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We present high-statistics estimates of the isovector charges of the nucleon from four 2þ 1-flavor
ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved
Symanzik gauge action at lattice spacings a ≈ 0.127 and 0.09 fm and with Mπ ≈ 280 and 170 MeV. The
truncated solver method with bias correction and the coherent source sequential propagator construction
are used to cost-effectively achieveOð105Þmeasurements on each ensemble. Using these data, the analysis
of two-point correlation functions is extended to include four states in the fits, and of three-point functions
to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass
gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates
using this multistate analysis of the spectral decomposition of the correlation functions and from
simulations of the three-point functions at multiple values of the source-sink separation. The results for all
three charges, gA, gS and gT , are in good agreement with calculations done using the clover-on-HISQ lattice
formulation with similar values of the lattice parameters.
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I. INTRODUCTION

This work presents high-statistics estimates of isovector
charges of the nucleon, gu−dA , gu−dS and gu−dT , on four
ensembles of (2þ 1)-flavor lattice QCD using clover-
Wilson fermions and a stout smeared tree-level tadpole-
improved Symanzik gauge action [1]. With increased
precision, we demonstrate control over excited-state con-
tamination using a multistate analysis of the spectral
decomposition of the correlation functions.
Nucleon charges play an important role in the analysis of

standard model (SM) and beyond the standard model
(BSM) physics. The nucleon axial charge gu−dA is an
important parameter that encapsulates the strength of weak
interactions of nucleons. The ratio, gu−dA =gu−dV , is best
determined from the experimental measurement of neutron
beta decay using polarized ultracold neutrons by the
UCNA Collaboration, 1.2756(30) [2], and by PERKEO
II, 1.2761þ14

−17 [3]. In the SM, gu−dV ¼ 1 up to second order
corrections in isospin breaking [4,5] as a result of the

conservation of the vector current. Since gu−dA is so
well measured, it serves to benchmark lattice QCD calcu-
lations and our goal is to provide estimates with 1% total
uncertainty.
The isovector charges gu−dS and gu−dT , combined with the

helicity-flip parameters b and bν extracted from the
measurements of the neutron decay distribution, probe
novel scalar and tensor interactions at the TeV scale [6].
Assuming that b and bν are measured at the 10−3 precision
level [7–9], one requires that gu−dS and gu−dT be calculated
with a precision of 10%–15% [6]. This precision has
recently been reached using the clover-on-HISQ lattice
formulation [10] and the current clover-on-clover analysis
is a necessary independent check using a unitary lattice
QCD formulation. The tensor charge is also given by the
zeroth moment of the transversity distributions that are
measured in many experiments including Drell-Yan and
semi-inclusive deep inelastic scattering (SIDIS). Accurate
calculations of the contributions of the up and down quarks
to the tensor charges will continue to help elucidate the
structure of the nucleon in terms of quarks and gluons and
provide a benchmark against which phenomenological
estimates utilizing a new generation of experiments at
Jefferson Lab (JLab) can be compared [11]. As shown in
Refs. [10,12], the conserved vector current relation has
been used to determine the neutron-proton mass difference
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in QCD by combining the estimates of gu−dS =gu−dV with
the difference of light quarks masses ðmd −muÞQCD ¼
2.67ð35Þ MeV obtained from independent lattice QCD
calculations.
Most extensions of the standard model designed to

explain nature at the TeV scale have new sources of CP
violation, and the neutron electric dipole moment (EDM) is
a very sensitive probe of these. Planned experiments aim to
reduce the current bound on the neutron EDM of 2.9 ×
10−26 e cm [13] to around 10−28 e cm. To put stringent
constraints on many BSM theories, one requires that matrix
elements of novel CP-violating interactions, of which the
quark EDM is one, are calculated with the required
precision. The contributions of the u, d, s, c quark
EDM to the neutron EDM [14,15] are given by the flavor
diagonal tensor charges. Precise results for the connected
contributions to these charges from 2þ 1þ 1-flavor clo-
ver-on-HISQ lattice formulation have been reported in [10].
Here we present results from a similar high statistics study
using the clover-on-clover formulation. The needed con-
tributions of disconnected diagrams are being done in a
separate study [16].
The methodology for the lattice QCD calculations of the

matrix elements of quark bilinear operators within the
nucleon state is well-developed [10,14,17–20]. Our goal is
to first calculate the charges gΓða;Mπ;MπLÞ as functions
of the lattice spacing a, the quark mass characterized by the
pion mass Mπ and the lattice size L expressed in dimen-
sionless units ofMπL. After renormalization of these lattice
estimates, physical results will be obtained by taking the
continuum limit (a → 0), the physical pion mass limit
(set by Mπ0 ¼ 135 MeV) and the infinite volume limit
(MπL → ∞) using a combined fit in these three variables
[10,14]. Here, we present results for four ensembles at
lattice spacings a ≈ 0.127 and 0.09 fm with Mπ ≈ 280 and
170 MeV. These ensembles are labeled a127m285,
a094m280, a091m170, and a091m170L and described
in Table I.
In this work, we demonstrate that precise estimates for

matrix elements within nucleon states can be obtained by
combining the all-mode-averaging (AMA) error-reduction
technique [22,23] (Sec. II D) and the coherent source
sequential propagator method [21,24]. A detailed analysis
of excited-state contamination, comparing the variational

method and the 2-state fit to data at multiple source-sink
separations tsep, was presented in [21] using the a094m280

ensemble.1 In this work, we extend the 2-state fit results
presented there by doing the calculation at an additional
value of the lattice spacing (a127m285) and at a lighter
pion mass on two ensembles with different volumes
(a091m170 and a091m170L).
The high statistics data allow us to perform a first

analysis including up to four states in fits to the two-point
correlators and three states in fits to the three-point
functions. To obtain results for the charges in the limit
that the source-sink separation tsep → ∞, we generate data
at 4–5 values of tsep on each ensemble. Using these data we
perform a detailed comparison of results obtained using
2-state versus 3-state fits. Our final estimates of the charges
are from 3-state fits.
The renormalization constants of the various quark

bilinear operators are calculated on three ensembles
a127m285, a094m280, a091m170 in the RI-sMOM
scheme and then converted to the MS scheme at 2 GeV
using 2-loop matching and 3-loop running. Our final
estimates of the renormalized isovector charges of the
nucleon in the MS scheme at 2 GeVare given in Table XV.
Results for the connected part of the flavor diagonal
charges are given in Table XVI.
Estimates of all three isovector charges, gu−dA , gu−dS and

gu−dT and of the flavor diagonal charges gu;dA;S;T are in very
good agreement with similar high precision calculations
done using a 2þ 1þ 1-flavor clover-on-HISQ formulation
[10]. Our estimates of gA obtained with heavy u and d
quark masses corresponding toMπ ≈ 280 and 170 MeVare
within 5% of the experimental result, 1.276(3), from
neutron beta decay [2,3].
This paper is organized as follows. In Sec. II, we describe

the parameters of the gauge ensembles analyzed and the
various methods used to obtain high precision results. Two-
state fits to two- and three-point functions to extract the
unrenormalized charges are presented in Sec. III along with
a discussion of our understanding of, and control over,

TABLE I. Parameters of the 2þ 1 flavor lattices generated by the JLab/W&M collaboration [1] using clover-Wilson fermions and a
tree-level tadpole-improved Symanzik gauge action. The lattice spacing a is obtained using the Wilson-flow scale w0 and is the
dominant source of error in estimates of Mπ . The bare quark masses are defined as ami ¼ ð1=2κi − 4Þ. Note that the ensemble labeled
a094m280 here was labeled a081m315 in Ref. [21].

Ensemble ID a (fm) Mπ (MeV) β CSW amud ams L3 × T MπL

a127m285 0.127(2) 285(3) 6.1 1.24930971 −0.2850 −0.2450 323 × 96 5.85
a094m280 0.094(1) 278(3) 6.3 1.20536588 −0.2390 −0.2050 323 × 64 4.11
a091m170 0.091(1) 166(2) 6.3 1.20536588 −0.2416 −0.2050 483 × 96 3.7
a091m170L 0.091(1) 172(6) 6.3 1.20536588 −0.2416 −0.2050 643 × 128 5.08

1The label for this ensemble has been changed from the labeled
a081m315 in [21] to a094m280 because the estimate of the
lattice spacing a has been revised.
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excited-state contamination. In Sec. III B, we extend the
analysis to include up to four states in fits to two-point
functions and three states in three-point correlation func-
tions. The calculation of the renormalization constants in
the RI-sMOM scheme is discussed in Sec. IV. Our final
renormalized estimates are given in Sec. Vand compared to
previous results obtained using a 2þ 1þ 1-flavor clover-
on-HISQ lattice formulation but with similar statistics and
lattice parameters [10,14] in Sec. VI. We end with con-
clusions in Sec. VII.

II. LATTICE METHODOLOGY

A detailed description of the lattice methodology and our
approach has been presented in Refs. [10,14,21]. Here we
reproduce the discussion necessary to establish the notation
and give details relevant to the analysis and the results.
The four ensembles of 2þ 1-flavor lattice QCD ana-

lyzed in this work were generated by the JLab/W&M
collaboration [1] using clover Wilson fermions and a tree-
level tadpole-improved Symanzik gauge action. The update
is carried out using the rational hybrid Monte Carlo
(RHMC) algorithm [25]. One iteration of stout smearing
with the weight ρ ¼ 0.125 for the staples is used in the
fermion action. A consequence of the stout smearing is that
the tadpole corrected tree-level clover coefficient CSW used
is very close to the nonperturbative value determined,
a posteriori, using the Schrödinger functional method [1].
The lattice parameters of the four ensembles are sum-

marized in Table I. Estimates for the lattice spacing a were
obtained using the Wilson-flow scale w0 following the
prescription given in Ref. [26]. We caution the reader that
an alternate estimate of a for the ensemble we label
a127m280 with a ¼ 0.127ð2Þ and Mπ ¼ 285ð6Þ MeV,
has been quoted in Ref. [27] to be a ¼ 0.114ð1Þ [and
Mπ ¼ 316ð3Þ MeV since aMπ ¼ 0.1834ð5Þ is unchanged]
using the ϒð2sÞ −ϒð1sÞ mass difference. Thus, different

estimates of a from this coarse ensemble may vary by
Oð10%Þ depending on the observable used to set them.2

Similar but smaller differences in a obtained using different
observables are expected for the other three ensembles.
Also, note that the ensemble labeled a094m280 here was
labeled a081m315 in Ref. [21]. In this paper, we use
estimates of a andMπ primarily to label the ensembles and
for comparing against previous results with similar lattice
parameters in Sec. VI. For this reason, we postpone a more
detailed study of scale setting on these ensembles to
future works.
The strange quark mass is first tuned in the 3-flavor

theory by requiring the quantity ð2M2
Kþ −M2

π0
Þ=M2

Ω− to
equal its physical value 0.1678. We choose this quantity
since it is independent of the light quark masses to lowest
order in chiral perturbation theory, i.e., the ratio depends
only on the value of the strange quark mass [29] and can,
therefore, be tuned in the SU(3) symmetric limit. The
resulting value of ms is then kept fixed as the light-quark
masses are decreased in the (2þ 1)-flavor theory to their
physical values. Further details involving the generation of
these gauge configurations will be presented in a separate
publication [1].
The parameters used in the calculations of the two- and

three-point functions carried out on the four ensembles are
given in Table II. Analyzed configurations are separated by
6, alternating 4 and 6, 4, and 4 trajectories on the a127m285,
a094m280, a091m170 and a091m170L ensembles, respec-
tively. Note that the a094m280 ensemble has been analyzed

TABLE II. Description of the ensembles and the lattice parameters used in the analyses. Results from the four runs, R1–R4, on the
a094m280 ensemble were presented in Ref. [21]. We have extended the statistics in runs R1 and R4 and added R5 to further understand
the dependence of the estimates on the smearing size, the efficacy of the variational method and the 2-state fit to data at multiple source-
sink separations tsep. The smearing parameters fσ; NGSg are defined in the text. AMA indicates that the bias in the low-precision
measurements (labeled LP) was corrected using high-precision measurements as described in Eq. (10). VAR indicates that the full 3 × 3
matrix of correlation functions with smearing sizes listed was calculated and a variational analysis performed to extract the ground
state eigenvector as described in Sec. II C. Analysis of data with multiple tsep to obtain the tsep → ∞ estimate is carried out using
Eqs. (7) and (8).

