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In this work we study the effects of boundary conditions and gradient flow in 1þ 1-dimensional lattice
ϕ4 theory. Simulations are performed with periodic (PBC) and open (OPEN) boundary conditions in the
temporal direction and the lattice fields are then smoothed by applying gradient flow. Our results for
observables—such as hjϕji and the susceptibility—indicate that at a given volume the phase transition
point is shifted towards a lower value of the lattice coupling λ0 for a fixedm2

0 in the case of OPEN compared
to PBC, and the shift decreases as the volume increases. We employ the finite-size scaling (FSS) analysis to
obtain the true critical behavior, mainly to emphasize the necessity of a FSS formalism incorporating the
surface effect in the case of the open boundary. The above features are found to be illuminated more clearly
by the application of gradient flow. Finally, we compare and contrast the extraction of the boson mass from
the two-point function (PBC) and the one-point function (OPEN) as the coupling (starting from moderate
values) approaches the critical value corresponding to the vanishing of the mass gap. In the critical region,
finite-volume effects become dominant in the latter. The surface effect seems to result in a less sharp phase
transition for OPEN compared to PBC for all observables studied here.
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I. INTRODUCTION AND MOTIVATION

The quantum field theory of the 1þ 1-dimensional ϕ4

interaction, in spite of its apparent simplicity, has a very
rich structure and hence has been the testing ground
for various new nonperturbative approaches towards the
field theory. It also provides ample opportunity to study
newly proposed algorithms and calculational techniques.
Extensive numerical results have been presented in this
theory in an earlier work [1]. In this work we present
numerical studies in this theory in the context of compari-
son between periodic (PBC) and open boundary conditions
(OPEN) in the temporal direction and the effects of gradient
flow (also known as Wilson flow).
In addition to the periodic boundary conditions in both the

temporal and spatial directions, one can have other types of
boundary conditions. For the scalar field, for example, one
can have antiperiodic boundary conditions in the spatial
direction. In the latter case one can study quantum kinks [2].
Lattice quantum chromodynamics (LQCD) conventionally
uses PBC in both the temporal and spatial directions for the
gauge field. However, in this case, the spanning of gauge
configurations over different topological sectors becomes
more and more difficult as the continuum limit is
approached. As a remedy, an open boundary condition in
the temporal direction has been proposed [3–5]. Numerical
studies in pureYang-Mills theory [6–10] andQCD [11] have
yielded encouraging results.

In order for OPEN to be effective, boundary artifacts
should be negligible so that one has a bulk region of
considerable extent. This is possible as long the system is
not gapless (critical) [12]. The success of OPEN in pure
Yang-Mills theory and QCD hinges on the existence of a
mass gap in these systems, namely, a glueball and pion,
respectively. On the other hand, 1þ 1-dimensional lattice
ϕ4 theory offers an opportunity to investigate in detail the
artifacts induced by the open boundary condition as the
system approaches criticality.
To extract various observables in lattice field theories,

smoothing the lattice fields is essential in order to over-
come lattice artifacts. The gradient (Wilson) flow [13–15]
provides a very convenient tool for smoothing, with a
rigorous mathematical underpinning. For some recent stud-
ies of gradient flow in the context of scalar theory, see
Refs. [16–19]. In our previous work on Yang-Mills theory,
we have demonstrated the effectiveness of gradient flow in
the extraction of the topological susceptibility and glueball
masses. Thus it will be very interesting to study the effect of
gradient flow on various observables, independent of the
boundary condition, in 1þ 1-dimensional lattice ϕ4 theory.

II. BOUNDARY CONDITIONS
AND GRADIENT FLOW

In the continuum, the Euclidean Lagrangian (density) for
ϕ4 theory is given by

L ¼ 1

2
∂μϕ∂μϕþ 1

2
m2ϕ2 þ λ
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On a periodic (in all space-time directions) lattice, the
Euclidean action in d space-time dimensions is conven-
tionally written as [1]

S¼ −
X

x

X

μ

~ϕx
~ϕxþμ þ

�
dþm2

0

2

�X

x

~ϕ2
x þ

λ0
4!

