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We report the renormalization and mixing constants to one-loop order for the quark and gluon energy-
momentum (EM) tensor operators on the lattice. A unique aspect of this mixing calculation is the definition
of the glue EM tensor operator. The glue operator is comprised of gauge-field tensors constructed from the
overlap Dirac operator. The resulting perturbative calculations are performed using methods similar to the
Kawai approach using the Wilson fermion and gauge actions for all QCD vertices and the overlap Dirac
operator to define the glue EM tensor. Our results are used to connect the lattice QCD results of quark and
glue momenta and angular momenta to the MS scheme at input scale μ.
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I. INTRODUCTION

The nucleon spin problem is still an outstanding issue in
QCD. The problem originated from the European Muon
Collaboration experiment which indicated that the contri-
bution of the quark spin to the proton spin was only 25% of
the theoretical prediction in the quark model. To settle this
issue, a more precise determination of both the quark and
glue contributions to the nucleon spin is necessary. But, in
addition to the increased experimental precision, it is a
difficult issue to address theoretically. In this regard, lattice
determinations of the momentum and angular momentum
are indispensable.
Recent lattice calculations of the quark orbital angular

momenta in the connected insertion have been carried out
for the connected insertions [1–8], and it was shown to be
small in quenched calculations [1] and near zero in
dynamical fermion calculations [2,3] due to the cancella-
tion between the u and d quarks. The disconnected
insertion contribution is also investigated on the lattice
using dynamical fermions, but the signal is noisy [9]. The
gluon helicity distribution ΔGðxÞ=GðxÞ from COMPASS
and STAR experiments was found to be close to zero
[10,11], while the evidence of a nonzero ΔGðxÞ was
confirmed recently [12,13]. Additionally, it has been
argued based on analysis of single-spin asymmetry in
unpolarized lepton scattering from a transversely polarized
nucleon that the glue orbital angular momentum vanishes
[14], leaving us a in a “dark spin” scenario.
A full lattice calculation of the quark and glue momenta

and angular momenta has just been completed with
quenched Wilson fermion and gluon actions, where both
the quark connected and disconnected insertions are

included [15]. In combining with earlier work on the quark
spin, a result for the quark orbital angular momentum was
obtained. It was found that the u and d quark orbital
contributions indeed largely cancel in the connected inser-
tion, as in the dynamical fermion calculation [2,3]; how-
ever, their contributions in the disconnected insertion,
including the strange quark, are on the order of 50% of
the total nucleon spin. Even though the glue momentum in
the proton have been studied in several recent works
[16,17], the glue angular momentum was obtained for
the first time with the gauge-field strength tensor for the
glue operators defined by the overlap Dirac operator.
Our aim in this paper is to calculate the renormalization

and mixing constants necessary to extract continuum
physics from a lattice calculation of the quark and glue
angular momentum operators. These one-loop Z factors
calculated from lattice perturbation theory are a crucial
ingredient in computing the matching conditions between
lattice calculations, which are regulated with an explicit
lattice spacing a, and experimental results, which are
quoted in the MS scheme. As the one-loop perturbative
calculations involving the overlap Dirac operator are
lengthy, we have written several scripts in Mathematica
and PYTHON to carry out the calculation analytically as far
as possible. At the end of all manipulations, a final series of
numerical integrations is necessary before quoting the
renormalization constants. The quark sector of this calcu-
lation follows closely the calculations in Ref. [18], and so
the finite pieces of these results have been relegated to the
Appendixes of this work. The glue sector, however, is new,
and the finite pieces of those diagrams involving the glue
angular momentum operator ZG→Q and ZG→G have been
listed in the conclusion.
We have organized this paper as follows. In Sec. II, we

outline the general aspects of the mixing calculation and
highlight terminology used for the remainder of the paper.
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In Sec. III, we sketch the derivation of the Feynman rules
used for the glue energy-momentum (EM) tensor operator
defined from the overlap Dirac derivative and give the
details in Sec. III as well as Appendix A. In Sec. IV, we
present the renormalization conditions used, and in Sec. V,
we detail our approach in extracting the finite contributions
to the renormalization constants. We present our results for
each calculation in Sec. VI. We conclude and summarize
our goals for future work in Sec. VII.

II. FORMALISM

The QCD angular momentum operators are defined
according to the generators of the Lorentz transformation
[19]

Ji ≡ 1

2
ϵijk

Z
d3xM0jkðx⃗Þ; ð1Þ

where M0ij is the angular momentum density,

MαμνðxÞ ¼ Tανxμ − Tαμxν; ð2Þ

and, here, Tμν is the symmetric, gauge-invariant, QCD
energy-momentum tensor.
One can then decompose the energy-momentum

tensor into a gauge-invariant sum of its quark and glue
contributions,

Tμν ¼ Tμν
q þ Tμν

g ; ð3Þ

where the subscripts, q and g, stand for the quark and glue
operators, respectively. Explicitly, these operators are
equivalent to the leading twist operators in unpolarized
deep inelastic scattering (DIS) in Euclidean space,

Tμν
q ¼ 1

4
S
X
f

ψ̄fðγμD⃗ν − γμD⃖νÞψf; ð4Þ

where S denotes that Tμν is symmetrized with respect to
indices μ and ν and f denotes quark flavor. For the glue
operator,

Tμν
g ¼ 1

2
SGμαGν

α; ð5Þ

where a trace over color indices has been suppressed and G
denotes the gauge-field strength tensor. These equations
allow one to write J⃗ as a gauge-invariant sum,

J⃗QCD ¼ J⃗g þ J⃗q; ð6Þ

where, using Eq. (1), the ith component of J is

Jiq;g ¼
1

2
ϵijk

Z
d3xðT0k

q;gxj − T0j
q;gxkÞ: ð7Þ

One can also reexpress Jq and Jg into a form more suitable
for physical interpretation using the QCD equations of
motion [19,20]; one arrives at the well-known result,

J⃗q ¼
Z

d3x
1

2
½ψ̄ γ⃗ γ5ψ þ ψ†ðx⃗ × ðiD⃗ÞÞψ �; ð8Þ

J⃗g ¼
Z

d3x½x⃗ × ðE⃗ × B⃗Þ�; ð9Þ

where both the color and flavor indices are suppressed. The
first term of Eq. (8) is identified as the quark spin operator
1
2
Σ⃗q, and the second term is identified as the orbital angular

momentum operator (L⃗q). Thus, we write the total angular
momentum for quarks,

J⃗q ¼ 1

2
Σ⃗q þ L⃗q: ð10Þ

Collecting the results found in Eqs. (6), (8), and (9), the
angular momentum operator in QCD can be expressed as a
gauge-invariant sum [19],