ID Method Analysis Smearing Parameters tsep Nconf NHP
meas NLP

meas

C1: a127m285 AMA 2-state f5; 60g 8,10,12,14 1,000 4,000 128,000
C2: a094m280 (R1) AMA 2-state f5; 60g 10,12,14,16,18 1,005 3,015 96,480
C3: a094m280 (R2) LP VAR f3; 22g, f5; 60g, f7; 118g 12 443 0 42,528
C4: a094m280 (R3) AMA VAR f5; 46g, f7; 91g, f9; 150g 12 443 1,329 42,528
C5: a094m280 (R4) AMA 2-state f9; 150g 10,12,14,16,18 1,005 3,015 96,480
C6: a094m280 (R5) AMA 2-state f7; 91g 8,10,12,14,16 1,005 3,015 96,480
C7: a091m170 AMA 2-state f7; 91g 8,10,12,14,16 629 2,516 80,512
C8: a091m170L AMA 2-state f7; 91g 8,10,12,14,16 467 2,335 74,720

2Good quantities to use to set the lattice scale a are the ones
that are least sensitive to the light quark masses and are easy to
compute with high precision [28]. Examples include the ϒð2sÞ −
ϒð1sÞ mass difference, the Wilson-flow scale w0, and the length
scales r0 and r1 extracted from the static quark potential.
Differences in estimates of a arise due to discretization errors
that are taken care of by the final extrapolation of the results to the
continuum limit.
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in 5 different ways labeled as runs R1–R5 in Table II to
understand and control excited-state contamination in
nucleon matrix elements. As discussed in Ref. [21], and
analyzed further here, the five calculations give consistent
results. Relevant details of the lattice methods used and of
the analyses carried out are summarized next.

A. Correlation functions

The interpolating operator χ used to create/annihilate the
nucleon state is taken to be

χðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ ð1Þ

with color indices denoted by fa; b; cg, charge conjugation
matrix C ¼ γ0γ2, and q1 and q2 the two different flavors of
light quarks. The nonrelativistic projection ð1� γ4Þ=2 is
inserted to improve the signal, with the plus and minus sign
applied to the forward and backward propagation in
Euclidean time, respectively.
The two-point and three-point nucleon correlation func-

tions at zero momentum are defined as

C2pt
αβ ðtÞ ¼

X
x

h0jχαðt;xÞχ̄βð0; 0Þj0i;

C3pt
Γ;αβðt; τÞ ¼

X
x;x0

h0jχαðt;xÞOΓðτ; x0Þχ̄βð0; 0Þj0i; ð2Þ

where α and β are the spinor indices. In writing Eq. (2), the
source time slice has been translated to time t ¼ 0; the sink
time slice, at which a zero-momentum nucleon insertion is
made using the sequential source method [21,24], is at
t > 0 for forward propagation; and τ is the time slice at
which the bilinear operatorOq

ΓðxÞ ¼ q̄ðxÞΓqðxÞ is inserted.
The Dirac matrix Γ is 1, γ4, γiγ5 and γiγj for scalar (S),
vector (V), axial (A) and tensor (T) operators, respectively,
with γ5 ≡ γ1γ2γ3γ4. In this work, subscripts i and j on
gamma matrices run over f1; 2; 3g, with i < j.
The nucleon charges gqΓ are defined as

hNðp; sÞjOq
ΓjNðp; sÞi ¼ gqΓūsðpÞΓusðpÞ; ð3Þ

where the normalization of the spinors in Euclidean space
is

X
s

uNð~p; sÞūNð~p; sÞ ¼
Eð~pÞγ4 − i~γ · ~pþM

2Eð~pÞ : ð4Þ

To analyze the data, we construct the projected two- and
three-point correlation functions

C2ptðtÞ ¼ hTr½P2ptC2ptðtÞ�i ð5Þ

C3pt
Γ ðt; τÞ ¼ hTr½P3ptC

3pt
Γ ðt; τÞ�i: ð6Þ

The projection operator P2pt ¼ ð1þ γ4Þ=2 is used to
project on to the positive parity contribution for the nucleon
propagating in the forward direction. For the connected
three-point contributions, P3pt ¼ P2ptð1þ iγ5γ3Þ is used.

Note that, at zero-momentum, the C3pt
Γ ðt; τÞ defined in

Eq. (6) becomes zero unless Γ ¼ 1, γ4, γiγ5 and γiγj.
The two- and three-point correlation functions defined in

Eq. (2) are constructed using quark propagators obtained by
inverting the clover Dirac matrix with gauge-invariant
Gaussian smeared sources. These smeared sources are
generated by applying ð1þ σ2∇2=ð4NGSÞÞNGS to a unit
point source. Here ∇2 is the three-dimensional Laplacian
operator and NGS and σ are smearing parameters that are
given in Table II for each calculation. Throughout this
paper, the notation SiSj will be used to denote a calculation
with source smearing σ ¼ i and sink smearing σ ¼ j.
Variations of the parameter NGS over a large range does
not impact any of the results [21], and it is dropped from
further discussions since our choice lies within this range.
Before constructing the smeared sources, the spatial gauge
links on the source time slice are smoothed by 20 hits of the
stout smearing procedure with weight ρ ¼ 0.08. A more
detailed discussion of the efficacy of source smearing used
in this study is given in Ref. [21].

B. Behavior of the correlation functions

Our goal is to extract the matrix elements of various
bilinear quark operators between ground state nucleons.
The lattice operator χ, given in Eq. (1), couples to the
nucleon, all its excitations and multiparticle states with the
same quantum numbers. The correlation functions, there-
fore, get contributions from all these intermediate states.
Using spectral decomposition, the behavior of two- and
three-point functions is given by the expansion:

C2ptðtf; tiÞ ¼ jA0j2e−aM0ðtf−tiÞ þ jA1j2e−aM1ðtf−tiÞ

þ jA2j2e−aM2ðtf−tiÞ þ jA3j2e−aM3ðtf−tiÞ þ � � � ;
ð7Þ

C3pt
Γ ðtf;τ; tiÞ ¼ jA0j2h0jOΓj0ie−aM0ðtf−tiÞ

þ jA1j2h1jOΓj1ie−aM1ðtf−tiÞ

þ jA2j2h2jOΓj2ie−aM2ðtf−tiÞ

þA1A�
0h1jOΓj0ie−aM1ðtf−τÞe−aM0ðτ−tiÞ

þA0A�
1h0jOΓj1ie−aM0ðtf−τÞe−aM1ðτ−tiÞ

þA2A�
0h2jOΓj0ie−aM2ðtf−τÞe−aM0ðτ−tiÞ

þA0A�
2h0jOΓj2ie−aM0ðtf−τÞe−aM2ðτ−tiÞ

þA1A�
2h1jOΓj2ie−aM1ðtf−τÞe−aM2ðτ−tiÞ

þA2A�
1h2jOΓj1ie−aM2ðtf−τÞe−aM1ðτ−tiÞ þ � � � ;

ð8Þ
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wherewe have shown all contributions from the ground state
j0i and the first three excited states j1i, j2i and j3i with
massesM1,M2 andM3 to the two-point functions and from
the first two excited states for the three-point functions. The
analysis, using Eqs. (7) and (8), is called a “2-state fit” or
“3-state fit” or “4-state fit” depending on the number of
intermediate states included. The 2-state analysis (keeping
one excited state) requires extracting seven parameters (M0,
M1, A0, A1, h0jOΓj0i, h1jOΓj0i and h1jOΓj1i) from fits to
the two- and three-point functions. The 3-state analysis
introduces five additional parameters: M2, A2, h0jOΓj2i,
h1jOΓj2i and h2jOΓj2i. These simultaneous fits to data at
multiple values of tsep provide estimates of the charges in the
limit tsep → ∞. Throughout this paper, values of t, τ and tsep
are in lattice units unless explicitly stated.
Nine of the twelve parameters in the 3-state analysis—

the three masses M0, M1 and M2 and the six matrix
elements hijOΓjji—are independent of the details of the
interpolating operator. Our goal is to obtain their values by
removing the discretization errors and the higher excited-
state contaminations. The amplitudes Ai depend on the
choice of the interpolating nucleon operator and/or the
smearing parameters used to generate the smeared sources.
It is evident from Eqs. (7) and (8) that the ratio of the
amplitudes, Ai=A0, is the quantity to minimize in order to
reduce excited-state contamination as it determines the
relative size of the overlap of the nucleon operator with the
excited states. A detailed analysis of how it can be reduced
by tuning the smearing size σ and a comparison of the
efficacy with a variational analysis (run R2 and R3),
described in Sec. II C, was presented in Ref. [21] using
the a094m280 ensemble. We present an update on the
comparison using renormalized charges obtained from fits
with the full covariance matrix in Sec. VI.
We extract the charges gS and gV (gA and gT) from the

real (imaginary) part of the three-point function with
operator insertion at zero momentum. In the 2-state fits
discussed in Sec. III A, we first estimate the four param-
eters,M0,M1,A0 andA1 from the two-point function data.
The results for all four ensembles and for three selected fit
ranges investigated are collected in Table IV. These are then
used as inputs in the extraction of matrix elements from fits
to the three-point data. For the insertion of each operator
OΓ ¼ OA;S;T;V , extraction of the three matrix elements
h0jOΓj0i, h1jOΓj0i and h1jOΓj1i is done by making one
overall fit to the data versus the operator insertion time τ
and the various source-sink separations tsep using Eq. (8). In
these fits, we neglect the data on τskip time slices on either
end adjacent to the source and the sink for each tsep to
reduce the contributions of the neglected higher excited
states. Fits to both the two- and three-point data are done
within the same single elimination jackknife process to
estimate the errors. The same procedure is then followed in
the 3-state analysis described in Sec. III B. We did not
explore the more general analysis of fitting the two- and

three-point correlators at the same time to simultaneously
determine all the parameters, which are thirteen in the
analysis used to present the final results. It is already
necessary to stabilize the 4-state fits to two-point correla-
tion functions by carrying out an empirical Bayesian
analysis with Gaussian priors, as discussed in Sec. III B.
The feedback from the three-point functions, which are
determined much less precisely than the two-point func-
tions, is not expected to change the 2-point estimates
appreciably.
In this study, we demonstrate that stable estimates for the

masses, mass-gaps and the charges gΓ ≡ h0jOΓj0i can be
obtained with Oð105Þ measurements. The errors in the
other matrix elements are large, nevertheless certain quali-
tative features can be established.

C. The variational method

One can also reduce excited-state contamination by
constructing the two- and three-point correlation functions
incorporating a variational analysis (see [30,31] and refer-
ences therein for previous use of the variational method for
calculating nucleon matrix elements). To implement this
method on the a094m280 ensemble, we constructed corre-
lation functions using quark propagators with three different
smearing sizes σi that are summarized under runs R2 and R3
in Table II but with a single tsep ¼ 12 ≈ 1 fm. The two-point
correlation function for the nucleon at any given time
separation t is then a 3 × 3 matrix GijðtÞ made up of
correlation functions with source smearing Si and sink
smearing Sj. The best overlap with the ground state is given
by the eigenvector corresponding to the largest eigenvalue λ0
obtained from the generalized eigenvalue relation [32]:

Gðtþ ΔtÞui ¼ λiGðtÞui; ð9Þ

where ui are the eigenvectors with eigenvalues λi. The
matrix G should be symmetric up to statistical fluctuations,
so we symmetrize it by averaging the off-diagonal matrix
elements. Our final analysis for the calculation of the
ground state eigenvector u0 was done with t ¼ 6 and
Δt ¼ 3 as discussed in [21].
Similarly, in our variational analysis, the three-point

function data C3pt
Γ ðτ; tsepÞ, from which various charges are

extracted, are 3 × 3 matrices G3pt
Γ ðτ; tsepÞ. The ground state

estimate is obtained by projecting these matrices using the
ground state vector u0 estimated from the two-point
variational analysis, i.e., uT0G

3ptðτ; tsepÞu0. This projected
correlation function is expected to have smaller excited
state contamination compared to the correlation function
with single smearings. Since the variational correlation
function has been calculated at a single tsep ¼ 12, we
analyze it using only 2-state fits. Note that the contribution
of the matrix element h1jOΓj1i cannot be isolated from
h0jOΓj0i from fits to data with a single value of tsep.
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Consequently, our variational estimates of the charges,
collected in Table XIII, include the contamination from the
h1jOΓj1i transition unlike results from multistate fits to
data at a number of values of tsep.