X

x

~ϕ4
x; ð2Þ

where all the parameters and fields have been made
dimensionless by multiplying them with appropriate
powers of the lattice spacing a.
However, in order to impose the open boundary con-

dition in the temporal direction we follow the construction
of the transfer matrix. For this purpose the lattice action is
written in terms of time-slice action density EðtÞ as
S ¼ P

tEðtÞ and the kinetic term in the temporal direction
is distributed symmetrically around the time slice t. The
details are given below.
First, with the aid of forward and backward lattice

derivatives

∂f
μϕ ¼ 1

a
ðϕxþμ − ϕxÞ and ∂b

μϕ ¼ 1

a
ðϕx − ϕx−μÞ; ð3Þ

we write the symmetrized expression for the kinetic term as

1

2
∂μϕ∂μϕ

¼ 1

4
ð∂f

μϕ∂f
μϕþ ∂b

μϕ∂b
μϕÞ

¼ 1

4a2

�
2
X

μ

ϕ2
x þ ϕ2

xþμ þ ϕ2
x−μ − 2ϕxϕxþμ − 2ϕxϕx−μ

�
:

ð4Þ

This enables one to write down the time-slice action
density for the periodic lattice as

EPBCðtÞ ¼ T t þ Vt þ
1

2
T t;tþ1 þ

1

2
T t−1;t; ð5Þ

where

Vt ¼
X

~x

�
1

2
a2m2ϕ2

~x;t þ
a2λ
4!

ϕ4
~x;t

�
;

T t ¼
1

4

X

~x;k

ð2ϕ2
~x;t þ ϕ2

~xþk̂;t
þ ϕ2

~x−k̂;t

− 2ϕ~x;tϕ~xþk̂;t − 2ϕ~x;tϕ~x−k̂;tÞ;

T t;tþ1 ¼
1

2

X

~x

ðϕ2
~x;t þ ϕ2

~x;tþ1
− 2ϕ~x;tϕ~x;tþ1Þ;

T t−1;t ¼
1

2

X

~x

ðϕ2
~x;t þ ϕ2

~x;t−1 − 2ϕ~x;tϕ~x;t−1Þ;

with k̂ being the unit vector in an arbitrary spatial direction.

Following this definition, we denote e−Hmðt;tþ1Þ as the
general transfer matrix element between the time slices t
and tþ 1, where

Hmðt; tþ 1Þ ¼ 1

2
ðT t þ VtÞ þ

1

2
ðT tþ1 þ Vtþ1Þ þ T t;tþ1:

ð6Þ

In particular, for a lattice of temporal extent T the transfer
matrix element between the boundary time slices t ¼ T − 1
and t ¼ 0 is determined by

HmðT − 1;0Þ ¼ 1

2
ðT T−1 þ VT−1Þ þ

1

2
ðT 0 þ V0Þ þ T T−1;0:

Now, if the temporal boundary becomes open, the
corresponding term drops out from the partition function.
This leads us to relate the actions for lattices with two
different boundary conditions in the temporal direction
(periodic and open) as SPBC ¼ SOPEN þ ΔS, where ΔS ¼
HmðT − 1; 0Þ.
The absence of the term ΔS from the action for a lattice

with an open boundary (temporal direction), in turn, also
modifies the expressions for the action densities at the
temporal boundaries. They are given by

EOPENðt ¼ 0Þ ¼ 1

2
ðT 0 þ V0Þ þ

1

2
T 0;1 ð7Þ

and EOPENðt ¼ T − 1Þ ¼ 1

2
ðT T−1 þ VT−1Þ þ

1

2
T T−2;T−1:

ð8Þ

Within the bulk (0 < t < T − 1), EOPENðtÞ ¼ EPBCðtÞ.
In order to smooth the lattice ϕ field, gradient flow is

used. For ϕ4 theory it is known that, in four dimensions,
there are potential divergences in the correlation functions
for a flow time greater than zero, and for this reason in
Refs. [16] and [18] a simple flow equation corresponding to
the free-field theory was used. Fujikawa [17] proposed a
modification of the flow equation to tackle this problem.
However, the ϕ4 in 1þ 1 dimensions which we study here
is free from such divergences. Here we follow the choice
made in our previous works for Yang-Mills theory, namely,
picking the gradient of the action to drive the flow. Thus,
for ϕ4 theory in Euclidean space in 1þ 1 dimensions, in the
continuum the flow equation is chosen to be

∂ψðx; τÞ
∂τ ¼ −

δS½ψ �
δψðx; τÞ

¼ ∂μ∂μψðx; τÞ −m2ψðx; τÞ − λ

6
ψ3ðx; τÞ; ð9Þ

where ψðx; τ ¼ 0Þ ¼ ϕðxÞ, with τ being the flow time.
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We numerically solve this equation on the lattice using
the second-order Runge-Kutta method.