J⃗QCD ¼ J⃗q þ J⃗g ¼ 1

2
Σ⃗q þ L⃗q þ J⃗g: ð11Þ

One must measure all three quantities in Eq. (11) on the
lattice in order to address the dark spin scenario from first
principles. The first term appearing in Eq. (8) measures the
quark spin contribution to the proton spin, and several
studies have already computed this operator on the lattice;
the details can be found in Refs. [21–23], and the recent
updates on the disconnected contributions can be found in
Refs. [9,24–27]. For the second term appearing in Eq. (8), it
has been shown in Ref. [28] that a straightforward lattice
computation of the moments of operators including a
spatial coordinate x⃗ is complicated by periodic boundary
conditions on the lattice. Instead, this contribution has been
computed by determining the total angular momentum for
the quarks and then subtracting the quark spin contribution
to arrive at Lq [1–4,15].
On the lattice, the matrix element of Tð0iÞq;g between two

nucleon states can be written in terms of three form factors
(T1, T2, and T3) as derived in Ref. [19],

hp0;s0jTf0igq;gjp;si¼ 1

2
ūðp0;s0Þ

�
T1ðq2Þðγ0p̄iþ γip̄0Þ

þ 1

2m
T2ðq2Þðp̄0ÞðiσiαÞþ p̄iðiσ0αÞÞqα

þ 1

m
T3ðq2Þq0qi

�
q;g
uðp;sÞ; ð12Þ

where p and p0 are the initial and final momenta of the
nucleon, respectively; p̄ ¼ 1

2
ðp0 þ pÞ and qμ ¼ p0

μ − pμ

are the momentum transfer; m is the mass of the nucleon;
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and uðp; sÞ is the nucleon spinor. The indices s0 and s are
the initial and final spins, respectively [15].
By calculating various polarized and unpolarized three-

point functions for Eq. (12) at finite q2 and (7), and then
taking q2 → 0 limit, one obtains

Jq;g ¼ 1

2
½T1ð0Þ þ T2ð0Þ�q;g; ð13Þ

hxiq;g ¼ T1ð0Þq;g; ð14Þ

where hxiq;g ¼ T1ð0Þq;g is the first moment of the momen-
tum fraction carried by the quarks or glue inside the
nucleon.
From Eqs. (13) and (14), we write the momentum and

angular momentum sum rules as

T1ð0Þq þ T1ð0Þg ¼ 1; ð15Þ

½T1ð0Þ þ T2ð0Þ�q þ ½T1ð0Þ þ T2ð0Þ�g ¼ 1. ð16Þ

Thus, it is clear that to evaluate Jq;g (or Lq;g), one must
compute both the T1ð0Þ and T2ð0Þ form factors. And from
Eq. (12), these form factors are extracted from the matrix
element hp0; s0jTf0igq;gjp; si. In this work, we compute the
renormalization and mixing constants associated with these
operators at the one-loop level. As stated in the
Introduction, this calculation follows similar calculations
of the mixing of leading twist operators under the renorm-
alization group. The essential new piece in this calculation
is the introduction of a Tμν

g which is defined from the
overlap Dirac operator. We discuss more details regarding
the momentum space operators Tμν

q;g in the next section.

III. EM TENSOR OPERATORS

In this section, we outline the lattice operators we use for
our renormalization calculations based on the discussion in
the previous section. The operators we investigate are
similar to leading twist operators in QCD and can be
written compactly,

Oq
μν ¼ 1

2
S
X
f

ψ̄fðγμD
↔

νÞψf ð17Þ

Og
μν ¼ 1

2
StrcGμαGν

α; ð18Þ

where the symbol S instructs us to take the symmetrized

and traceless piece of the operator, D
↔ ¼ 1=2ðD⃗ − D⃖Þ, and

trc is a trace over color indices. These operators are gauge
invariant, and we will assume in further discussions that
they are symmetrized with respect to all Lorentz indices.
For the quark operator appearing in Eq. (17), the

covariant derivative is defined from the Wilson action,

D⃗μψðxÞ ¼
1

2a
ðUμðxÞψðxþ aμ̂Þ − U†

μðx − aμ̂Þψðx − aμ̂ÞÞ;
ð19Þ

D⃖μψðxÞ¼
1

2a
ðψ̄ðxþaμ̂ÞUμðxÞ†− ψ̄ðx−aμ̂ÞUμðx−aμ̂ÞÞ;

ð20Þ
where UμðxÞ ¼ exp ðig0aAμðxÞÞ is the link variable at
lattice site x, with lattice spacing a and coupling g0. In
the quark operator, one can integrate by parts to remove the
left-acting derivative in favor of right-acting derivatives
only. An expansion of the link variable in the coupling g0
allows one to write the momentum space vertices necessary
for the one-loop renormalization of Oq

μν [18,29],

Oq
μν ¼ Oq;0

μν þOq;1
μν þOq;2

μν þ…; ð21Þ

where

Oq;0
μν ¼ 1

2a

X
x

ðψ̄ðxÞγμψðxþaν̂Þ− ψ̄ðxÞγμψðx−aν̂ÞÞ ð22Þ

Oq;1
μν ¼ ig0

2
Ta

X
x

ðψ̄ðxÞγμAa
νðxÞψðxþ aν̂Þ

þ ψ̄ðxÞγμAa
νðx − aν̂Þψðx − aν̂ÞÞ ð23Þ

Oq;2
μν ¼ −

ag20
4

TaTb
X
x

ðψ̄ðxÞγμAa
νðxÞAb

νðxÞψðxþ aν̂Þ

− ψ̄ðxÞγμAa
νðx − aν̂ÞAb

νðx − aν̂Þψðx − aν̂ÞÞ: ð24Þ

In using the notation Oq;i
μν , we denote the order in the QCD

coupling by the power i. To Fourier transform these
operators into momentum space, we define the following
Fourier transformations on the quark and gauge fields:

ψðxÞ ¼
Z

π=a

−π=a

d4k
ð2πÞ4 e

ikxψðkÞ; ð25Þ

AμðxÞ ¼
Z

π=a

−π=a

d4k
ð2πÞ4 e

iðxþaμ=2ÞkAμðkÞ: ð26Þ

The complete Feynman rules for each order in the coupling
are collected in Appendix A. The Feynman rules for the
glue operator involve traces of the overlap Dirac derivative
and are thus more cumbersome to compute. Because of
this, we provide more details on our methodology in this
section.
Specifically, the field strength tensors which compose

the gluon operator Og
μν are constructed from the overlap

Dirac derivative. The renormalization constants and mixing
coefficients of this operator have not yet been studied in the
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literature. Although this operator has been defined from the
overlap derivative, one can make contact with the classical
field strength tensor. One can prove that the kernel of the
overlap Dirac operator is equivalent to the classical field
strength tensor in the continuum limit [30],

trsσμνDovðx; xÞ ¼ a2cTðρ; rÞGμνðxÞ þOða3Þ; ð27Þ

where trs denotes a trace over spinor indices, σμν ¼
1
2i ½γμ; γν�, Gμν ¼ g0∂ ½μAν� − g20½Aμ; Aν�, and cTðρÞ is an
integration constant given by

cTðρ; rÞ ¼ ρ

Z
π

−π

d4k
ð2πÞ4

2ðMcμcν þ rs2μcν þ rs2νcμÞ
z3=2

;

z ¼
X
μ

s2μ þM2;

M ¼ ρþ r
X
μ

ðcμ − 1Þ;

cμ ¼ cos kμ; sμ ¼ sin kμ: ð28Þ

For one-loop calculations, rather than a Taylor expansion in
the lattice spacing a in Eq. (27), we need an order by order
expansion in the coupling constant g0. For this, we project
out the diagonal component ofDovðx; yÞ, compute the trace
over Lorentz indices, and finally Fourier transform the
result in momentum space, order by order in the coupling.
We give here a brief sketch of the procedure used to

compute the momentum space Feynman rules of the gluon
operator. The collected results for the lowest order vertices
can be found in Appendix A. We follow the methods
outlined in Refs. [30,31] and write the diagonal component
of the overlap Dirac operator,

