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We investigate the phase structure of QCD with three degenerate quark flavors as a function of the
degenerate quark masses at vanishing baryon number density. We use the highly improved staggered
quarks on lattices with temporal extent Nτ ¼ 6 and perform calculations for six values of quark masses,
which in the continuum limit correspond to pion masses in the range 80 MeV ≲mπ ≲ 230 MeV. By
analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we
find no direct evidence for a first-order phase transition in this range of pion mass values. Relying on the
universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an
upper bound for the critical pion mass, mc

π ≲ 50 MeV, below which a region of first-order chiral phase
transition is favored.
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I. INTRODUCTION

Mapping out the QCD phase diagram is one of the basic
goals of lattice QCD calculations at nonzero temperature.
It was noted by Pisarski and Wilczek that the order of the
chiral phase transition in QCD may depend on the number
of light quark degrees of freedom and qualitative features of
the transition may also change with the quark mass [1].
In QCD with three massless quark flavors, the chiral phase
transition is expected to be first order. If this is the case, the
phase transition remains first order even for nonzero values
of the quark masses and terminates at a critical quark mass
mc

q, or equivalently at a critical pion mass, mc
π, where the

transition becomes second order belonging to the three-
dimensional Z(2) Ising universality class. For quark mass
mq > mc

q, chiral restoration takes place through a smooth
crossover.
Knowledge about the phase structure in the light-strange

quark mass plane at vanishing chemical potential also
impacts our understanding regarding its extension to non-
zero chemical potential. For zero chemical potential, the
values of critical quark masses characterize a line of chiral
phase transitions in the light-strange quark mass plane.
This line extends toward the nonzero chemical potential
direction and forms a surface of phase transitions in the
three-dimensional, Z(2) universality class. The chemical
potential where this surface intersects the physical values of
light and strange quark masses may correspond to the QCD
critical point [2]. However, determining the curvature of
this surface turns out to be complicated [3,4] and, in fact, is

likely to suffer from similar lattice cutoff effects as those
contributing to the value of the critical pion mass itself.1

The first-order chiral phase transition in 3-flavor QCD
has been investigated on coarse lattices using unimproved
[6–9] as well as improved actions [2,10–15]. However, on
these coarse lattices the critical pion mass value turns out to
be strongly cutoff and regularization scheme dependent.
As of now no continuum extrapolated results exist. Current
results for the critical pion mass obtained in calculations
with staggered (standard and p4fat3) fermions on Nτ ¼ 4
and 6 lattices vary from about 300 MeV down to about
70 MeV [2,6–13]. While studies using the clover improved
Wilson fermion action on Nτ ¼ 4, 6, 8 and 10 lattices
suggest that mc

π can change from about 750 MeV to about
100 MeV [14,15]. In general, it is found that the critical
pion mass decreases when using either improved actions or
when reducing the lattice spacing.2

In addition to studies concerning Nf ¼ 3, lattice QCD
calculations searching for first-order chiral phase transitions
in other cases have also been carried out. Studies onNf ¼ 2

QCD using standard staggered fermions [17] and unim-
provedWilson fermions [18] onNτ ¼ 4 lattices suggest that
mc

π is nonzero and could be around 560 MeV. Investigations

1Other possibilities for generating a second-order transition at
the physical values of quark masses have been discussed in
Ref. [5].

2A study of 4-flavor QCD using HYP action [16] also suggests
that the first-order chiral phase transition becomes weaker in the
continuum limit.
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on Nτ ¼ 6 lattices have also been performed using an
improved staggered fermion action (2stout action), in which
the three quark flavors are not taken to be degenerate. Instead,
the ratio of light to strange quark masses has been kept fixed
to about 1=27when approaching themassless limit [19]. The
analysis of Ref. [19] suggests that mc

π is around 50 MeV.
While a recent study on QCD with two degenerate light
quarks approaching to chiral limit and a fixed physical
strange quark mass using the Highly Improved Staggered
Quark (HISQ) action on Nτ ¼ 6 lattices suggests that mc

