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The positive-parity nucleon spectrum is explored in 2þ 1 flavor lattice QCD in a search for new
low-lying energy eigenstates near the energy regime of the Roper resonance. In addition to conventional
three-quark operators, we consider novel, local five-quark meson-baryon type interpolating fields that
hold the promise to reveal new eigenstates that may have been missed in previous analyses. Drawing on
phenomenological insight, five-quark operators based on σN, πN and a0N channels are constructed.
Spectra are produced in a high-statistics analysis on the PACS-CS dynamical gauge-field configurations
with mπ ¼ 411 MeV via variational analyses of several operator combinations. Despite the introduction of
qualitatively different interpolating fields, no new states are observed in the energy regime of the Roper
resonance. This result provides further evidence that the low-lying finite-volume scattering states are not
localized, and strengthens the interpretation of the Roper as a coupled-channel, dynamically-generated
meson-baryon resonance.
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I. INTRODUCTION

Since the inception of lattice QCD, significant effort has
been invested in exploring hadronic spectra, both to shed
light upon the nature and properties of various states, and to
test the validity of the methodology itself. In particular,
the community has shown notable interest in the positive-
parity nucleon channel [1–6], where the first positive-parity
JP ¼ 1

2
þ excitation of the nucleon, known as the Roper

resonance N�ð1440Þ, remains a puzzle.
In Nature, the Roper lies 95 MeV below the lowest-lying

negative-parity resonant state, the N�ð1535Þ, whereas in
constituent quark models (where it is associated with an
N ¼ 2 radial excitation of the nucleon) the order is reversed
[7–9]. Speculation about the true nature of this state has
been widespread, including the idea that the Roper can be
understood with five-quark meson-baryon dynamics [10].
A critical challenge for lattice spectroscopy in this

channel is to judiciously choose an appropriate operator
basis to sufficiently span states of interest in the low-lying
spectrum. This can be achieved in multiple ways. Recalling
that any radial function can be expanded using a basis
of different width Gaussians, fðj~rjÞ ¼ P

icie
−εir2 , suggests

the use of fermion sources with varying Gaussian smeared
widths [11], which is one method to obtain a basis of
operators possessing enhanced overlap with radial
excitations.
The CSSM lattice collaboration was the first to demon-

strate that the inclusion of Gaussian-smeared fermion
sources of wide widths are critical in enabling the extrac-
tion of the lowest-lying positive-parity excitation in the
nucleon channel [1,12]. It was later shown that the quark

probability distribution for this state is consistent with an
N ¼ 2 radial excitation [3,13].
Another method for selecting an appropriate operator

basis is to include qualitatively different operators, by
introducing interpolating fields with the same quantum
numbers but different quark and/or Dirac structure. Here, it
becomes instructive to briefly examine the contemporary
work done in the negative-parity nucleon channel with its
two low-lying resonances, the N�ð1535Þ and N�ð1650Þ
[2,14–17].
In recent years the CSSM and Hadron Spectrum lattice

collaborations have studied the low-lying negative-parity
spectrum of the nucleon using various local three-quark
operators [2,16–20] but were unable to extract a state
consistent with the low-lying S-wave πN scattering thresh-
old. Notably, at near physical quark masses this threshold
lies below the lowest-lying negative-parity resonant state,
making it an intuitive place to search for the presence of
states consistent with scattering thresholds.
However, for states dominated by a two-particle scatter-

ing component, the probability of finding the second
particle at the position of the first is proportional to
1=V, where V is the spatial volume of the lattice.
Therefore, the coupling of these scattering states to local
operators is volume suppressed.
Naturally, one would expect five-quark operators to

