: For nonzero c, the coupling

TrðU†
1U2 þ U1U

†
2Þ in (21) is only invariant under the

absorption of the phases if ϕ1 ¼ ϕ2. In the case ϕ1 ¼ ϕ2

the effective partition function transforms as

Zν1;ν2
chUEðm1eiϕ; m2eiϕ; c2Þ ¼ eiϕðν1þν2ÞNfZν1;ν2

chUEðm1; m2; c2Þ:
ð30Þ

This strongly suggests that the density of the coupled
system will have jν1 þ ν2j exact zero modes, which is
consistent with the two random matrix model in (A1),
where the coupling matrices have jν1 þ ν2j rows (or
columns) with only zeros, see Appendix A. Of the original
jν1j þ jν2j zero modes jν1 þ ν2j survive in the presence of
the coupling. In particular, in the case ν1 ¼ −ν2 there will
be no exact zero modes in the coupled system. We will
explicitly verify this below. Moreover, we will demonstrate
that the distribution of the jν1j þ jν2j − jν1 þ ν2j near-zero
modes takes a familiar, but perhaps surprising form
for c2 ≪ 1.
Now that we understand the transformation properties,

we no longer need m1 and m2 and shall set m1 ¼ m2 ≡m.

IV. EIGENVALUE DENSITY OF CHUE

Let us now turn to the calculation of the spectral density
of the coupled system. As presented in the Introduction, we
start from a graded generating functional and find the
quenched chiral condensate as the derivative with respect to

the mass. The spectral density is then obtained as the
discontinuity across the imaginary axis. We derive ana-
lytical expressions for the spectral resolvent for any c and
greatly simplified expressions for the limiting cases c ≫ 1
and c ≪ 1. The expression for the density with any c is
somewhat complicated, but can be evaluated numerically.
The structure of the graded effective theory is the same as

(21) except that the proper domain is the general linear group
Glð1j1Þ, see [26] and [38] for discussions of this. The graded
generating functional is

Zν1;ν2
1j1þ1j1ðm;m0; cÞ

¼
Z
Glð1j1Þ

dU1dU2Sdetν1ðU1ÞSdetν2ðU2Þ

× e
1
2
StrðMðU1þU−1

1
ÞÞþ1

2
StrðMðU2þU−1

2
ÞÞþc2StrðU1U−1

2
þU2U−1

1
Þ;

ð31Þ

where Str and Sdet are the graded trace and determinant, see
[26] and [39].
Here the mass matrix is

M ¼
�
m 0

0 m0

�
: ð32Þ

At equal masses, m ¼ m0 the generating function must
give the result 1, as the fermionic and bosonic determinants
in (3) cancel. This is also verified explicitly below.
To obtain the spectral density we need the quenched

chiral condensate

Σν1;ν2
1j1þ1j1ðm; cÞ ¼ ∂mZ

ν1;ν2
1j1þ1j1ðm;m0; cÞjm0¼m: ð33Þ

The desired spectral density is then obtained as the
discontinuity of the resolvent across the imaginary axis

ρν1;ν2
1j1þ1j1ðE; cÞ ¼

1

π
Re½Σν1;ν2

1j1þ1j1ðm ¼ iE; cÞ�: ð34Þ

In terms of the two random matrix model, this is the density
of the full matrix containing both the two flavors and the
coupling matrices. (See Appendix A.)
Note that for c ¼ 0 the spectral density automatically

reduces to that of chUE in the microscopic limit

ρν1;ν2
1j1þ1j1ðE; c ¼ 0Þ ¼ ρν1chUEðEÞ þ ρν2chUEðEÞ ð35Þ

with [20,26]

ρνchUEðEÞ ¼
E
2
ðJ2νðEÞ − Jνþ1ðEÞJν−1ðEÞÞ þ jνjδðEÞ: ð36Þ

Note that in this case, where c ¼ 0, there are jν1j þ jν2j
exact zero modes. We will perform the group integrals in
(31) by making use of the parametrization [26]
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Uj ¼
�
eiθj 0

0 esj

�
exp

�
0 αj

βj 0

�
¼

�
eiθjð1þ 1

2
αjβjÞ eiθjαj

esjβj esjð1 − 1
2
αjβjÞ

�
: ð37Þ

Here α1, α2, β1, and β2 are Grassmann variables and the angular variables θ1 and θ2 extend over ½−π∶π�, while s1 and
s2 ∈� −∞∶∞½ are noncompact. The Berezinian is 1 [26]. We then evaluate the supertraces and superdeterminants and
perform the integrals.
See Appendix B for the full expression of the partition function. The quenched chiral condensate is

Σν1;ν2
1j1þ1j1ðm; cÞ ¼ 1

ð2πÞ2
Z

ds1ds2dθ1dθ2eν1ðiθ1−s1Þeν2ðiθ2−s2Þ

× exp½m cosðθ1Þ þm cosðθ2Þ −m coshðs1Þ −m coshðs2Þ þ 2c2ðcosðθ1 − θ2Þ − coshðs1 − s2ÞÞ�
× ½1=4 cosðθ1Þðm cosðθ2Þ þm coshðs2ÞÞ þ 1=4ðm cosðθ1Þ þm coshðs1ÞÞ cosðθ2Þ
þ ðcosðθ1Þ þ cosðθ2ÞÞð1=4ðm cosðθ1Þ þm coshðs1ÞÞðm cosðθ2Þ þm coshðs2ÞÞ
þ c2 cosðθ1 − θ2Þ
þ c2=2ðcosðθ1 − θ2Þ þ coshðs1 − s2ÞÞðm cosðθ1Þ þm cosðθ2Þ þm coshðs1Þ þm coshðs2ÞÞ
− c4ðsinðθ1 − θ2Þ þ i sinhðs2 − s1ÞÞ2Þ� ð38Þ

and the density for any c can be evaluated with standard
numerical packages such as Mathematica through the
relation (34).
Equation (38) is a main result of this paper, but also

rather complicated. In the limits c ≫ 1 and c ≪ 1 the
expression simplifies dramatically as we show below.
See Figs. 1 and 2 for plots. The number of zero modes
is verified numerically.

A. Large c2-approximation for chUE

In the limit of large c, the generating function can be
evaluated by saddle point approximation, as follows: First
we integrate out the Grassmann variables in our partition
function. The remaining term in the exponential related to
c2 will be (see Appendix B)

FIG. 1. In the strong coupling limit of the two coupled chUE, the
coupled ensemble behaves like a single, uncoupled ensemble with
twice the volume and hence E → 2E. Plotted is the eigenvalue
density as a function ofE scaled by 2n ∼ Σ0V from a simulation of
the two random matrix model (A1) with β ¼ 2 and parameters
c ¼ 0.1, n ¼ 1000, and ν1 ¼ −ν2 ¼ 1. The large c-approximation
of the spectral density of chUE (41) has been plotted on top. The
relation 2n ∼ Σ0V can be obtained from comparing (21) to (A12).
The result is independent of the exact value of c.