Dovðx; xÞ ¼
X
y

Dðx; yÞδxy

¼
X
y

Z
π=a

−π=a

d4k
ð2πÞ4 e

ikxDovðx; yÞe−iky; ð29Þ

where we use the following definition for the overlap
operator,

Dovðx; yÞ ¼
ρ

a

�
1 − X

1ffiffiffiffiffiffiffiffiffi
X†X

p
�

x;y
; ð30Þ

and Xðx; yÞ is the Wilson derivative, which has the
discretized form

Xðx;yÞ¼ 1

2a

X
μ

½γμðδxþμ̂;yUμðxÞ−δx;yþμ̂U
†
μðyÞÞ

þ rð2δx;y−δxþμ̂;yUμðxÞ−δx;yþμ̂U
†
μðyÞÞ�− ρ

a
δx;y:

ð31Þ

An expansion, order by order in the coupling constant g0,
can be obtained by rewriting the square root term as an
integral over a σ parameter and Taylor expanding the
resulting rational function as a series in the coupling
constant [29,32],

1ffiffiffiffiffiffiffiffiffi
X†X

p ¼
Z

∞

−∞

dσ
π

1

σ2 þ X†X
: ð32Þ

The product X†X can be expanded (in powers of g)
order by order, and we introduce the following
shorthand:

X†X ¼
X
i

gi0ðX†XÞi ≡
X
i

gi0Σi: ð33Þ

To the lowest orders, we then have

Σ0 ¼ X†
0X0 ð34Þ

Σ1 ¼ X†
0X1 þ X†

1X0 ð35Þ

Σ2 ¼ X†
0X2 þ X†

2X0 þ X†
1X1; ð36Þ

where the subscripted Σi and Xi indicate at which order in
the QCD coupling the various Σ factors have been
expanded. The expressions for the various Xi operators
in momentum space can be found in Appendix A. With
these results, we Taylor expand Eq. (32) order by order in
the coupling g0. For example, the zeroth, first, and second
order expansions are

�
1

σ2 þ X†X

�
0

¼ 1

σ2 þ Σ0�
1

σ2 þ X†X

�
1

¼ −
1

σ2 þ Σ0

Σ1

1

σ2 þ Σ0�
1

σ2 þ X†X

�
2

¼ 1

σ2 þ Σ0

Σ1

1

σ2 þ Σ0

Σ1

1

σ2 þ Σ0

−
1

σ2 þ Σ0

Σ2

1

σ2 þ Σ0

: ð37Þ

Examining the form of the Σi, we can see that the
zeroth order expansion of Dov will vanish when traced
over σμν,

ðtrσμνDovÞ0 ≡G0
μνðx; xÞ

¼ ρ

πa
trσμν

Z
∞

−∞
dσ

X
y

Z
k
eikxX0

1

σ2 þ Σ0

e−iky:

ð38Þ
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The Dirac structure of X0 is X0 ¼ Aγμ þ B where both A and B are Lorentz scalars, and Σ0 ¼ X†
0X0 is also a Lorentz scalar;

see Appendix A for details. Thus, when traced over σμν, this expression vanishes.
The various products X=

ffiffiffiffiffiffiffiffiffi
X†X

p
expanded to the next three lowest orders in the coupling g are listed below. The third order

expansion is necessary to calculate tadpole contributions to the renormalization constant ZG→G which contains a fourth-
order vertex. After the taylor expansion and noting that Σ0 is a commuting object, we find for the first three orders of the
expansion of trσμνDovðx; xÞ≡Gμνðx; xÞ in Eq. (27),

ðtrσμνDovÞ1 ≡G1
μνðx; xÞ ¼ g0

ρ

πa
trσμν

Z
∞

−∞
dσ

X
y

Z
k
eikxΠ̂ðσ2X1 − X0X

†
1X0ÞΠ̂e−iky ð39Þ

ðtrσμνDovÞ2 ≡G2
μνðx; xÞ ¼ g20

ρ

πa
trσμν

Z
∞

−∞
dσ

X
y

Z
k
eikxðΠ̂fσ2X2 − X0X

†
2X0gΠ̂

− Π̂fσ2ðX1X
†
0X1 þ X1X

†
1X0 þ X0X

†
1X1Þ − X0X

†
1X0X

†
1X0gΠ̂2Þe−iky ð40Þ

ðtrσμνDovÞ3 ≡G3
μνðx; xÞ ¼ g30

ρ

πa
trσμν

Z
∞

−∞
dσ

X
y

Z
k
eikxðΠ̂fσ2X3 −AgΠ̂þ Π̂2fσ2B þ CgΠ̂2Þe−iky; ð41Þ

where again the power i in Gi denotes the order in the QCD coupling. We have made use of the shorthand,R
k ≡

R
d4k=ð2πÞ4; A, B, and C in G3

μν are lengthy expressions involving products of Xi; and Π̂ ¼ 1
σ2þΣ0

. The exact forms

for A, B, and C can be found in Appendix A. Before we Fourier transform each order in the coupling g, we compute the
action of the various Xi derivatives on e−iky as shown in Eq. (29); we have, using Eq. (31),

Xe−ikyfðxÞ ¼ e−iky
�X

μ

γμ

�
~Qμ −

i
a
sμ

�
− rw

X
μ

�
−
1

a
ð1 − cμÞ þ ~Rμ

�
−
ρ

a

�
fðxÞ; ð42Þ

where

~Qμ ¼
1

2
ðe−ikμ∇μ þ eikμ∇�

μÞ ð43Þ

~Rμ ¼
1

2
ðe−ikμ∇μ − eikμ∇�

μÞ ð44Þ

and

∇μψðxÞ ¼
1

a
ðUμðxÞψðxþ aμ̂Þ − ψðxÞÞ ð45Þ

∇�
μψðxÞ ¼

1

a
ðψðxÞ −U†

μðx − aμ̂Þψðx − aμ̂ÞÞ: ð46Þ

Equations (22)–(24) as well as Eqs. (A7)–(A9) are the main
results for this section. For the glue operator, what remains
is to compute, order by order, the products acting on the
unit vector 1n,

Pi ¼ X0X
†
i X0

1

σ2 þ X†
0X0

1̂ ð47Þ

which appear in Eqs. (A7) and (A8), Fourier transform all
gauge fields to momentum space, and finally compute the
trace over the Dirac indices. These details are somewhat

lengthy and are relegated to Appendix A for the interested
reader. We close this section by remarking that once these
calculations are performed, we can construct the full
momentum space gluon operator GμαGα

ν order by order
in the coupling by using our results for the field strength
tensor. We can write this expansion schematically,

Og
μν ¼ ðG0

μα þ g0G1
μα þ g20G

2
μα þ…Þ

× ðG0;α
ν þ g0G

1;α
ν þ g20G

2;α
ν þ…Þ: ð48Þ

We note that the trace over σμν in Eq. (27) causes all terms
involving G0

μα to vanish. At lowest order, then, we have
Feynman rules for two and three external gauge fields,
respectively,

Og;2
μν ¼ g20G

1
μαG

ν;1
α ð49Þ

Og;3
μν ¼ g30ðG1

μαG
ν;2
α þG2

μαG
ν;1
α Þ; ð50Þ

where a symmetrization over Lorentz indices and a trace
over color indices have been suppressed.