π is
compatible with zero [20].
To advance the understanding of the chiral phase

transition in 3-flavor QCD, we study the chiral phase
structure at vanishing baryon density using the HISQ action
on lattices with temporal extent Nτ ¼ 6. Preliminary results
have been reported in conference proceedings [20–22]. The
paper is organized as follows. In Sec. II, we give details on
the parameters used in our calculations. In Sec. III, we
describe the universal properties in the vicinity of the chiral
phase transition and chiral observables. In Sec. IV, we
present our results on the phase structure of 3-flavor QCD
and finally we summarize in Sec. V.

II. LATTICE FORMULATION AND SETUP

It has been noted previously that the estimate of the
critical pion mass mc

π from lattice QCD calculations
strongly depends on lattice cutoff effects. In order to reach
a better understanding of the first-order chiral phase
transition region, we use here the HISQ action [23]. At
a given value of the lattice spacing the HISQ action
achieves better taste symmetry than the asqtad, p4 and
2stout actions, which previously have been used for the
analysis of the phase structure of 3-flavor QCD [24].
Furthermore, we use a tree-level improved Symanzik gauge
action and perform calculations on lattices with temporal
extent Nτ ¼ 6. The calculations have been performed for
three degenerate quark flavors at six different values of
quark masses mq (in units of the lattice spacing) in the
range 0.0009375 ≤ mq ≤ 0.0075. Gauge configurations
have been generated with a rational hybrid Monte Carlo
(RHMC) algorithm. The chiral observables (introduced
below) were measured after every 10th trajectory of unit
length using 40 Gaussian-distributed stochastic sources.
To convert our simulation parameters to physical units

we use results on the determination of the lattice spacings in
(2þ 1)-flavor QCD obtained by the HotQCD collaboration
[25,26]. The lattice spacing is fixed using the r0 scale [25]
and hadron masses calculated on lines of constant physics.
To be specific, for a fixed ratio of the light to strange quark
masses, ml=ms ¼ 1=20, the hadron masses have been
determined by demanding that the strange quark mass
attains its physical value. In order to use this for our
3-flavor analysis we take into account that the lattice
spacing at a given value of the gauge coupling depends
on the quark masses; i.e., as we vary the quark masses the

value of r0 in lattice units, r0=a, will change. Using results
for r0=a obtained in calculations for (2þ 1)-flavor QCD
with two different values of the light to strange quark mass
ratio, ml ¼ ms=5 [25] and ml ¼ ms=20 [25,26], we can
estimate the dependence of r0=a at fixed values of the
gauge coupling β ¼ 10=g2, on the quark mass combination
ms þ 2ml. Assuming that r0=a only depends on this
combination of the quark masses, we can estimate its value
for the case of three degenerate flavors for different values
of the quark mass, mq. We find that for the lightest quark
mass mq ¼ ms=80 ¼ 0.0009375, the change in r0=a in the
relevant range of gauge couplings 5.8 ≤ β ≤ 6.1 amounts
to ∼4%. For example, for Nf ¼ 3 with mq ¼ 0.0009375
and close to the critical coupling β ¼ 5.85, the estimated
value is r0=a ¼ 1.82. In comparison, the corresponding
value for Nf ¼ 2þ 1 with physical ms and ml ¼ ms=20
is r0=a ¼ 1.75.
Since the dependence of the lattice scale on quark masses

seems to be moderate down to the smallest quark mass
value used in our study, we estimate the value of pseudo-
scalar meson masses relevant for our choice of parameters
by simply rescaling the pion mass obtained in the (2þ 1)-
flavor studies by the corresponding ratio of the light quark
masses, i.e. by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mq=ml