D. The AMA method for high statistics

The high statistics calculation on the four ensembles was
carried out using the all-mode-averaging (AMA) technique
[22,23] and the coherent sequential source method [21,24].
To implement these methods, we choose at random four
time slices separated by T=4 ¼ 24 on each configuration of
the a127m285 and a091m170 ensembles and on five time
slices separated by twenty-five time slices on the
a091m170L ensemble. On the a094m280 lattices, we
choose three time slices separated by 21 time slices on
each configuration and staggered these by 9 time slices
between successive configurations to reduce correlations.
On each of these time slices, we choose NLP ¼ 32

randomly selected source locations from which low-
precision (LP) evaluation of the quark propagator is carried
out. The resulting LP estimates for two- and three-point
functions from these sources are, a priori, biased due to the
low-precision inversion of the Dirac matrix. To remove this
bias, we selected an additional source point on each of the
time slices from which a high-precision (HP) and LP
measurement of the correlation functions was carried
out. The total number of measurements made on each
ensemble are given in Table II.
On each configuration, the bias corrected two- and three-

point function data are constructed first using the HP and
the LP correlators as

CAMA ¼ 1

NLP

XNLP

i¼1

CLPðxLP
i Þ

þ 1

NHP

XNHP

i¼1

½CHPðxHP
i Þ − CLPðxHP

i Þ�; ð10Þ

where CLP and CHP are either the two- or the three-point
correlation functions calculated in LP and HP, respectively.
Correlators from the two kinds of source positions xLP

i and
xHP
i , are assumed to be translated to a common point when

defining Eq. (10). The bias in the LP estimate (first term) is
corrected by the second term provided the LP approxima-
tion is covariant under lattice translations, which is true for
the two- and three-point functions. The contribution to the
overall error by the second term is small provided the HP
and LP calculations from the same source point are
correlated. To estimate errors, the measurements on each
configuration are first averaged and then the single elimi-
nation Jackknife procedure is carried out over these
configuration averages.
We used the adaptive multigrid algorithm for inverting

the Dirac matrix [33] and set the low-accuracy stopping

criterion rLP ≡ jresiduejLP=jsourcej ¼ 10−3 and the HP
criterion to the analogous rHP ¼ 10−10. We have compared
the AMA and LP estimates for both the two- and three-
point correlation functions themselves and for the fit
parameters Mi, Ai, and the matrix elements hijOΓjji.
In all cases, we find the difference between the AMA
and LP estimates is a tiny fraction (few percent) of the error
in either measurement [21]. In short, based on all the
calculations we have carried out, possible bias in the LP
measurements with rLP ¼ 10−3 as the stopping criteria in
the adaptive multigrid inverter is much smaller than the
statistical errors estimated from Oð105Þ measurements.

E. Statistics

The total number of LP and HP measurements and the
values of source-sink separations tsep analyzed are given in
Table II. Our statistical tests show that correlations between
measurements are reduced by choosing the source points
randomly within and between configurations [21]. Also,
using the coherent source method for constructing the
sequential propagators from the sink points to reduce
computational cost does not significantly increase the
errors [21,24].
On all the ensembles, we first estimate the masses Mi

and the amplitudes Ai using the 2-, 3- or 4-state fits to the
two-point function data and then use these as inputs in the
extraction of matrix elements from fits to the three-point
data. Both of these fits, to two- and three-point data, are
done within the same Jackknife process to take into account
correlations in the estimation of errors. We performed both
correlated and uncorrelated fits to the nucleon two- and
three-point function data. In all cases, correlated and
uncorrelated fits gave overlapping estimates. For the final
results, we use fits minimizing the correlated χ2=d:o:f:.
We find that the central values from the 3-state fits are

consistent with those from the 2-state fits, and the error
estimates are comparable. Our final quoted estimates are
from 4-state fits to the two-point data and a 3-state fit to the
three-point data with the matrix element h2jOSj2i set to
zero as discussed in Sec. III B. Our overall conclusion,
based on the data presented here and a similar analysis
carried out in Ref. [10], is that to obtain the isovector
charges gA and gT with 1% uncertainty (or 2% uncertainty
at the physical pion mass and after extrapolation to the
continuum limit) will require Oð106Þ measurements on
each ensemble. Approximately five times larger statistics
are needed to extract gS with the same precision.

III. FITS AND EXCITED-STATE
CONTAMINATION

To understand and control excited-state contamination
we present analyses using 2-, 3- and 4-state fits to the two-
point functions and 2- and 3-state fits to the three-point
functions. We find that to get reliable estimates of the
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massesMi and amplitudes Ai for the first N states we need
to include N þ 1 states in the fit to the two-point function.
For this reason, we analyze the correlation functions with
the following combinations fN2pt; N3ptg ¼ f2; 2g, f3; 2g,
f4; 2g, f3; 3g and f4; 3g where the first (second) value is
the number of states included in fits to the two-point (three-
point) functions. In each case, the methodology employed
in the analysis is the same except that when using three and
higher state fits to two-point functions we introduce
nonuniform priors.
In each fit, to understand and quantify the excited-state

contamination, there are three parameters that we optimize:
(i) the starting time slice tmin used in fits to the two-point
data; (ii) the number of time slices τskip, adjacent to the
source and sink, skipped in fits to the three-point functions;
and (iii) the values of tsep at which data are collected used in
the fits. The final values of these parameters, chosen on the
basis of the χ2 and the stability of the fits, represent a
compromise between statistical precision and reducing
excited-state contamination. In general, we reduce the
value of tmin and τskip and enlarge the number of tsep
values included when increasing the number of states in the

fit ansatz. For example, we set tmin ¼ 2 in 4-state fits to the
two-point functions. Even then, in the case of 4-state fits,
only about eight points contribute to determining the six
excited-state parameters since the plateau in the effective-
mass plot starts at t ≈ 10 as shown in Figs. 1 and 2.
Our focus is on obtaining estimates for the charges in

the tsep → ∞ limit for the six calculations labeled as
fC1; C2; C5; C6; C7; C8g in Table II. Two overall caveats
that will be made explicit at appropriate places are the
statistics in the case of the a091m170L ensemble (C8) are
insufficient as the auto-correlations between configurations
are large. Similarly, the errors in the data for gS are much
larger than for gA;T, consequently the fits used to extract gS
are much less stable. In all cases, the fits and the error
analysis presented here are based on using the full
covariance matrix.

A. Analysis using 2-state fits

The selection of the best combination of tmin, τskip and
tsep for the quoted results using 2-state fits was carried out
as follows:
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FIG. 1. Data for the effective mass of the pion (left) and the nucleon (right) obtained using 2-state fits to the zero-momentum two-point
correlation functions. The ensemble ID and smearing size are specified in the labels. The 2-state fits to the nucleon are made with our
“best” value of tmin described in the text.

0.120

0.125

0.130

0.135

0.140

0.145

 4  6  8  10  12  14  16  18  20

a 
M

π

t

a094m280  S5
a094m280  S7
a094m280  S9

0.44

0.46

0.48

0.50

0.52

0.54

 4  6  8  10  12  14  16  18  20

a 
M

N

t

a094m280  S5
a094m280  S7
a094m280  S9

FIG. 2. Comparison of the effective mass of the pion (left) and the nucleon (right) obtained using 2-state fits to the zero-momentum
two-point correlation functions on the a094m280 ensemble for three different smearings, S5S5, S7S7 and, S9S9. The 2-state fits to the
nucleon are made with our “best” value of tmin described in the text.
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(i) Step 1: Fits to the two-point correlators using the
full covariance matrix for different values of tmin
were made. The best value minimizing the
correlated χ2=d:o:f: was determined to be tbestmin ¼
f4; 5; 5; 4; 4; 5g for the six calculations.

(ii) Step 2: Using these values of tbestmin, we determined
the four parameters aM0, aM1, A2

0 and A2
1. Then,

2-state fits to the three-point data were performed for
the three sets of tsep, labeled A, B and C, in Table III.
Since the pattern of excited-state contamination is
different in the various charges, the best set was
determined separately for each charge. Our final
results are based on Fit B for the scalar and vector
charges, and Fit C for the axial and tensor charges as
discussed below.

(iii) Step 3: Repeat Step 2 for the three cases τskip ¼
f1; 2g; f2; 3g and f3; 4g for the a ≈ f0.127; 0.09g
ensembles, respectively. All three cases gave over-
lapping results. For our quoted 2-state results, we
use f3; 4g as it removes the most points adjacent to

the source and sink that have the largest excited-state
contamination.

(iv) Step 4: To quantify the dependence on tmin, we
repeat Steps 1–3 for tmin ¼ tbestmin � 1.

Results for aM0, aM1, A2
0 and A2

1 for t
best
min and tbestmin � 1 are

given in Table IV. Results for the three matrix elements for
our best choice of tmin, τskip and tsep are given in Table V.
Estimates of the ratios of the unrenormalized charges,
gA;S;T=gV , are given in Table VI.
The quality of the data for the two-point functions on the

four ensembles is illustrated by plotting the effective mass,

aMN;effðtþ 0.5Þ ¼ ln
C2ptðtÞ

C2ptðtþ 1Þ ; ð11Þ

for the pion and the nucleon in Fig. 1. As expected, the
signal in the pion does not degrade with t, whereas that for
the proton becomes noisy by t ¼ 20, with 1–2σ fluctuations
in MN;eff apparent already at t ≈ 16. The onset of a plateau
indicates that the ground-state pion mass can be extracted
using 1-state fits to data at t > 10. In practice, the ground
state mass is largely determined from the region
10≲ t≲ 16, while the excited state masses and amplitudes
are determined from the region t≲ 10. The value of tmin is,
therefore, adjusted depending on the number of states
included in the fit.
To assess the statistical quality of the data, the autocor-

relation function was calculated using two quantities that
have reasonable estimates on each configuration: (i) the
pion two-point correlator at t ¼ 14 and (ii) the three-point

TABLE III. The three fits, defined by the values of tsep used in
the 2-state fit, investigated to quantify the stability of the tsep →
∞ estimate.

Fit A Fit B Fit C

a127m285 f8; 10; 12g f8; 10; 12; 14g f10; 12; 14g
a094m280,
a091m170, f10; 12; 14g f10; 12; 14; 16g f12; 14; 16g
a091m170L

TABLE IV. Estimates of the nucleon massesM0 andM1 and the amplitudesA0 andA1 extracted from fits to the two-point correlation
functions data using the 2-state ansatz given in (7). For the a094m280 ensemble, we give the estimates from the three runs with different
smearing parameters described in Table II. The notation S5S5 labels a nucleon correlation function with source and sink constructed
using smearing parameter σ ¼ 5. We give estimates for three different fit ranges tbestmin and t

best
min � 1, expressed in lattice units, as described

in the text.

ID Type Fit Range aM0 aM1 A2
0 A2

1 A2
1=A

2
0 χ2=d:o:f:

a127m285 S5S5 3–20 0.6206(20) 1.099(45) 3.51(7)e-08 2.19(11)e-08 0.624(28) 1.26
S5S5 4–20 0.6193(27) 1.048(71) 3.46(10)e-08 1.98(23)e-08 0.572(55) 1.31
S5S5 5–20 0.6181(31) 0.980(85) 3.40(13)e-08 1.66(29)e-08 0.487(77) 1.36

a094m280 S5S5 4–20 0.4721(25) 0.851(28) 2.86(9)e-08 3.41(13)e-08 1.195(41) 1.33
S5S5 5–20 0.4676(37) 0.776(39) 2.67(15)e-08 2.92(16)e-08 1.096(57) 0.96
S5S5 6–20 0.4643(51) 0.724(50) 2.51(22)e-08 2.62(19)e-08 1.042(90) 0.91

a094m280 S7S7 4–20 0.4711(30) 0.864(65) 5.55(21)e-10 3.91(40)e-10 0.705(59) 1.08
S7S7 5–20 0.4670(48) 0.739(77) 5.19(40)e-10 3.02(29)e-10 0.583(66) 0.9
S7S7 6–20 0.4654(65) 0.70(10) 5.04(58)e-10 2.86(37)e-10 0.568(92) 0.97

a094m280 S9S9 3–20 0.4672(25) 0.925(47) 4.52(13)e-12 3.83(24)e-12 0.847(45) 0.94
S9S9 4–20 0.4635(37) 0.809(65) 4.29(21)e-12 3.02(28)e-12 0.705(58) 0.73
S9S9 5–20 0.4642(40) 0.83(10) 4.33(24)e-12 3.21(75)e-12 0.74(15) 0.78

a091m170 S7S7 3–22 0.4209(24) 0.859(29) 4.67(12)e-10 4.90(14)e-10 1.050(27) 1.42
S7S7 4–22 0.4180(30) 0.802(37) 4.50(16)e-10 4.41(22)e-10 0.981(43) 1.25
S7S7 5–22 0.4183(32) 0.808(55) 4.51(18)e-10 4.49(55)e-10 1.00(10) 1.34

a091m170L S7S7 4–22 0.4252(19) 0.895(44) 4.87(10)e-10 4.80(44)e-10 0.985(76) 1.75
S7S7 5–22 0.4210(36) 0.755(72) 4.59(24)e-10 3.35(40)e-10 0.730(62) 1.46
S7S7 6–22 0.410(11) 0.584(79) 3.73(85)e-10 2.82(50)e-10 0.76(30) 1.1
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correlation function at the midpoint in τ for tsep ¼ 12.
Autocorrelations increase as Mπ or a is decreased or L is
increased. In particular, the data from the a091m170L
ensemble showed significant autocorrelations. In this case,
the 467 configurations consist of four streams with roughly
170, 100, 100 and 100 configurations. These are too few to
even determine the autocorrelation time reliably. For the
other ensembles, the autocorrelation function falls to< 1=e
by 1–2 configurations, and binning the data by a factor of
two did not change the Jackknife error estimates. Our
overall conclusion is that much larger statistics are needed
to get reliable error estimates on the a091m170L ensemble
and it is very likely that the quoted 1σ errors for this
ensemble, evaluated without taking into account autocor-
relations, are underestimates.
To exhibit the dependence of the two-point correlation

functions on the smearing size given by σ, we show a
comparison of the effective mass for the pion and the
nucleon for the S5S5, S7S7 and S9S9 correlators on the
a094m280 ensemble in Fig. 2. We find that the errors in
the effective-mass data (and in the raw two-point functions)
increase with the smearing size σ for both the pion and the
proton. The onset of the plateau in both states, however,
occurs at earlier times with larger σ. Thus, the relative
reduction in the excited-state contamination in the corre-
lation functions with larger smearing σ has to be balanced
against the increase in statistical noise. Based on these
trends on the a094m280 ensemble, our compromise choice
for the three ensembles at a ≈ 0.09 fm is σ ¼ 7 and for the
a127m285 ensemble it is σ ¼ 5. In physical units, this
choice corresponds to setting the size of the smearing
parameter σ ≈ 0.65 fm.
Our final estimates for the four parametersaM0,aM1,A2

