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Perturbative renormalization and mixing of quark
and glue energy-momentum tensors on the lattice
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We report the renormalization and mixing constants to one-loop order for the quark and gluon energy-
momentum (EM) tensor operators on the lattice. A unique aspect of this mixing calculation is the definition
of the glue EM tensor operator. The glue operator is comprised of gauge-field tensors constructed from the
overlap Dirac operator. The resulting perturbative calculations are performed using methods similar to the
Kawai approach using the Wilson fermion and gauge actions for all QCD vertices and the overlap Dirac
operator to define the glue EM tensor. Our results are used to connect the lattice QCD results of quark and
glue momenta and angular momenta to the MS scheme at input scale u.
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I. INTRODUCTION

The nucleon spin problem is still an outstanding issue in
QCD. The problem originated from the European Muon
Collaboration experiment which indicated that the contri-
bution of the quark spin to the proton spin was only 25% of
the theoretical prediction in the quark model. To settle this
issue, a more precise determination of both the quark and
glue contributions to the nucleon spin is necessary. But, in
addition to the increased experimental precision, it is a
difficult issue to address theoretically. In this regard, lattice
determinations of the momentum and angular momentum
are indispensable.

Recent lattice calculations of the quark orbital angular
momenta in the connected insertion have been carried out
for the connected insertions [1-8], and it was shown to be
small in quenched calculations [1] and near zero in
dynamical fermion calculations [2,3] due to the cancella-
tion between the u and d quarks. The disconnected
insertion contribution is also investigated on the lattice
using dynamical fermions, but the signal is noisy [9]. The
gluon helicity distribution AG(x)/G(x) from COMPASS
and STAR experiments was found to be close to zero
[10,11], while the evidence of a nonzero AG(x) was
confirmed recently [12,13]. Additionally, it has been
argued based on analysis of single-spin asymmetry in
unpolarized lepton scattering from a transversely polarized
nucleon that the glue orbital angular momentum vanishes
[14], leaving us a in a “dark spin” scenario.

A full lattice calculation of the quark and glue momenta
and angular momenta has just been completed with
quenched Wilson fermion and gluon actions, where both
the quark connected and disconnected insertions are
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included [15]. In combining with earlier work on the quark
spin, a result for the quark orbital angular momentum was
obtained. It was found that the u and d quark orbital
contributions indeed largely cancel in the connected inser-
tion, as in the dynamical fermion calculation [2,3]; how-
ever, their contributions in the disconnected insertion,
including the strange quark, are on the order of 50% of
the total nucleon spin. Even though the glue momentum in
the proton have been studied in several recent works
[16,17], the glue angular momentum was obtained for
the first time with the gauge-field strength tensor for the
glue operators defined by the overlap Dirac operator.

Our aim in this paper is to calculate the renormalization
and mixing constants necessary to extract continuum
physics from a lattice calculation of the quark and glue
angular momentum operators. These one-loop Z factors
calculated from lattice perturbation theory are a crucial
ingredient in computing the matching conditions between
lattice calculations, which are regulated with an explicit
lattice spacing a, and experimental results, which are
quoted in the MS scheme. As the one-loop perturbative
calculations involving the overlap Dirac operator are
lengthy, we have written several scripts in Mathematica
and PYTHON to carry out the calculation analytically as far
as possible. At the end of all manipulations, a final series of
numerical integrations is necessary before quoting the
renormalization constants. The quark sector of this calcu-
lation follows closely the calculations in Ref. [18], and so
the finite pieces of these results have been relegated to the
Appendixes of this work. The glue sector, however, is new,
and the finite pieces of those diagrams involving the glue
angular momentum operator Zg_,o and Zg_,; have been
listed in the conclusion.

We have organized this paper as follows. In Sec. I, we
outline the general aspects of the mixing calculation and
highlight terminology used for the remainder of the paper.

© 2017 American Physical Society
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In Sec. III, we sketch the derivation of the Feynman rules
used for the glue energy-momentum (EM) tensor operator
defined from the overlap Dirac derivative and give the
details in Sec. III as well as Appendix A. In Sec. IV, we
present the renormalization conditions used, and in Sec. V,
we detail our approach in extracting the finite contributions
to the renormalization constants. We present our results for
each calculation in Sec. VI. We conclude and summarize
our goals for future work in Sec. VIL

II. FORMALISM

The QCD angular momentum operators are defined
according to the generators of the Lorentz transformation
[19]

A N
JIEE(:‘Uk/CPXMOjk(X), (1)

where M/ is the angular momentum density,

M(l/w(x) — Tm/xﬂ _ T{lyxy’ (2)
and, here, 7% is the symmetric, gauge-invariant, QCD
energy-momentum tensor.

One can then decompose the energy-momentum

tensor into a gauge-invariant sum of its quark and glue
contributions,

T =T + Ty, (3)
where the subscripts, ¢ and g, stand for the quark and glue
operators, respectively. Explicitly, these operators are

equivalent to the leading twist operators in unpolarized
deep inelastic scattering (DIS) in Euclidean space,

v 1 _ =47 Y
Ty = 38D (D" =y D)y, (4)
7

where S denotes that 7# is symmetrized with respect to
indices ¢ and v and f denotes quark flavor. For the glue
operator,

1
T = ESG’“’GZ,, (5)
where a trace over color indices has been suppressed and G

denotes the gauge-field strength tensor. These equations
allow one to write J as a gauge-invariant sum,

jQCD:jq+~7q’ (6)

where, using Eq. (1), the ith component of J is

1, o
Jig =5 / Px(TY,x7 — Texb). (7)

PHYSICAL REVIEW D 95, 074513 (2017)

One can also reexpress J, and J,, into a form more suitable
for physical interpretation using the QCD equations of
motion [19,20]; one arrives at the well-known result,

7= /d%[; x (E x B)], (9)

where both the color and flavor indices are suppressed. The
first term of Eq. (8) is identified as the quark spin operator