possess higher overlap with five-quark states, and as such
the CSSM lattice collaboration introduced local five-quark
πN-type operators [21]. These operators were constructed
from a negative-parity pion piece together with a positive-
parity nucleon piece. Consequently, the operators were
expected to possess higher overlap with the S-wave πN
scattering state and, indeed, a state consistent with this
threshold was observed. However, the coupling was*adrian.kiratidis@adelaide.edu.au
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relatively weak, and one can conclude that the S-wave πN
scattering state is poorly localized and better treated with an
approach in which the momenta of both the pion and the
nucleon are projected to zero. These nonlocal operators
are known to have excellent overlap with the scattering
state [15].
Turning to the positive-parity channel, we are searching

for new states that have poor overlap with conventional
three-quark operators and therefore have been missed in
analyses to date. Meson-baryon states having strong
attraction, which can give rise to localization of the state
[22], are expected to have good overlap with our local five-
quark operators. The existence of such states would suggest
an important role for molecular meson-baryon configura-
tions [23] in the formation of the Roper resonance.
To obtain positive parity in a local meson-baryon

interpolating field, the intrinsic parities of the meson and
baryon must match, and there are two approaches one can
consider. Because the lowest-lying five-quark scattering
state is a πN P-wave state, previous attempts have
considered the approach of local πN-type interpolators.
As the ability to construct a relative P-wave πN does not
exist in a local operator, this approach necessarily draws on
an odd-parity excitation of the nucleon to form the quantum
numbers of the Roper. As one might expect, this operator
had negligible overlap with the P-wave πN scattering
threshold which lies between the ground state and the first
positive-parity excitation observed in lattice QCD at light
quark masses. No state consistent with this threshold was
observed in the five-quark analysis of Ref. [21].
Drawing on the success of the local πN-type operator

in the negative parity sector, we consider the alternative
approach of pairing an even-parity meson interpolator with
the nucleon interpolator such that the ground state nucleon
can participate in forming the positive-parity quantum
numbers of the Roper resonance. In this analysis, we
construct the local five-quark meson-baryon operators
a0N and σN, and investigate their impact on the posi-
tive-parity nucleon spectrum. We search for both new low-
lying eigenstates in the finite volume of the lattice, and/or
an alteration of the spectrum reported in previous analyses.
Following the outline of variational analysis techniques

in Sec. II, we construct the new local five-quark operators
in Sec. III, and outline the stochastic-noise methods
employed to calculate the corresponding loop containing
diagrams. Simulation details are discussed in Sec. IV and
the results of the variational analyses are presented in
Sec. V. A summary of our findings and their impact our
understanding of the Roper resonance is presented in
Sec. VI.

II. CORRELATION MATRIX TECHNIQUES

Correlation matrix based variational analyses [24,25] are
now well-established as a framework within which hadron
spectra can be produced [26]. The methodology begins via

the judicious selection of a suitably large basis of N
operators, such that the states of interest within the
spectrum are contained within the span. An N × N matrix
of cross correlation functions,

Gijð~p; tÞ ¼
X

~x

e−i~p·~xhΩjχið~x; tÞχ̄jð~0; tsrcÞjΩi; ð1Þ

is then produced. At ~p ¼ ~0 a definite parity can be
projected out using the operator

Γ� ¼ 1

2
ðγ0 � IÞ: ð2Þ

Defining Gijð~p; tÞ ¼ TrðΓGijð~p; tÞÞ, we can write the
Dirac-traced correlation function as a sum of exponentials,

GijðtÞ ¼
X

α

λαi λ̄
α
je

−mαt: ð3Þ

Here λαi and λ̄
α
j are the couplings of the annihilation, χi, and

creation, χ̄j, operators at the sink and source respectively,
while the energy eigenstates of mass mα are enumerated
by α. We then search for a linear combination of operators

ϕ̄α ¼ χ̄juαj and ϕα ¼ χivαi ð4Þ

such that ϕ and ϕ̄ couple to a single energy eigenstate. It is
then clear from Eq. (3) that

Gijðt0 þ dtÞuαj ¼ e−mαdtGijðt0Þuαj ; ð5Þ

and therefore for a given choice of variational parameters
ðt0; dtÞ, uαj and vαi can be obtained by solving the left and
right eigenvalue equations