FIG. 2. The main result of this paper for chUE. Because the
zero modes are counted with sign, zero modes may cancel each
other. For small coupling the would-be topological modes spread
out according to a chiral Gaussian unitary ensemble. Plotted is the
eigenvalue density as a function of E scaled by 2n ∼ Σ0V from a
simulation of the two random matrix model (A1) with β ¼ 2 for
c ¼ 0.001, n ¼ 30, and ν1 ¼ −ν2 ¼ 1 on different scales. Center:
The full spectrum. Left: Zoom-in on the unchanged bulk modes.
Right: Zoom-in on the would-be zero modes that spread out as
finite Gaussian ensemble. The small c-approximation of the
spectral density of chUE (61) has been plotted on top.
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2ðcosðθ1 − θ2Þ − coshðs1 − s2ÞÞ: ð39Þ

The maximum of this occurs at θ1 ¼ θ2; s1 ¼ s2. In other
words: Where the compact and noncompact variables of the
two systems are the same respectively, i.e.U1 ¼ U2. At this
saddle point the generating function thus becomes

Zν1;ν2
1j1þ1j1ðM; c ≫ 1Þ

¼
Z
Glð1j1Þ

dUSdetν1þν2ðUÞeStrðMðUþU−1ÞÞ: ð40Þ

This has exactly the same form as the supersymmetric
version of (22) except for a factor of 2 on the mass. Using
the definitions (33) and (34) we therefore automatically
obtain

ρν1;ν2
1j1þ1j1ðE; c ≫ 1Þ ¼ 2ρν1þν2

chUE ð2EÞ ¼ 2EðJ2ν1þν2ð2EÞ
− Jν1þν2þ1ð2EÞJν1þν2−1ð2EÞÞ
þ jν1 þ ν2jδðEÞ; ð41Þ

where the factor of 2 in front comes from normalization.
Notice the explicit analytical verification of jν1 þ ν2j as the
number of zero modes in the coupled system. This limiting
function is compared numerically to the corresponding
random matrix ensemble (A1) with β ¼ 2 for large c in
Fig. 1. The relation between physical and numerical
parameters can be found in (A14).

B. Small c2-approximation for chUE

As we now show, in the limit of small coupling between
the two systems only the topological modes are affected
(the bulk modes4 are only affected at next to leading order
in c). We stress that by the small c2-limit we mean small
values of the rescaled variable KVc2.
Furthermore, we show that the near-zero modes behave

according to a finite size chGUE of size n0 ≡ jν1jþjν2j−jν1þν2j
2

and with ν ¼ ν1 þ ν2, where the width of the Gaussian part
is determined by c. In other words, we will prove the
factorization

Zν1;ν2
1j1þ1j1ðM; c ≪ 1Þ

¼ Zn0;ν
chGUE

�
M

2
ffiffiffiffi
n0

p
c

�
Zðν1Þ;bulk
chUE ðMM†ÞZðν2Þ;bulk

chUE ðMM†Þ

ð42Þ

where Zn0;ν
chGUE is the quenched version of the finite size

chiral, unitary ensemble from random matrix theory with a
Gaussian weight. It will also carry the zero modes of our
total ensemble Zν1;ν2

1j1þ1j1. As suggested above, we are left

with jν1 þ ν2j true zero modes, whereas the remaining
jν1j þ jν2j − jν1 þ ν2j modes spread out as 2n0 near-zero
modes (n0 on each side), which makes the size of the finite
matrix n0 ¼ jν1jþjν2j−jν1þν2j

2
. We show this explicitly.

The finite size quenched generating function for chGUE
can also be written in the more convenient form [5,24]

Zn;ν
chGUEðMÞ ¼

Z
dAe−nStrAA

†
SdetnþνðA† þMÞ

× SdetnðAþM†Þ; ν ≥ 0 ð43Þ

or

Zn;ν
chGUEðMÞ ¼

Z
dAe−nStrAA

†
SdetnðA† þMÞ

× Sdetn−νðAþM†Þ; ν < 0: ð44Þ

The two ZðνÞ;bulk
chUE are also chiral random matrix unitary

ensembles, but in the microscopic limit, which makes the
choice of weight unimportant [25]. We have removed
the zero modes by hand in the following way, leaving
only the bulk (nonzero) part of Zν1;ν2

1j1þ1j1, which we shall call

ZðνÞ;bulk
chUE ðMM†Þ

ZðνÞ
chUEðMÞ ¼ SdetνðMÞZðνÞ;bulk

chUE ðMM†Þ; ν ≥ 0

ð45Þ

ZðνÞ
chUEðMÞ ¼ Sdet−νðM†ÞZðνÞ;bulk

chUE ðMM†Þ; ν < 0:

ð46Þ

The superdeterminant prefactor leads to a jνj
m-term in the

spectral resolvent, which in turn leads to a jνjδðEÞ-term in
the density, as can be seen in (36). The transformation

properties of ZðνÞ
chUEðMÞ in (24) and the jνjδðEÞ term in the

density are due to the SdetνðMÞ. As the argument MM†

suggests, ZðνÞ;bulk
chUE ðMM†Þ is invariant under rotation of the

mass matrix because the effect of such a transformation is
dependent on the amount of zero modes.
Our goal is to separate the zero modes from the rest

and identify them as the determinants of Eqs. (43) and (44).
Let us return to our original generating functional:

Zν1;ν2
1j1þ1j1ðM; cÞ ¼

Z
Glð1j1Þ

dU1dU2Sdetν1ðU1ÞSdetν2ðU2Þ

× exp
�
1

2
StrðM†U1 þMU−1

1 Þ

þ 1

2
StrðM†U2 þMU−1

2 Þ

þ c2StrðU1U−1
2 þ U2U−1

1 Þ
�
: ð47Þ4We use the term bulk for the nonzero and non-would-be

topological eigenvalues.
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To linearize it, we make two Hubbard-Stratonovich
transformations

ec
2StrðQ2Þ ∼

Z
dσe−Str

σ2

4c2
þStrðQσÞ ð48Þ

e−c
2StrðQ̄2Þ ∼

Z
dσ̄e−Str

σ̄2

4c2
þiStrðQ̄ σ̄Þ ð49Þ

with Q ¼ U1þU−1
1
þU2þU−1

2

2
and Q̄ ¼ U1−U−1

1
þU2−U−1

2

2
, where

σ ¼
�
a χ

η ib

�
; σ̄ ¼

�
ā χ̄

η̄ ib̄

�
ð50Þ

and a; b; ā; b̄ ∈ R. We ignore an overall constant and
get

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
dσdσ̄

Z
Glð1j1Þ

dU1dU2Sdetν1ðU1Þ

× Sdetν2ðU2Þ exp
�
−Str

�
σ2 þ σ̄2

4c2

��

× exp

�
1

2
StrðM†U1 þMU−1

1 Þ

þ 1

2
StrðM†U2 þMU−1

2 Þ
�

× exp
�
Str

�
σ

2
ðU1 þU−1

1 þU2 þ U−1
2 Þ

�

þ Str

�
iσ̄
2
ðU1 −U−1

1 þU2 − U−1
2 Þ

��
:

ð51Þ

We now define A ¼ σ þ iσ̄ and A† ¼ σ − iσ̄ leading to

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
dA

Z
Glð1j1Þ

dU1dU2Sdetν1ðU1ÞSdetν2ðU2Þ

× exp

�
−Str

�
AA†

4c2

��

× exp

�
1

2
StrððM† þ AÞU1þðMþ A†ÞU−1

1 Þ

þ 1

2
StrððM† þ AÞU2 þ ðMþ A†ÞU−1

2 Þ
�
:

ð52Þ

Using (22), this allows us to write

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
dA exp

�
−Str

�
AA†

4c2

��

× Zðν1Þ
chUEðMþ A†ÞZðν2Þ

chUEðMþ A†Þ: ð53Þ

If we let A → 2
ffiffiffiffi
n0

p
cA, we may pull out a factor in front and

identify the Gaussian part of Eqs. (43) and (44). Note that
this results in the argument of Zn0;ν

chGUEð M
2
ffiffiffi
n0

p
c
Þ, as we have

written in Eq. (42).
Depending on the signs of ν1 and ν2, we will get a

different determinant from the zero modes, when we split
the two microscopic limit random matrix ensembles into
zero modes and nonzero parts, see Eqs. (45) and (46).
Inserting from Eqs. (45) and (46), we can identify the

different cases of n and ν from Eqs. (43) and (44)
depending on the sign of ν1 þ ν2.

1. For ν1, ν2 ≥ 0

Let us examine the case ν1, ν2 ≥ 0 in detail. From
Eq. (45) we have

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
dA exp

�
−Str

�
AA†

4c2

��
Sdetν1þν2ðMþ A†Þ

× Zðν1Þ;bulk
chUE ð½Mþ A†�½M† þ A�Þ

× Zðν2Þ;bulk
chUE ð½Mþ A†�½M† þ A�Þ: ð54Þ

The next step is crucial and highly nontrivial: (54) is an
integral of the form

Z
dAfðA; cÞgðAÞ ð55Þ

with

fðA; cÞ ¼ Sdetν1þν2ðMþ A†Þ exp
�
−Str

�
AA†

4c2

��

gðAÞ ¼ Zðν1Þ;bulk
chUE ð½Mþ A†�½M† þ A�Þ

× Zðν2Þ;bulk
chUE ð½Mþ A†�½M† þ A�Þ: ð56Þ

Note that A ∼ c because of the Gaussian term, so Taylor-
expanding these two functions around c ¼ 0 corresponds
to a Taylor-expansion around A ¼ 0. (Recall we are after
the c ≪ 1 limit.)
The constant term in the expansion of f is suppressed

because of the Gaussian part, whereas the partition func-
tions of g stay finite. So the leading term is the zeroth order
term from g. Since g is even in ðMþ A†Þ, g0ð0Þ ¼ 0 as
well, which is why we also include the first order of f as the
subleading term. (And why this choice of f and g was a
good one.) So

fðA; cÞgðxÞ ≈ fðA; cÞgð0Þ: ð57Þ
This approximation corresponds to

Zν1;ν2
1j1þ1j1ðM; c ≪ 1Þ ¼

Z
dA exp

�
−Str

�
AA†

4c2

��

× Sdetν1þν2ðMþ A†ÞZðν1Þ;bulk
chUE

× ðMM†ÞZðν2Þ;bulk
chUE ðMM†Þ:

ð58Þ
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This step is common to all cases of topology and is the
reason for the factorization. A similar factorization appears
for the continuum limit of Wilson fermions in [27].
Since ν1 þ ν2 ≥ 0, we can directly identify n0 ¼ 0 and

ν ¼ ν1 þ ν2 from Eq. (43), which is consistent with
n0 ¼ jν1jþjν2j−jν1þν2j

2
. Note that n0 ¼ 0 simply implies that

signðν1Þ ¼ signðν2Þ, where there is no cancellation of
zero modes.
The other cases can be found in Appendix C.

2. Spectral density of small c-limit

To recap, in the small c-limit we have established the
factorization

Zν1;ν2
1j1þ1j1ðM; c ≪ 1Þ

¼ Zn0;ν
chGUE

�
M

2
ffiffiffiffi
n0

p
c

�
Zðν1Þ;bulk
chUE ðMM†ÞZðν2Þ;bulk

chUE ðMM†Þ

ð59Þ

with n0 ¼ jν1jþjν2j−jν1þν2j
2

and ν ¼ ν1 þ ν2 and the width of

the finite ensemble 2
ffiffiffiffi
n0

p
c.

This makes the quenched chiral condensate

Σν1;ν2
1j1þ1j1ðm; c ≪ 1Þ ¼ Σn;ν

chGUE

�
m

2
ffiffiffiffi
n0

p
c

�

þ Σðν1Þ;bulk
chUE ðmÞ þ Σðν2Þ;bulk

chUE ðmÞ: ð60Þ

The spectral density then becomes

ρν1;ν2
1j1þ1j1ðE; c ≪ 1Þ ¼ ρn;νchGUE

�
E

2
ffiffiffiffi
n0

p
c

�

þ ρðν1Þ;bulkchUE ðEÞ þ ρðν2Þ;bulkchUE ðEÞ: ð61Þ

Comparing to (35) we see that indeed only the would-be
zero modes are affected for c ≪ 1. Adapting the finite n
spectral density solution from [20] and using the width
calculated above, we have

ρn
0;ν

chGUEðE; cÞ ¼
n0!

cΓðn0 þ νÞ
× e−λ

2ðλ2Þνþ1=2ðLν
n0−1ðλ2ÞLνþ1

n0−1ðλ2Þ
− Lν

n0 ðλ2ÞLνþ1
n0−2ðλ2ÞÞ ð62Þ

where we have used the shorthand

λ2 ¼ E2

2c2
: ð63Þ

Note that it is normalized to 2n0. A comparison with a
simulation of the random 2 matrix model (A1) with β ¼ 2
can be seen in Fig. 2. As expected, the analytical result from

the effective theory agrees with the simulation of the micro-
scopic limit of the random two matrix model. Note that
c2 ∝ V, whichmakes thewidth of the near-zero density scale
as 1ffiffiffi

V
p . This is distinct from the bulk modes for which the

width of the individual eigenvalues distribution scale as 1
V.