IV. RENORMALIZATION

In this section, we detail the renormalization conditions
used in our calculations. We remark that, since we are
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calculating the one-loop corrections to flavor-singlet oper-
ators, the gluon operator is allowed to mix with the quark
operator beyond tree level. This renormalization and mixing
arise from diagrams like those shown in Figs. 1 and 4 and
Figs. 2 and 3, respectively. Due to these diagrams, the
renormalization constants Z are in fact matrices Zij, and we
can organize our calculation in a 2 × 2 matrix,

Or
i ¼

X
j

ZijOb
j ; ð51Þ

where the superscript b denotes a bare operator and r on the
lhs denotes the renormalized operator. The indices i and j run
over the operator basis. As in the continuum, we denote the
renormalization factors for the massless fermion wave
function and strong coupling constant as Zψ and Zg,
respectively,

ψb ¼
ffiffiffiffiffiffi
Zψ

p
ψ r; Ab ¼

ffiffiffiffiffiffi
ZA

p
Ar; gb ¼ Zggr: ð52Þ

For the bare wave function and the bare coupling, we have
used the notation ψ0 and g0, respectively. These renormal-
ization constants can be expanded around unity,

Zψ ¼ 1þ δZψ ; ZA ¼ 1þ δZA; Zg ¼ 1þ δZg;

ð53Þ

where δZψ and δZg denote the contributions from higher
order diagrams. Similarly, the Zij renormalization constants
can be expanded around unity,

I II III IV

FIG. 1. Feynman diagrams for the calculation of ZQ→Q. The circle represents an insertion of the twist-2 operator.

I II III

IV V

FIG. 2. Feynman diagrams for the calculation of ZQ→G. The circle represents an insertion of the quark angular momentum operator.

I II

FIG. 3. Feynman diagrams for the calculation of ZG→Q. The
circle represents an insertion of the glue EM tensor operator
defined from the overlap Dirac derivative.

I II III

IV V

FIG. 4. Feynman diagrams for the calculation of ZG→G. The circle represents an insertion of the gluon angular momentum operator
defined from the overlap Dirac derivative.

GLATZMAIER, LIU, and YANG PHYSICAL REVIEW D 95, 074513 (2017)

074513-6



ZQ→Q ¼ 1þ δZQ→Q; ZQ→G ¼ 1þ δZQ→G; ð54Þ

ZG→Q ¼ 1þ δZG→Q; ZG→G ¼ 1þ δZG→G: ð55Þ

A. Quark EM tensor

The bare quark angular momentum operator has the
schematic form

Ob
Q ¼ gbψ̄bψb; ð56Þ

where the Lorentz structure and various derivative terms
have been omitted. Throughout the one-loop calculations,
the renormalization constants Zij appearing in the previous
section are fixed by a set of renormalization conditions on
the quark and gluon matrix elements. For the quark
operator, the renormalized and bare quark matrix elements
are related as

hψ̄ rjOr
QðμÞjψ rijp2¼μ2

¼ ZQ→Qðaμ; gbÞZ−1
ψ ðaμ; gbÞhψ̄bjOb

QðaÞjψbi1−loop
þ ZQ→Gðaμ; gbÞhAb; λjOb

QðaÞjAb; λi1−loop
≡ hψ̄bjOb

QðaÞjψbitree; ð57Þ

where λ is a polarization index for the external gauge
field. The tree-level matrix element hψ̄bjOb

QðaÞjψbitree is
defined by

hψ̄ jOQ
μνjψitree ¼

i
2
ðγμpν þ γνpμÞ: ð58Þ

With this renormalization condition, the renormalization
constants ZQ→Q and ZQ→G are fixed by computing the
diagrams shown in Figs. 1 and 2, respectively, while the Zψ

is fixed from wave function renormalization of the quark
field. In Eq. (57), we have made use of the fact that the tree-
level matrix elements,

hψ̄bjOb
GðaÞjψbitree; hAbjOb

QðaÞjAbitree; ð59Þ

both vanish.

B. Glue EM tensor

The bare gluon operator has the schematic form

Ob
G ¼ G0G0: ð60Þ

The renormalized and bare gluon operators are then related,

hAr; λjOr
GðμÞjAr; λijp2¼μ2

¼ ZG→Gðaμ; gbÞZ−1
A ðaμ; gbÞhAb; λjOb

GðaÞjAb; λi1−loop
þ ZG→Qðaμ; gbÞhψ̄bjOb

GðaÞjψbi1−loop
≡ hAb; λjOb

GðaÞjAb; λitree: ð61Þ

As with the quark operator, the renormalization constant
ZG→Q is an off-diagonal mixing term fixed by the diagrams
shown in Fig. 3, and the ZG→G renormalization constant is
computed from the diagrams shown in Fig. 4. Again, the
matrix element hAb; λjOQjAb; λi vanishes at tree level but is
nonzero at one-loop order. Here, the tree-level matrix
element, hAb; ρjOb

GðaÞjAb; τitree, is defined by

− 2pμpνgρτ þ pμpρgντ − pμpνgρτ − p2gρμgντ þ pτpνgρμ

þ pνpρgμτ − p2gρνgμτ þ pτpμgρν − gμνðpτpρ − p2gτρÞ:
ð62Þ

We point out that in the final stages of all one-loop
calculations, we encounter complicated expressions
depending on the external momentum and possibly
Dirac gamma matrices. These expressions must be grouped
into gauge-invariant terms representing the tree-level
matrix elements of the quark and gluon EM tensor
operators defined in Eqs. (58) and (62) before we can
extract the correct renormalization constants.
We can simplify the procedure greatly by exploiting our

freedom to choose

μ ≠ ν; σ ¼ τ ≠ μ; ð63Þ
in all calculations [18], and thus setting all δμν terms to zero.
This has the benefit of avoiding any mixing into lower-
dimensional operators which have the same symmetries
under the hypercubic group Hð4Þ as our quark and gluon
angular momentum operators. Note that with such a
condition, the renormalization we obtained in this work
cannot be used for the operators OG;μν with μ ¼ ν, since
they belong to the different irreducible representation of the
hypercubic group [33]. But it is enough for the proton spin
decomposition in Ref. [15] since only the off-diagonal part
of OG;μν is used there. See Ref. [34] for a detailed
discussion and updates on this point.
We close this section by listing schematic forms for all

renormalization constants. The numerical results for the
finite contributions of those Z factors involving the glue
operator are found in Tables II and III, and those involving
the quark operator can be found in Table I; our results for
the various ZA and Zψ are tabulated in Appendix B.
Schematically, we write