%f”, and the second term is identified as the orbital angular

momentum operator (Ijq). Thus, we write the total angular
momentum for quarks,

- ] — =
J =S8 L (10)

Collecting the results found in Egs. (6), (8), and (9), the
angular momentum operator in QCD can be expressed as a
gauge-invariant sum [19],

- - - 1—> - -
JQCD:Jq+Jg:§2q+Lq+Jg. (11)

One must measure all three quantities in Eq. (11) on the
lattice in order to address the dark spin scenario from first
principles. The first term appearing in Eq. (8) measures the
quark spin contribution to the proton spin, and several
studies have already computed this operator on the lattice;
the details can be found in Refs. [21-23], and the recent
updates on the disconnected contributions can be found in
Refs. [9,24-27]. For the second term appearing in Eq. (8), it
has been shown in Ref. [28] that a straightforward lattice
computation of the moments of operators including a
spatial coordinate X is complicated by periodic boundary
conditions on the lattice. Instead, this contribution has been
computed by determining the total angular momentum for
the quarks and then subtracting the quark spin contribution
to arrive at L, [1-4,15].

On the lattice, the matrix element of T(0)4.9 between two
nucleon states can be written in terms of three form factors
(T, T,, and T3) as derived in Ref. [19],

(p'.s'|TO49|p, sy =—u(p'.s') [Tl ()P +7'p°)

| =

1 7 Pl Hi( ;00
+5 - Ta(q?)(P°)(i0™) + P'(i0™)) 4o
1 a9
+ET3(612)6]OLIZ] u(p,s), (12)
where p and p’ are the initial and final momenta of the

nucleon, respectively; p =4 (p’'+ p) and g, = p, — p,
are the momentum transfer; m is the mass of the nucleon;
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and u(p, s) is the nucleon spinor. The indices s" and s are
the initial and final spins, respectively [15].

By calculating various polarized and unpolarized three-
point functions for Eq. (12) at finite ¢> and (7), and then
taking g> — O limit, one obtains

199 =2 [T,(0) + T2 (0], (13)

()99 = Ty(0)#%, (14

where (x)?9 = T'(0)%9 is the first moment of the momen-
tum fraction carried by the quarks or glue inside the
nucleon.

From Egs. (13) and (14), we write the momentum and
angular momentum sum rules as

T,(0)7+T,(0) = 1. (15)
[T1(0) + T2(0)]7 + [T1(0) + T2(0))* = 1. (16)

Thus, it is clear that to evaluate J79 (or L?Y), one must
compute both the 7(0) and 7,(0) form factors. And from
Eq. (12), these form factors are extracted from the matrix
element (p’, s'|T19349|p s). In this work, we compute the
renormalization and mixing constants associated with these
operators at the one-loop level. As stated in the
Introduction, this calculation follows similar calculations
of the mixing of leading twist operators under the renorm-
alization group. The essential new piece in this calculation
is the introduction of a 79" which is defined from the
overlap Dirac operator. We discuss more details regarding
the momentum space operators 7%, in the next section.

III. EM TENSOR OPERATORS

In this section, we outline the lattice operators we use for
our renormalization calculations based on the discussion in
the previous section. The operators we investigate are
similar to leading twist operators in QCD and can be
written compactly,

1 _ pas
Ol = ESZWf(YﬂDu)Wf (17)
f

1
Ol = 581, G* G, (18)

where the symbol S instructs us to take the symmetrized

<~ - -
and traceless piece of the operator, D = 1/2(D — D), and
tr,. is a trace over color indices. These operators are gauge
invariant, and we will assume in further discussions that
they are symmetrized with respect to all Lorentz indices.
For the quark operator appearing in Eq. (17), the
covariant derivative is defined from the Wilson action,
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Ul(x = ap)y(x = ap)),
(19)

B (x) = 5 (U, (0w (x + af) -

- 1

D,y (x) =5 (7 (x+ap) U, (x)' = (x— at) Uy (x— at)).

(20)

where U, (x) = exp (igyaA,(x)) is the link variable at
lattice site x, with lattice spacing a and coupling gy. In
the quark operator, one can integrate by parts to remove the
left-acting derivative in favor of right-acting derivatives
only. An expansion of the link variable in the coupling g,
allows one to write the momentum space vertices necessary
for the one-loop renormalization of OZ,, [18,29],

O, = OW + 0%} + 087 + ..., (1)

where

O =34 (W) s ) = —a)) - (22

Of! =" P13 (e AL s + a)

X

+(x)y, AL (x — ab)y (x — ab)) (23)

o5 = _ 4% T“Thz X)7, A8 (X) AL (x)yr(x + ab)

4

=W (x)r, A (x — ab)A)(x — ab)y(x — ab)).  (24)
In using the notation (’)Z;i , we denote the order in the QCD
coupling by the power i. To Fourier transform these
operators into momentum space, we define the following
Fourier transformations on the quark and gauge fields:

rla d%k .
v = [ e (25)
—r/a (271')4
A _ wla d'k i(x+a;4/2)kA k 26
ﬂ(x)— _”/awe ;4( ). (26)

The complete Feynman rules for each order in the coupling
are collected in Appendix A. The Feynman rules for the
glue operator involve traces of the overlap Dirac derivative
and are thus more cumbersome to compute. Because of
this, we provide more details on our methodology in this
section.

Specifically, the field strength tensors which compose
the gluon operator O, are constructed from the overlap
Dirac derivative. The renormalization constants and mixing
coefficients of this operator have not yet been studied in the
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literature. Although this operator has been defined from the
overlap derivative, one can make contact with the classical
field strength tensor. One can prove that the kernel of the
overlap Dirac operator is equivalent to the classical field
strength tensor in the continuum limit [30],

tr,6,, Doy (x,x) = a*cT(p, r)G,,(x) + O(a?), (27)

where tr; denotes a trace over spinor indices, o6,, =
zii[}’;u 71/]’ G;w:goa[uAu] _g%[AwAUL and CT(p) is an

integration constant given by

(1) /ﬂ d*k 2(Mc,c, + rsic, + rsic,)
C b r - 9
P P . (22) 32

=) s+ M,
"
M=p+ry (c,—1).
"
c, = cosk,, s, = sink,. (28)

For one-loop calculations, rather than a Taylor expansion in
the lattice spacing a in Eq. (27), we need an order by order
expansion in the coupling constant g,. For this, we project
out the diagonal component of D, (x, y), compute the trace
over Lorentz indices, and finally Fourier transform the
result in momentum space, order by order in the coupling.