½G−1ðt0ÞGðt0 þ dtÞ�ijuαj ¼ cαuαi ð6Þ

vαi ½Gðt0 þ dtÞG−1ðt0Þ�ij ¼ cαvαj ; ð7Þ

with eigenvalue cα ¼ e−mαdt. We note that Gij is a sym-
metric matrix in the ensemble average and as such we work
with the improved estimator 1

2
ðGij þ GjiÞ that ensures the

eigenvalues of Eqs. (6) and (7) are equal. At t0 and t0 þ dt
the eigenvectors uαj and vαi diagonalize the correlation
matrix which enables us to write down the eigenstate-
projected correlation function as

GαðtÞ ¼ vαi GijðtÞuαj : ð8Þ

GαðtÞ is then used to extract masses. The energy spectrum
of the lattice eigenstates is performed by fitting a single
state ansatz to the eigenstate-projected correlator GαðtÞ,
using a covariance matrix based χ2 analysis as detailed in
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Ref. [21]. At this point it is worth noting the key points that
differentiate our projected correlator analysis from studies
that make fits to the principal correlator.
The principal value of the correlator (for the state α) is

defined as cαðt; t0Þ, where the eigenvalue cα as a function
of time t is obtained by fixing an initial time t0, then
repeatedly solving the generalized eigenvalue problem
(GEVP), as in Eq. (6), for increasing values of
t ¼ t0 þ dt. In the large time limit, cαðt; t0Þ will be
proportional to the exponential of the energy of the state,
e−mαðt−t0Þ. However, in practice, there is only a limited time
window over which the GEVP can be solved before the
problem breaks down due to loss of signal. At early times
the value of cαðt; t0Þ is strongly influenced by excited state
contamination [27], so studies using the principal value of
the correlator typically use a two-exponential fit to extract
the relevant energy level [2]. As a consequence of this, a
two-exponential fit to the principal correlator provides
enough parameter freedom such that the energy levels
extracted may not be robust under a change of operator
basis, and it is possible for missing states to influence the
energy levels obtained from fits to cαðt; t0Þ [28,29].
Early CSSM studies of the variational method [27,30]

found that the eigenvector components which define the
optimized linear combination of operators for a particular
state show only a weak dependence on the variational
parameters ðt; t0Þ. Hence, the variational analysis is ideally
performed at early times where the excited states are
contributing substantially to the correlation matrix and
the uncertainties in the correlators are small, before loss of
signal for the higher energy states spoils the convergence
of the full GEVP. This need contrasts the desire to fit at
large t where only a single state is contributing to a given
correlator.
The eigenstate-projected correlator method bridges these

two otherwise incompatible needs. We choose the varia-
tional parameters within the ideal region to solve the GEVP
once and obtain a single set of optimized operators, such
that the large time behavior of the projected correlator
GαðtÞ is well determined, as (unlike the principal correla-
tor) it does not depend on the convergence of the GEVP at
late times. Using the reduced χ2 as a guide, we can search
for an appropriate fit window in which the single-state
ansatz is supported by GαðtÞ and extract the lattice energy
level for that state. Our most comprehensive analysis of the
sensitivity of the excited state spectrum on missing states
demonstrates that using the eigenstate-projected correlator
method, one can extract robust energy levels, even when
lower-lying states are missing [21].