III. EXTRACTION OF BOSON MASS FROM
LATTICES WITH DIFFERENT BOUNDARIES

For the extraction of boson mass we use the simplest
and most familiar scalar operator: the time-sliced field
ϕðtÞ ¼ 1

V

P
~xϕð~x; tÞ, where V is the spatial volume of the

lattice. The mass can be easily extracted from the two-point
correlation function for this scalar operator which, in the
case of a periodic boundary in the temporal direction,
behaves as

GðtÞ ¼ hϕðtÞϕðt ¼ 0ÞiPBC ≈ C0 þ C1½e−mt þ e−mðT−tÞ�

¼ C0 þ 2C1e−mT=2 coshm

�
T
2
− t

�
; ð10Þ

where

C1 ¼
jh0jϕð0ÞjBij2

2m
; ð11Þ

with jBi being the one-boson state. To improve statistics,
one can average over the source time as well. The
effective mass can be evaluated by solving the equation
FðmÞ ¼ 0,

where FðmÞ ¼ ðr1 − 1Þ½coshmðΔt − 1Þ − coshmΔt�
þ ð1 − r2Þ½coshmðΔtþ 1Þ − coshmΔt�;

ð12Þ

with r1 ¼
Gðt − 1Þ
GðtÞ ; r2 ¼

Gðtþ 1Þ
GðtÞ ;

and Δt ¼ T=2 − t: ð13Þ
Note that the boson mass extracted from the propagator

using Eq. (10) is the pole mass and hence is the physical
mass [20], independent of the lattice spacing.
In the case of an open boundary in the time direction, to

avoid the boundary effects one needs to be well within the
bulk while computing the two-point correlation function.
However, the second exponential will be absent from the
expression for the two-point function due to the loss of
periodicity. On the other hand, as the time translational
invariance is also lost in this case, one cannot average over
the source time as well. However, within the bulk, well
away from the boundary region translational invariance is
recovered. So one can take the average over a few time
slices to regain statistics.
However, this effort breaks down as one approaches the

critical region. It will be shown later on in this study that the
effect of an open boundary starts to engulf the whole bulk
region as we move towards the critical point. Mass
extraction from the two-point function becomes almost
impossible.

Surprisingly, the open boundary itself opens up new
pathways to extract the mass. Following Ref. [9], in this
section we review how the boson mass can be extracted
from a one-point function in the case of an open boundary
using a generic time-sliced scalar operator OðtÞ.
We start from

hOðtÞiOPEN ¼
R
DϕOðtÞe−SOPENR
Dϕe−SOPEN

¼
R
DϕOðtÞe−SPBCþΔS=

R
Dϕe−SPBCR

Dϕe−SPBCþΔS=
R
Dϕe−SPBC

¼ hOðtÞiPBC þ hOðtÞeΔSiconnectedPBC

heΔSiPBC
ð14Þ

¼ hOðtÞiPBC þ 1

r
hOðtÞeHmðT−1;0ÞiconnectedPBC ;

ð15Þ

where r ¼ heΔSiPBC ¼ heHmðT−1;0ÞiPBC. As eHmðt;tþ1Þ is also
a scalar operator, from Eq. (15) we have

hOðtÞiOPEN ≈ hOðtÞiPBC þ 2C0
1e

−mT=2 coshm

�
T
2
− t

�
;

ð16Þ
where m is the scalar boson mass.
Thus we find that one can extract certain two-point

correlators computed with the periodic boundary condition
in the temporal direction by analyzing the data for the
functional average of a scalar operator (one-point function)
computed with an open boundary (in the temporal direc-
tion) in the region of t where it differs (due to the breaking
of translational invariance) from the same computed with a
periodic boundary. Now due to time translational invari-
ance in the case of PBC, we can assume hOðtÞiPBC to be
constant and the evaluation of the effective mass can then
be done again following Eqs. (12) and (13).