p
. From this, we find that the range

of quark mass values explored by us corresponds to masses
for the lightest pseudoscalar meson in the range
80 MeV≲mπ ≲ 230 MeV. In the continuum limit, this
corresponds to the value of the pion mass. For the spatial
size of the lattice, we generally use Nσ ¼ 24. This ensures
that the product of pion mass and spatial extent L ¼ Nσa
stays large also for the lightest quark masses, i.e. mπL≳ 3.
At the second largest and smallest value of the quark
masses used by us, mq ¼ 0.00375 and mq ¼ 0.0009375,
respectively, we also performed simulations for different
spatial lattice sizes. We used four different lattice sizes for
the second heaviest quark mass, Nσ ¼ 10, 12, 16 and 24,
and two lattice sizes for the lightest quark mass, Nσ ¼ 16
and 24. The simulation parameters and corresponding pion
masses in the continuum limit are listed in Table I.
The basic observables used in our analysis are the chiral

condensate

hψ̄ψiq
T3

¼ 1

3

1

VT2

∂ lnZ
∂mq

¼ N2
τ

4N3
σ
hTrD−1ðmqÞi; ð1Þ

and the disconnected part of the chiral susceptibility

χq;disc
T2

≡ Nτ

16N3
σ
ðhðTrD−1ðmqÞÞ2i − hTrD−1ðmqÞi2Þ; ð2Þ

where Z denotes the QCD partition function and D is the
staggered fermion matrix. The chiral condensate and the
chiral susceptibility are normalized to one flavor degree of
freedom.

A. BAZAVOV et al. PHYSICAL REVIEW D 95, 074505 (2017)

074505-2



III. UNIVERSAL PROPERTIES NEAR
A CRITICAL POINT

In the vicinity of a critical point the free energy of a
system can be expressed as a sum of a singular and a
regular part,

f ¼ −
T
V
lnZ≡ fsingðT;mqÞ þ fregðT;mqÞ: ð3Þ

The singular contribution is given in terms of a scaling
function and critical exponents characteristic for the uni-
versality class of the critical point,

fsingðT;mqÞ ¼ h0h1þ1=δfsðzÞ; z ¼ t=h1=βδ: ð4Þ

Here β and δ are universal critical exponents, h0 is a
nonuniversal normalization factor, t and h are reduced
temperature and symmetry breaking parameters, respec-
tively. They vanish at the critical point, ðt; hÞ ¼ ð0; 0Þ, and
are functions of the couplings, T and m. For the three-
dimensional Z(2) universality class the critical exponents
β ¼ 0.3207, δ ¼ 4.7898 and γ ¼ βðδ − 1Þ ¼ 1.2371 [27].
The singular part of the free energy density, fsingðT;mÞ,

dominates over the regular part when the system is close to
the critical region. The order parameter M of the transition
and its susceptibility χM are then governed by scaling
functions that arise from the scaling form of the singular
part of the free energy [28,29]

Mðt; hÞ ¼ −∂fsingðt; hÞ=∂H ¼ h1=δfGðzÞ; ð5Þ

χM ¼ ∂M
∂H ¼ 1

h0
h1=δ−1fχðzÞ; ð6Þ

where fGðzÞ ¼ −ð1þ 1
δÞfsðzÞ þ z

βδ
∂fsðzÞ∂z and fχðzÞ ¼

1
δ ðfGðzÞ − z

β
∂fGðzÞ∂z Þ are universal scaling functions. The

variables t and h are related to the temperature T and
the symmetry breaking (magnetic) field H ≡ h0h. The
order parameter susceptibility may be used to introduce
a variable tp as the pseudocritical temperature, which is
defined as the location of the maximum of χM obtained as a
function of t for fixed h. This is reached for some value
zp ¼ tp=h1=βδ. One thus finds the standard scaling behavior

of χpeakM as a function of the external field h

χpeakM ∼ h1=δ−1fχðzpÞ: ð7Þ
The generic discussion of the scaling behavior of the order