III. INTERPOLATING FIELDS

We now turn our attention toward the selection of
interpolating operators. As discussed in Sec. I, previous
work with five-quark operators [15,21] have successfully
extracted states consistent with scattering thresholds in the

negative-parity nucleon channel. Of particular note is
Ref. [15] in which a state consistent with the S-wave
πN scattering threshold was extracted with a high degree of
precision after explicitly projecting single-hadron momen-
tum onto each single-hadron factor of the five-quark
operator. Both of these calculations employed a πN-type
negative-parity five-quark operator, constructed with a
negative-parity meson piece and a positive-parity nucleon
piece. Motivated by this success, we investigate a similar
tactic in the positive-parity channel. Here, we construct
five-quark operators with a positive-parity meson piece and
a positive-parity nucleon piece.
Utilizing the operators for the positive-parity isoscalar σ

and isovector a00 and aþ0 mesons

σ ¼ 1ffiffiffi
2

p ½ūeIue þ d̄eIde�;

a00 ¼
1ffiffiffi
2

p ½ūeIue − d̄eIde�;

aþ0 ¼ ½d̄eIue�; ð9Þ

we can construct five-quark σN- and a0N-type interpola-
tors. Note that the labels ðπN; σN; a0NÞ applied to our
five-quark interpolators are solely meant to distinguish the
mathematical structure, as each of these operators will
excite multiple different states on the lattice. Recalling that
the σ meson has the same quantum numbers as the vacuum
we are able to write down the general form of the σN-type
interpolators as

χσNðxÞ ¼
1

2
ϵabc½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ

× ½ūeðxÞIueðxÞ þ d̄eðxÞIdeðxÞ�: ð10Þ

Here, the choices of ðΓ1;Γ2Þ ¼ ðCγ5; IÞ and ðC; γ5Þ provide
us with two five-quark operators χσNðxÞ and χ0σNðxÞ
respectively.
Similarly, we write down the general form of the a0N-

type operators using the Clebsch-Gordan coefficients to
project isospin I ¼ 1=2, I3 ¼ þ1=2 obtaining

χa0NðxÞ ¼
1ffiffiffi
6

p ϵabc

× f2½uTaðxÞΓ1dbðxÞ�Γ2dcðxÞ½d̄eðxÞIueðxÞ�
− ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½d̄eðxÞIdeðxÞ�
þ ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½ūðxÞeIueðxÞ�g; ð11Þ

where the two aforementioned choices of ðΓ1;Γ2Þ provide
χa0NðxÞ and χ0a0NðxÞ respectively. In addition, we include
the two five-quark operators χπN and χ0πN based on the form
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χπNðxÞ ¼
1ffiffiffi
6

p ϵabcγ5

× f2½uTaðxÞΓ1dbðxÞ�Γ2dcðxÞ½d̄eðxÞγ5ueðxÞ�
− ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½d̄eðxÞγ5deðxÞ�
þ ½uTaðxÞΓ1dbðxÞ�Γ2ucðxÞ½ūðxÞeγ5ueðxÞ�g; ð12Þ

and detailed in Ref. [21]. Our basis of qualitatively different
operators is completed with the inclusion of the standard
three-quark nucleon operators χ1 and χ2 given by

χ1 ¼ ϵabc½uaTðCγ5Þdb�uc
χ2 ¼ ϵabc½uaTðCÞdb�γ5uc: ð13Þ

With the introduction of five-quark operators having an
antiquark flavor matching one of the quark flavors, dia-
grams that contain loop propagators Sðy; yÞ where the
source and sink position coincide are encountered. Loops
at the source, Sð0; 0Þ, can be treated with conventional
propagators via Sðx; 0Þjx¼0. Loops at the sink, Sðx; xÞ, are
stochastically estimated by averaging over four indepen-
dent Z4 noise vectors that are fully diluted in time, spin and
color. Further details of our calculation of these stochastic
propagators, along with the method by which they are
smeared, can be found in our previous work [21].