IV. SIMULATION DETAILS

As we have restricted ourselves to 1þ 1 dimensions
within this study, the fields are dimensionless here. The
notations for the bare parameters of the theory on the lattice
are chosen to bem2

0 ¼ a2m2 and λ0 ¼ a2λ. As we know, for
the stability of the theory one must have λ0 ≥ 0 and the
phase transition associated with the spontaneous breaking
(or restoration) of Zð2Þ symmetry takes place only for
m2

0 < 0.
For the study with a periodic boundary in both direc-

tions, following the method of Brower and Tamaya [21], we
have used Wolff’s single cluster algorithm [22,23] blended
with the standard metropolis algorithm in a 1∶1 ratio for the
generation of field configurations. For the details of the
whole procedure, see Ref. [1]. However, in the study with
an open boundary in the temporal direction (periodic in the
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spatial direction), we resort only to the standard metropolis
algorithm for configuration generation.
Following the discussions in Ref. [1], we use hjϕji as

the order parameter to investigate the phase structure.
Here, ϕ ¼ P

sitesxϕðxÞ=lattice volume. The absolute value
is taken to avoid the effect of tunneling enforced by the
algorithm of configuration generation. For the phase
diagram we mainly resort to the former study [1]. Here,
we will study the effects of gradient flow and boundary
conditions on the phase diagram in due course.
In this work, we explore the phase structure and the

spectrumof the theory for twodifferent sets of bareparameters
given by m2

0 ¼ −0.5 and m2
0 ¼ −1.0. For each set of

parameters (i.e., m2
0 and λ0), we first discard 106 configura-

tions for thermalization and then generate another 108

configurations to perform the measurement. Measurements
are done onone in every one thousand configurations. Inorder
to study the finite-size effects on the results, whole inves-
tigations are done with four different lattice volumes, such as
482, 642, 962, and 1282.
Configurations chosen for measurements are placed

under gradient flow which is run for one hundred steps—
which we call as flow level—with a step size of δτ ¼ 0.02.
Measurements are done after every ten flow levels in
addition to the measurement done before the flow is started.

V. NUMERICAL RESULTS

In this section we present and discuss our numerical
results which show the effects of the boundary conditions
and the gradient flow on various observables of interest. In
principle, one could divide this into two separate studies
altogether as the gradient flow and the boundary condition
are two completely disjoint categories. Neither of them has
anything to do with the other. However, on the one hand we
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FIG. 1. Plot of the expectation value of jϕðtÞj for m2
0 ¼ −0.5,

λ0 ¼ 1.65, and L ¼ 128 with PBC for three different gradient
flow levels.
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FIG. 2. Plot of the expectation value of jϕðtÞj for m2
0 ¼ −0.5,

λ0 ¼ 1.65, and L ¼ 128 with OPEN for three different levels of
gradient flow.

FIG. 3. Comparison of hjϕðtÞji between PBC and OPEN for
m2

0 ¼ −0.5, L ¼ 128, and three different values of λ0 without any
gradient flow.
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FIG. 4. Comparison of hjϕðtÞji between PBC and OPEN for
m2

0 ¼ −0.5, L ¼ 128, and three different values of λ0 at gradient
flow level 50.
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want to study the smoothening utility of the gradient flow
irrespective of the choice of the boundary condition, and on
the other hand we have a different aim to study the effect of
the boundary condition as well. Thus they have come
together in the same discussion here. Nevertheless, they are
independent of each other.

A. The field variable

As the translational invariance is lost in the temporal
direction when the open boundary condition is imposed in
that direction, the time-sliced scalar field ϕðtÞ could serve
as an important observable to study the effect of an open
boundary as compared to a periodic boundary. For the
reasons stated earlier, here also we take the absolute value
before evaluating the configuration average.