ZQ→Q ¼ 1þ g20
16π2

CF

�
−
8

3
logða2p2Þ þ FQ→QðrwÞ

�

þOðg40Þ ð64Þ

ZG→Q ¼ g20
16π2

CF

�
8

3
logða2p2Þ þ FG→Qðρ; rwÞ

�
þOðg40Þ

ð65Þ
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ZQ→G ¼ g20
16π2

NF

�
2

3
logða2p2Þ þ FQ→GðrwÞ

�
þOðg40Þ

ð66Þ

ZG→G ¼ 1þ g20
16π2

�
−
2

3
NF logða2p2Þ þ NFFG→GðrwÞ

þ NcBG→Gðρ; rwÞ
�
þOðg40Þ: ð67Þ

V. METHODOLOGY

In this section, we outline the methods used to compute
the one-loop mixing coefficients outlined in the previous
section. At one-loop order, and after a suitable simplifica-
tion of all Dirac and color matrices, all lattice integrations
encountered in this mixing calculation can be expressed in
the schematic form

IðpÞ ¼
Z

π=a

−π=a

d4k
ð2πÞ4

N ðk; pÞ
Dðk; pÞ ≡

Z
k
Iðk; pÞ; ð68Þ

where we have suppressed both the color and Lorentz
indices. The integrand I is, in general, a complicated
rational function of both k and p involving many sin and
cos terms. A direct integration of such a function is
typically impractical. Instead, one can still achieve a high
accuracy result by “splitting” the integrand in the following
way,

I ¼ J þ ðI − JÞ; ð69Þ

where J is given by a Taylor expansion in the external
momentum p,

J ¼
XN
n¼0

pμ1…pμn

n!

� ∂n

∂μ1…∂μn

Iðk; pÞ
�

p→0

: ð70Þ

The order N in this expansion is set by the degree of
divergence Iðk; pÞ. With this result, using the power
counting theorem of Reisz, we can compute the difference,

lim
a→0

ðI − JÞ; ð71Þ

in the continuum limit. For these calculations, the one-loop
calculations in the continuum are straightforward. We point
out, however, that the Taylor expansion and artificial
splitting of the integrand introduce an infrared divergence
at intermediate stages of the calculations. We have chosen
to regulate this divergence using dimensional regularization
in d ¼ 4 − 2ϵ dimensions. Thus, we expect both J and
(I − J) to exhibit poles in epsilon which must cancel to give
a finite result for I at the end of the calculations.
The Taylor expansion has reduced J to an integral over

the loop momentum k only, greatly simplifying its

calculation. However, we must still isolate all pole terms
and separate them before passing J to any numerical
integration routine. To do so, our scripts reduce J to the
following schematic form,

J ¼
Z

ddk
ð2πÞd

N ðkÞ
Dnb

b ðkÞDnq
q ðkÞ ; ð72Þ

where the exact form of the numerator is not important,
only that it depends only on k, and Db is the inverse gluon
propagator and Dq is a generic inverse quark propagator.
We can isolate any divergent terms in this integrand by
writing

1

DqðkÞ
¼ 1

DbðkÞ
þ
�

1

DqðkÞ
−

1

DbðkÞ
�
: ð73Þ

The degree of divergence of ð1=Dq − 1=DbÞ is reduced by
1. By iteratively applying this kind of splitting and
separating out integrals involving only powers of 1

Db
, all

pole terms in J can be isolated. In the end, any J integral
involving arbitrary powers of quark and gluon propagators
can be expressed as a sum,

J ¼
X N ðkÞ

Dnb
b ðkÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

divergent

þ
X N 0ðkÞ

D
n0b
b D

n0q
q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

finite

: ð74Þ

The divergent pieces of this sum can be computed to
arbitrary accuracy by using the results in Ref. [33]. The
remaining finite piece is computed to nine-digit accuracy
using the Clenshaw-Curtis algorithm in Mathematica. At
the end of the calculation, all J-type integrals can be
expressed in a schematic form,

J ¼ g20
16π2

�
N
ϵ
þ F

�
; ð75Þ

where N and F are numerical constants and any Lorentz or
color indices have been suppressed.
As discussed in previous perturbative calculations on the

lattice [18,29], a major obstacle in performing these
calculations analytically is that gauge-field theories regu-
lated by a lattice spacing respect hypercubic symmetries
rather than the more restrictive Lorentz symmetries. This is
problematic when trying to apply prebuilt packages such as
FORM to simplify intermediate expressions. For example,
many terms common to lattice perturbation theory, such asP

μγμ sin kμ cospμ, are not properly handled by the existing
index contraction methods designed for continuum calcu-
lations. Because of this, we have written several separate
scripts in PYTHON to aid in simplifying intermediate
expressions involving products of Dirac matrices in d

GLATZMAIER, LIU, and YANG PHYSICAL REVIEW D 95, 074513 (2017)

074513-8



dimensions before passing the results to our integration
routines.
The programs thus arrive at the final integrated result for

IðpÞ shown in Eq. (68) by first Taylor expanding the
momentum space vertices in the external momentum to the
desired order. At this stage, all d-dimensional gamma
algebra is carried out in FORM with the aid of several
PYTHON scripts. Once this has completed, the lattice
integral of interest is expressed as a sum of integrands
of the following form,

Iðμ1;…; μnÞ ¼
Z

d4kf

�X
λ

sin2kλ

�Y
i

sin kμi ; ð76Þ

where f denotes some even function of sin and odd powers
of sin have integrated to zero by symmetry. As outlined in
Ref. [18], it is advantageous to simplify these products of sin
functions using hypercubic [Hð4Þ] symmetries. We have
written FORM routines to carry this out automatically. The
details of this stage of the calculation are the same as in
Ref. [18] and can be found there. Once these symmetry
relations are applied, the integrands are ready to be reduced
to their divergent and finite parts. We have automated this
procedure as well with additional PYTHON code which
follows the splitting methods described previously in this
section. Finally, when all finite pieces have been isolated
from the divergent parts, all divergent pieces are simplified
analytically using the reduction methods described in
Ref. [33], and all finite pieces are passed to Mathematica
to be integrated, which then collects the final, simplified
result. A crucial check on this method is that the continuum
integration (I − J) produces an ϵ-pole which cancels the pole
computed in J; we show in the next section that this is indeed
the case for all the calculations performed.
We close this section with a brief comment regarding the

gauge dependence of these results. In all one-loop calcu-
lations, we have set the gauge parameter α appearing in the
gluon propagator (see Appendix C) to unity, corresponding
to the Feynman gauge. All the calculations in this work are
in the Feynman gauge, and the self-consistent check for the
general gauge will be addressed in the upcoming work [34].

VI. RESULTS

In this section, we report the results for the ZQ→Q, ZQ→G,
ZG→Q, and ZG→G,

ZLatt
Q→Q ¼ 1þ g20;Latt

16π2
CF

�
−
8

3
logða2p2Þ þ FQ→QðrwÞ

�

þOðg40Þ ð77Þ

ZLatt
G→Q ¼ g20;Latt

16π2
CF

�
8

3
logða2p2Þ þ FG→Qðρ; rwÞ

�
þOðg40Þ

ð78Þ

ZLatt
Q→G ¼ g20;Latt

16π2
Nf

�
2

3
logða2p2Þ þ FQ→GðrwÞ

�
þOðg40Þ

ð79Þ

ZLatt
G→G ¼ 1þ g20;Latt

16π2

�
−
2

3
Nf logða2p2Þ þ NfFG→GðrwÞ

þ NcBG→Gðρ; rwÞ
�
þOðg40Þ; ð80Þ

where Nc and Nf are the number of colors and flavors,
respectively. The results of the finite pieces F and BG are
summarized in Tables I, II, and III. For completeness, the
expressions for Zg and Zψ needed to compute the final
values for the renormalization constants in Eq. (77) are
listed in Appendix B.
For the case of ZQ→Q and ZG→Q, the related diagrams do

not involve the glue EM tensor operator, see Figs. 1 and 2,

TABLE I. Results for the ZQ→Q and ZQ→G mixing calculation.
These results have been computed previously in Ref. [18], and we
have found agreement for FQ→Q. However, our FQ→G are
different from those in Ref. [18].