IV. SIMULATION DETAILS

The results presented herein utilize the PACS-CS 2þ 1
flavor dynamical-fermion configurations [31] with an
Iwasaki gauge action [32] which are made available
through the International Lattice Data Grid (ILDG) [33].
The lattice size is 323 × 64 with a lattice spacing of
0.0907 fm which provides a physical volume of
≈ð2.90 fmÞ3. The light quark mass is set by the hopping
parameter κud ¼ 0.13754 which gives a pion mass of
mπ ¼ 411 MeV, while the strange quark mass is set by
κs ¼ 0.13640. Backward propagating states are removed
via the imposition of fixed boundary conditions in the time
direction [27,34].
The source insertion occurs at time slice

tsrc ¼ nt=4 ¼ 16, well away from the boundary and its
associated effects. Our variational analysis is performed
with parameters ðt0; dtÞ ¼ ð17; 3Þ which provides a good
balance between systematic and statistical uncertainties.
Error bars are calculated via single elimination jackknife,
while a full covariance matrix analysis provides the χ2=dof,
which is used to select appropriate fit regions for eigen-
state-projected correlators.
Gauge-invariant Gaussian smearing [35] at the source

and sink is used to increase the span of our basis by altering
the overlap of our interpolators with the states of interest.
We investigate three levels of ns ¼ 35, 100 and 200 sweeps
of Gaussian smearing.

V. RESULTS

A. Correlation matrix construction

As we now possess eight qualitatively different oper-
ators, each with three different levels of Gaussian smearing,
our basis of twenty-four operators admits a substantial
number of possible sub-bases of interest. Consequently, it is
instructive to investigate various ratios of correlators, in
order to determine which combinations can provide suit-
able sub-bases such that the condition number of the
correlation matrix is favorable.
In Fig. 1 we present plots at each of the three smearing

levels studied, showing a ratio of correlators formed by
dividing each correlator with the correlation function
formed from the standard χ1 operator. Our aim is to
identify correlators showing a unique approach to the
plateau, indicating a novel superposition of excited states.
Notably, the ratios formed from the σN type operators,

that is GχσN=Gχ1 and Gχ0σN
=Gχ1 behave in a remarkably

similar manner to the ratios Gχ1=Gχ1 and Gχ2=Gχ1 .
Consequently, we anticipate the overlap of χσN with states
in the spectrum is very similar to χ1 and similarly the
overlap of states with χ0σN is much the same as with χ2.
Evidently, these new σN-type operators provide little new
information from that already contained in χ1 and χ2.
Recalling that the σ meson carries the quantum numbers
of the vacuum provides some insight into this result. In light
of this similarity, the χσN and χ0σN interpolators are omitted
from bases that also contain the matching χ1 or χ2
interpolator.
Of the two new a0N interpolators, χa0N stands out from

the other interpolators at all three smearing levels. χa0N
excites a novel superposition of nucleon excited states and
will aid in spanning the space of low-lying states. It holds
promise to reveal the presence of a low-lying state missed
in previous analyses. Similarly, at 100 and especially 200
smearing sweeps, χ0a0N shows a unique path to the plateau,
again indicating the promise of disclosing new states.
In comparing the various smearing levels for all the

correlator ratios presented, one observes that the plateau in
the ratios occurs at earlier times as the smearing increases.
Again, these differences between different smearing levels
aid in spanning the space and generating correlation
matrices with good condition numbers. However, the
construction of large correlation matrices tends to increase
the condition number and decrease the likelihood of
obtaining a solution. This effect, combined with the larger
statistical uncertainties encountered with the largest smear-
ing extent, leads to difficulties in finding a solution to the
generalized eigenvalue equations with the new five-quark
operators.
As a result, we focus on correlation matrices formed

from 35 and 100 sweeps of smearing in the propagator
sources and sinks. These are the smearing levels that
provide the most variation at early times, and hence the
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levels at which we are able to construct bases more likely to
provide an effective span of the state space, particularly in
comparison to that obtained using three-quark operators
alone. This enables us to examine scenarios with multiple,
qualitatively different quark structures, while still retaining
the presence of multiple smearing levels. While we will not
detail the results including the 200 sweep correlators, we do
note that when a solution was found, the energies of the
low-lying eigenstates agreed with the results presented in
the following.
We consider seven different correlation matrices formed

from the bases outlined in Table I. Each basis is formed
with 35 and 100 sweeps of smearing, thus creating four
8 × 8 bases, two 6 × 6 bases and one 4 × 4 basis. While
each correlation matrix may disclose different states, the
energies of the states observed should agree among the
different bases considered.