parameter and its susceptibility given above becomes more
complicated in cases where the scaling variables t and h
cannot directly be mapped onto corresponding couplings of
the theory under study, e.g., 3-flavor QCD. If 3-flavor QCD
has a first-order transition in the chiral limit, a second-order
transition at nonvanishing values of the quark mass exists,
which terminates the line of first-order transitions. This
critical endpoint is expected to be in the Zð2Þ universality
class [30]. The relevant parameters (or couplings) in the
vicinity of this critical point can be expressed as linear
combinations of mq −mc

q and T − Tc [31]. Here Tc is the
transition temperature at vanishing external field h, which in
3-flavor QCD calculations is related to a critical coupling βc
and a critical quark mass mc

q. Rather than using the
temperature T − Tc it is convenient for our discussion to
use the difference of gauge couplings β ¼ 10=g2 (not to be
confused with the critical exponent β)3 The variables t and h
may then be related to the bare couplings of 3-flavor QCD,

t ¼ ðβ − βc þ Aðmq −mc
qÞÞ=t0; ð8Þ

h ¼ðmq −mc
q þ Bðβ − βcÞÞ=h0: ð9Þ

Although it is not necessarily the case one may assume that
the temperature-like (t) and external-field-like (h) direction
are orthogonal to each other. In that case B ¼ −A.
Let us first discuss the scaling behavior of the

order parameter susceptibility in terms of the bare QCD
parameters Δm≡mq −mc

q and Δβ≡ β − βc. In the
ðΔβÞ − ðΔmÞ coordinate frame the constant value of the
scaling variable z is given by

zp ¼ z0
Δβ − BΔm

ðΔmþ BΔβÞ1=βδ : ð10Þ

Here z0 ¼ h1=βδ0 =t0. The above equation fixes the relation
between Δβ and Δm required to keep zp constant.

TABLE I. Parameters used in simulations of 3-flavor QCD
using the HISQ action and the tree-level improved Symanzik
gauge action.

N3
σ × Nτ mq mπ [MeV] # β values

average # of
conf. for each β

163 × 6 0.0075 230 9 1000
243 × 6 0.00375 160 11 2000
163 × 6 0.00375 160 8 2000
123 × 6 0.00375 160 9 2000
103 × 6 0.00375 160 11 1500
243 × 6 0.0025 130 7 1300
243 × 6 0.001875 110 8 1000
243 × 6 0.00125 90 7 1000
243 × 6 0.0009375 80 8 1500
163 × 6 0.0009375 80 8 1500

3In the continuum limit the gauge coupling β and the temper-
ature T ¼ 1=ðaNτÞ are related through the asymptotic scaling
relation, T=Λ ¼ expðβ=ð20b0ÞÞ, with b0 denoting the coefficient
of the leading term in the QCD β function. For small temperature
differences, i.e., in the vicinity of a critical point, one thus finds
ðT − TcÞ=Tc ¼ β − βc.
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Obviously for B ¼ 0 one just recovers the scaling relation
Δm ¼ ðΔβz0=zpÞβδ. For B ≠ 0 we obtain for Δβ → 0,

Δm ¼ −BΔβ þ
�
z0
zp

ð1þ B2ÞΔβ
�

βδ

þOððΔβÞ2βδ−1Þ:

ð11Þ

As βδ > 1 for the universality classes of interest to us the
first term in this relation will always dominate in the limit
Δβ → 0 and one finds from Eqs. (7)–(9),

χpeakM ∼ h1=δ−1 ∼
� ðΔmÞ−ð1−1=δÞ; B ¼ 0;

ðΔmÞ−γ; B ≠ 0:
ð12Þ

For any B ≠ 0, the susceptibility of the order parameter
thus will diverge with the critical exponent γ rather than
1 − 1=δ < γ when approaching the critical point at fixed
z ¼ zp. Similarly, one finds for the order parameter at the
critical gauge coupling βc,

Mc ∼ h1=δ ∼
� ðΔmÞ1=δ; B ¼ 0;