We give here a brief sketch of the procedure used to
compute the momentum space Feynman rules of the gluon
operator. The collected results for the lowest order vertices
can be found in Appendix A. We follow the methods
outlined in Refs. [30,31] and write the diagonal component
of the overlap Dirac operator,

Dov(x’ x) = ZD(X’ y)axy
3

r/a d*k . .
=3 [ e D et 29
3 _,T/a (271')

where we use the following definition for the overlap
operator,

Do) =2 (1 ‘X\/%—Q (30)

and X(x,y) is the Wilson derivative, which has the
discretized form

X(53) = 5> rulBes V() =80,V 0)

P
"5,

(31)

+ r(25x,y - 5x+ﬁ,y Uﬂ (x) - 5x,y+ﬁ UlTl (y) )]
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An expansion, order by order in the coupling constant g,
can be obtained by rewriting the square root term as an
integral over a ¢ parameter and Taylor expanding the
resulting rational function as a series in the coupling
constant [29,32],

1 _/_wda; 32)

XTx T+ XX

The product X'X can be expanded (in powers of g)
order by order, and we introduce the following
shorthand:

XX =3 gh(X'X); = g% (33)

To the lowest orders, we then have

) = XX, (34)
2 = X¢X1 + X[ Xo (35)
¥, = X{X, + XiXo + XX, (36)

where the subscripted Z; and X; indicate at which order in
the QCD coupling the various X factors have been
expanded. The expressions for the various X; operators
in momentum space can be found in Appendix A. With
these results, we Taylor expand Eq. (32) order by order in
the coupling g,. For example, the zeroth, first, and second
order expansions are

1 1
<02 +XTX>O Tt 4 Y,

1 1 1
2 yviy) T 2 X
o> +X'X), oo+ o+

1 1 1 1
= ) )
<52+XTX>2 o +2 et e+ x,
1 1
62+20 2024—20'

(37)

Examining the form of the X;,, we can see that the
zeroth order expansion of D, will vanish when traced
OVEr 6,

(trGuDDov>0 = va(x7 )C)

p © i 1 ik
=-—tro daE e"™X e Y,
na Iw/—oo y A 062+ZO

(38)
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The Dirac structure of X is Xy = Ay, + B where both A and B are Lorentz scalars, and X, = ngo is also a Lorentz scalar;
see Appendix A for details. Thus, when traced over 6,,, this expression vanishes.

The various products X /v X' X expanded to the next three lowest orders in the coupling g are listed below. The third order
expansion is necessary to calculate tadpole contributions to the renormalization constant Z;_,; which contains a fourth-
order vertex. After the taylor expansion and noting that X, is a commuting object, we find for the first three orders of the

expansion of tr,, D, (x,x) = G,,(x, x) in Eq. (27),

=G0,

s8] . A A .
(tt,,Dy)" = Gl (x, %) = goétralw / do» l M TI(0? X, — XX | Xo)[Te= % (39)
®© y

P
(traszov)z = G%w(x’ )C) = g(z)atraﬂu/

doy / M (M{62X, — Xo X5 X0}
0 v k

—T{c? (X, X X, + X1 X[ Xo + XoX | X) — XoX| XoX| X }IT?) e~ (40)

p
(6, D0)* = Gy (x3) = 3 L-twa, |

(&)

doy” [ X — AL+ TR(B + CHEJe . (a)
—00 y k
where again the power i in G' denotes the order in the QCD coupling. We have made use of the shorthand,
Ji= [ d*k/(2n)*; A, B, and C in G}, are lengthy expressions involving products of X;; and IT = - izo‘ The exact forms
for A, 3, and C can be found in Appendix A. Before we Fourier transform each order in the coupling g, we compute the
action of the various X; derivatives on e~ as shown in Eq. (29); we have, using Eq. (31),

Xe kv f(x) = e‘”‘y{;yﬂ (Q;, - é@,) - rw; (—é(l —c,)+ ie,,) -~ g} f(x), (42)

where lengthy and are relegated to Appendix A for the interested
reader. We close this section by remarking that once these
ik, ik O calculations are performed, we can construct the full
(e™HV, 4 eV (43) momentum space gluon operator G,,G; order by order
in the coupling by using our results for the field strength

(e7huV, — ek V7) (44)  tensor. We can write this expansion schematically,

O = (G + 90Ga + 95Giia + ---)
X (GY + goGL™ + RGr +...).  (48)

and

1 .
Vi (x) = p (U (x)y (x + aft) =y (x)) (45) We note that the trace over 6,, in Eq. (27) causes all terms

involving Gga to vanish. At lowest order, then, we have

1 . .
Vi (x) = = (w(x) - U,Jﬂ(x — af)y(x — ar)). (46) Feynmgn rules for two and three external gauge fields,
a respectively,
Equations (22)—(24) as well as Egs. (A7)—-(A9) are the main 092 — 2l Gul (49)
results for this section. For the glue operator, what remains w = 9o para
is to compute, order by order, the products acting on the 3 N |
unit vector 1,,, Oiv = 5(GuaGa™ + GiaGa), (50)
. 1 . where a symmetrization over Lorentz indices and a trace
P = XoX; X ml (47) over color indices have been suppressed.
040

which appear in Egs. (A7) and (A8), Fourier transform all IV. RENORMALIZATION

gauge fields to momentum space, and finally compute the In this section, we detail the renormalization conditions
trace over the Dirac indices. These details are somewhat used in our calculations. We remark that, since we are
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Feynman diagrams for the calculation of Z,_, . The circle represents an insertion of the twist-2 operator.

v

FIG. 2. Feynman diagrams for the calculation of Z_, . The circle represents an insertion of the quark angular momentum operator.