In Figs. 1 and 2 for periodic and open boundary conditions
in temporal directions, respectively,wepresent the expectation
value of jϕðtÞj in three different subdiagrams—one without
any gradient flow, and two others with two different levels of
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FIG. 9. Comparison of the susceptibility between PBC and
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gradient flow—all for a particular set of lattice parameters
m2

0 ¼ 0.5, λ0 ¼ 1.65, and a 1282 lattice. The figures clearly
show the smoothening effect with the increase of flow level.
Note that the values of hjϕðtÞji gradually increase with
increasing flow level. The widths of the windows for the
values of hjϕðtÞji are taken to be the same in all three
subdiagrams, instead of taking them to be proportional to
the respective average values. This actually has reduced the
manifestation of the smoothening effect to some extent.
To make the exhibition of the boundary effect clearer, in

Fig. 3 we compare the behavior of hjϕðtÞji for m2
0 ¼ −0.5

and L ¼ 128 for periodic and open boundary conditions
without any gradient flow for three different values of λ0, all
in the broken symmetric phase. For the smallest value of the
coupling which is far away from the critical point the
effects of the open boundary are only found at the edges,
leaving a long bulk region that matches the counterpart in
PBC. As the coupling increases one gets closer to the
region of the phase transition and the effect of the open
boundary extends on both side, squeezing the bulk. For
λ0 ¼ 1.86, we are already in the critical region and we
observe that the bulk region has almost vanished. The same
is presented in Fig. 4 for gradient flow level 50. We notice
that it only smoothens the data [although it is hardly visible

here because of the wide scale of values for hjϕðtÞji covered
in the figure], leaving the boundary effects unchanged.
In Fig. 5 we plot hjϕji versus λ0 for different values of the

gradient flow level for a 1282 lattice at m2
0 ¼ −0.5. The

monotonous rise in the value of hjϕji with increasing
gradient flow level is consistent with the behavior of
hjϕðtÞji. Details of the behavior in the critical region are
shown in the inset of the figure. The trend seems to be
retained across the phase transition, with the additional
feature of a sharper decrease of the observable across the
transition point as the flow level is increased.
In Fig. 6, we present the comparison between hjϕji

computed using PBC and the same obtained with OPEN for
different lattice sizes at m2

0 ¼ −0.5 before applying the
gradient flow on the fields. Deep in both the broken-
symmetric and the symmetric phases, for all the lattice
volumes, the results for PBC and OPEN are found to match
within our statistical error. However, inside the critical
region a clear disagreement is observed. A phase transition
appears to take place at smaller values of λ0 in the case of
OPEN compared to PBC. However, the gap between the
transition point in the two different boundaries seems to be
vanishing as the lattice size increases. In addition, although
not clearly prominent, it appears that the fall of hjϕji across
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FIG. 13. Plot of χL−1.75 versus λ0 for different levels of gradient
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the transition point is slightly sharper for PBC in com-
parison with OPEN. Both these behaviors are consistent
with the expectation that the effect of the boundary surface
diminishes in the infinite-volume limit. The picture is
unaltered by the application of gradient flow other than
slightly raising all of the values. This is shown in Fig. 7.

B. The susceptibility

In this subsection, we study the effects of gradient flow
and the boundary conditions on the behavior of another
observable of interest, namely, the susceptibility defined as
χ ¼ P

xhϕðxÞϕð0Þi=lattice volume. In Fig. 8, we show the
behavior of the susceptibility as a function of λ0 for
m2

0 ¼ −0.5 with PBC on a 1282 lattice for different levels
of gradient flow. Consistent with the trends observed in the
case of hjϕji, the peak of the susceptibility becomes higher
and higher as the level of gradient flow increases, leaving
the peak position unchanged. This behavior is expected
since the gradient flow serves to remove the lattice artifacts
and brings the lattice theory closer to the continuum limit.
Analogous to the study done for hjϕji, we compare the

susceptibility between the periodic and open boundary
conditions for different lattice sizes (L) at m2

0 ¼ −0.5 and
gradient flow level 50 in Fig. 9. Here also we observe that,
compared to the case of PBC, the peak is shifted towards

the smaller values of λ0 in the case of OPEN at a fixedL and
the magnitude of the shift decreases as L increases.
This shift in the peak position of the susceptibility

between PBC and OPEN seems to be unaffected by
gradient flow as per our expectation. This has been
demonstrated in Figs. 10 and 11 for the smallest and
largest lattice sizes (L ¼ 48 and L ¼ 128, respectively),
both with m2

0 ¼ −0.5.
From all the figures here comparing the susceptibility

between PBC and OPEN, it appears that the peak is slightly
sharper in the case of the former compared to the latter,
consistent with the case of hjϕji.