C. A note on universality

The coupled partition function Zν1;ν2
1j1þ1j1ðMÞ is a univer-

sal object based on the symmetries of the system and the

same goes for the microscopic limit of chUE, ZðνÞ
chUEðMÞ,

because the choice of weight is unimportant in the micro-
scopic limit [25].
This makes is particularly interesting that the finite size

chGUE appears for c ≪ 1. It contains a clear choice of
weight, but is nevertheless universal as it is chosen by the
symmetries at leading order. Something similar happens in
the aforementioned continuum limit of [27]. In both cases,
this is because the leading order generating functional only
contains up to quadratic terms of U.

V. COUPLED CHOE

Let us now turn to the universality class chOE. In this
case the uncoupled system is [21,24,27]

Zν
2j2ðMÞ ¼

Z
Σð2j2Þ

dUSdetν=2ðUÞe1
2
StrðM†UþMU−1Þ ð64Þ

where the quark mass matrix is

M ¼
�
m12 0

0 m012

�
ð65Þ

and Σð2j2Þ ¼ Uð2j2Þ=UOSpð2j2Þ. Just as for chUE the
corresponding coupled version is

Zν1;ν2
2j2þ2j2ðM; cÞ

¼
Z
Σð2j2Þ

dU1dU2Sdetν1=2ðU1ÞSdetν2=2ðU2Þ

× e
1
2
StrðM†U1þMU1

−1Þþ1
2
StrðM†U2þMU2

−1Þþc2StrðU−1
1
U2þU1U−1

2
Þ:

ð66Þ

The transformation properties are just like those for chUE
and hence we expect the same number of exact zero modes
and near-zero modes for small c2. To do this group integral,
we can make use of the parametrization [27]

Uj ¼ diagð12; OjÞ

0
BBB@

eiφj 0 α�j β�j
0 eiφj −αj −βj
αj α�j esj 0

βj β�j 0 etj

1
CCCAdiagð12; OT

j Þ

ð67Þ
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where Oj ∈ Oð2Þ. We parametrize the orthogonal matrix
by adding the possibility of reflection to a SOð2Þ matrix:

Oj ¼
�
cosðθjÞ − sinðθjÞ
sinðθjÞ cosðθjÞ

��
1 0

0 −1

�kj
;

θj ∈ ½−π; π�; kj ∈ f0; 1g: ð68Þ

One can then, like chUE, evaluate the supertraces and
perform the integrals, but the full expression is prohibi-
tively cumbersome. For the large c2 approximation we will
need the action part of the coupling, which is

4 cosðφ1 − φ2Þ − 2 cos2ðθ1 − θ2Þ coshðs1 − s2Þ
− 2 cos2ðθ1 − θ2Þ coshðt1 − t2Þ
− 2 sin2ðθ1 − θ2Þ coshðs1 − t2Þ
− 2 sin2ðθ1 − θ2Þ coshðt1 − s2Þ: ð69Þ

The arguments are in general very similar to chUE, so we
shall merely sketch the procedure.

A. Large c2-approximation for chOE

In complete analogy with chUE for large c2 the saddle
point approximation effectively sets φ1; s1; t1; θ1 ¼ φ2;
s2; t2; θ2, which we assume to be the same as U1 ¼ U2.
The generating function for the eigenvalue density thus
becomes

Zν1;ν2
2j2þ2j2ðM; c ≫ 1Þ

¼
Z

dUSdetðν1þν2Þ=2ðUÞeStrðMðUþU−1ÞÞ; ð70Þ

and it follows from the definitions of the resolvent and
eigenvalue density, (33) and (34), that

ρν1;ν2
2j2þ2j2ðE; c ≫ 1Þ ¼ 2ρν1þν2

chOE ð2EÞ; ð71Þ

with [40–42]

ρνchOEðEÞ ¼ E=2ðJ2jνjðEÞ − Jjνjþ1ðEÞJjνj−1ðEÞÞ

þ 1

2
JjνjðEÞ

�
1 −

Z
E

0

dxJjνjðxÞ
�
: ð72Þ

Again the factor of 2 in front comes from normalization. A
numerical comparison to the corresponding random matrix
ensemble [Eq. (A1) for β ¼ 1] for large c can be found in
Fig. 3. Again perfect agreement (within statistical errors) is
observed.

B. Small c2-limit for chOE

In the limit c2 ≪ 1we expect analogous to chUE that the
partition function factorizes in the way

Zν1;ν2
2j2þ2j2ðM; c ≪ 1Þ

¼ Zn0;ν
chGOE

�
Mffiffiffiffiffiffiffi
2n0

p
c

�
Zðν1Þ;bulk
chOE ðMM†ÞZðν2Þ;bulk

chOE ðMM†Þ;

ð73Þ

again with n0 ¼ jν1jþjν2j−jν1þν2j
2

. The factor of
ffiffiffi
2

p
in the

argument of Zn0;ν
chGOEð Mffiffiffiffiffi

2n0
p

c
Þ compared to (42) comes

from differences in the corresponding random matrix
ensembles.
To show this factorization, let us consider the

coupled partition function (66). We make the same two
Hubbard-Stratonovich transformations from (52), but
with σ; σ̄ ∈ ~Σð2j2Þ, where ~Σð2j2Þ may be parametrized
as follows [27]

Uj ¼ diagð12; ~OjÞ

0
BBB@

iu 0 η�j χ�j
0 iu −ηj −χj
ηj η�j vj 0

χj χ�j 0 wj

1
CCCAdiagð12; ~OT

j Þ

ð74Þ

where ~O ∈ Oð2Þ and u; v; w ∈ R. We find

FIG. 3. The strong coupling limit of coupled chOE, where the
coupled ensemble behaves like a single, uncoupled ensemble
with E → 2E. Plotted is the eigenvalue density as a function of
nE ∼ Σ0VE from a simulation of the two random matrix
model (A1) with β ¼ 1 for c ¼ 0.1, n ¼ 1000, and
ν1 ¼ −ν2 ¼ 1. The large c-approximation of the spectral density
of chOE (71) has been plotted on top. The relation n ∼ Σ0V
for chOE comes from (A15). Again, the result is independent
of the exact value of c.
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Zν1;ν2
2j2þ2j2ðMÞ