ZLatt
Q→Q (Fig. 1) rw FQ→QðrwÞ

0.2 7.5170
0.4 6.3690
0.6 5.1610
0.8 4.0900
1.0 3.1649

ZLatt
Q→G (Fig. 2) rw FQ→GðrwÞ

0.2 0.5542
0.4 −0.0960
0.6 −0.1111
0.8 0.0322
1.0 0.2078

TABLE II. Results for the mixing constants ZG→G and ZG→Q.
In this table, we have chosen ρ ¼ 1 and have listed results for
several values of the Wilson rw parameter.

ZLatt
G→Q (Fig. 3) rw FG→Qðρ ¼ 1; rwÞ –

0.2 4.06025
0.4 3.39754
0.6 2.88773
0.8 2.38546
1.0 1.90172

ZLatt
G→G (Fig. 4) rw FG→GðrwÞ BG→Gðρ ¼ 1; rwÞ

0.2 −1.22383 1.18448
0.4 −1.36776 1.23117
0.6 −1.60728 1.28174
0.8 −1.97383 1.33272
1.0 −2.16850 1.38353
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and have been calculated in Ref. [18]. Our results of FQ→Q

have good agreement with those in Ref. [18], but the results
of FQ→G are different. Due to the mixing with the glue
equation of motion term, the finite piece under the
regularization invariant momentum subtraction scheme
(RI-MOM) in the continuum depends on the momentum
on the external legs as − 4

9
− 2

3
pμpνpρpτ where p is the

momentum of the external legs and μ=ν and ρ=τ are the
indices of the operator and external legs, respectively. We
confirm that our results have the same external momentum
dependence as that in the continuum, and then the final
renormalization constant under the MS scheme is a con-
stant only related to the UV regulator. We take pρ=τ ¼ 0 in
the rest of this work to simplify the expression.
The results of those diagrams containing the glue EM

tensor operator (for the case of ZG→G and ZG→Q) are shown
in Figs. 4 and 3. This operator has been constructed from

the overlap Dirac derivative, and its renormalization has not
yet been studied in the literature. Our results depend on
several parameters, specifically 0 < rw ≤ 1 and 0 < ρ <
2rw from Eq. (31). We quote the results for several values of
ρ and allow rw to vary from 0.2 to 1 in increments of 0.2.
We emphasize that all color factors have been divided out
of these results, along with an overall factor of 1=ð16π2Þ as
well as the tree-level expression for the operator of interest.
Here, we report the continuum MS finite contributions

necessary to match our lattice renormalization mixing
constants to the continuum MS scheme with the
Mathematica Package-X [35],

RMS
Q→Q ¼ 1þ

g2
0;MS

16π2
CF

�
−
8

3
logðμ2=p2Þ − 40

9

�
þOðg40Þ

ð81Þ

RMS
G→Q ¼

g2
0;MS

16π2
CF

�
8

3
logðμ2=p2Þ − 22

9

�
þOðg40Þ ð82Þ

RMS
Q→G ¼

g2
0;MS

16π2
Nf

�
2

3
logðμ2=p2Þ − 4

9

�
þOðg40Þ ð83Þ

RMS
G→G ¼ 1þ

g2
0;MS

16π2

�
−
2

3
Nf logðμ2=p2Þ

− Nf
10

9
− Nc

4

3

�
þOðg40Þ: ð84Þ

So, the final matching factors are computed from the
condition in Ref. [29] as

ZLatt→MS
i→j ðaμ;g0Þ¼

X
k

RMS
i→kðμ2=p2;g0;MSÞZLatt

k→jðp2a2;g0;LattÞ

ð85Þ

¼
�
δi→j þ

g20;Latt
16π2

ðγi→j loga2μ2 þ FMS
i→j þ FLatt

i→jÞ
�
: ð86Þ

In the above matching condition, we have chosen to take
the coupling to be the lattice coupling, as is conventional.

TABLE III. Results for the mixing constants ZG→G and ZG→Q.
Here, we have chosen ρ ¼ 1.368 and have listed results for
several values of the Wilson rw parameter.

ZLatt
G→Q (Fig. 3) rw FG→Qðρ ¼ 1.368; rwÞ –

0.2 5.28282
0.4 5.10614
0.6 4.96733
0.8 4.86544
1.0 4.82048

ZLatt
G→G (Fig. 4) rw FG→GðrwÞ BG→Gðρ ¼ 1.368; rwÞ

0.2 −1.22383 0.104783
0.4 −1.36776 0.105484
0.6 −1.60728 0.106373
0.8 −1.97383 0.107885
1.0 −2.16850 0.108396

FIG. 5. Feynman diagrams for the calculation of Zψ .

FIG. 6. Feynman diagrams for the calculation of ZA. The straight, dashed, and curly lines are the quark, ghost, and gluon lines,
respectively.

GLATZMAIER, LIU, and YANG PHYSICAL REVIEW D 95, 074513 (2017)

074513-10



The difference between the lattice and continuum couplings
only appears at two-loop order. For the specific case
rw ¼ 1.0, ρ ¼ 1.368, we find

ZMS;Latt
Q→Q ðaμ; g0Þ ¼ 1þ g20

16π2
CF

�
−
8

3
log a2μ2 − 1.2795

�

þOðg40Þ ð87Þ

ZMS;Latt
G→Q ðaμ; g0Þ ¼

g20
16π2

CF

�
8

3
loga2μ2 þ 2.3760

�
þOðg40Þ

ð88Þ

ZMS;Latt
Q→G ðaμ; g0Þ ¼

g20
16π2

NF

�
2

3
log a2μ2 þ 0.6522

�
þOðg40Þ

ð89Þ

ZMS;Latt
G→G ðaμ; g0Þ ¼ 1þ g20

16π2

�
−
2

3
Nf log a2μ2

− 3.2796Nf þ 0.0502Nc

�
þOðg40Þ:

ð90Þ
VII. SUMMARY

In this work, we have studied the renormalization and
mixing constants for the glue EM tensor operator built from
the overlap Dirac derivative for the first time. These results
represent an indispensable piece of a complete calculation
of the quark and glue momentum and angular momentum
in the nucleon on a quenched 163 × 24 lattice with three
quark masses [15]. There, it was found that reasonable
signals were obtained for the glue operator constructed
from the overlap Dirac operator.
The finite contributions to our Z factors reported in the

previous section are used to match the lattice results
reported in Ref. [15] to the continuum MS scheme at
2 GeV. We have commented in previous sections that,
throughout the course of the calculations, we have kept all
analytic expressions before a final numerical integration
using several PYTHON and Mathematica scripts. Although
this allowed us to control all Lorentz and color structures at
each stage of the calculation and check explicitly the
cancellation of both 1=a and infrared divergences at
intermediate stages in the calculation, these benefits came
at a cost. When dealing with the overlap derivative, we
found that many intermediate expressions explode in size,
requiring intermediate results to be written to disk, slowing
down the code substantially. For future work, wewould like
to extend our codes to incorporate more complicated lattice
actions involving several steps of hypercubic smearing for
the overlap fermion and improved gauge actions.
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APPENDIX A: FEYNMAN RULES FOR
THE GLUON OPERATOR FROM
THE OVERLAP DERIVATIVE

In this section, we provide details on the derivation of the
momentum space Feynman rules for Gμν defined from the
Dirac overlap operator. To start, we define some necessary
notation. The form of the Wilson derivative most conven-
ient to these calculations is given by the expressions

X̂ ¼
X
μ

1

2
fγμð∇�

μ þ∇μÞ − arw∇�
μ∇μg −

ρ

a
ðA1Þ

∇μψðxÞ ¼
1

a
ðUμðxÞψðxþ aμ̂Þ − ψðxÞÞ ðA2Þ

∇�
μψðxÞ ¼

1

a
ðψðxÞ −U†

μðx − aμ̂Þψðx − aμ̂ÞÞ; ðA3Þ

where the gauge-link UμðxÞ ¼ expðig0aAμðxÞÞ admits an
expansion in the coupling g0. We denote this order in g0 by
giving X̂ a subscript, and thus X0 corresponds to a zeroth
order expansion in g0. In momentum space, the Xi for
(i ¼ 0, 1, 2) are

X0ðpÞ¼
i
a

X
μ

γμ sinapμþ
rw
a

X
μ

ð1− cosapμÞ−
ρ

a
ðA4Þ

X1ðp1; p2Þ ¼ −g0
�
iγμ cos

�
ap1 þ ap2

2

�
μ

þ rw sin

�
ap1 þ ap2

2

�
μ

�
ðA5Þ

X2ðp1; p2Þ ¼ −
ag20
2

�
−iγμ sin

�
ap1 þ ap2

2

�
μ

þ rw cos

�
ap1 þ ap2

2

�
μ

�
; ðA6Þ

where in these definitions p1 is the momentum for the
incoming fermion and p2 is the momentum of the
outgoing fermion. We use momentum conservation,
p2 ¼ p1 þ q, where q is the momentum of the incoming
gluon frequently.
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After following the procedure outlined in Sec. III, we
have the following expressions for the first, second, and
third order Feynman rules for trσμνDovðx; xÞ,

ðtrσμνDovÞ1 ≡G1
μνðx; xÞ

¼ ρ

πa
trσμν

Z
∞

−∞
dσ

×
X
y

Z
k
eikxΠ̂ðσ2X1 − X0X

†
1X0ÞΠ̂e−iky

ðA7Þ

ðtrσμνDovÞ2 ≡G2
μνðx; xÞ

¼ ρ

πa
trσμν

Z
∞

−∞
dσ

×
X
y

Z
k
eikxðΠ̂fσ2X2 − X0X

†
2X0gΠ̂

− Π̂fσ2ðX1X
†
0X1 þ X1X

†
1X0 þ X0X

†
1X1Þ

− X0X
†
1X0X

†
1X0gΠ̂2Þe−iky ðA8Þ

ðtrσμνDovÞ3 ≡ G3
μνðx; xÞ

¼ ρ

πa
trσμν

Z
∞

−∞
dσ

×
X
y

Z
k
eikxðΠ̂fσ2X3 −AgΠ̂

þ Π̂2fσ2B þ CgΠ̂2Þe−iky; ðA9Þ

where Π̂ ¼ 1
σ2þΣ0

, Σ0 ¼ X†
0X0 and A, B, and C in G3

μν are

given by

A ¼ X2X
†
0X1 þ X2X

†
1X0 þ X1X

†
0X2 þ X1X

†
2X0

þ X1X
†
1X1 þ X0X

†
2X1 þ X0X

†
1X2 þ X0X

†
3X0 ðA10Þ

B ¼ X1X
†
0X1X

†
0X1 þ X1X

†
0X1X

†
1X0 þ X1X

†
1X0X

†
1X0

þ X0X
†
2X0X

†
1X0 þ X0X

†
1X1X

†
0X1 þ X0X

†
1X1X

†
1X0

þ X0X
†
1X0X

†
2X0 þ X0X

†
1X0X

†
1X1

þ Σ0ðX2X
†
0X1 þ X2X

†
1X0 þ X1X

†
0X2 þ X1X

†
2X0

þ 2X1X
†
1X1 þ X0X

†
2X1 þ X0X

†
1X2Þ ðA11Þ

C ¼ Σ2
0ðX2X

†
0X1 þ X2X

†
1X0 þ X1X

†
0X2 þ X1X

†
2X0

þ X1X
†
1X1 þ X0X

†
2X1 þ X0X

†
1X2Þ

þ Σ0ðX0X
†
2X0X

†
1X0 þ X0X

†
1X0X

†
2X0Þ

− X0X
†
1X0X

†
1X0X

†
1X0: ðA12Þ

We shall provide full details for the derivation of the first
order result and only sketch the derivation for the second

and third orders, since the methods are the same and
the intermediate expressions are quite lengthy. For
the third order calculation, we have automated most steps
using FORM.
For the first order Feynman rule, we begin by computing

the action of X0X
†
1X0 on e−ikx1̂ and note that the σ2X1

contribution will not survive the trace as it only contains
Lorentz scalar and vector components. We make use of the
general results,

Xe−ikyfðxÞ ¼ e−iky
�X

μ

γμ

�
~Qμ −

i
a
sμ

�

− rw
X
μ

�
−
1

a
ð1 − cμÞ þ ~Rμ

�
−
ρ

a

�
fðxÞ

~Qμ ¼
1

2
ðe−ikμ∇μ þ eikμ∇�

μÞ;

~Rμ ¼
1

2
ðe−ikμ∇μ − eikμ∇�

μÞ;
sμ ¼ sin kμ; cμ ¼ cos kμ: ðA13Þ

We can now compute the action of various Xi operators on
1̂eikx. For example, for the Π̂ terms acting on eikx1̂, we can
show

Π̂eikx ¼ 1

σ2 þ X†
0X0

eikx1̂ ¼ eikx1̂
1

σ2 þ ω2

ω2 ¼ 1

a2

�X
μ

s2μ þ
X
μ

½rwð1 − cμÞ − ρ�2
�
; ðA14Þ

where we have used the fact that the derivative terms ~Qμ

and ~Rμ appearing in X̂ acting on 1̂ vanish and that one can
write the Π̂ operator as a polynomial in X†