MO

FIG. 3. Feynman diagrams for the calculation of Z;_,,. The
circle represents an insertion of the glue EM tensor operator
defined from the overlap Dirac derivative.

calculating the one-loop corrections to flavor-singlet oper-
ators, the gluon operator is allowed to mix with the quark
operator beyond tree level. This renormalization and mixing
arise from diagrams like those shown in Figs. 1 and 4 and
Figs. 2 and 3, respectively. Due to these diagrams, the
renormalization constants Z are in fact matrices Z;;, and we
can organize our calculation in a 2 X 2 matrix,

or = ZZ,-J-O‘;, (51)
J

where the superscript b denotes a bare operator and r on the
lhs denotes the renormalized operator. The indices i and j run
over the operator basis. As in the continuum, we denote the
renormalization factors for the massless fermion wave
function and strong coupling constant as Z, and Z,,
respectively,

Yy = Zl//l//w Ah = ZAAV’ 9 = Zygr' (52)
For the bare wave function and the bare coupling, we have
used the notation y, and ¢, respectively. These renormal-
ization constants can be expanded around unity,

Z A — 1 + 5Z A

z,=1+6zZ,, Z,=1+62,

(53)
where 6Z,, and 6Z, denote the contributions from higher

order diagrams. Similarly, the Z;; renormalization constants
can be expanded around unity,

AT A T

I I
v

b

FIG. 4. Feynman diagrams for the calculation of Z;_ ;. The circle represents an insertion of the gluon angular momentum operator

defined from the overlap Dirac derivative.
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ZGog=1+0Zg_0. Z6og=1+086Zg.g. (55)

A. Quark EM tensor

The bare quark angular momentum operator has the
schematic form
0% = 9G¥, (56)
where the Lorentz structure and various derivative terms
have been omitted. Throughout the one-loop calculations,
the renormalization constants Z;; appearing in the previous
section are fixed by a set of renormalization conditions on
the quark and gluon matrix elements. For the quark

operator, the renormalized and bare quark matrix elements
are related as

(W 1O (W)W oy
= Zoolap, 9,)Zy (ap, g,) (| O (@) Jyr ) =1o0P
+Zgoclap, gp){Ap. A O’é(a)|Ah, ) 1~loop
= (|0p(@)lws) "™, (57)

where 1 is a polarization index for the external gauge
field. The tree-level matrix element (1/'/;,|(9bQ(a)|1,1/b>“ee is
defined by

i

5 (YuPy +70Dpu)- (58)

<l/_/‘0l%|l//>tree =
With this renormalization condition, the renormalization
constants Z,_o and Z,_ are fixed by computing the
diagrams shown in Figs. I and 2, respectively, while the Z,,
is fixed from wave function renormalization of the quark
field. In Eq. (57), we have made use of the fact that the tree-
level matrix elements,

(@s|OG(@)lwp)™. (4]0 (a)lAp)™e,  (59)
both vanish.
B. Glue EM tensor
The bare gluon operator has the schematic form

The renormalized and bare gluon operators are then related,
(A A OG() Ay Aoy
= Zg_c(ap, gb)Zgl (au, gb)<Ab’ﬂ|Og(a)|Ab,l>l—loop
+ Zg-glap, gp) (75| O (a) lwy) 7P

= (A, 110G (a)|A, 2)". (61)
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As with the quark operator, the renormalization constant
ZG- 1s an off-diagonal mixing term fixed by the diagrams
shown in Fig. 3, and the Z;_ ; renormalization constant is
computed from the diagrams shown in Fig. 4. Again, the
matrix element (A, 1|0y |A,, 4) vanishes at tree level but is
nonzero at one-loop order. Here, the tree-level matrix
element, (A, p|O%(a)|A,, ), is defined by

_ 2pﬂpygp‘r + pﬂppgu‘r _ pﬂpugpr _ pZQ/)ﬂgu‘r + prl/g/)ﬂ
+p g = PP + P g — g (PP - p7g7).
(62)

We point out that in the final stages of all one-loop
calculations, we encounter complicated expressions
depending on the external momentum and possibly
Dirac gamma matrices. These expressions must be grouped
into gauge-invariant terms representing the tree-level
matrix elements of the quark and gluon EM tensor
operators defined in Egs. (58) and (62) before we can
extract the correct renormalization constants.

We can simplify the procedure greatly by exploiting our
freedom to choose
c=1t#u,

T2 (63)

in all calculations [18], and thus setting all 5, terms to zero.
This has the benefit of avoiding any mixing into lower-
dimensional operators which have the same symmetries
under the hypercubic group H(4) as our quark and gluon
angular momentum operators. Note that with such a
condition, the renormalization we obtained in this work
cannot be used for the operators O ,, with u = v, since
they belong to the different irreducible representation of the
hypercubic group [33]. But it is enough for the proton spin
decomposition in Ref. [15] since only the off-diagonal part
of Og,, is used there. See Ref. [34] for a detailed
discussion and updates on this point.

We close this section by listing schematic forms for all
renormalization constants. The numerical results for the
finite contributions of those Z factors involving the glue
operator are found in Tables II and III, and those involving
the quark operator can be found in Table I; our results for
the various Z, and Z, are tabulated in Appendix B.
Schematically, we write

i 8
Zoo =147 Cr| —3l0g(a®p?) + Fooo(ry)

+0(g8) (64)

>
g 8
Zop = ?;CF <3log(a2p2) + Fgoo(p, ”w)) +0(g5)

(65)
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2
g 2
Zooc = _16?1'2 Np (g 10g(a2p2) + FQ—)G(rW)) "‘0(93)

(66)

2
q, 2
ZG—»G =1+ 16(7)[2 <—§NF10g((12p2) +NFFG—>G(rW)

+ NCBG—>G(pv rw)> + O(gé) (67)