¼
Z
~Σð2j2Þ

dA
Z
Σð2j2Þ

dU1dU2Sdet
ν1
2 ðU1ÞSdet

ν2
2 ðU2Þ

× exp

�
−Str

�
AA†

4c2

��

× exp

�
1

2
StrððM† þ AÞU1 þ ðMþ A†ÞU−1

1 Þ

þ 1

2
StrððM† þ AÞU2 þ ðMþ A†ÞU−1

2 Þ
�

ð75Þ

¼
Z
Σð2j2Þ

dA exp
�
−Str

�
AA†

4c2

��

× Zðν1Þ
chOEðMþ A†ÞZðν2Þ

chOEðMþ A†Þ ð76Þ

because the microscopic limit of chGOE is [24]

ZðνÞ
chOEðMÞ≡ lim

n→∞
Zn;ν
chGOE

�
M ∼

1

n

�

¼
Z

dUSdet
ν
2ðUÞe1

2
StrðM†UþMU−1Þ: ð77Þ

Splitting this into zero modes and bulk modes like before,

ZðνÞ
chOEðMÞ ¼

	
Sdet

ν
2ðMÞZðνÞ;bulk

chOE ðMM†Þ; ν ≥ 0

Sdet−
ν
2ðM†ÞZðνÞ;bulk

chOE ðMM†Þ; ν < 0

ð78Þ
we can identify the Gaussian part and determinants from the
finite chGOE

Zn;ν
chOEðMÞ ¼

Z
dAe−

n
2
StrAA†

Sdet
nþν
2 ðA† þMÞ

× Sdet
n
2ðAþM†Þ; ν ≥ 0 ð79Þ

or

Zn;ν
chOEðMÞ ¼

Z
dAe−

n
2
StrAA†

Sdet
n
2ðA† þMÞ

× Sdet
n−ν
2 ðAþM†Þ; ν < 0: ð80Þ

The factors of 1
2
cancel and we arrive directly at

Zν1;ν2
2j2þ2j2ðM; c ≪ 1Þ ¼ Zn0;ν

chGOE

�
Mffiffiffiffiffiffiffi
2n0

p
c

�

×Zðν1Þ;bulk
chOE ðMM†ÞZðν2Þ;bulk

chOE ðMM†Þ
ð81Þ

with n0 ¼ jν1jþjν2j−jν1þν2j
2

and ν ¼ ν1 þ ν2 and the width
of the finite ensemble proportional to c, by the same
procedure as in Sec. IV B 1.

Again the transformation properties of a Uð1Þ trans-
formation of M in Zn;ν

chOEðMÞ are contained in the factor
Sdet

ν
2ðMÞ. This factorization makes the chiral condensate

Σν1;ν2
2j2þ2j2ðm; c ≪ 1Þ

¼ Σn0;ν
chGOE

�
mffiffiffiffiffiffiffi
2n0

p
c

�
þ Σðν1Þ;bulk

chOE ðmÞ þ Σðν2Þ;bulk
chOE ðmÞ ð82Þ

and spectral density

ρν1;ν2
2j2þ2j2ðE; c ≪ 1Þ

¼ ρn
0;ν

chGOE

�
mffiffiffiffiffiffiffi
2n0

p
c

�
þ ρðν1Þ;bulkchOE ðEÞ þ ρðν2Þ;bulkchOE ðEÞ: ð83Þ

The finite n eigenvalue density for chGOE was worked
out for even n in [22]. For odd n the general expressions
may be found in [40,43]. The explicit results for n ¼ 1
and ν ¼ 0 respectively ν ¼ 1 can be calculated directly.
They are

ρn¼1;ν¼0
chGOE ðEÞ ¼ 1ffiffiffiffiffiffiffi

πc2
p e−

E2

4c2 ð84Þ

and

ρn¼1;ν¼1
chGOE ðEÞ ¼ 1

2c2
Ee−

E2

4c2 : ð85Þ

Again they are both normalized to 2n. A comparison with
the two random matrix model (A1) for β ¼ 1 can be found
in Fig. 4.

FIG. 4. The main result of this paper for chOE. For small
coupling the canceled topological modes behave according to a
chiral Gaussian orthogonal ensemble. Plotted is the eigenvalue
density as a function of nE of a simulation of the two random
matrix model (A1) with β ¼ 1 for c ¼ 0.001, n ¼ 30, and
ν1 ¼ −ν2 ¼ 1. The small c-approximation of the spectral density
of chOE (83) has been plotted on top. The results stays consistent
for different small values of c.
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As for the unitary ensemble, we find a cancellation of
topological zero modes based only on the symmetries of the
partition function. We also find an analogous behavior of
the would-be zero modes in both the strong and the weak
coupling limit. Again the width of the near-zero distribution
scales as 1ffiffiffi

V
p .

VI. CONCLUSIONS

The studies of microscopic eigenvalues have lead to a
deep understanding of for example the effects of dynamical
fermions in lattice QCD [5–7], the effect of topology in
lattice QCD [20], the mechanism for spontaneous breaking
in non-Hermitian systems [11–13]. Here we have presented
the first study of the effect on the microscopic eigenvalue
density when topological chiral systems are coupled. One
explicit realization of a coupled system with the sym-
metries considered is a system with two quark flavors
where each live in separate gauge fields, but are coupled by
an external off-diagonal vector source. The microscopic
eigenvalue density of the coupled chOE ensemble calcu-
lated in Sec. V is inspired by superconducting nano-wires
carrying Majorana modes. The very characteristic micro-
scopic eigenvalue density found is universal since it follows
from symmetry considerations alone, and we hope it will be
of an equal practical use for this coupled system as similar
results for the uncoupled systems have been. In particular
the characteristic scaling with the inverse square root of the
volume, can be used to distinguish the would-be topologi-
cal modes from other small eigenvalues. A similar scaling
of near-zero modes found in [8,9], explained the unusual
scaling with the volume observed in [44]. A related scaling
was also found in [45].
To be specific, we have considered the coupling of two

otherwise identical quenched chiral ensembles. The cou-
pling preserves a combined chiral symmetry, but changes
the overall topological charge to ν ¼ ν1 þ ν2. This holds
true for unitary and orthogonal ensembles alike. Our main
objective has been the density of eigenvalues, which we
have found through the effective low energy theory. We
find an analytical solution for the cases c ≪ 1 and c ≫ 1
and numerical ways of determining the full expression. For
a large coupling the ensembles behave like a single system,
but with twice the volume and common topology
ν ¼ ν1 þ ν2. Small coupling leads us to a factorization
of the partition function that leaves the bulk eigenvalue
density unchanged, but spreads out the canceled jν1j þ
jν2j − jν1 þ ν2j zero modes as near-zero modes according
to a finite size random matrix ensemble with a Gaussian

weight and n0 ¼ jν1jþjν2j−jν1þν2j
2

. Perhaps surprisingly, this
weight is universal because it originates from the quadratic
term in the effective Lagrangian.
Interestingly, a closely related effective partition function

and random matrix model appears in [35] for stressed
Cooper pairing in QCD.