B. Finite volume spectrum of states

The development of Hamiltonian effective field theory
[22,23,36] can provide some insight into the spectrum to
be anticipated. By using an effective field theory model
constrained to the experimental phase shifts, inelasticities
and pole position, one can predict the spectrum to be
observed in the finite volume of the lattice. In Ref. [22],
three models are considered with different roles played by
the bare basis-state in constructing the Hamiltonian model.
In the popular model incorporating a bare basis state with a
mass of 2.0 GeV, the model predicts a Roper-like state at
1750 MeV in the finite volume of the lattice for the quark
mass corresponding to κ ¼ 0.13754 that is considered
herein.
Alternatively, the third model of Ref. [22], preferred by

previous lattice results, predicts the absence of low-lying
states with a strong bare-state component, predicting
instead the existence of five meson-baryon scattering states
below the state observed in lattice QCD, commencing at
1600 MeV. Attraction in these channels could localize the
meson to the vicinity of the baryon [37], overcoming the
volume suppression of the coupling.
The low-lying spectra produced from the correlation

matrices detailed in Table I are presented in Fig. 2. In basis

FIG. 1. Correlation function ratios constructed to illustrate
different superpositions of energy eigenstates in the correlators.
The ratio is formed by dividing the correlator corresponding
to each operator indicated in the legend by the correlation
function formed from the χ1 operator. Plots are presented at
35 (top), 100 (middle) and 200 (bottom) sweeps of Gaussian
smearing in the quark-propagator source and sink. For clarity of
presentation, the t component of the ratio is sequentially
offset.

TABLE I. The interpolating fields used in constructing each
correlation-matrix basis.

Basis Number Operators Used

1 χ1, χ2
2 χ1, χ2, χa0N
3 χ1, χ2, χa0N , χ

0
a0N

4 χπN , χ0πN , χa0N
5 χπN , χ0πN , χa0N , χ

0
a0N

6 χπN , χ0πN , χσN , χ
0
σN

7 χσN , χ0σN , χa0N , χ
0
a0N

SEARCH FOR LOW-LYING LATTICE QCD EIGENSTATES … PHYSICAL REVIEW D 95, 074507 (2017)

074507-5



number one, we present results from a simple 4 × 4
analysis with the three-quark χ1 and χ2 interpolating fields
at two different smearing levels. This consideration of
three-quark operators alone [1,12] provides the benchmark
analysis that we will refer to as we attempt to ascertain
whether subsequent bases with five-quark operators alter
the low-lying spectrum.
As previously mentioned, χa0N appeared to be the most

promising new operator, in that the ratio χa0N=χ1 displayed
the largest variation when compared to ratios previously
studied. As such, in column two we add the χa0N operator
to χ1 and χ2 and perform the resulting 6 × 6 correlation
matrix analysis. This analysis reveals no new low-lying
states. We then further add the χ0a0N operator forming an
8 × 8 analysis. Once again the spectrum is invariant,
revealing no new states.
As the overlap of three-quark operators with three-quark

states is naturally large when compared to five-quark
operators, we proceed by considering bases that contain
only five-quark operators. The aim is to allow spectral
strength that may have ordinarily been overwhelmed by
three-quark operators to come to the fore. Such an approach
was beneficial in the odd-parity nucleon sector [21].
The results of a 6 × 6 analysis using χπN , χ0πN and χa0N

are illustrated as basis number four in Fig. 2.Here,we observe
an energy level that lies between the two previously observed
states, but crucially no new low-lying state is extracted. In
the final three columns we form 8 × 8 bases with the three
possible combinations of pairs of our five-quark operators.
States consistent with those already observed are extracted,
including the excited energy level in basis four, but once again
no new low-lying states are found.