0,
A2

1 and the ratioA
2
1=A

2
0 for three values of tmin are given in

Table IV. In addition to minimizing χ2=d:o:f:, we required
≲1σ stability in the value ofM0 under the variation tbestmin � 1

as criteria for choosing our best tmin. With the selected
tbestmin ¼ f4; 5; 5; 4; 4; 5g, we find that aM1 is also consistent
within 2σ except on the a091m170L ensemble which, as
stated above, requires much higher statistics.
To illustrate the three-point function data and the size of

excited-state contamination, we plot an “effective” charge,

geffΓ ðtsep; τÞ ¼
C3pt
Γ ðtsep; τÞ
C2pt
fit ðtsepÞ

; ð12Þ

i.e., the ratio of the three-point function to the n-state fit that
describes the two-point function. This ratio converges to gΓ
as the time separations τ and tsep − τ become large provided

the fit to the two-point function, C2pt
fit ðtsepÞ, gives the ground

state. Our methodology for taking into account excited-state
contamination and obtaining estimates of the charges from
datawith tsep in the limited range 1–1.5 fm is described next.
The data and the 2-state fits to the ratio of the three- to

two-point functions using our best choice of tmin, tsep and
τskip are shown in Figs. 3, 4, 5 and 6 for the four isovector
charges. In the right panels of these figures, we show the 3-
state fits, discussed in Sec. III B, to facilitate comparison.
The magnitude of the excited-state contamination as a

function of tsep and the smearing parameter σ is different for
the four charges. The dependence on σ is exhibited in Fig. 7
for the S5S5, S7S7 and S9S9 calculations on the a094m280

ensemble. In gu−dA , the magnitude of the excited-state
contamination, measured as the difference between the
data at the central values of τ for tsep ¼ 12 (about 1 fm) and
the tsep → ∞ estimate, is about 10%, 5% and 3% for the
S5S5, S7S7 and S9S9 calculations, respectively. The pattern
in gu−dS is similar, however, the reduction in the contami-
nation with σ is smaller. For gu−dT , the overall variation with
tsep and between the three estimates is ≤ 5%. The vector
charge gu−dV shows insignificant excited-state contamina-
tion and no detectable dependence on σ. On the other hand,

TABLE V. Estimates of the three matrix elements h0jOΓj0i, h0jOΓj1i, h1jOΓj1i for the three isovector operators obtained using the 2-
state fit to the three-point correlators with our “best” choices of tmin, tsep and τskip.

Axial Scalar Tensor

ID Type h0jOAj0i h0jOAj1i h1jOAj1i h0jOSj0i h0jOSj1i h1jOSj1i h0jOT j0i h0jOT j1i h1jOT j1i
a127m285 S5S5 1.423(14) −0.179ð21Þ −0.9ð2.4Þ 1.07(4) −0.35ð4Þ 0.6(1.1) 1.166(13) 0.182(16) −0.2ð1.2Þ
a094m280 S5S5 1.349(19) −0.130ð20Þ 0.6(0.7) 1.18(6) −0.42ð5Þ 1.0(0.8) 1.071(17) 0.157(15) 0.7(4)
a094m280 S7S7 1.384(28) −0.111ð36Þ 0.3(1.3) 1.23(12) −0.52ð12Þ 1.4(1.7) 1.085(30) 0.221(36) 0.0(0.8)
a094m280 S9S9 1.372(25) −0.026ð39Þ −0.4ð2.5Þ 1.28(9) −0.42ð9Þ −0.6ð3.3Þ 1.067(25) 0.276(28) 0.6(1.6)
a091m170 S7S7 1.388(23) −0.133ð33Þ −2.1ð2.6Þ 1.17(11) −0.48ð7Þ 0.1(3.9) 1.091(20) 0.154(22) −0.2ð1.7Þ
a091m170L S7S7 1.401(20) −0.118ð26Þ −1.0ð2.4Þ 1.15(8) −0.44ð8Þ 1.4(2.2) 1.067(25) 0.235(23) 0.5(8)

TABLE VI. Estimates of the ratios of the unrenormalized
isovector charges gA;S;T=gV with our “best” choices of tmin,
tsep and τskip in the 2-state fits.

ID Type gA=gV gS=gV gT=gV

a127m285 S5S5 1.125(11) 0.848(27) 0.922(12)
a094m280 S5S5 1.130(17) 0.987(50) 0.897(15)
a094m280 S7S7 1.154(24) 1.030(95) 0.906(27)
a094m280 S9S9 1.143(22) 1.068(76) 0.889(22)
a091m170 S7S7 1.146(21) 0.963(84) 0.901(16)
a091m170L S7S7 1.166(18) 0.960(69) 0.888(21)
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FIG. 3. Two-(left) and three-state (right) fits to gu−dA from the 6 simulations on the 4 ensembles as described in the text. In the left
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FIG. 4. Two-(left) and three-state (right) fits to gu−dS from the 6 simulations on the 4 ensembles as described in the text. In the left
panels, data not included in the fits based on τbestskip are shown in grey but the lines are drawn over a larger range. In the right panels, all the
data are shown with the same color and the lines are limited to the points fit.
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FIG. 5. Two- (left) and three-state (right) fits to gu−dT from the 6 simulations on the 4 ensembles as described in the text. In the left
panels, data not included in the fits based on τbestskip are shown in grey but the lines are drawn over a larger range. In the right panels, all the
data are shown with the same color and the lines are limited to the points fit.
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FIG. 6. Two- (left) and three-state (right) fits to gu−dV from the 6 simulations on the 4 ensembles as described in the text. In the left
panels, data not included in the fits based on τbestskip are shown in grey but the lines are drawn over a larger range. In the right panels, all the
data are shown with the same color and the lines are limited to the points fit.
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the errors in individual data points increase with the
smearing σ for all four charges.
We use the data with the three values of the smearing σ

on the a094m280 ensemble to test whether the 2-state fit
gives equally reliable tsep → ∞ estimates in spite of
differences in the excited-state contamination. We find
that the three estimates are consistent within 1σ for all four
charges as shown in Fig. 7. However, because the magni-
tude of the excited-state effect is different in the four
charges gA;S;T;V , we do not uniformly use the same set of
values of tsep in our final 2-state fit, but tune them for
each case.
Based on the data shown in these figures and on the

results of the fits with our best choices of the input fit
parameters given in Tables Vand VI, we evaluate below the

excited-state effect in each of the charges and the efficacy
of the 2-state fit in providing tsep → ∞ estimates.

(i) The data for the axial charge gu−dA shown in Fig. 3
converges to the tsep → ∞value frombelow and at the
central values of τ show up to 10% variation with tsep
due to excited-state contamination.We, therefore, use
Fit C based on data with the larger values of tsep. In all
but thea127m285 case, thedata at tsep ≳ 16 lies above
the result of the fit. The errors in these data, however,
are large.3 Thus, to confirm the tsep→∞ estimate,
requires additional high precision data for tsep≥16.
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FIG. 7. Comparison of the 2-state fits to the data for gu−dA;S;T;V for the three calculations on the a094m280 ensemble with different
smearing parameter σ. Each row shows results for the S5S5 (left) S7S7 (middle) and S9S9 (right) calculations.

3We do not include the data at tsep ¼ 18 in the fits as these have
been obtained only for the S5S5 and S9S9 calculations on the
a094m280 ensemble.
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The data with S9S9 correlators on the a094m280
ensemble show the least excited-state effect: the
estimates at the central values of τ show only a tiny
increase with tsep and their error bands overlap. This
lack of sensitivity makes the determination of the
matrix element h0jOAj1i from the current data harder
and leads to the much smaller value given in Table V.

(ii) The three matrix elements, h1jOΓj1i, are all poorly
determined.

(iii) The data for the scalar charge gu−dS have larger
uncertainty so we choose Fit B to include all the data
except that with tsep ¼ 8 and 18 on the a094m280

ensemble. As shown in Fig. 4, the 2-state fits again
converge from below, the three estimates from the
a094m280 ensemble are consistent within 1σ as
shown in Fig. 7, and the estimates from the
a091m170 and a091m170L ensembles overlap.

(iv) The data for the tensor charge gu−dT show small
excited-state contamination and converge to the
tsep → ∞ estimate from above. Fits to the data for
gu−dT are the most stable and all the fits give
consistent estimates. We choose Fit C for the final
estimates. These estimates agree with those from Fit
B, and the χ2=d:o:f: of both fits are also consistent.

(v) The data for the vector charge gu−dV show little
variation with τ or tsep. The excited-state contami-
nation is highly suppressed because gu−dV is asso-
ciated with a conserved charge at OðaÞ. As a result,
statistical fluctuations in the data stand out. Note that
the error estimates in gu−dV from the fits are compa-
rable to the 1%–2% variance in individual data
points at the largest tsep. Only the S7S7 data with
tsep ¼ 16 on the a094m280 ensemble deviate by
about 2σ from the result of the fit.

TABLE VII. Results of 2-, 3- and 4-state fits to the two-point correlation data for the six calculations. The first column specifies the
parameters, fN2pt; tmin − tmaxg, where N2pt number of states used in the fits to the two-point correlators, and ½tmin; tmax� is the fit interval
in lattice units. The following columns give the nucleon ground state amplitude A2

0 and mass aM0, followed by the ratio of the excited
state amplitudes ri ¼ ðAi=A0Þ2, and a mass gaps aΔMi ¼ aðMi −Mi−1Þ. For each ensemble, the first row gives the values of the priors
used in the final fits.

A2
0 aM0 r1 aΔM1 r2 aΔM2 r3 aΔM3 χ2=d:o:f

a127m285 Smearing σ ¼ 5
Priors 0.6(3) 0.35(20) 0.65(35) 0.8(4) 1.0(5) 0.4(3)
f2; 4–20g 3.46ð11Þ × 10−8 0.619(3) 0.57(6) 0.43(7) 1.31
f3; 2–20g 3.42ð10Þ × 10−8 0.619(2) 0.49(4) 0.38(5) 0.71(13) 0.91(10) 1.02
f4; 2–20g 3.43ð9Þ × 10−8 0.619(2) 0.54(4) 0.40(5) 0.45(6) 1.06(9) 0.77(13) 0.49(2) 1.07

a094m280 Smearing σ ¼ 5
Priors 1.0(5) 0.23(12) 1.3(6) 0.6(3) 0.8(5) 0.4(3)
f2; 5–20g 2.67ð15Þ × 10−8 0.468(4) 1.10(6) 0.31(4) 0.96
f3; 3–20g 2.49ð18Þ × 10−8 0.464(4) 0.90(10) 0.24(4) 1.61(24) 0.62(7) 0.71
f4; 3–20g 2.45ð24Þ × 10−8 0.463(5) 0.92(11) 0.23(5) 1.22(17) 0.58(10) 0.73(12) 0.41(4) 0.69

a094m280 Smearing σ ¼ 7
Priors 0.6(3) 0.23(12) 0.8(6) 0.6(3) 0.6(4) 0.4(3)
f2; 5–20g 5.19ð40Þ × 10−10 0.467(5) 0.58(7) 0.27(7) 0.90
f3; 3–20g 5.03ð39Þ × 10−10 0.466(4) 0.48(9) 0.22(5) 1.05(21) 0.64(8) 0.74
f4; 3–20g 4.97ð45Þ × 10−10 0.465(5) 0.50(9) 0.21(6) 0.77(16) 0.62(8) 0.58(9) 0.40(3) 0.73

a094m280 Smearing σ ¼ 9
Priors 0.6(3) 0.23(12) 0.8(6) 0.6(3) 0.6(4) 0.4(3)
f2; 4–20g 4.29ð21Þ × 10−12 0.464(4) 0.71(6) 0.35(6) 0.73
f3; 2–20g 4.16ð20Þ × 10−12 0.462(3) 0.55(8) 0.27(4) 1.08(16) 0.71(10) 0.67
f4; 2–20g 4.11ð22Þ × 10−12 0.461(4) 0.56(8) 0.26(5) 0.67(10) 0.64(11) 0.57(9) 0.41(3) 0.65

a091m170 Smearing σ ¼ 7
Priors 0.8(5) 0.30(15) 1.0(6) 0.7(5) 1.0(5) 0.4(3)
f2; 4–22g 4.49ð16Þ × 10−10 0.418(3) 0.98(4) 0.38(3) 1.25
f3; 2–22g 4.42ð16Þ × 10−10 0.417(3) 0.88(6) 0.35(3) 1.22(20) 0.91(13) 1.05
f4; 2–22g 4.44ð17Þ × 10−10 0.417(3) 0.91(6) 0.36(4) 0.72(18) 0.91(20) 0.87(16) 0.45(2) 1.05

a091m170L Smearing σ ¼ 7
Priors 0.5(3) 0.21(5) 1.0(9) 0.6(4) 0.8(6) 0.30(25)
f2; 5–22g 4.59ð24Þ × 10−10 0.421(4) 0.73(6) 0.33(7) 1.46
f3; 2–22g 4.22ð23Þ × 10−10 0.417(3) 0.45(10) 0.19(2) 1.30(8) 0.54(4) 1.00
f4; 2–22g 4.20ð25Þ × 10−10 0.417(3) 0.44(10) 0.18(2) 0.74(5) 0.47(4) 0.60(4) 0.19(5) 1.03
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In the next section, we extend the analysis to include up
to 4-states in fits to the two-point function data and 3-states
in fits to the three-point functions to evaluate the stability of
estimates obtained using 2-state fits.