It would be most interesting to repeat this analysis for a
chiral symplectic ensemble. We expect this to be straight-
forward, because the factors of 1

4
in the effective theory

cancel the same way the factors of 1
2
do in chOE. Notice

that, as long as the Hubbard-Stratonovich matrices are of
the correct group, we make no assumptions about the group
of integration.
We are also currently working on the case of coupling

two flavors already in the same gauge field. This corre-
sponds to a τ1Uτ1U−1 term in the Lagrangian with U ∈
Glð2j2Þ and corresponds to W1 ¼ W2 in the two random
matrix model (A1).
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APPENDIX A: COUPLED RANDOM
MATRIX MODEL

The effective theories in the ϵ-regime are directly linked
to random matrix theory through the symmetries properties
[2]. A two random matrix model that displays the sym-
metry properties discussed in Sec. II is given by

Zn;ν1;ν2
chGE;1þ1ðm; cÞ

¼
Z

dW1dW2detNf

0
BBB@

m1 iW1 0 ic

iW†
1 m1 ic 0

0 ic m2 iW2

ic 0 iW†
2 m2

1
CCCA

× e−
βn
2
TrðW1W

†
1
þW2W

†
2
Þ ðA1Þ

where Wj are separate random ðnþ νjÞ × n matrices with
real (complex) entries for β ¼ 1 (β ¼ 2), and c is an
identity matrix times a parameter that determines the
coupling strength. For νj < 0,Wj is an n × ðn − νjÞ matrix
instead, and for νj ≠ 0, c is padded with zeros.
For instance, in the case ν1 ¼ 0, ν2 ¼ 1, and n ¼ 2, the

upper right-hand block is

0
BBB@

0 0 0 ic 0

0 0 0 0 ic

ic 0 0 0 0

0 ic 0 0 0

1
CCCA ðA2Þ

and the lower left-hand block is the transposed of this.
Notice that c enforces the locked symmetry from Eq. (14)
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and that the coupling matrices have jν1 þ ν2j rows or
columns of zeros, which leads to the jν1 þ ν2j zero modes.
Having different W1 and W2 corresponds to coupling

two ensembles that are completely separate. For c ¼ 0, the
partition function factorizes into the product of two single
ensembles.
In the following section we shall derive the microscopic

limit of this two random matrix model and show that it
agrees with the low energy effective theory in (21). This
includes comparison of the physical parameters to the
numerical counterparts.
The microscopic limit is defined by the limit n → ∞,

while keeping m ¼ Oðn−1Þ. As n can be related to the
volume of our system [25], this corresponds to the low
energy limit. We shall extend this definition to c2¼Oðn−1Þ.
(For a review of two matrix models as used in QCD at
nonzero chemical potential see [46]).
In the quenched limit we do not consider the determinant

of (A1), but compute eigenvalues of matrices of the form

0
BBB@

m1 iW1 0 ic

iW†
1 m1 ic 0

0 ic m2 iW2

ic 0 iW†
2 m2

1
CCCA ðA3Þ

with the elements of W1, W2 drawn from the weight

e−
βn
2
TrðW1W

†
1
þW2W

†
2
Þ: ðA4Þ

We retain information about the form of the matrix, but do
not consider the determinants.

1. Effective theory of the coupled random matrix
model for β = 2

We set m1 ¼ m2 ≡m as in Sec. II, and β ¼ 2 in (A1)

Zn;ν1;ν2
chGUE;1þ1ðm; cÞ

¼
Z

dW1dW2 detNf

0
BBB@

m iW1 0 ic

iW†
1 m ic 0

0 ic m iW2

ic 0 iW†
2 m

1
CCCA

× e−nTrðW1W
†
1
þW2W

†
2
Þ: ðA5Þ

We express the determinant as fermionic integrals

Zn;ν1;ν2
chGUE;1þ1

¼
Z

dW1dW2dϕ1dϕ2dψ1dψ2e−nTrðW1W
†
1
þW2W

†
2
Þ

× exp

8>>><
>>>:

0
BBB@

ψ1

ϕ1

ψ2

ϕ2

1
CCCA

†0
BBB@

m iW1 0 ic

iW†
1 m ic 0

0 ic m iW2

ic 0 iW†
2 m

1
CCCA

0
BBB@

ψ1

ϕ1

ψ2

ϕ2

1
CCCA

9>>>=
>>>;
;

ðA6Þ

where each field ψ j;ϕj has an implied index that runs over
the number of flavors. With the notationWj ¼ aj þ ibj we
integrate out the matrices.

Zn;ν1;ν2
chGUE;1þ1 ¼

Z
da1da2db1db2dϕ1dϕ2dψ1dψ2 expf−nða21ij þ b21ij þ a22ij þ b22ijÞ

þ ia1ijðψ1
i
�ϕ1

j − ψ1
iϕ

1
j
�Þ þ ia2ijðψ2

i
�ϕ2

j − ψ2
iϕ

2
j
�Þ − b1ijðψ1

i
�ϕ1

j þ ψ1
iϕ

1
j
�Þ − b2ijðψ2

i
�ϕ2

j þ ψ2
iϕ

2
j
�Þ

þmðψ1
i
�ψ1

i þ ϕ1
i
�ϕ1

i þ ψ2
i
�ψ2

i þ ϕ2
i
�ϕ2

i Þ þ icðϕ1
i
�ψ2

i þ ψ1
i
�ϕ2

i þ ϕ2
i
�ψ1

i þ ψ2
i
�ϕ1

i Þg

¼
Z

dϕ1dϕ2dψ1dψ2 exp

	
1

n
ðψ1

i
�ψ1

iϕ
1
j
�ϕ1

j þ ψ2
i
�ψ2

iϕ
2
j
�ϕ2

jÞ þmðψ1
i
�ψ1

i þ ϕ1
i
�ϕ1

i þ ψ2
i
�ψ2

i þ ϕ2
i
�ϕ2

i Þ

þ icðϕ1
i
�ψ2

i þ ψ1
i
�ϕ2

i þ ϕ2
i
�ψ1

i þ ψ2
i
�ϕ1

i Þ



¼
Z

dϕ1dϕ2dψ1dψ2 exp

	
1

4n
ððψ1

i
�ψ1

i þ ϕ1
i
�ϕ1

i Þðψ1
j
�ψ1

j þ ϕ1
j
�ϕ1

jÞ − ðψ1
i
�ψ1

i − ϕ1
i
�ϕ1

i Þðψ1
j
�ψ1

j − ϕ1
j
�ϕ1

jÞ

þ ðψ2
i
�ψ2

i þ ϕ2
i
�ϕ2

i Þðψ2
j
�ψ2

j þ ϕ2
j
�ϕ2

jÞ − ðψ2
i
�ψ2

i − ϕ2
i
�ϕ2

i Þðψ2
j
�ψ2

j − ϕ2
j
�ϕ2

jÞÞ

þmðψ1
i
�ψ1

i þ ϕ1
i
�ϕ1

i þ ψ2
i
�ψ2

i þ ϕ2
i
�ϕ2

i Þ þ icðϕ1
i
�ψ2

i þ ψ1
i
�ϕ2

i þ ϕ2
i
�ψ1

i þ ψ2
i
�ϕ1

i Þ


: ðA7Þ

One should be careful here, because the vectors ϕ1 and ψ2 are not necessarily the same length. Since c is padded with zero
as seen in (A2), it is implied that spare entries, which correspond to the rows or columns with only zeros, have been removed
in the coupling part. We make four Hubbard-Stratonovich transformations and get
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Zn;ν1;ν2
chGUE;1þ1 ¼