ðΔmÞβ; B ≠ 0:
ð13Þ

In an actual lattice QCD calculation we do not directly
deal with the order parameter M and its susceptibility χM.
The proper order parameter M, which detects the breaking
of the Zð2Þ symmetry and vanishes in the symmetry
restored phase, can be constructed from two independent
thermodynamic observables, e.g., a linear combination of
the chiral condensate hψ̄ψi and the pure gauge action SG
(or second-order quark number susceptibility χq2) [10].
Similarly the susceptibility of the order parameter receives
contributions from several terms, among these is the
disconnected part of the chiral susceptibility. Thus it

may be expected that the singular behavior of chiral
condensates hψ̄ψi and its disconnected chiral susceptibil-
ities χq obey the relations given in Eqs. (13) and (12),
respectively. In Appendix A we give some more details on
this and the corrections to scaling that arise from the fact
that the chiral condensate and its susceptibility are not the
correct order parameter and order parameter susceptibility
for the Z(2) symmetry breaking in 3-flavor QCD.

IV. RESULTS

A. Chiral condensates and chiral susceptibilities

In Fig. 1 (left), we show the chiral condensates as a
function of the gauge coupling β for various values of the
quark masses corresponding to the pion masses ranging
from 230 MeV down to 80 MeV. All data shown in this
figure have been obtained on 243 × 6 lattices except those
for the largest quark mass, mq ¼ 0.0075, corresponding to
mπ ≃ 230 MeV, which are obtained on 163 × 6 lattices.
Obviously, the chiral condensate decreases with increasing
value of β, i.e. increasing temperature, as well as with
decreasing quark mass. However, the slope of hψ̄ψi seems
to vary only little with β which differs from the behavior
expected from an order parameter close to a critical
temperature. This may reflect the fact that hψ̄ψi is not
the true order parameter for the transition we are trying
to probe.
In Fig. 1 (right), we show the temperature and quark

mass dependence of the disconnected part of the chiral
susceptibilities. They rise with decreasing values of the
quark mass and has well defined peaks that shift to smaller
values of the coupling β as the quark mass decreases; i.e.,
the pseudocritical temperature of 3-flavor QCD decreases
with decreasing values of the quark mass. The value of the
chiral condensate at the pseudocritical couplings, βcðmqÞ,
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FIG. 1. The chiral condensates (left) and the disconnected part of the chiral susceptibilities (right) versus the gauge coupling β for
various values of the bare quark massesmq. Shaded curves show spline fits to the chiral observables (for more details, see subsection IV
C). Crosses shown in the left plot indicate values for the chiral condensate at the pseudocritical values of the gauge coupling βcðmqÞ
determined from the location of the peaks of the disconnected chiral susceptibility. Here the results for mq < 0.0075 are obtained on
243 × 6 lattices while those for mq ¼ 0.0075 are obtained on 163 × 6 lattices.
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is also indicated by crosses in Fig. 1 (left). The decrease of
the transition temperature with decreasing value of the
quark masses is well established in QCD thermodynamics
and can qualitatively be understood in terms of the quark
mass dependence of hadronic degrees of freedom. With
decreasing quark mass they become lighter and are thus
more easily excited in a thermal heat bath. They then
contribute to the energy density of the system already at
lower temperatures and can trigger the onset of a phase
transition at a lower temperature.
The volume dependences of the chiral condensates and

chiral susceptibilities at mq ¼ 0.00375 are shown in Fig. 2.
Results obtained for four different volumes, i.e. Nσ ¼ 10,
12, 16, and 24 are presented. As seen from Fig. 2 (left), at a
fixed value of the temperature the chiral condensate
increases as the volume is increased and this volume
dependence is stronger at low temperature than at high
temperature. The volume dependence of the disconnected
part of the chiral susceptibilities is shown in Fig. 2 (right).
The peak location of the disconnected susceptibilities,
which defines the pseudocritical temperature, shifts to
higher temperatures and the peak height decreases when
the volume increases.