B. Analysis using 3-state fits

In this section, we investigate the stability of the tsep → ∞
estimates from 2-state fits by increasing the number of states
kept in the fits to the two- and three-point function data. The
additional features introduced into the analysis, over and
above those discussed in Sec. III A for the 2-state fits, are

(i) The two-point function data were analyzed using
3- and 4-state fits. In fits with more than two states,
the excited state masses and amplitudes are, in many
cases, ill-determined. The fits were stabilized by
carrying out an empirical Bayesian analysis with
Gaussian priors for both the mass gaps and the
amplitudes of the excited states [34,35].

(ii) With more fit parameters, the values of tmin and τskip
were reduced to increase the number of data points

included in the fits to both two- and three-point
functions. The results with the final choices of these
parameters for various fits are listed in Tables VII
and VIII.

(iii) Data with tsep ¼ 8, 10, 12 and 14 were used for all
four charges in fits to the three-point functions on the
a127m285 ensemble and with tsep ¼ 10, 12, 14 and
16 for the three a ≈ 0.09 fm ensembles.

Priors were needed only to stabilize the fits. Typical
manifestation of an instability was that either a massgap or
an amplitude was close to zero or two states became
degenerate. To avoid these instabilities, our selection of the
priors was motivated by the following: the experimental
nucleon spectra suggested ðMi −Mi−1Þ ∼M0 for the
central value of the mass gaps. The central value of the
ratios of the absolute value of the amplitudes which arise in
our smeared-smeared correlators were taken to be Oð1Þ. In
both cases, the widths were taken to be as large as possible
while avoiding a lower value close to zero. All the
intermediate and final values of the priors and their widths

TABLE VIII. Estimates of the bare isovector charges gA;S;T;V for four choices of fN2pt; N3pt; τskip; tmin − tmaxg, where fN2pt; N3ptg are
the number of states kept in fits to the two- and three-point functions, respectively. The N3pt ¼ 3� fit is a 3-states fit with h2jOΓj2i ¼ 0.
Note that the choice of tmin ¼ 3 is the same as in Table VII except for the a127m285 data. Our final estimates are given in the last row
corresponding to the f4; 3�g fit.

ID Type Fit tsep gu−dA gu−dS gu−dT gu−dV

a127m285 S5S5 f2; 2; 3; 4–20g f10; 12; 14g 1.423(14) 1.166(13)
f2; 2; 3; 4–20g f8; 10; 12; 14g 1.07(4) 1.264(5)
f4; 2; 3; 2–20g f8; 10; 12; 14g 1.413(12) 1.08(3) 1.153(11) 1.265(5)
f4; 3; 3; 2–20g f8; 10; 12; 14g 1.431(29) 1.09(4) 1.160(12) 1.264(7)
f4; 3�; 3; 2–20g f8; 10; 12; 14g 1.431(15) 1.09(4) 1.160(10) 1.264(5)

a094m280 S5S5 f2; 2; 4; 5–20g f12; 14; 16g 1.349(19) 1.071(17)
f2; 2; 4; 5–20g f10; 12; 14; 16g 1.18(6) 1.194(8)
f4; 2; 4; 3–20g f10; 12; 14; 16g 1.365(34) 1.30(13) 1.025(40) 1.197(9)
f4; 3; 2; 3–20g f10; 12; 14; 16g 1.369(36) 1.31(15) 1.066(23) 1.208(17)
f4; 3�; 2; 3–20g f10; 12; 14; 16g 1.369(34) 1.25(9) 1.057(19) 1.194(10)

a094m280 S7S7 f2; 2; 4; 5–20g f12; 14; 16g 1.384(28) 1.085(30)
f2; 2; 4; 5–20g f10; 12; 14; 16g 1.23(12) 1.199(10)
f4; 2; 4; 3–20g f10; 12; 14; 16g 1.398(38) 1.34(17) 1.015(61) 1.201(11)
f4; 3; 2; 3–20g f10; 12; 14; 16g 1.390(40) 1.35(21) 1.077(34) 1.243(28)
f4; 3�; 2; 3–20g f10; 12; 14; 16g 1.381(32) 1.20(12) 1.051(36) 1.202(12)

a094m280 S9S9 f2; 2; 4; 4–20g f12; 14; 16g 1.372(25) 1.067(25)
f2; 2; 4; 4–20g f10; 12; 14; 16g 1.28(9) 1.200(10)
f4; 2; 4; 2–20g f10; 12; 14; 16g 1.355(20) 1.36(11) 1.028(34) 1.199(11)
f4; 3; 2; 2–20g f10; 12; 14; 16g 1.345(30) 1.39(18) 1.038(28) 1.195(38)
f4; 3�; 2; 2–20g f10; 12; 14; 16g 1.345(23) 1.25(11) 1.038(28) 1.195(12)

a091m170 S7S7 f2; 2; 4; 4–22g f12; 14; 16g 1.388(23) 1.091(20)
f2; 2; 4; 4–22g f10; 12; 14; 16g 1.17(10) 1.211(11)
f4; 2; 4; 2–22g f10; 12; 14; 16g 1.370(16) 1.19(11) 1.068(16) 1.211(11)
f4; 3; 2; 2–22g f10; 12; 14; 16g 1.363(17) 1.09(11) 1.070(15) 1.210(13)
f4; 3�; 2; 2–22g f10; 12; 14; 16g 1.363(17) 1.09(11) 1.070(15) 1.210(13)

a091m170L S7S7 f2; 2; 4; 5–22g f12; 14; 16g 1.401(20) 1.067(25)
f2; 2; 4; 5–22g f10; 12; 14; 16g 1.15(8) 1.202(10)
f4; 2; 4; 2–22g f10; 12; 14; 16g 1.464(31) 1.37(13) 0.962(38) 1.202(15)
f4; 3; 2; 2–22g f10; 12; 14; 16g 1.480(46) 0.78(22) 1.032(30) 1.196(23)
f4; 3�; 2; 2–22g f10; 12; 14; 16g 1.477(38) 1.18(14) 1.043(26) 1.196(16)
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were in accord with the above considerations and the final
estimates were not close to the boundaries of the priors. The
final values and widths of the priors for the 3- and 4-state
fits to the two-point function data were chosen as follows:

(i) The ground state mass and amplitude are very well
constrained by the plateau in the effective mass for
t≳ 10. Thus, no nontrivial priors were needed or
used for determining A0 and M0.

(ii) Results for A1 and M1 obtained from 2-state fits
without priors were used to refine the priors in the
3-state fits. The widths were kept large but consistent
with the requirement that the 1σ bands for ri ≡
ðA2

i =A
2
0Þ and the ΔMi ≡ ðMi −Mi−1Þ are positive.

These priors did not need any subsequent changes.
(iii) Results for r2 and ΔM2 from the 3-state fit

were used to refine the priors in the 4-state fits
along with A2

3=A
2
0¼1�0.6 and ΔM3≡M3−M2¼

0.4�0.3. The output estimates were used as the new
central values of these two sets of priors without
decreasing their width and the fits were carried out a
second time to get the final estimates.

(iv) In all cases except for the a091m170L data, the final
results are close to the central value chosen for the
priors for both the 3- and 4-state fits.

(v) The quoted errors are obtained using a single
elimination jackknife procedure with the full covari-
ance matrix and constant priors.

(vi) The augmented χ2=d:o:f: is given by the standard
correlated χ2 plus the square of the deviation of the
parameter from the prior normalized by the width.
This is then divided by the number of degrees of
freedom calculated ignoring the priors.

The results of fits to the two-point function data are
shown in Table VII for the three cases, 2-, 3- and 4-state fits
using our best choices of tmin. The results of the 2-state fits
are reproduced from Table IV. Overall, the results presented
in Tables VII exhibit the following behavior:

(i) The 2-, 3- and 4-state fits to the two-point data on the
a127m285 ensemble data are very stable and the
central values show little variation with changes in
tmin and/or the number of states. Similarly, the
estimates of all four charges are stable within 1σ.
Fits to the data from the a094m280 and a091m170
ensembles were also stable but the variation in the
results was larger.

(ii) Estimates of the ground-state massM0 and the mass
gap ΔM1 obtained from the 3-state and 4-state fits
are essentially identical. Even estimates of ΔM2 are
consistent.

(iii) All three ratios of amplitudes, ri, decrease with
the smearing size σ between σ ¼ 5 and 7 and
then are essentially flat between σ ¼ 7 and 9 on
the a094m280 ensemble. Note also that the ampli-
tudes for S9S9 are essentially the same for tmin ¼ 2
and 3.

(iv) The 3- and 4-state fits to the two-point data on the
a091m170L ensemble are sensitive to the choice of
the priors, their widths and tmin. Furthermore, for
any choice of fit parameters for the two-point
functions, the results for the four charges are
sensitive to the choice of τskip. As remarked in
Sec. III A, we attribute this sensitivity to low
statistics in the a091m170L calculation and reiterate
that the quoted errors are underestimates since the
autocorrelations between configurations, that are
significant, have not been taken into account.

With 3- and 4-state fits to the two-point data in hand we
carried out three analyses to estimate the isovector charges:
fN2pt;N3ptg¼f4;2g, f4;3g and f4;3�g. The fN2pt; N3ptg ¼
f4; 3�g is a 3-state fit with h2jOΓj2i set to zero. The reason
for this additional analysis is that h2jOΓj2i is essentially
undetermined in the fN2pt; N3ptg ¼ f4; 3g fits. This is
because (i) the contribution of h2jOΓj2i for any of the
four charges is suppressed by at least e−6 relative to
h1jOΓj1i as can be deduced from Eq. (8) and the data in
Table VII; (ii) the three matrix elements, h0jOΓj0i,
h1jOΓj1i, and h2jOΓj2i are only sensitive to tsep, and the
data at the four values of tsep overlap within 1σ. Thus, three
matrix elements cannot be determined reliably from over-
lapping data at four values of tsep. (iii) Even h1jOΓj1i is
poorly determined as shown by the data in Table X.
We find that setting h2jOΓj2i ¼ 0 leads to a significant

improvement over the unconstrained fN2pt; N3ptg ¼ f4; 3g
fit. Thus, our final unrenormalized estimates for the four
charges are taken from the fN2pt; N3ptg ¼ f4; 3�g fits and
given in Table VIII. These fits are shown in the right panels
of Figs. 3, 4, 5 and 6. Estimates for the matrix elements
h0jOΓj1i, h1jOΓj1i, h0jOΓj2i and h1jOΓj2i are given in
Tables X and XI.
The data in Table VIII show that estimates for the four

charges from the four analyses, fN2pt; N3ptg ¼ f2; 2g;
f4; 2g, f4; 3g and f4; 3�g, are consistent. Based on this
stability and the small size of the variation in estimates
under changes in the values of tmin and τskip that have been
investigated, we conclude that estimates for gA;T;V can be
obtained with Oð3%Þ uncertainty from fN2pt; N3ptg ¼
f4; 3�g fits to data comprising Oð105Þ measurements.

TABLE IX. Estimates of the ratios of the unrenormalized
isovector charges gA;S;T=gV from the f4; 3�g fits with our “best”
choices of tmin, tsep and τskip.

ID Type gA=gV gS=gV gT=gV

a127m285 S5S5 1.132(11) 0.858(31) 0.918(8)
a094m280 S5S5 1.147(31) 1.046(77) 0.885(17)
a094m280 S7S7 1.149(26) 0.994(99) 0.875(32)
a094m280 S9S9 1.125(19) 1.048(89) 0.869(23)
a091m170 S7S7 1.127(16) 0.898(88) 0.884(13)
a091m170L S7S7 1.235(35) 0.983(118) 0.872(23)
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Our statistical tests also indicate that this estimate of the
number of measurements required will increase as the
lattice spacing and the pion mass are decreased. The data in
Figs. 3, 4, 5 and 6 further indicate that increasing the
statistics to Oð106Þ measurements on each ensemble will
lead to results for gA;T;V with Oð1%Þ uncertainty. This
factor of ten increase in statistics will have to come
primarily from increasing the number of independent gauge
configurations analyzed since the Oð100Þ measurements
per configuration that we have made in this study were
shown to be optimal in Ref. [21].
Our final results for the isovector charges, using bare

estimates from the fN2pt; N3ptg ¼ f4; 3�g fits given in
Tables VIII and IX and renormalized using the factors
given in Table XII, are given in Tables XIII and XIV.