V. METHODOLOGY

In this section, we outline the methods used to compute
the one-loop mixing coefficients outlined in the previous
section. At one-loop order, and after a suitable simplifica-
tion of all Dirac and color matrices, all lattice integrations
encountered in this mixing calculation can be expressed in
the schematic form

o) = [ e = [,

where we have suppressed both the color and Lorentz
indices. The integrand 7 is, in general, a complicated
rational function of both k and p involving many sin and
cos terms. A direct integration of such a function is
typically impractical. Instead, one can still achieve a high
accuracy result by “splitting” the integrand in the following
way,

I[=J+(-J), (69)

where J is given by a Taylor expansion in the external
momentum p,

N
N PuyePy, 0"
J_Z n! {0 0

n=0 Yy,

I(k,m} . (0)

p—0

The order N in this expansion is set by the degree of
divergence Z(k, p). With this result, using the power
counting theorem of Reisz, we can compute the difference,

lim(7 —J), (71)

in the continuum limit. For these calculations, the one-loop
calculations in the continuum are straightforward. We point
out, however, that the Taylor expansion and artificial
splitting of the integrand introduce an infrared divergence
at intermediate stages of the calculations. We have chosen
to regulate this divergence using dimensional regularization
in d = 4 —2¢ dimensions. Thus, we expect both J and
(I — J) to exhibit poles in epsilon which must cancel to give
a finite result for / at the end of the calculations.

The Taylor expansion has reduced J to an integral over
the loop momentum k only, greatly simplifying its

PHYSICAL REVIEW D 95, 074513 (2017)

calculation. However, we must still isolate all pole terms
and separate them before passing J to any numerical
integration routine. To do so, our scripts reduce J to the
following schematic form,

_ / 'k N(k)
(27)4 Dy (k)Dy' (k)

(72)

where the exact form of the numerator is not important,
only that it depends only on k, and D, is the inverse gluon
propagator and D, is a generic inverse quark propagator.

We can isolate any divergent terms in this integrand by
writing

1 1 1
D)~ Dy (unc) - Db<k>>' 73)

The degree of divergence of (1/D, — 1/D,,) is reduced by

1. By iteratively applying this kind of splitting and
separating out integrals involving only powers of D%), all
pole terms in J can be isolated. In the end, any J integral
involving arbitrary powers of quark and gluon propagators

can be expressed as a sum,

N(K) |~ N0
J = - + — (74)
250 " 2
di t
1vergen ﬁnite

The divergent pieces of this sum can be computed to
arbitrary accuracy by using the results in Ref. [33]. The
remaining finite piece is computed to nine-digit accuracy
using the Clenshaw-Curtis algorithm in Mathematica. At
the end of the calculation, all J-type integrals can be
expressed in a schematic form,

J—g—(%(E—i-F), (75)

©16x% \ e

where N and F are numerical constants and any Lorentz or
color indices have been suppressed.

As discussed in previous perturbative calculations on the
lattice [18,29], a major obstacle in performing these
calculations analytically is that gauge-field theories regu-
lated by a lattice spacing respect hypercubic symmetries
rather than the more restrictive Lorentz symmetries. This is
problematic when trying to apply prebuilt packages such as
FORM to simplify intermediate expressions. For example,
many terms common to lattice perturbation theory, such as
> ¥y Sink, cos p,, are not properly handled by the existing
index contraction methods designed for continuum calcu-
lations. Because of this, we have written several separate
scripts in PYTHON to aid in simplifying intermediate
expressions involving products of Dirac matrices in d
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dimensions before passing the results to our integration
routines.

The programs thus arrive at the final integrated result for
I(p) shown in Eq. (68) by first Taylor expanding the
momentum space vertices in the external momentum to the
desired order. At this stage, all d-dimensional gamma
algebra is carried out in FORM with the aid of several
PYTHON scripts. Once this has completed, the lattice
integral of interest is expressed as a sum of integrands
of the following form,

I(,ul,...,yn):/d4kf(Zsin2k,1>Hsinkﬂi, (76)
A i

where f denotes some even function of sin and odd powers
of sin have integrated to zero by symmetry. As outlined in
Ref. [18], it is advantageous to simplify these products of sin
functions using hypercubic [H(4)] symmetries. We have
written FORM routines to carry this out automatically. The
details of this stage of the calculation are the same as in
Ref. [18] and can be found there. Once these symmetry
relations are applied, the integrands are ready to be reduced
to their divergent and finite parts. We have automated this
procedure as well with additional PYTHON code which
follows the splitting methods described previously in this
section. Finally, when all finite pieces have been isolated
from the divergent parts, all divergent pieces are simplified
analytically using the reduction methods described in
Ref. [33], and all finite pieces are passed to Mathematica
to be integrated, which then collects the final, simplified
result. A crucial check on this method is that the continuum
integration (I — J) produces an e-pole which cancels the pole
computed in J; we show in the next section that this is indeed
the case for all the calculations performed.

We close this section with a brief comment regarding the
gauge dependence of these results. In all one-loop calcu-
lations, we have set the gauge parameter a appearing in the
gluon propagator (see Appendix C) to unity, corresponding
to the Feynman gauge. All the calculations in this work are
in the Feynman gauge, and the self-consistent check for the
general gauge will be addressed in the upcoming work [34].

VI. RESULTS

In this section, we report the results for the Z,_, ¢, Zy_.¢,
ZG—>Q’ and ZG—>G?

2
, 8
Zit, =14+ Dt o, (— ~log(a’p?) + FQ—>Q(rw)>

16722 3
+0() 77)
Latt _g(z),Latt 8 2.2 4
Z6=0 = (g2 CF glog(a P°) + Fgoo(p. 1) | +0(g5)
(78)
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TABLE L. Results for the Z,_, o and Z,_,; mixing calculation.
These results have been computed previously in Ref. [18], and we
have found agreement for F,_,. However, our Fy_; are
different from those in Ref. [18].