Corresponding results for the volume dependence of
hψ̄ψiq and χq;disc obtained for the lightest quark mass value,
mq ¼ 0.0009375 (mπ ≈ 80 MeV) are shown in Fig. 3. The
pattern seen in the volume dependence of the chiral
condensate and the chiral susceptibility is similar to the
one shown for mq ¼ 0.00375 (mπ ≈ 160 MeV) in Fig. 2.
In particular, we note that also for this small quark mass
value the peak height of the chiral susceptibility decreases
with increasing volume.
This volume dependence is consistent with the expected

volume dependence in the presence of a nonvanishing
symmetry breaking field [32,33]. In a finite volume chiral
symmetry is not broken; i.e., the chiral condensate vanishes
in the chiral limit at any value of the temperature. However,
when taking first the infinite volume limit and then the
chiral limit the chiral condensate can approach a nonzero
value. One thus expects that for small values of the quark
mass the condensate will increase as the volume increases
and the volume dependence is larger at low temperatures
than at high temperatures, because the asymptotic value of
the chiral condensate is larger at low temperatures than at
high temperatures. As the condensate will drop to zero in
any finite volume, it also varies more rapidly with quark
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FIG. 3. Same as Fig. 2 but for mq ¼ 0.0009375 corresponding to mπ ≃ 80 MeV in the continuum limit.
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mass, which is reflected by the larger peak height of the
chiral susceptibility in a finite volume.

B. Phase structure in the current quark mass window

As noted in the previous section, we find in the entire
range of quarkmasses analyzed by us that the peak height of
the chiral susceptibility decreases with increasing volume.
There is no hint for an increase of the peak height with
volume, which is what one would expect to happen in the
vicinity of a second- or first-order phase transition.
This indicates that there is no first-order phase transition
in the system with values of the quark mass down to
mq ¼ 0.0009375.
This is also supported by an analysis of the volume

dependence of histograms for the chiral condensate. In
Fig. 4, such histograms are shown for the chiral condensate
at our lightest quark mass mq ¼ 0.0009375 calculated for
two different volumes, i.e. Nσ ¼ 16 at β ¼ 5.8 and
Nσ ¼ 24 at β ¼ 5.85, which are close to the corresponding
pseudocritical couplings for this value of the quark mass,
βcðmqÞ≃ 5.78 for Nσ ¼ 16 and βcðmqÞ≃ 5.86 for
Nσ ¼ 24. There is no evidence that a double peak structure,
which would be indicative for the appearance of a first-
order phase transition, would develop in these distributions
as the volume increases. Thus, there is no evidence for two
coexisting phases.
We also analyzed the Binder cumulant Bψ̄ψ of the chiral

condensate at all values of the quark masses. Bψ̄ψ is defined
as follows,

Bψ̄ψ ¼ hðδψ̄ψÞ4i
hðδψ̄ψÞ2i2 ; ð14Þ

where δψ̄ψ ¼ ψ̄ψ − hψ̄ψi gives the deviation of the chiral
condensate from its mean value on a given gauge field
configuration. From different distributions of ψ̄ψ in differ-
ent phases, the value of Bψ̄ψ can be obtained and can be
used to distinguish phase transitions. For a first-order phase
transition, Bψ̄ψ ¼ 1; for a crossover, Bψ̄ψ ≃ 3; for a second-
order transition belonging to the three-dimensional Z(2)
universality class, Bψ̄ψ ≃ 1.6. As seen from Fig. 5, the

values of Bψ̄ψ obtained from chiral condensates with
different quark masses all lie around 3. There is a tendency
for the lowest quark mass to give values smaller than 3
close to the crossover region. However, this clearly is not
conclusive. Thus, the analysis of Binder cumulants pre-
sented in Fig. 5 also suggests that 3-flavor QCD with pion
masses ranging from 230 to 80 MeV corresponds to
systems with a smooth crossover transition.
In summary, all observables discussed above show no

evidence for a first-order phase transition in 3-flavor
QCD with quark masses mq ranging from 0.0075 down
to 0.0009375.