IV. RENORMALIZATION CONSTANTS

We calculated the renormalization constants ZΓ for the
isovector quark bilinear operators ūΓd on the lattice using
the nonperturbative RI-sMOM scheme [36,37]. Details of

the procedure for calculating the three-point functions and
the renormalization conditions used are given in Ref. [38].
In short, in the RI-sMOM scheme we require the projected
amputated three-point function ΛR, renormalized at the
scale q2, to satisfy the condition

ΛR
Γðpa; pbÞjp2

a¼p2
b¼q2 ¼ 1 ¼ ðZ−1

ψ ZΓΛPA
Γ ðpi; pfÞÞjp2

a¼p2
b¼q2 ;

ð13Þ
where pμ

a and pμ
b are the 4-momenta in the two fermion

legs, qμ ¼ pμ
b − pμ

a and they satisfy the kinematic con-
straint p2

a ¼ p2
b ¼ q2. Here ΛPA is the projected amputated

three-point function discussed below and Zψ is the wave
function renormalization constant defined by

ðZψÞ−1
i
12

Tr

�
phSðpÞi−1

p2

�����
p2¼q2

¼ 1: ð14Þ

It is obtained from the momentum space quark propagator
SðpÞ calculated on lattices fixed to the Landau gauge
defined as the maximum of the sum of the trace of the

TABLE X. Estimates of the matrix elements h0jOΓj1i and h1jOΓj1i for the three isovector operators. Results for the four choices of the
fit parameters fN2pt; N3pt; τskip; tmin − tmaxg are arranged as defined in Table VIII with the final estimates from the fN2pt; N3ptg ¼
f4; 3�g fit given in the last row.

ID Type h0jOAj1i h0jOSj1i h0jOT j1i h0jOV j1i h1jOAj1i h1jOSj1i h1jOT j1i h1jOV j1i
a127m285 S5S5 −0.179ð21Þ 0.182(16) −0.9ð2.4Þ −0.2ð1.2Þ

−0.35ð4Þ −0.014ð2Þ 0.6(1.1) 0.80(34)
−0.172ð18Þ −0.37ð4Þ 0.210(15) −0.015ð2Þ 0.75(48) 0.8(9) 0.42(27) 0.87(28)
−0.295ð58Þ −0.45ð15Þ 0.167(40) −0.014ð6Þ 1.5(3.0) 1.8(1.4) 0.54(86) 0.86(55)
−0.295ð57Þ −0.45ð15Þ 0.166(47) −0.014ð6Þ 1.46(54) 1.8(1.4) 0.54(41) 0.86(28)

a094m280 S5S5 −0.130ð20Þ 0.157(15) 0.62(69) 0.70(40)
−0.42ð5Þ −0.006ð1Þ 1.0(8) 1.35(14)

−0.139ð34Þ −0.57ð13Þ 0.224(46) −0.008ð2Þ 1.10(22) 1.4(6) 0.71(12) 1.29(9)
−0.136ð36Þ −0.42ð8Þ 0.141(25) −0.005ð2Þ 1.00(41) −0.2ð2.0Þ 0.64(34) 0.99(32)
−0.136ð36Þ −0.42ð8Þ 0.140(25) −0.005ð2Þ 1.01(25) 1.1(6) 0.84(12) 1.29(10)

a094m280 S7S7 −0.111ð36Þ 0.221(36) 0.3(1.3) 0.03(80)
−0.52ð12Þ −0.003ð3Þ 1.4(1.7) 1.25(26)

−0.150ð48Þ −0.69ð20Þ 0.347(81) −0.004ð3Þ 1.09(42) 1.8(1.4) 0.37(26) 1.21(19)
−0.111ð47Þ −0.39ð15Þ 0.236(44) −0.004ð3Þ 0.72(92) −3.2ð4.4Þ −0.24ð80Þ −0.10ð92Þ
−0.113ð47Þ −0.41ð15Þ 0.231(43) −0.004ð3Þ 1.03(42) 1.8(1.3) 0.63(25) 1.18(20)

a094m280 S9S9 −0.026ð39Þ 0.276(28) −0.4ð2.5Þ 0.6(1.6)
−0.42ð9Þ −0.004ð3Þ −0.6ð3.3Þ 1.51(49)

−0.003ð34Þ −0.53ð13Þ 0.346(52) −0.005ð3Þ 1.04(45) 0.4(2.3) 0.50(39) 1.41(33)
0.048(49) −0.20ð15Þ 0.287(36) −0.003ð3Þ 0.7(1.3) −7.9ð7.5Þ 0.70(41) 1.4(2.0)
0.048(49) −0.21ð15Þ 0.287(36) −0.003ð3Þ 0.71(50) −0.1ð2.1Þ 0.70(37) 1.45(34)

a091m170 S7S7 −0.133ð33Þ 0.154(22) −2.1ð2.6Þ −0.2ð1.7Þ
−0.48ð7Þ −0.006ð2Þ 0.1(3.5) 1.11(46)

−0.142ð25Þ −0.51ð8Þ 0.187(18) −0.006ð2Þ 0.65(63) 0.3(3.4) 0.73(37) 1.13(39)
−0.117ð25Þ −0.35ð7Þ 0.180(16) −0.006ð2Þ 0.60(62) 1.3(3.5) 0.73(37) 1.16(44)
−0.117ð25Þ −0.35ð7Þ 0.180(16) −0.006ð2Þ 0.60(62) 1.3(3.5) 0.73(37) 1.16(44)

a091m170L S7S7 −0.118ð26Þ 0.235(23) −1.0ð2.4Þ 0.54(84)
−0.44ð8Þ −0.002ð2Þ 1.4(2.2) 1.26(34)

−0.222ð44Þ −0.87ð16Þ 0.474(54) −0.003ð3Þ 0.98(31) 2.7(1.4) −0.17ð33Þ 1.25(20)
−0.258ð71Þ −0.38ð21Þ 0.202(48) 0.004(4) 0.96(83) 12.7(6.8) 0.86(53) 1.25(46)
−0.259ð71Þ −0.37ð21Þ 0.208(48) 0.004(4) 1.02(35) 2.5(1.5) 0.51(24) 1.26(20)
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gauge links. The notation h� � �i denotes ensemble average.
The projected amputated three-point function is

ΛPA
Γ ðpa; pbÞ ¼

1

12
TrðPΓΛA

Γ ðpa; pbÞÞ; ð15Þ

where the amputated vertex ΛA
Γ ðpa; pbÞ is defined as

ΛA
Γ ðpa; pbÞ ¼ hhSðpaÞi−1SðpaÞΓðγ5S†ðpbÞγ5Þ

× hðγ5S†ðpbÞγ5Þi−1i: ð16Þ

TABLE XI. Estimates of the matrix elements h0jOΓj2i and h1jOΓj2i for the three isovector operators obtained using 3-state fits. The
two rows gives results for the N3pt ¼ 3 and N3pt ¼ 3� fits. Estimates of the matrix element h2jOΓj2i from the N3pt ¼ 3 fits are not
presented as they are ill-determined.

ID Type h0jOAj2i h0jOSj2i h0jOT j2i h0jOV j2i h1jOAj2i h1jOSj2i h1jOT j2i h1jOV j2i

a127m285 S5S5
0.97(66) 1.2(1.4) 0.03(37) −0.012ð75Þ −3.7ð4.7Þ −11.3ð11.3Þ 3.7(3.4) 0.01(62)
0.97(66) 1.2(1.4) 0.03(37) −0.012ð90Þ −3.7ð4.7Þ −11.3ð11.3Þ 3.7(3.4) 0.02(79)

a094m280 S5S5
−0.02ð2Þ −0.18ð7Þ 0.09(2) −0.007ð3Þ 0.21(23) −0.38ð44Þ 0.28(14) −0.01ð2Þ
−0.02ð2Þ −0.18ð7Þ 0.09(2) −0.007ð3Þ 0.21(23) −0.36ð44Þ 0.29(14) −0.01ð2Þ

a094m280 S7S7
−0.05ð4Þ −0.36ð10Þ 0.13(3) −0.006ð5Þ 0.34(42) 0.40(97) 0.18(26) −0.01ð3Þ
−0.05ð4Þ −0.37ð10Þ 0.14(3) −0.006ð5Þ 0.35(43) 0.55(99) 0.19(25) −0.01ð3Þ

a094m280 S9S9
−0.13ð5Þ −0.39ð15Þ 0.07(4) −0.008ð6Þ 0.48(63) −0.7ð1.8Þ 0.51(45) 0.06(6)
−0.13ð5Þ −0.38ð15Þ 0.07(4) −0.008ð6Þ 0.48(63) −0.7ð1.8Þ 0.51(45) 0.06(6)

a091m170 S7S7
0.11(6) −0.09ð16Þ 0.12(4) 0.006(8) −0.4ð1.2Þ −3.8ð4.0Þ 1.0(1.1) −0.18ð12Þ
0.11(6) −0.09ð16Þ 0.12(4) 0.006(8) −0.4ð1.2Þ −3.8ð4.0Þ 1.0(1.1) −0.18ð12Þ

a091m170L S7S7
0.01(4) −0.20ð12Þ 0.18(3) −0.013ð4Þ 0.03(25) −1.55ð87Þ 0.12(18) 0.03(2)
0.01(4) −0.18ð12Þ 0.18(3) −0.013ð4Þ 0.03(24) −1.74ð89Þ 0.11(18) 0.03(2)

TABLE XII. The renormalization constants ZA, ZS, ZT , ZV and the ratios ZA=ZV , ZS=ZV and ZT=ZV in the MS scheme at 2 GeVat the
two values of the lattice spacings. For each ensemble, the three rows give estimates for the three methods (A, B and C) described in the
text. The fourth row gives the mean (AV) with the error given by the larger of the two—half the spread or the largest statistical error. This
average value is taken to be our final estimate of the renormalization factor.

ID Method ZA ZS ZT ZV ZA=ZV ZS=ZV ZT=ZV

a127m285 A 0.880(7) 0.822(8) 0.883(5) 0.786(5) 1.119(6) 1.024(7) 1.111(4)
a127m285 B 0.891(9) 0.807(7) 0.908(9) 0.829(13) 1.075(8) 0.974(13) 1.096(8)
a127m285 C 0.867(5) 0.839(10) 0.877(5) 0.791(4) 1.094(5) 1.052(12) 1.107(5)
a127m285 AV 0.879(12) 0.823(16) 0.889(16) 0.802(22) 1.096(22) 1.017(39) 1.105(7)
a094m280 A 0.872(4) 0.793(7) 0.899(4) 0.815(4) 1.081(3) 0.976(4) 1.106(3)
a094m280 B 0.901(9) 0.790(9) 0.947(8) 0.855(10) 1.054(4) 0.924(8) 1.106(5)
a094m280 C 0.889(4) 0.817(5) 0.929(4) 0.831(3) 1.060(4) 0.978(5) 1.116(4)
a094m280 AV 0.887(15) 0.800(14) 0.925(24) 0.834(20) 1.065(14) 0.959(27) 1.109(5)
a091m170 A 0.882(6) 0.793(8) 0.915(5) 0.820(4) 1.086(4) 0.973(6) 1.116(3)
a091m170 B 0.899(6) 0.779(4) 0.949(6) 0.850(8) 1.058(4) 0.916(7) 1.116(5)
a091m170 C 0.892(4) 0.807(7) 0.946(5) 0.837(3) 1.065(4) 0.961(7) 1.129(4)
a091m170 AV 0.891(9) 0.793(14) 0.937(17) 0.836(15) 1.070(14) 0.950(29) 1.120(6)

TABLE XIII. Estimates of the renormalized isovector charges using the product ZΓ × gbareΓ that is labeled Method (i) in the text. We
also give the weighted average of the three measurements on the a081m210 ensemble and the estimate from the variational calculation,
VAR579 using 3 × 3 smearing σ ¼ 5, 7, 9 at a single value of tsep ¼ 12, reported in Ref. [21].