C. Finite-size scaling analysis

The fact that the value of hjϕji changes with gradient
flow even in the critical region raises an interesting
question. Is the determination of the critical coupling in
a finite-size scaling (FSS) analysis affected by gradient
flow? Here we study the possible effect of gradient flow in
the FSS of the data for hjϕji to determine the critical
coupling. We follow the discussion of the main aspects of
finite-size scaling [24–26] given in Ref. [1]. FSS assumes
that, in a finite system, out of the three length scales
involved—namely, the correlation length ξ, the size of the
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FIG. 15. Plot of χL−1.75 versus λ0 for different levels of gradient
flow at m2

0 ¼ −0.5 with an open boundary.
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system L, and the microscopic length a (lattice spacing)—
the last one drops out near the critical region due to
universality.
For any observable PL computed on a lattice of finite

extent L, the nonanalyticity near the critical point in the
infinite-volume limit can be expressed in the form of a
scaling law P∞ðτÞ ¼ APτ

−ρ, where τ ¼ ðλc0 − λ0Þ=λc0
and ρ is the critical exponent associated with the observ-
able. Following the arguments of FSS analysis, it can be
shown that

Lρ=ν=PLðτÞ ¼ A−1
P Aρ=ν

ξ ½CP þDP A
−1=ν
ξ τL1=ν þOðτ2Þ�;

ð17Þ

where ν is the critical exponent associated with the
correlation length ξ. Equation (17) implies that if we plot
Lρ=ν=PLðτÞ versus the coupling λ0 for different values of L,
all the curves will pass through the same point where τ ¼ 0,
or equivalently λ0 ¼ λc0 [26].
The critical behavior of hϕi, the susceptibility χ, and the

mass gap m ¼ 1=ξ may be written as

hϕi ¼ A−1
ϕ τβ; χ ¼ Aχτ

−γ; and m ¼ A−1
ξ τν: ð18Þ

From the general expectation that in 1þ 1 dimensions ϕ4

theory and the Ising model belong to the same universality
class, we use the Ising values for the corresponding
exponents as inputs in our FSS analysis. Thus, β ¼ 0.125,
γ ¼ 1.75, and ν ¼ 1.
The plot of hjϕjiL0.125 versus λ0 for different values of

gradient flow level at m2
0 ¼ −0.5 with a periodic boundary

in the temporal direction is presented in Fig. 12. In spite of
the fact that hjϕji changes with the gradient flow level, the
critical coupling λc0 is found to be unaffected by gradient
flow. The critical coupling λc0 is found to be a little less than
1.94 for m2

0 ¼ −0.5. A similar FSS analysis has been done
atm2

0 ¼ −1.0, leading to the same conclusion along with an
estimated value of λc0 ≈ 4.46.
A similar FSS analysis of the susceptibility calculated

at m2
0 ¼ −0.5 for various values of gradient flow level

(for PBC) is presented in Fig. 13. Here, the smoothening
effect of gradient flow has helped to pinpoint the location
of the critical coupling λc0 which matches the estimate
from the FSS analysis for hjϕji. A similar FSS analysis
done at m2

0 ¼ −1.0 also gives the corresponding value of
λc0 which matches that obtained from the FSS analysis
for hjϕji.
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FIG. 17. The volume dependence of the boson mass versus λ0
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Using the same ansatz, we attempt an FSS analysis for
both hjϕji and χ in the case of an open boundary in the
temporal direction. The results are presented in Figs. 14
and 15, respectively. It is obvious from the figures that the
critical point is not pinpointed as clearly as in the case of
PBC. A strange pattern is found for the susceptibility, for
which the curves with different L—instead of passing
through a point—appear to overlap within statistical
errors at and between the values 1.92 and 1.94 of λ0.
Anyway, the effect of the surface in the case of an open
boundary needs to be included in the ansatz for finite-size
scaling analysis. For that purpose a more precise numeri-
cal study is necessary, which is beyond the scope of
this study.