Z5", (Fig. 1) Ty Fo_o(ry)
0.2 7.5170
0.4 6.3690
0.6 5.1610
0.8 4.0900
1.0 3.1649
Z5% ; (Fig. 2) T Fo_c(ry)
0.2 0.5542
0.4 —0.0960
0.6 ~0.1111
0.8 0.0322
1.0 0.2078
9(2)L t 2
,Lat
Zgte =53 Ny 3log(@*p?) + Fo_q(r,) | +0(g))
167 3
(79)
% 2
Zgtc =1+ 1065:; (—ng log(a*p?) + N;Fg_g(r)

+Nﬁ%dﬂm0+0%% (80)

where N, and N, are the number of colors and flavors,
respectively. The results of the finite pieces F and B are
summarized in Tables I, II, and III. For completeness, the
expressions for Z, and Z, needed to compute the final
values for the renormalization constants in Eq. (77) are
listed in Appendix B.

For the case of Z_, and Z_,(, the related diagrams do
not involve the glue EM tensor operator, see Figs. 1 and 2,

TABLE II.  Results for the mixing constants Z¢_.g and Zg_, .
In this table, we have chosen p = 1 and have listed results for
several values of the Wilson r,, parameter.

= Fgolp=1.1,) -

Zgt, (Fig.3)

0.2 4.06025
0.4 3.39754
0.6 2.88773
0.8 2.38546
1.0 1.90172
ZgEEG (Flg 4) Iy FG—»G(rW) BG—»G(p = 17 rw)
0.2 —1.22383 1.18448
0.4 -1.36776 1.23117
0.6 —1.60728 1.28174
0.8 —1.97383 1.33272
1.0 —2.16850 1.38353
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TABLE III.  Results for the mixing constants Zg_, and Zg_, .
Here, we have chosen p = 1.368 and have listed results for
several values of the Wilson r,, parameter.

Zk ) (Fig. 3) . Fog(p = 1.368.7,) ~

0.2 5.28282
0.4 5.10614
0.6 496733
0.8 4.86544
1.0 4.82048
Zléagc (Flg 4) r, FG—>G(rw) BG—»G(/) = 1.368, rw)
0.2 —1.22383 0.104783
0.4 —1.36776 0.105484
0.6 —1.60728 0.106373
0.8 —1.97383 0.107885
1.0 —2.16850 0.108396

and have been calculated in Ref. [18]. Our results of F_, o
have good agreement with those in Ref. [18], but the results
of Fy_¢ are different. Due to the mixing with the glue
equation of motion term, the finite piece under the
regularization invariant momentum subtraction scheme
(RI-MOM) in the continuum depends on the momentum
on the external legs as —%—% p*p*p’pt where p is the
momentum of the external legs and u/v and p/r are the
indices of the operator and external legs, respectively. We
confirm that our results have the same external momentum
dependence as that in the continuum, and then the final
renormalization constant under the MS scheme is a con-
stant only related to the UV regulator. We take p*/* = 0 in
the rest of this work to simplify the expression.

The results of those diagrams containing the glue EM
tensor operator (for the case of Z;_.; and Z_, ) are shown
in Figs. 4 and 3. This operator has been constructed from

£y 6D

Feynman diagrams for the calculation of Z,,.

FIG. 5.

PHYSICAL REVIEW D 95, 074513 (2017)

the overlap Dirac derivative, and its renormalization has not
yet been studied in the literature. Our results depend on
several parameters, specifically 0 < r, <1 and 0 <p <
2r,, from Eq. (31). We quote the results for several values of
p and allow r,, to vary from 0.2 to 1 in increments of 0.2.
We emphasize that all color factors have been divided out
of these results, along with an overall factor of 1/(162?) as
well as the tree-level expression for the operator of interest.

Here, we report the continuum MS finite contributions
necessary to match our lattice renormalization mixing
constants to the continuum MS scheme with the
Mathematica Package-X [35],

2

— v 8 40
RMS - 0.MS - 2752\ _ 4
0-0 + 1671’27CF 3 og(u”/p?) 9 +0(gp)
(81)

2

— 9 8 22
RS o = 5y (Sostt ) -5 ) volst) (52)

2
R 2 4
R = 5N (Slos/ ) - 5 ) +0lat) (83

2

- Gosis (2
RfSq=1+-27 (——N slog(#/p?)

G=6 =" T 6?3
10 4
SNPg-NG) O 6

So, the final matching factors are computed from the
condition in Ref. [29] as

ZEMS (apr,go) = > RS (12 / P9 315) 2K (P70 9o Law)
k

(85)

>
90,La MS :
= (51'—»]' + ﬁ (rimjlogau® + FY, + F%ff;)) (86)

In the above matching condition, we have chosen to take
the coupling to be the lattice coupling, as is conventional.

:

o = ) '
~
’ N ’
A} -’
N ,
-~ -

FIG. 6. Feynman diagrams for the calculation of Z,. The straight, dashed, and curly lines are the quark, ghost, and gluon lines,

respectively.
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The difference between the lattice and continuum couplings
only appears at two-loop order. For the specific case
r, = 1.0, p = 1.368, we find

ZMS Latt

0-0 (ap. go) = 1+

167> 3
+ O(gy)

2 8
% _c, (— % log a2? — 1.2795)

(87)

o 2
al g 8
24 ) = 12 Cr (S og s + 23760 ) +0(s)

(88)

o 2
Al g 2
Zl\Q/[iI{; “(ap, g0) = FoﬂzNF <§ log a?u* + 0'6522> +0(gé)

(89)

ZMS Latt

% (2
oG (ap, go) = 1 +-—"5 <— T Nyloga®y?

1622\ 3
—32796N, + 0.0502NC) +O(d).
(90)
VII. SUMMARY

In this work, we have studied the renormalization and
mixing constants for the glue EM tensor operator built from
the overlap Dirac derivative for the first time. These results
represent an indispensable piece of a complete calculation
of the quark and glue momentum and angular momentum
in the nucleon on a quenched 163 x 24 lattice with three
quark masses [15]. There, it was found that reasonable
signals were obtained for the glue operator constructed
from the overlap Dirac operator.