Z
dσ1dσ2dσ̄1dσ̄2dϕ1dϕ2dψ1dψ2 expf−nTrðσ1σT1 þ σ2σ

T
2 þ σ̄1σ̄

T
1 þ σ̄2σ̄

T
2 Þ þ σ1ðψ1

i
�ψ1

i þ ϕ1
j
�ϕ1

jÞ

þ iσ̄1ðψ1
i
�ψ1

i − ϕ1
j
�ϕ1

jÞ þ σ2ðψ2
i
�ψ2

i þ ϕ2
j
�ϕ2

jÞ þ iσ̄2ðψ2
i
�ψ2

i − ϕ2
j
�ϕ2

jÞ
þmðψ1

i
�ψ1

i þ ϕ1
i
�ϕ1

i þ ψ2
i
�ψ2

i þ ϕ2
i
�ϕ2

i Þ þ icðϕ1
i
�ψ2

i þ ψ1
i
�ϕ2

i þ ϕ2
i
�ψ1

i þ ψ2
i
�ϕ1

i Þg; ðA8Þ

where σj; σ̄j are general, real Nf × Nf matrices [24].

Defining Aj ¼ σj þ iσ̄j and A†
j ¼ σj − iσ̄j, we have

Zn;ν1;ν2
chGUE;1þ1 ¼

Z
dA1dA2dϕ1dϕ2dψ1dψ2 expf−nTrðA1A

†
1 þ A2A

†
2Þ þ ψ1

i
�ðA1 þmÞψ1

i þ ϕ1
j
�ðA†

1 þmÞϕ1
j

þ ψ2
i
�ðA2 þmÞψ2

i þ ϕ2
j
�ðA†

2 þmÞϕ2
j þ icðϕ1

i
�ψ2

i þ ψ1
i
�ϕ2

i þ ϕ2
i
�ψ1

i þ ψ2
i
�ϕ1

i Þg: ðA9Þ

We assume νj ≥ 0 and perform the nþ νj integrals over ψ j, and thereafter the n integrals over ϕj

Zn;ν1;ν2
chGUE;1þ1 ¼

Z
dA1dA2dϕ1dϕ2 detnþν1ðA1 þmÞ detnþν2ðA2 þmÞ expf−nTrðA1A

†
1 þ A2A

†
2Þ

þ c2ϕ2
i
�ðA1 þmÞ−1ϕ2

i þ ϕ1
j
�ðA†

1 þmÞϕ1
j

þ c2ϕ1
i
�ðA2 þmÞ−1ϕ1

i þ ϕ2
j
�ðA†

2 þmÞϕ2
jg

¼
Z

dA1dA2 expf−nTrðA1A
†
1 þ A2A

†
2Þg detnþν1ðA1 þmÞ detnþν2ðA2 þmÞ

× detnðA†
1 þmþ c2ðA2 þmÞ−1Þ detnðA†

2 þmþ c2ðA1 þmÞ−1Þ

¼
Z

dA1dA2 expf−nTrðA1A
†
1 þ A2A

†
2Þg detν1ðA1 þmÞ detν2ðA2 þmÞ

× detnððA2 þmÞðA†
1 þmÞ þ c2Þ detnððA1 þmÞðA†

2 þmÞ þ c2Þ

≃
Z

dA1dA2 expf−nTrðA1A
†
1 þ A2A

†
2Þg detν1ðA1 þmÞ detν2ðA2 þmÞ

× detn ððmA2 þmA†
1 þ A2A

†
1 þ c2ÞðmA1 þmA†

2 þ A1A
†
2 þ c2ÞÞ: ðA10Þ

The other cases of νj follow analogously. We are interested in the microscopic limit as defined above, so we have ignored
terms ofOðm2Þ in the final step above. In the following, we also ignore terms of the kind c2m and c4, as these areOðn−2Þ in
this counting scheme.

Zn;ν1;ν2
chGUE;1þ1 ¼

Z
dA1dA2 expf−nTrðA1A

†
1 þ A2A

†
2Þg detν1ðA1 þmÞ detν2ðA2 þmÞ

× detn ðmA2A1A
†
2 þmA2A

†
1A

†
2 þmA2 þmA†

2 þ c2ðA2A
†
1 þ A1A

†
2Þ þ 1Þ

¼
Z

dA1dA2 expf−nTrðA1A
†
1 þ A2A

†
2Þg detν1ðA1 þmÞ detν2ðA2 þmÞ

× expfnTr½lnðmA2A1A
†
2 þmA2A

†
1A

†
2 þmA2 þmA†

2

þ c2ðA2A
†
1 þ A1A

†
2Þ þ 1Þ�g: ðA11Þ

A saddle point approximation effectively sets Aj equal to a Nf × Nf unitary matrix, which we call Uj. We then rewrite the
determinants as the trace of a logarithm and expand this logarithm
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Zn;ν1;ν2
chGUE;1þ1 ¼

Z
dU1dU2 detν1ðU1 þmÞ detν2ðU2 þmÞ

× expfnTr½lnðmU2U1U
†
2 þmU2U

†
1U

†
2 þmU2 þmU†

2

þ c2ðU2U
†
1 þ U1U

†
2Þ þ 1Þ�g

¼
Z

dU1dU2 detν1ðU1 þmÞ detν2ðU2 þmÞ

× exp fnTr½mU2U1U
†
2 þmU2U

†
1U

†
2 þmU2 þmU†

2 þ c2ðU2U
†
1 þ U1U

†
2Þ�g

¼
Z

dU1dU2 detν1ðU1 þmÞ detν2ðU2 þmÞ

× exp fnTr½mU1 þmU†
1 þmU2 þmU†

2 þ c2ðU2U
†
1 þU1U

†
2Þ�g: ðA12Þ

Letting n → ∞ while keeping 2nm ∼ 1 and nc2 ∼ 1 yields our final effective partition function