Returning to the aforementioned Hamiltonian effective
field theory model [22], there are some common features in
the spectrum. The splitting of ∼200 MeV between the first
and second excitations observed with the three-quark
operators is similar to that predicted by the model. More
interesting is the model’s prediction of a scattering state
with a dominant πN component roughly half way between
the two excitations. In bases four and five, containing χπN
and χ0πN interpolators, we do observe an energy level
roughly half way between the two excitations. The dis-
missal of three-quark operators is key to the appearance of
this level. However, the lattice data is insufficient to
definitively conclude that this energy level is a new state,
as none of the bases studied yield three orthogonal excited
states simultaneously.
While these qualitative features are consistent, the goal

of this investigation was to reveal new states below the
lowest-lying excitation of three quark operators through the
consideration of novel five-quark operators. We are now
able to conclude that the introduction of positive-parity
mesons in local five-quark operators of the nucleon, does
not provide strong overlap with the anticipated low-lying
finite-volume scattering states.
However, these operators do have strong overlap with the

ground state nucleon, once again highlighting the meson-
baryon cloud of the nucleon. In bases four through seven,
only five-quark operators are considered and we are able
to extract the ground state mass with a high degree of
precision, comparable to that obtained solely with three-
quark operators.

VI. CONCLUSIONS

In this exploratory investigation we have introduced
local five-quark operators with the quantum numbers of
the Roper resonance, based on combining positive-parity
mesons with conventional nucleon interpolators. Drawing
on success in the negative parity channel, the aim was to
reveal new low-lying states that had been missed in
previous calculations utilizing three-quark operators. The
construction of a0N- and σN-type interpolating fields was
outlined and variational analyses were performed with
these new interpolating fields, in combination with pre-
viously considered πN-type and standard three-quark
interpolators.
Ratios of correlation functions were examined to

discover which interpolators gave rise to new super-
positions of excited states and therefore which interpola-
tors held the greatest promise of overlapping with new
states. This process indicated that the χa0N operator
was the most promising interpolator for revealing new
low-lying states.
Correlation matrices were constructed from several

different bases of interpolating operators. By systematically
varying the operators used, the independence of the low-
lying spectrum from the basis could be checked and the

FIG. 2. Low-lying states observed for each of the correlation-
matrix bases described in Table I. For each interpolating field,
two smearing levels of ns ¼ 35 and ns ¼ 100 are used in all
cases. Dashed horizontal lines are present to guide the eye. They
have been set by the central values from basis 1 in all cases except
for the state ∼2.1 GeV, in which case it is drawn from basis 4.
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potential for new state discovery was increased. In accord
with previous studies, changing the operators composing
the basis of a correlation matrix does affect whether or not a
particular state is observed.
No new states below the first excitation found with three-

quark operators were observed. The local five-quark
operators studied were found to posses a strong overlap
with the ground state nucleon, as bases containing only
these operators produced a ground state with a high degree
of precision.
Comparing to the predictions of the Hamiltonian effec-

tive field theory study mentioned earlier [22], we do not
find a lattice energy level near 1750 MeV as predicted by
Scenario I (which postulates a localized Roper bare state).
The fact that this state has not been observed herein
indicates that Scenario III is preferred, which predicts a
localized lattice energy level near 2.0 GeV at this pion
mass, consistent with our results.
We conclude that the low-lying finite-volume meson-

baryon scattering states anticipated by Hamiltonian
effective field theory are not well localized. Instead, the
two-particle scattering component appears to dominate
such that the volume suppression of these scattering states
with local operators prevents their strong overlap with the

interpolators considered herein. The fact that we do not find
any low-lying localized states casts doubt on molecular
models of the Roper. Our results strengthen the interpre-
tation of the Roper as a coupled-channel dynamically-
generated meson-baryon resonance, a resonance not
closely associated with conventional three-quark states.
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