The finite contributions to our Z factors reported in the
previous section are used to match the lattice results
reported in Ref. [15] to the continuum MS scheme at
2 GeV. We have commented in previous sections that,
throughout the course of the calculations, we have kept all
analytic expressions before a final numerical integration
using several PYTHON and Mathematica scripts. Although
this allowed us to control all Lorentz and color structures at
each stage of the calculation and check explicitly the
cancellation of both 1/a and infrared divergences at
intermediate stages in the calculation, these benefits came
at a cost. When dealing with the overlap derivative, we
found that many intermediate expressions explode in size,
requiring intermediate results to be written to disk, slowing
down the code substantially. For future work, we would like
to extend our codes to incorporate more complicated lattice
actions involving several steps of hypercubic smearing for
the overlap fermion and improved gauge actions.
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APPENDIX A: FEYNMAN RULES FOR
THE GLUON OPERATOR FROM
THE OVERLAP DERIVATIVE

In this section, we provide details on the derivation of the
momentum space Feynman rules for G, defined from the
Dirac overlap operator. To start, we define some necessary
notation. The form of the Wilson derivative most conven-
ient to these calculations is given by the expressions

{ 1 * * P
X = ZE{Y"<V" -+ Vﬂ) - arwvﬂvﬂ} —Z (Al)
i

V() = (U (et al) —u()  (A2)

Viw(x) = -y () ~ Ul(x— iy (x—a).  (A3)
where the gauge-link U, (x) = exp(igoaA,(x)) admits an
expansion in the coupling g,. We denote this order in g, by
giving X a subscript, and thus X, corresponds to a zeroth
order expansion in gy. In momentum space, the X; for
(i=0,1,2)are

i . Ty p
Xo(p):EZyﬂmnapM—F;Z(l—cosapﬂ)—g (A4)
2 ]

. ap; +ap
Xi(p1.p2) = =% <17/,4 cos (#)
u
+ rysin (u) ) (A3)
2 U
2
ag . . apy +ap
X,(p1.p2) = —70 (‘Wﬂ sin (%)
u
+r, cos <apl+am> ), (A6)
2 u

where in these definitions p; is the momentum for the
incoming fermion and p, is the momentum of the
outgoing fermion. We use momentum conservation,
P2 = p1 + g, where ¢ is the momentum of the incoming
gluon frequently.
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After following the procedure outlined in Sec. III, we
have the following expressions for the first, second, and
third order Feynman rules for tre,, D, (x, X),

(tro,, Doy )! = Gy (x.X)

zﬁtraﬂ,,/ do
ma %
Xy / M T X, = XX Xo)[Te~*
Y k
(A7)

(tro,, Doy ) = GJ, (x. X)

zitram, / do
ma o
> / e ({62 X, — Xo X5 X0 M1
y Jk

— {2 (X, X X, + X, X[ Xy + Xo X[ X))
— XX [ XX X T2 ) e~k (A8)

(tro,, Doy )* = Gy (%, %)

p (o)
=—tro,, / do
za -

X ZA e (M{6* X5 — AMI
y

+ 11 {6*B + C}T)e ik, (A9)

where f[ = #Zo’ 20 = Xg‘)XO and .,4, B, and C in gﬁv are
given by
A= XXX, + XX X0 + X, X0X, + X, X1X,

+ X1 X (X, 4+ XoX5 X, 4+ XoX[ X, + XoXiX,  (A10)

B =X\ X} X\ X}X| + X, X)X, X[ X0 + X, X] XX | X,
+ XoXiX0X X0 + XXX X0X, 4+ XXX, X[ X,
+ XX XoXI X0 + XXX XX,
+ (X, XX, + XX X + X, X)X, + X, X0 X,

+2X, XX + XoX0X, 4+ XX [ X5) (A11)
C = 22X, X X, + XXXy + X, XX, + X, X)X,

+ X, XTX, 4+ XoX5 X, 4+ XX X,)

+ 2o (XX X0 X X0 + XoX 1 X X1X,)

— XX 1 XoX XX X, (A12)

We shall provide full details for the derivation of the first
order result and only sketch the derivation for the second

PHYSICAL REVIEW D 95, 074513 (2017)

and third orders, since the methods are the same and
the intermediate expressions are quite lengthy. For
the third order calculation, we have automated most steps
using FORM.

For the first order Feynman rule, we begin by computing
the action of X,X[X, on ¢ *1 and note that the ¢2X,
contribution will not survive the trace as it only contains
Lorentz scalar and vector components. We make use of the
general results,

Xe P f(x) = e‘”‘y{Z}fﬂ {Qﬂ - ésﬂ}
u

O3 EETIRY A EAVE

u

~ 1 : .

Qﬂ — E (e"kﬂV” 4 elk# v;)’

~ 1 . .

R, = 3 (e7hV, = ehuVy),

s, = sink,, c, = cosk,. (A13)

We can now compute the action of various X; operators on
le™**. For example, for the I terms acting on e’**1, we can
show

1
0'2 + XSXO

w? = % <Zﬂ:s§ + Zﬂ:[rw(l —c,) —p]z), (A14)

where we have used the fact that the derivative terms Qﬂ

ﬁeikx _ eikxi _ eikxi

6% + @?

and 1~€ﬂ appearing in X acting on 1 vanish and that one can

write the IT operator as a polynomial in X, (T)X o- We are then
ikx

left with computing the action of XOX{XO on iei,
calculating each term,

A ~ o1
¥ —iky __ . .
XoX(XoTem = TP~ % (iy, sin(—k + p),

+ 7, (1 — cos(—k + p)), — Z)

X gT“(iyp cos(—k + p/2)p
+ rysin(=k + p/2),)

1 . 14
X ZZI/:<_”/DSI/ + rw<1 - Cl/) - E)
(A15)
gT*
2 Z(yﬂAg + BS)(V/JA/I) + B/I))

v

=1eim

x (y7,AY + BY). (A16)
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In the last line, we have used the shorthand,