Zν1;ν2
chUE;1þ1 ¼

Z
dU1dU2detν1ðU1Þdetν2ðU2Þ exp

	
m
2
Tr½U1 þ U†

1 þU2 þ U†
2� þ c2Tr½U2U

†
1 þU1U

†
2�



ðA13Þ

which is the same effective theory as obtained in Eq. (21)
with the identification

VΣ0E ∼ 2nE and KVc2 ∼ nc2 ðA14Þ

for chUE. For chOE we have

VΣ0E ∼ nE and KVc2 ∼
1

2
nc2 ðA15Þ

because of the square root on the determinants in Eqs. (79)
and (80).
Note the implications of this: When comparing the

limiting cases to numerics, we are actually considering
the regimes

ffiffiffi
n

p
c ≫ 1 and

ffiffiffi
n

p
c ≪ 1 respectively in terms

of numerics.
In the strong coupling limit we choose to make the size

of the matrix large rather than c. Merely making c large
moves all eigenvalues away from the origin and close to
�ic. Then the random matrices W1, W2 provide only
perturbations around �ic. We require eigenvalues around

the origin if the microscopic limit is to be consistent with
the low energy effective theory [25].

APPENDIX B: EXPLICIT CALCULATION OF
THE GROUP INTEGRAL

In this appendix, we evaluate the graded generating
function (31). We choose the parametrization [26]

Uj ¼
�
eiθjð1þ 1

2
αjβjÞ eiθjαj

esjβj esjð1 − 1
2
αjβjÞ

�
ðB1Þ

which makes

U−1
j ¼

�
e−iθjð1þ 1

2
αjβjÞ −e−iθjαj

e−sjβj e−sjð1 − 1
2
αjβjÞ

�
; ðB2Þ

evaluation of the super traces and integration of the four
Grassmanian variables results in the generating function

Z1j1þ1j1ðm;m0; cÞ ¼ 1

ð2πÞ2
Z

ds1ds2dθ1dθ2eν1ðiθ1−s1Þeν2ðiθ2−s2Þ

× exp½m cosðθ1Þ þm cosðθ2Þ −m0 coshðs1Þ −m0 coshðs2Þ þ 2c2ðcosðθ1 − θ2Þ − coshðs1 − s2ÞÞ�
× ð1=4ðm cosðθ1Þ þm0 coshðs1ÞÞðm cosðθ2Þ þm0 coshðs2ÞÞ þ c2=2ðcosðθ1 − θ2Þ − coshðs1 − s2ÞÞ
þ c2=2ðcosðθ1 − θ2Þ þ coshðs1 − s2ÞÞðm cosðθ1Þ þm cosðθ2Þ þm0 coshðs1Þ þm0 coshðs2ÞÞ
− c4ðsinðθ1 − θ2Þ þ i sinhðs2 − s1ÞÞ2Þ: ðB3Þ

We have checked explicitly that this expression for the generating function equals one when evaluated at m ¼ m0.

UNIVERSAL DISTRIBUTION OF WOULD-BE … PHYSICAL REVIEW D 95, 074516 (2017)

074516-15



Differentiation with respect to m yields the resolvent

Σν1;ν2
1j1þ1j1ðm; cÞ ¼ 1

ð2πÞ2
Z

ds1ds2dθ1dθ2eν1ðiθ1−s1Þeν2ðiθ2−s2Þ

× exp½m cosðθ1Þ þm cosðθ2Þ −m coshðs1Þ −m coshðs2Þ þ 2c2ðcosðθ1 − θ2Þ − coshðs1 − s2ÞÞ�
× ½1=4 cosðθ1Þðm cosðθ2Þ þm coshðs2ÞÞ þ 1=4ðm cosðθ1Þ þm coshðs1ÞÞ cosðθ2Þ
þ ðcosðθ1Þ þ cosðθ2ÞÞð1=4ðm cosðθ1Þ þm coshðs1ÞÞðm cosðθ2Þ þm coshðs2ÞÞ
þ c2 cosðθ1 − θ2Þ þ c2=2ðcosðθ1 − θ2Þ þ coshðs1 − s2ÞÞðm cosðθ1Þ þm cosðθ2Þ
þm coshðs1Þ þm coshðs2ÞÞ − c4ðsinðθ1 − θ2Þ þ i sinhðs2 − s1ÞÞ2Þ�: ðB4Þ

The eigenvalue density is now obtained readily from (34).

APPENDIX C: DIFFERENT CASES OF ν1 AND ν2

1. For ν1, ν2 < 0

For ν1, ν2 < 0 we have

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
Glð1j1Þ

dA exp

�
−Str

�
AA†

4c2

��

× Sdet−ν1−ν2ðM† þ AÞ
× Zðν1Þ;bulk

chUE ð½Mþ A†�½M† þ A�Þ
× Zðν2Þ;bulk

chUE ð½Mþ A†�½M† þ A�Þ ðC1Þ

which for c ≪ 1 becomes

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
Glð1j1Þ

dA exp

�
−Str

�
AA†

4c2

��

× Sdet−ν1−ν2ðM† þ AÞ
× Zðν1Þ;bulk

chUE ðMM†ÞZðν2Þ;bulk
chUE ðMM†Þ ðC2Þ

Since ν1 þ ν2 < 0, we can again directly identify n ¼ 0
and ν ¼ ν1 þ ν2 from (44).

2. For ν1 ≥ 0 and ν2 < 0

For ν1 ≥ 0 and ν2 < 0 we have

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
Glð1j1Þ

dA exp

�
−Str

�
AA†

4c2

��

× Sdetν1ðMþ A†ÞSdet−ν2ðM† þ AÞ
× Zðν1Þ;bulk

chUE ð½Mþ A†�½M† þ A�Þ
× Zðν2Þ;bulk

chUE ð½Mþ A†�½M† þ A�Þ ðC3Þ

which for c ≪ 1 becomes

Zν1;ν2
1j1þ1j1ðMÞ ¼

Z
Glð1j1Þ

dA exp

�
−Str

�
AA†

4c2

��

× Sdetν1ðMþ A†ÞSdet−ν2ðM† þ AÞ
× Zðν1Þ;bulk

chUE ðMM†ÞZðν2Þ;bulk
chUE ðMM†Þ:

ðC4Þ

a. Assuming ν1 + ν2 ≥ 0

We compare this to Eq. (43) and find n ¼ −ν2 and
nþ ν ¼ ν1, which is consistent with what we seek.

b. Assuming ν1 + ν2 < 0

We compare this to Eq. (44) and find n ¼ ν1
and n − ν ¼ −ν2, which is also consistent with n ¼
jν1jþjν2j−jν1þν2j

2
.

We can let ν1 ↔ ν2 and repeat the arguments.
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