0X0. We are then
left with computing the action of X0X

†
1X0 on 1̂eikx,

calculating each term,

X0X
†
1X01̂e−iky ¼ 1̂eipy

1

a

X
μ

ðiγμ sinð−kþ pÞμ

þ rw

�
1 − cosð−kþ pÞÞμ −

ρ

a

�

× gTaðiγρ cosð−kþ p=2Þρ
þ rw sinð−kþ p=2ÞρÞ

×
1

a

X
ν

�
−iγνsν þ rwð1 − cνÞ −

ρ

a

�

ðA15Þ

≡ 1̂eipy
gTa

a2
X
μν

ðγμA0
μ þ B0

μÞðγρA1
ρ þ B1

ρÞ

× ðγνĀ0
ν þ B̄0

νÞ: ðA16Þ
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In the last line, we have used the shorthand,

A0
μ ¼ i sinð−kþ pÞμ;

B0
μ ¼ rwð1 − cosð−kþ pÞμÞ − ρ=a

A1
ρ ¼ i cosð−kþ p=2Þρ;

B1
ρ ¼ rw sinð−kþ p=2Þρ

Ā0
ν ¼ −isν;

B̄0
ν ¼ rwð1 − cνÞ − ρ=a: ðA17Þ

In these expressions, the momentum k is a dummy
momentum which is to be integrated, and p (with
Lorentz index ρ and color index a) is the momentum of
the incoming gauge field. At this stage, we compute the
trace over Lorentz indices, using the identity

trσμνγαγβ ¼ 4iðδμαδνβ − δναδμβÞ ðA18Þ

as well as the fact that a trace over an odd number of
gamma matrices will vanish. Performing the trace gives the
numerator at first order in the coupling g,

N ρ;αβ ¼ trσαβ
gTa

a2
X
μν

ðγμA0
μ þB0

μÞðγρA1
ρ þB1

ρÞðγνĀ0
ν þ B̄0

νÞ

¼ 4igTa

a2

�X
ν

A1
ρB̄0

νðδρβA0
α − δραA0

βÞ

þB1
ρðA0

αĀ0
β −A0

βĀ
0
αÞ þ

X
μ

B0
μA1

ρðδραĀ0
β − δρβĀ0

αÞ
�
:

ðA19Þ

We must still integrate over the σ-parameter appearing in
the various Π̂ terms of G1

αβ. Integrating over σ gives

G1;a
ρ;αβðpÞ ¼

ρ

πa

Z
k

N ρ;αβðk; pÞ
ωðkÞ3 : ðA20Þ

Throughout the course of these calculations, we are not
interested in the value of the integral over the dummy
momentum k; instead, we are interested in just the renorm-
alization factor Z which multiplies this operator in momen-
tum space; e.g., we are interested in extracting Z in

Z
l

Z
k
Oðp; k; lÞ ¼ Z

Z
k
Oðp; kÞ; ðA21Þ

where l is the loop momentum of the diagram and the same
integration over dummy k is present on both sides of this
equation. For this reason, we have expanded all N ðk; piÞ
numerators and collected all k dependent terms into coef-
ficients multiplying the products of sin l and cos l. This is
made simpler by the fact thatωðkÞ is an even function of k and

so all odd functions of k in the numerator can be dropped
immediately. In this way, no integration over the dummy
momenta k needs be done at any point during the calculations.
The final expression for the zeroth order Feynman rule

for the gluon operator is given by the product

Og
μνðp1; p2Þ ¼ trcSfG1

μαðp2ÞGν;1
α ðp1Þg

¼ trcS
�

ρ2

π2a2

Z
k1;k2

N a
μ1;μαðk1; p1Þ
ωðk1Þ3

×
N b

μ2;ανðk2; p2Þ
ωðk2Þ3

�
; ðA22Þ

where S reminds us to take the symmetrized and traceless
piece of this operator and trc is a trace over the color
indices. Contracting both sides with a lightlike vector to
project out the symmetrized and traceless piece,

Δ ·Ogðp1; p2Þ ¼
ρ2δab

2π2a2

Z
k1;k2

Δ ·N μ1;αðk1; p1Þ
ωðk1Þ3

×
Δ ·N μ2;αðk2; p2Þ

ωðk2Þ3
: ðA23Þ

Here, p1 and p2 are the incoming gauge-field momenta,
and it is assumed that all odd terms in k1 and k2 are dropped
in the N ðki; piÞ numerators.
For the second and third order Feynman rules, all steps of

this procedure can be automated. FORM is used to handle all
traces and subsequent simplifications. This is necessary
since the third order operator involves many traces over six
gamma matrices, for example,

trσαβX1X
†
0X1X

†
0X1; ðA24Þ

where each Xi ¼ γμAi
μ þ Bi

μ. After expanding the traces,
and integrating over the σ parameter, we construct the full
Feynman rule at the desired order from the expansion,

Og
μν ¼ ðG0

μα þ g0G1
μα þ g20G

2
μα þ…Þ

× ðG0;α
ν þ g0G

1;α
ν þ g20G

2;α
ν þ…Þ: ðA25Þ

At lowest order, then, we have Feynman rules for two and
three external gauge fields,

Og;2
μν ¼ g20G

1
μαG

ν;1
α ðA26Þ

Og;3
μν ¼ g30ðG1

μαG
ν;2
α þ G2

μαG
ν;1
α Þ ðA27Þ

Og;4
μν ¼ g40ðG1

μαG
ν;3
α þG3

μαG
ν;1
α þ G2

μαG
ν;2
α Þ: ðA28Þ

We then symmetrize these results over all Lorentz and color
indices as well as external momenta.
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APPENDIX B: QCD COUPLING AND WAVE
FUNCTION RENORMALIZATION

For completeness, in this section, we collect the expres-
sions for ZA and Zψ in the Feynman gauge used to fix the
renormalization constants (Figs. 5 and 6). Both of them are
converted to that under the MS scheme. These expressions
have been computed elsewhere using the Wilson action;
however, they serve as an additional check on the accuracy
of our codes. We write these results in the following form,

Zψ ¼ 1þ g20
16π2

CFðlog a2μ2 þ ðFψ ðrwÞ þ 1ÞÞþOðg40Þ
ðB1Þ

ZA ¼ 1 −
g20

16π2

��
5

3
Nc −

2

3
Nf

�
log a2μ2

þ Nf

�
FAðrwÞ −

10

9

�
þ
�
BAðNcÞ þ

31

9

��

þOðg40Þ; ðB2Þ

where

BAðNcÞ ¼
2

9Nc
ð7N2

c − 12π2Þ

þ 2

9
π2ð1þ N2

cÞ þ 0.079805Nc ðB3Þ

and Fψ and FA are evaluated numerically as in Table IV for
different rw.

APPENDIX C: QCD VERTICES AND OPERATOR FEYNMAN RULES

In this section, we collect the various Feynman rules used during the course of the calculations. For the QCD action, the
fermion and gluon propagators take the form

ðC1Þ

ðC2Þ

ðC3Þ

ðC4Þ

ðC5Þ

TABLE IV. Table for the finite contributions to the wave
function renormalization constants Zψ , ZA, and Zg used to
renormalize the quark and gluon angular momentum operators.

rw Fψ ðrwÞ FAðrwÞ
0.1 5.37037 1.18502
0.2 6.13073 1.22383
0.3 7.02470 1.28534
0.4 7.90649 1.36776
0.5 8.72568 1.47300
0.6 9.47224 1.60728
0.7 10.1503 1.77672
0.8 10.7677 1.97383
0.9 11.3326 2.15003
1.0 11.8524 2.16850
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