A) = isin(=k + p),.
ry(1=cos(=k+ p),) —p/a
A, =icos(—k+p/2),,

B} = r, sin(—k + p/2),

—is,,

BB = rw<1 —c,)—p/a. (A17)
In these expressions, the momentum k is a dummy
momentum which is to be integrated, and p (with
Lorentz index p and color index a) is the momentum of
the incoming gauge field. At this stage, we compute the
trace over Lorentz indices, using the identity

tro, wlalp = 4i<5;4a5vﬁ - 5ya5/4ﬂ) <A18)
as well as the fact that a trace over an odd number of
gamma matrices will vanish. Performing the trace gives the
numerator at first order in the coupling g,

gT* 30 7
Np;(lﬂ = traaﬁ?Z(YyAg + Bﬁt)) (YpA/L + B;) (}/DAg + BB)
uv

41 gT
{ ZA ! BO /1/3 - 6/)(1A?})

+ B}(ASAY — AYAQ) +ZB°A1 (8,0AY — @,,A?,)}.
(A19)

We must still integrate over the o-parameter appearing in
the various IT terms of g}l/,,. Integrating over o gives

(A20)

N .5k,
g/mﬁ( ) = le.

ra w(k)?

Throughout the course of these calculations, we are not
interested in the value of the integral over the dummy
momentum k; instead, we are interested in just the renorm-
alization factor Z which multiplies this operator in momen-
tum space; e.g., we are interested in extracting Z in

| [owkn=z [ op.p.

where [ is the loop momentum of the diagram and the same
integration over dummy k is present on both sides of this
equation. For this reason, we have expanded all N (k, p;)
numerators and collected all k dependent terms into coef-
ficients multiplying the products of sin/ and cos /. This is
made simpler by the fact that (k) is an even function of k and

(A21)
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so all odd functions of k in the numerator can be dropped
immediately. In this way, no integration over the dummy
momenta k needs be done at any point during the calculations.

The final expression for the zeroth order Feynman rule
for the gluon operator is given by the product

On(pi.p2) = trcS{g/}ta(pZ) Z'I(Pl)}
2 a (k
sl [ Nt
ky ks

o(k;)?
N/ljz au(k% p2>}
o(ky)* )

where S reminds us to take the symmetrized and traceless
piece of this operator and tr. is a trace over the color
indices. Contracting both sides with a lightlike vector to
project out the symmetrized and traceless piece,

(A22)

P25 [ AN, (k. py)
A-O9(py. pa) = / ol 1
1-/2

27%a? w(k;)?
A sz a(k2 p2>
o(ky)?

Here, p; and p, are the incoming gauge-field momenta,
and it is assumed that all odd terms in k; and k, are dropped
in the NV (k;, p;) numerators.

For the second and third order Feynman rules, all steps of
this procedure can be automated. FORM is used to handle all
traces and subsequent simplifications. This is necessary
since the third order operator involves many traces over six
gamma matrices, for example,

(A23)

tro ;X Xo X X5 X, (A24)

where each X; = yﬂAf, + BL. After expanding the traces,
and integrating over the ¢ parameter, we construct the full
Feynman rule at the desired order from the expansion,

Oy = (G + 90Gla + GGoa + ...)

X (GX* 4+ goGh* + @G2* + ..).  (A25)

At lowest order, then, we have Feynman rules for two and
three external gauge fields,

0% = gGLGY! (A26)
Of = G (GLGY? + GG (A27)
O = gh(GLGY + GGy + G2,GH?). (A28)

We then symmetrize these results over all Lorentz and color
indices as well as external momenta.
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APPENDIX B: QCD COUPLING AND WAVE
FUNCTION RENORMALIZATION

For completeness, in this section, we collect the expres-
sions for Z, and Z,, in the Feynman gauge used to fix the
renormalization constants (Figs. 5 and 6). Both of them are
converted to that under the MS scheme. These expressions
have been computed elsewhere using the Wilson action;
however, they serve as an additional check on the accuracy
of our codes. We write these results in the following form,

2

g
zZ,=1 +FOHZCF(10g ap? + (F,(r,) +1))+0(g})
(B1)
2
9% 5 2
ZA = 1 - 167[2 <<§Nc‘ —ng> lOgClz‘I/lz
10 31
+Nf FA(rw)_g + BA(NL)—'_?
+ 0(g3), (B2)
where
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TABLE IV. Table for the finite contributions to the wave
function renormalization constants Z,, Z,, and Z, used to
renormalize the quark and gluon angular momentum operators.

Iy Fx//(rw) FA(rw)
0.1 5.37037 1.18502
0.2 6.13073 1.22383
0.3 7.02470 1.28534
0.4 7.90649 1.36776
0.5 8.72568 1.47300
0.6 9.47224 1.60728
0.7 10.1503 1.77672
0.8 10.7677 1.97383
0.9 11.3326 2.15003
1.0 11.8524 2.16850
By(N.) = 5 (INZ — 122°)

ON,

2
57 (1+N2) +0.079805N,  (B3)

and F, and F, are evaluated numerically as in Table IV for
different r,,.

APPENDIX C: QCD VERTICES AND OPERATOR FEYNMAN RULES

In this section, we collect the various Feynman rules used during the course of the calculations. For the QCD action, the

fermion and gluon propagators take the form

—1 Zu Y sin aky, + 27, Zu sin? aky/2 + amyqy

a_ kb adaha 5 (C1)
> sin? ak,, + <2rw > sin? ak,, /2 + mq)
. k . k.
kb dab 5o (1 )t sin 2)
; pv .
TTTTTTTTT 4/a? Zp sin? k, /2 Zp <in? %
% —goT* (i% cos 9Pp T W g e/l + 7, Sin 4Pp T 44 ;L A ) (C3)
p Ha g
u,a v,b 2 T Tb
R G { . } duv | —1y, sin APy + Ay + 7ry COS AP+ WGy (C4)
5 g 2 2 2
k,u,a ;
% Z T <7,, cos Py T Y —21_ /T + 7 cos s —21_ aq,,) (C5)
p q v
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