D. The boson mass

Finally, in this subsection we present the results for the
mass spectrum of the theory. The boson mass has been
extracted from the plateau along the time direction for an
effective mass which is computed from two-point and
one-point correlation functions of the time-sliced scalar
field ϕðtÞ for PBC and OPEN, respectively. For this
purpose, we first determine the gradient flow level for

which the plateau for the effective mass is found to be the
most stable one for each coupling (also for PBC and
OPEN separately). The computation of the mass has been
done only for the two largest lattices (namely, for L ¼ 96
and L ¼ 128) since, for the smaller lattices, the temporal
extent is not sufficiently long to observe the decrease of
the correlation function, particularly within the critical
region. Because of this, it is not meaningful to perform
the formal FSS analysis. However, even with lattices of
only two different sizes, we observe a noticeable finite-
volume effect.
In Figs. 16 and 17 we compare the volume dependence

of the boson mass versus λ0 for periodic (top) and open
(bottom) boundary conditions at m2

0 ¼ −0.5 and m2
0 ¼

−1.0, respectively. In the case of PBC the effect of the finite
volume on the mass spectrum is clearly visible in the
critical region, but for OPEN this effect is not that obvious
from the respective figure. However, if we remember from
the behaviors of hjϕji and χ that the phase transition point
shifts towards the smaller values of λ0 compared to PBC
and that the shift is greater for smaller volumes, it appears
that this leftward shift of the transition point has overshad-
owed the finite-volume effect.
The effects of the boundary on the mass spectrum have

been demonstrated in Figs. 18 and 19 for two different
values of the lattice mass parameters: m2

0 ¼ −0.5 and
m2

0 ¼ −1.0, respectively. The leftward shift of the phase
transition point is found to be almost diminishing for the
larger lattice. The boundary effects are more prominent
near the critical point, as evident from the clearly sharper
nature of the transition in the case of PBC compared to that
of OPEN.

VI. CONCLUSIONS

We have found the gradient flow to be very effective in
reducing the unwanted lattice artifacts in the functional
average of the time-sliced field ϕðtÞ, the susceptibility, and
the extraction of boson mass from both two-point (PBC)
and one-point (OPEN) correlators. We have shown that, in
spite of the fact that hjϕji changes with gradient flow (the
transition is more prominent with increasing flow level), the
transition point does not depend on the gradient flow level.
In the case of susceptibility, it was found that the increase in
the level of gradient flow raises the height of the peak but
leaves the peak position (the phase transition point for a
given volume) practically unaltered. This behavior is
consistent with the expectation that the gradient flow helps
to reduce the lattice artifacts and brings the lattice theory
closer to the continuum physics, where we expect the
susceptibility to diverge as the critical point is approached.
The critical coupling λc0 has been obtained for both hjϕji
and χ from a detailed finite-size scaling analysis of the data
for various lattice sizes and gradient flow levels; the results
are qualitatively unchanged for different flow levels, but
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they seem to be determined more clearly with a nonzero
value for the flow level.
For all of the observables studied here, for a given

volume, the phase transition point has a leftward shift in
terms of λ0 in the case of OPEN compared to PBC for a
fixed value of m2

0, and this leftward shift diminishes as the
volume increases. In addition, for a given volume, the phase
transition curve is found to be more prominent or sharp in
the case of PBC compared to OPEN. In particular, notice-
able boundary effects are observed on the mass spectrum in
the critical region where the effects of the open boundary
extend deep into the bulk region [as emphasized by the
behavior of hjϕðtÞji] and the finite-volume artifacts become
much more important compared to the case of the periodic
boundary condition. An extensive analytical study of the
boundary effects due to an open boundary in the critical
region, taking into consideration the finite-size scaling, will
be very fruitful.
The main objective of the present study has been to

investigate the effects of the gradient flow and the open
boundary condition in the temporal direction in a
theory with a vanishing mass gap and without the
complexities of renormalization. Since it is known that

in 3þ 1-dimensional ϕ4 theory the straightforward use of
the gradient flow equation leads to new divergences in
correlation functions at nonzero flow time, a detailed
comparison of various proposals to overcome this problem
needs to be investigated. Our current study has demonstrated
that in the region of vanishing mass gap, an open boundary
introduces complexities when used in a lattice with finite
volume. Our previous success with an open boundary in pure
Yang-Mills theory may be partly due to the reasonably large
mass gap (glueball mass) in this theory. On the other hand,
the relevant mass gap of QCD (determined by the two-pion
state) is much lower, and we expect an open boundary to
have nontrivial consequences in the scaling region. This
requires a thorough investigation in the future.
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