ID Analysis gu−dA gu−dS gu−dT gu−dV

a127m285 S5S5 1.258(22) 0.90(4) 1.031(21) 1.014(28)
a094m280 S5S5 1.214(36) 1.00(7) 0.978(31) 0.996(25)
a094m280 S7S7 1.225(35) 0.96(10) 0.972(42) 1.002(26)
a094m280 S9S9 1.193(29) 1.00(9) 0.960(36) 0.997(26)
a094m280 Average 1.206(33) 0.99(9) 0.972(36) 0.998(26)
a094m280 VAR579 1.221(26) 0.97(7) 1.034(32) 1.012(27)
a091m170 S7S7 1.214(19) 0.86(9) 1.003(23) 1.012(21)
a091m170L S7S7 1.316(36) 0.94(11) 0.977(30) 1.000(22)
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The projector PΓ for the RI-sMOM scheme is I
(scalar), ðqμ=q2Þq (vector), ðqμ=q2Þγ5q (axial-vector) or
ði=12Þγ½μγν� (tensor). In ΛPA

Γ ðpa; pbÞ, lattice artifacts due to
the breaking of the rotational symmetry to Oð4Þ can induce
dependence on the momenta pa and pb in addition to
that on q2. This systematic is significant in our data as
discussed below.
We analyzed 132, 100 and 100 configurations on the

three ensembles, a127m285, a094m280 and a091m170,
respectively, to get estimates at the three distinct values of a
and Mπ simulated. With this sample size, we find that the
statistical errors in the data are much smaller than the
systematics discussed below.
Operationally, we first translate the lattice data,

ZRI−sMOM
Γ ðpa; pb; q2Þ, to the MS scheme at 2 GeV. This

is done by matching estimates at a given squared momen-
tum transfer q2 to the MS scheme in the continuum at the
same q2 (horizontal matching) using 2-loop perturbative
relations expressed in terms of the coupling constant
αMSðq2Þ [39]. These results in the MS scheme are then
run to 2 GeV using the 3-loop anomalous dimension
relations for the scalar and tensor bilinears [40,41] and
labeled ZΓðpa; pb; q2Þ.
The calculation of αMSðq2Þ was carried out as follows.

Starting with the 5-flavor αMSðMZ ¼ 91.1876 GeVÞ ¼
0.1185, we used the 4-loop expression in MS scheme
[42] to run to the bottom quark threshold at
mb ¼ 4.18 GeV, and then to mc ¼ 1.275 GeV using the
4-flavor evolution. This 4-flavor result was converted to
3-flavor at this scale and then run to the final desired q2

using the 3-flavor evolution.
Ideally, after removing the dependence on pa and pb

from ZΓðpa; pb; q2Þ, one expects a window, ηΛQCD ≪ q ≪
ξπ=a, in which the data for the renormalized
ZðM̄S; 2 GeVÞ are independent of q; that is, at sufficiently
small values of the lattice spacing a, the data should show a
plateau versus q. The lower cutoff ηΛQCD is dictated by

nonperturbative effects and the upper cutoff ξπ=a by
discretization effects. Here η and ξ are, a priori, unknown
dimensionless numbers of Oð1Þ that depend on the lattice
action and the gauge-link smearing procedure.
The data, shown in Figs. 8, 9, 10 and 11, do not exhibit

such a window in which they are independent of q2, as
needed for a unique determination of the ZΓ and the ratios
ZΓ=ZV . The lattice artifacts are much larger than the
statistical errors. The four main systematics contributing
to the lack of such a window and the resulting uncertainty
in the extraction of the renormalization constants are
(i) breaking of the Euclidean Oð4Þ rotational symmetry
to the hypercubic group, because of which different
combinations of momenta with the same q2 give different
results in the RI-sMOM scheme; (ii) discretization errors at
large q2 other than these Oð4Þ breaking effects; (iii) non-
perturbative effects at small q2; and (iv) truncation errors in
the perturbative matching to the MS scheme and the
running to 2 GeV.
To reduce these systematics, we estimate ZΓ using three

methods. In methods A and B, to reduce artifacts due to the
breaking of rotational symmetry on the lattice, we only
keep points that minimize

P
μ½ðpμ

aÞ4 þ ðpμ
bÞ4� when there

are multiple combinations of momenta pμ
a and p

μ
b that have

the same q2. These points, after conversion to the MS
scheme at μ ¼ 2 GeV are shown in Figs. 8 and 9 as a
function of

ffiffiffiffiffi
q2

p
, the momentum flowing in all three legs in

the RI-sMOM scheme. Using this subset of the data, the
first two estimates are obtained as follows:
Method A: We fit the data in the MS scheme at μ ¼

2 GeV for q2 > 0.85 GeV2 using the ansatz c=q2 þ ZΓþ
d1q. The first term, c=q2, is introduced to account for
nonperturbative artifacts and the third, d1q, for discretiza-
tion errors. These fits are shown in Figs. 8 and 9. In these
figures, the data from the ensembles a094m280 and
a091m170 are plotted together to show that possible
dependence on the pion mass is much smaller than the
statistical errors or the lattice artifacts.
Method B: We choose the estimate for ZΓ by taking an

average over data points about q2 ¼ Λ=a, where Λ ¼
3 GeV is a scale chosen to be small enough to avoid
discretization effects, large enough to avoid nonperturba-
tive effects, and above which perturbation theory is
expected to be reasonably well-behaved. With this choice,
both qa → 0 and Λ=q → 0 in the continuum limit as
desired. In our simulations, the values of q2 are 4.7 and
6.4 GeV2 for the a ¼ 0.127 and 0.09 fm ensembles,
respectively.4 Thus, the value from method B and the error
in it is taken to be the mean and the standard deviation of

TABLE XIV. Estimates of the renormalized isovector charges
using the product of the ratios ðZΓ=ZVÞ × ðgbareΓ =gbareV Þ and the
conserved vector current relation ZVgbareV ¼ 1 that is labeled
Method (ii) in the text. We also give the weighted average of the
three measurements on the a081m210 ensemble and the estimate
from the variational calculation, VAR579, reported in Ref. [21].

ID Analysis gu−dA gu−dS gu−dT

a127m285 S5S5 1.241(28) 0.873(46) 1.014(11)
a094m280 S5S5 1.222(37) 1.003(79) 0.981(19)
a094m280 S7S7 1.224(32) 0.953(99) 0.970(39)
a094m280 S9S9 1.198(26) 1.005(90) 0.964(26)
a094m280 Average 1.210(31) 0.991(89) 0.975(28)
a094m280 VAR579 1.208(22) 0.953(68) 1.021(15)
a091m170 S7S7 1.206(23) 0.853(88) 0.990(15)
a091m170L S7S7 1.321(41) 0.934(116) 0.977(26)

4For these choices of q2, a given momentum component k,
evaluated as a2q2¼4k2, satisfies the condition k − sinðkÞ < 0.05,
which provides a bound on some of the tree-level discretization
effects.
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FIG. 8. Data for the renormalization constants ZA, ZS, ZT and ZV in the MS scheme at 2 GeV, keeping only points that minimizesP
μðpa

μÞ4 þ
P

μðpb
μÞ4 for each q2 as described in the text. Estimates from the a127m285 ensemble are shown as blue squares in the left

panels. The data points used in estimating the Z’s in method B are shown as green squares. The right panel shows estimates for the
a094m280 (blue squares) and the a091m170 (red diamonds) ensembles. The data points included in the estimate of Z using method B
are shown as green squares (a094m280) and yellow diamonds (a091m170). The results given in the labels are from method A using the
fit ansatz c=q2 þ Z þ d1q as described in the text. The fit is shown by the solid blue (red) line and the result Z þ d1q by the dashed blue
(red) line.
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the data over the ranges 3.7–5.7 and 5.4–7.4 GeV2 for the
ensembles at a ¼ 0.127 and 0.09 fm, respectively.
Method C: We first isolate the Oð4Þ breaking artifacts in

the data, Zðpa; pb; q2Þ, by using a fit. This was done in
Refs. [43,44] for different kinematics (pa ¼ pb) with terms
up to Oðp4Þ. We generalize that ansatz to our kinematics:

ZΓðpa;pb;q2Þ¼Z0
Γðq2Þþa4

X2
i¼0

cð1Þi p½4;i�
S þa2

X2
i¼0

cð2Þi
p½4;i�
S

q2

þa4
X3
i¼0

cð3Þi
p½6;i�
S

q2
þa4

X2
i;j¼0
i≤j

cð4Þij
p½4;i�
S p½4;j�

S

q4

þa4
X2
i;j¼0
i≤j

cð5Þij
p½4;i�
A p½4;j�

A

q4
; ð17Þ

where

p½n;i�
S;A ¼

X
μ

½ðpμ
aÞn−iðpμ

bÞi � ðpμ
aÞiðpμ

bÞn−i�: ð18Þ

Here, for each tensor structure Γ, the Z0
Γðq2Þ are indepen-

dent parameters for each q2, and the nineteen ci, whose q2

dependence is ignored, parameterize terms that break the
Oð4Þ symmetry. Also, only ZΓðpa; pb; q2Þ with momenta
satisfying fjpμ

aj; jpμ
bj; jqμjg ≤ π=ð2aÞ are included in the

fit. The Z0ðq2Þ, after conversion to the MS scheme at
μ ¼ 2 GeV, are then fit over the ranges q2 ¼ 4–16
(a127m285) and q2 ¼ 4–25 GeV2 (a094m280 and
a091m170) using the ansatz Z þ e2q2 þ e4q4 to extract
the desired ZΓ. We show all the data, ZΓðpa; pb; q2Þ, as red
circles in Figs. 10 and 11 and the Z0

Γðq2Þ as blue squares.

FIG. 9. Data for the ratios of renormalization constants ZA=ZV , ZS=ZV and ZT=ZV in the MS scheme at 2 GeVon the a127m285 (left)
and the a094m280 and a091m170 (right) ensembles. The rest is the same as in Fig. 8.
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The final fit, along with the error band, is shown by the
black lines. The data have been analyzed to obtain both ZΓ
and the ratios ZΓ=ZV , and their final values are collected in
Table XII.
On comparing the raw data presented in Figs 10 and 11

(red circles), we find the data for the ratios ZΓ=ZV show a
smaller spread, presumably because some of the system-
atics cancel. As a result, the errors in estimates from all
three methods, shown in Table XII, are smaller with the

ratio method. Also, in all three methods, the region
of q2 that contributes to the fits is consistent with the
general requirement that ηΛQCD ≪ q ≪ ζπ=a with η and ζ
of Oð1Þ to avoid both nonperturbative and discretization
artifacts.
The estimates from the three methods, given in

Table XII, have different systematics. For example, as
shown in Figs. 8, 9, 10 and 11, the variation with q2, in
many cases, is large. Nevertheless, the estimates from
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FIG. 10. Data for the renormalization constants ZA, ZS, ZT and ZV in the MS scheme at 2 GeV using method C described in the text.
All the data from the a127m285 (left) a094m280 (middle) and a091m170 (right) ensembles are shown as red circles. The data after
correcting for the rotational symmetry breaking are shown as blue squares. The corrected data (blue squares) are then fit using the ansatz
Z þ e2q2 þ e4q4 to estimate the Z. The fit is shown by the solid black line.
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the three methods agree to within about 2%. We, therefore,
take the average of the three as our final estimate. To assign
a conservative error, we use half the spread between
the three estimates since it is larger than the statistical
errors.
We also point out that the 2-loop perturbative expression

for the matching of ZT between the RI-sMOM scheme
and the MS scheme is badly behaved over the range
of q2 investigated. For example, the successive terms in
the loop expansion are 1þ 0.0052þ 0.0159 at q2 ¼
4 GeV2 (αMS ¼ 0.2979) and 1þ 0.0037þ 0.0078 at q2 ¼
25 GeV2 (αMS ¼ 0.2041) using the matching expressions
given in Ref. [39]. We, therefore, take the average of
the two 2-loop correction at q2 ¼ 4 and 25 GeV2, 0.012,
as a systematic error in the estimates of ZT due to trunca-
tion errors. The series for ZS at q2 ¼ 4 GeV2,
1 − 0.0157 − 0.0039, is much better behaved. Again, we
take the average of the 2-loop value at q2 ¼ 4 and
25 GeV2, 0.003, as the additional systematic uncertainty.
Note that these estimates of systematics are smaller than the
final errors estimates given in Table XII.

V. RENORMALIZED CHARGES

Combining our final estimates of the unrenormalized
charges on the four ensembles given in Table VIII and for
the ratios in Table IXwith the renormalization factors given in
TableXII, the renormalized charges are extracted in twoways:

(i) Method (i): using the product ZΓ × gbareΓ . These
results are given in Table XIII.

(ii) Method (ii): using the product of the ratios
ðZΓ=ZVÞ × ðgbareΓ =gbareV Þ and the conserved vector
current relation ZVgbareV ¼ 1þOða2Þ. These results
are given in Table XIV.
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FIG. 11. Ratios of renormalization constants ZA=ZV , ZS=ZV and ZT=ZV in the MS scheme at 2 GeV using method C. The rest is the
same as in Fig. 10.

TABLE XV. Our final estimates of the renormalized isovector
charges obtained by averaging the estimates given in Tables XIII
and XIV as explained in the text.

ID gu−dA gu−dS gu−dT

a127m285 1.249(28) 0.885(46) 1.023(21)
a094m280 1.208(33) 0.990(89) 0.973(36)
a091m170 1.210(23) 0.859(89) 0.996(23)
a091m170L 1.319(41) 0.935(116) 0.977(30)
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In both cases, the errors in the Z’s (ZΓ=ZV) are combined in
quadrature with the error in the unrenormalized charges, gbareΓ
(gbareΓ =gbareV ), to get the final estimates. The results for the
a094m280 ensemble, labeled Average, is an average,
weighted by 1=error2, over the three estimates with different
smearing parameter σ.
The two sets of estimates given in Tables XIII and XIV

are consistent: the difference is less than 1σ and the
deviation of ZVgV from unity (column labeled gV in
Table XIII) is ≲1% and smaller than the errors. The two
estimates have their relative strengths but we have no
obvious reason for choosing one over the other. We,
therefore, use the average of the two estimates and the
larger of the two errors for our final values given in
Table XV.
Lastly, in Table XVI we give results for the renormalized

connected parts of the flavor diagonal charges. The

renormalization is carried out using the ZA;S;T × gu;dA;S;T

method with the ZA;S;T given in Table XII. Technically,
the flavor diagonal operators are a combination of flavor
singlet and nonsinglet currents and the renormalization
factors are different for the two [45]. In this work we are
ignoring the difference.

VI. COMPARISON WITH PREVIOUS RESULTS

The results presented here are on three ensembles with
lattice spacing a ≈ 0.127 and ≈0.09 fm and two values of
the light quark masses corresponding to Mπ ≈ 280 and
170MeV. Note that we regard estimates on the a091m170L
ensemble as preliminary. These three data points are not
sufficient to reliably extrapolate to the continuum limit or to
the physical light quark mass. We, therefore, compare these
results with other similar calculations.

TABLE XVI. Estimates of the connected part of the flavor diagonal axial, scalar and tensor charges gu;dA;S;T with our “best” choices of
tmin, tsep and τskip. For each ensemble we give the two estimates from fN2pt; N3ptg ¼ f2; 2g and f4; 3�g fits with the latter marked with
an asterisk. These are renormalized using the same factors as for the isovector charges given in Table XII. Results from a 2þ 1þ 1-
flavor clover-on-HISQ calculation are reproduced from Table XII in Ref. [10] to facilitate the following comparisons
a127m285� ↔ a12m310, a094m280� ↔ a09m310 and a091m170� ↔ ða09m220; a09m130Þ between estimates with similar lattice
parameters.

ID Type gu;connA gd;connA gu;connS gd;connS gu;connT gd;connT

a127m285 S5S5 0.919(16) −0.319ð08Þ 3.28(15) 2.39(12) 0.839(18) −0.195ð07Þ
a127m285* S5S5 0.932(17) −0.325ð09Þ 3.33(11) 2.43(09) 0.831(18) −0.201ð08Þ
a12m310 clover-on-HISQ 0.914(11) −0.315ð6Þ 3.07(6) 2.23(4) 0.848(29) −0.209ð8Þ
a094m280 S5S5 0.909(22) −0.297ð10Þ 3.61(17) 2.65(13) 0.780(25) −0.203ð09Þ
a094m280* S5S5 0.911(29) −0.302ð14Þ 3.82(27) 2.82(23) 0.770(28) −0.208ð12Þ
a094m280 S7S7 0.940(30) −0.294ð13Þ 3.79(37) 2.82(28) 0.796(31) −0.196ð12Þ
a094m280* S7S7 0.929(32) −0.296ð16Þ 3.99(41) 3.03(35) 0.777(34) −0.195ð14Þ
a094m280 S9S9 0.907(27) −0.307ð13Þ 3.66(19) 2.66(14) 0.783(29) −0.209ð11Þ
a094m280* S9S9 0.904(24) −0.289ð13Þ 3.74(20) 2.74(16) 0.777(30) −0.183ð11Þ
a094m280 Average 0.915(26) −0.299ð12Þ 3.65(24) 2.67(18) 0.784(28) −0.203ð11Þ
a094m280* Average 0.911(28) −0.296ð14Þ 3.80(29) 2.80(25) 0.774(31) −0.196ð12Þ
a09m310 clover-on-HISQ 0.926(26) −0.304ð15Þ 3.40(32) 2.56(25) 0.823(33) −0.200ð13Þ
a091m170 S7S7 0.909(22) −0.299ð15Þ 4.23(20) 3.31(16) 0.814(22) −0.221ð14Þ
a091m170* S7S7 0.886(16) −0.329ð10Þ 4.30(24) 3.43(20) 0.798(19) −0.204ð09Þ
a09m220 clover-on-HISQ 0.911(26) −0.337ð16Þ 3.78(30) 2.98(23) 0.823(31) −0.215ð11Þ
a09m130 clover-on-HISQ 0.891(20) −0.338ð15Þ 4.97(41) 4.08(35) 0.784(31) −0.191ð11Þ
a091m170L S7S7 0.917(18) −0.331ð11Þ 4.39(33) 3.39(19) 0.804(24) −0.196ð10Þ
a091m170L* S7S7 0.960(30) −0.356ð22Þ 4.86(33) 3.93(29) 0.808(28) −0.170ð18Þ

TABLE XVII. Comparison of the renormalized isovector charges with those from four 2þ 1þ 1-flavor clover-on-HISQ ensembles
with similar values of the lattice spacing and pion mass. The clover-on-clover data have been reproduced from Tables XIII and XVand
the clover-on-HISQ data have been reproduced from Tables I, XII and XIII in Ref. [10].

ID Lattice Theory a fm Mπ (MeV) gu−dA gu−dS gu−dT gu−dV

a127m285 2þ 1 clover-on-clover 0.127(2) 285(6) 1.249(28) 0.89(5) 1.023(21) 1.014(28)
a12m310 2þ 1þ 1 clover-on-HISQ 0.121(1) 310(3) 1.229(14) 0.84(4) 1.055(36) 0.969(22)
a094m280 2þ 1 clover-on-clover 0.094(1) 278(3) 1.208(33) 0.99(9) 0.973(36) 0.998(26)
a09m310 2þ 1þ 1 clover-on-HISQ 0.089(1) 313(3) 1.231(33) 0.84(10) 1.024(42) 0.975(33)
a091m170 2þ 1 clover-on-clover 0.091(1) 166(2) 1.210(19) 0.86(9) 0.996(23) 1.012(21)
a09m220 2þ 1þ 1 clover-on-HISQ 0.087(1) 226(2) 1.249(35) 0.80(12) 1.039(36) 0.969(32)
a09m130 2þ 1þ 1 clover-on-HISQ 0.087(1) 138(1) 1.230(29) 0.90(11) 0.975(38) 0.971(32)
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A number of collaborations have performed calculations
of the isovector charges. For recent results see
Refs. [10,46–49]. The lattice action used, the statistics,
the handling of systematic uncertainties, and the overall
strategy for the analysis is different in each case. In this
work, the first comparison we therefore make is with
calculations done using the same methods but with a
2þ 1þ 1-flavor clover-on-HISQ lattice formulation
[10,14,50]. Results for the renormalized isovector charges
given in Table XV are compared with the clover-on-HISQ
estimates with the closest values of the lattice spacing and
the pion mass given in Table XII of Ref. [10]. Both sets of
results are reproduced in Table XVII to facilitate compari-
son. We find that the estimates for gu−dA;S;T from simulations
using two different lattice formulations and slightly differ-
ent lattice parameters agree within one combined σ. Note
that the systematics at a given value of the lattice spacing,
the lattice volume, or the pion mass can be different in any
two calculations with different the lattice formulations.
Thus, our conclusions are mostly qualitative.
Comparing the results for the unrenormalized transition

matrix elements h0jOA;S;T j1i given in Table V to those in
Tables VI–VIII in Ref. [10], we find that they have the same
sign and are similar in magnitude. Our rough estimates for
these matrix elements are: h0jOAj1i ≈ −0.1, h0jOSj1i ≈
−0.4 and h0jOT j1i ≈ 0.2. Since these matrix elements
account for most of the observed excited-state contamina-
tion in these two calculations, the size and pattern of the
excited-state contamination is similar. In both calculations,
the errors in the estimates for h1jOA;S;T j1i are too large to
warrant a comparison.
The renormalized connected parts of the flavor diagonal

charges given in Table XVI are also in very good agreement
with those from the 2þ 1þ 1-flavor clover-on-HISQ
calculation. To facilitate comparison, we have reproduced
the relevant results from Table XII of Ref. [10] in
Table XVI.
The second comparison we make is with results given in

Ref. [21] obtained using the variational method on the
a094m280 ensemble. The results from the variational
analysis of the 3 × 3 matrix of two- and three-point
correlations functions constructed using the smearing
parameter values σ ¼ 5, 7 9 at a single value of tsep ¼
12 are also given in Tables XIII and XIV. These numbers,
labeled VAR579, are different from those presented in
Ref. [21] as the fits have now been done using the full
covariance matrix and the renormalization factors have
been included. The results from the 2-state fits presented in
this work and those from the variational method are in very
good agreement.
In Fig. 12, we show the projected variational three-point

correlation function for the three isovector charges on the
a094m280 ensemble, taken from the data presented in
Ref. [21]. The curved lines show the 2-state fit to these data
for three values of τskip ¼ 2, 3, 4. The corresponding three

tsep → ∞ estimates agree and lie within the shaded 1σ band
for the τskip ¼ 2 fit. The panels also show the S9S9
correlation function data with tsep ¼ 12 (purple circles).
Note that the variational analysis has been done on only
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FIG. 12. The projected variational three-point correlation
function (black crosses) for the three isovector charges obtained
from simulations with tsep ¼ 12 on the a094m280 ensemble. The
raw data is the same as that presented in Ref. [21] and labeled
V579. The new fits with the full covariance matrix are shown for
three values of τskip ¼ 2, 3, 4. The variational result (solid black
line) and the grey error band is the result of the fit with τskip ¼ 2.
For comparison, we also show the data points for the S9S9
correlation function (purple circles) with tsep ¼ 12.
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443 configurations versus the full set of 1005 for the S9S9
study. The errors in the two sets of data points are
comparable once this difference in statistics is taken into
account.
The data for gu−dA in the top panel of Fig. 12 are almost

flat in τ for both methods, suggesting that the contribution
of the h0jOAj1i term to both the variational and the tuned
S9S9 correlation functions is small. The variational esti-
mates lie about 3% higher. A difference of this size can
easily be explained by possible differences in the h1jOAj1i
or higher terms that cannot be isolated from fits to data with
a single value of tsep.

5

The data for the scalar channel exhibits significant
curvature in both correlation functions and this τ-
dependence is again almost entirely accounted for by
the h0jOSj1i term. The ≈1σ difference between the two
correlation functions is most likely again due to differences
in the contributions of the h1jOSj1i and higher terms. In the
tensor channel, the data show very little change with
the smearing parameter σ, and the variational and the
S9S9 estimates essentially overlap.
This comparison indicates that the most significant gain

on using the variational method with tsep ¼ 12 is in gu−dA .
Further calculations are needed to understand why the
excited-state behavior is so different in the three charges.
Based on the current data, to confirm that estimates in the
tsep → ∞ limit have been obtained, the variational analysis
needs to be repeated at values of tsep > 12 and the 2-state fit
with multiple values of tsep requires high-precision data
at tsep > 1.2 fm.

VII. CONCLUSIONS

We have presented a high statistics study of isovector
charges of the nucleon using four ensembles of (2þ 1)-
flavor clover lattices generated using the RHMC algorithm
[25]. The all-mode-averaging method [22,23] and the
coherent source sequential propagator technique [21,24]

are shown to be cost-effective ways to increase the
statistics. We demonstrate control over excited-state con-
tamination by performing simulations at multiple values of
the source-sink separation tsep, and by showing the stability
of the 2-, 3- and 4-state fits.
The first highlight of the analysis is that Oð105Þ

measurements allowed us to carry out 2-, 3- and 4-state
fits to the two-point functions and 2- and 3-state fits to the
three-point correlation functions using the full covariance
matrix. In all cases, except for the a091m170L ensemble
that is statistics limited, the results for the nucleon mass, the
mass-gaps and the charges show stability with respect to
variations in the fit parameters and the number of states
included in the fits. Based on this analysis, we estimate that
it will takeOð106Þmeasurements to obtain results for gA;T;V
with Oð1%Þ (gS with Oð3%Þ) error on each ensemble.
The second highlight is that our clover-on-clover results

are in good agreement with calculations done using the
clover-on-HISQ lattice formulation with similar values of
the lattice parameters [10,14,50]. Estimates of gA, consid-
ered a litmus test of lattice QCD’s promise to provide
precise estimates of the nucleon structure, are within 5% of
the experimental value even with light quark masses
corresponding to Mπ ≈ 280 and 170 MeV. These calcu-
lations are being extending to lighter quarks to study the
chiral behavior and to finer lattice spacings to carry out the
continuum extrapolation.
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5In an n-state generalization of Eqs. (7) and (8), one can divide
terms into those that depend on τ and those that do not. The τ
dependent terms are proportional to coshðΔMðτ − tsep=2ÞÞ,
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