C. Estimate of the critical pion mass

As discussed in the previous subsection, we conclude
that there is no first-order phase transition even for quark
masses as small as mq ¼ 0.0009375 (mπ ≈ 80 MeV).
However, we may test whether the chiral observables for
different quark masses follow some specific scaling behav-
iors arising from the proximity of a chiral critical point. If
such specific scalings are found to hold for a window of
quark masses, then one can estimate bounds on the critical
value for the pseudoscalar Goldstone mass. As we do not
know the value of the critical quark mass in 3-flavor QCD,
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it is at present not possible to determine the proper order
parameter, e.g., from linear combinations of the chiral
condensate and the gauge action, M ¼ ψ̄ψ þ sSG [10]. At
present, thus, we cannot perform a scaling analysis based
on the construction of the magnetic equation of state,
cf. Eq. (5). Instead, we will try to make use of the scaling
behavior of the disconnected part of the chiral susceptibility
at the pseudocritical gauge coupling (temperature); i.e., we
will use Eq. (12) to estimate the critical pion mass.
First of all we need to determine the values of chiral

observables at the pseudocritical values, βcðmqÞ, of the
gauge coupling where the disconnected susceptibility
peaks. We performed cubic spline fits to χq;disc=T2.
Since we generally have about 8 data points (β values)
at each quark mass we mostly use three knots in the spline
fit to keep a larger number of degrees of freedom, i.e. larger
or equal to 3. Two of the knots are fixed at the boundary of
the β-range and the third knot is varied within the β range.
The fit results for chiral condensates and susceptibilities we
have shown in the figures of this paper, e.g., in Fig. 1, have
been obtained by choosing the third knot such that the
resulting χ2=dof is closest to unity. To determine, the
pseudocritical couplings, βc, we performed cubic spline fits
for the disconnected part of the chiral susceptibilities using
the bootstrap method, where fits with χ2=dof closest to
unity are chosen. The value and error of the disconnected
part of the chiral susceptibility at βc is obtained in the same
way. The value βc for different quark masses and lattice
sizes, the peak height of the disconnected part of the chiral
susceptibility χq;disc=T2 and the value of the chiral con-
densate at βc, hψ̄ψicq=T3, are listed in Table II. We also
estimated systematic uncertainties of our fits by performing
cubic spline fits of the disconnected part of the chiral
susceptibility with the third knot chosen such that the
χ2=dof is farthest away from unity. This results in values for
βc and χcq;disc=T

2 that are within the uncertainties of those
listed in Table II. Note that the current way of performing
spline fits also brings in some artifacts, e.g., the unphysical
dips seen in the right plots of Fig. 1 and Fig. 3 near the
smallest β values. These dips can be cured by relocating the
knots. However, the resulting changes of βcðmqÞ, hψ̄ψicq
and χcq;disc are small and well included within the uncer-
tainties mentioned before.
Since in 3-flavor QCD the scaling variables are mixtures

of Δβ and Δm [cf. Eq. (9)] also the scaling behavior of the
order parameter in the quark mass becomes complicated
due to this mixture. In the immediate vicinity of the critical
point, the t direction, i.e. the line h ¼ 0, is defined as the
tangent to the pseudocritical line [10]. In the limit Δβ → 0,
the mixing coefficient B can then be determined from

dβcðmqÞ
dmq

¼ −1=B: ð15Þ

The dependence of the pseudocritical coupling, βcðmqÞ,
on the quark mass is shown in Fig. 6. Shown also in Fig. 6
are two fits using as ansatz the leading linear term in
Eq. (11) in two different fitting ranges. These fits obviously
yield an upper bound on the absolute value of the mixing
parameter B. From these fits we find that B is in the range of
−0.038≲ B ≤ 0. Thus, the scaling behavior of the chiral
observables will be described by corresponding relations in
Eqs. (12) and (13). However, the mixing is small. This has
consequences for the scaling of, e.g., the peak in the chiral
susceptibility. Although for any B < 0 the peak height will
diverge with the critical exponent γ, this behavior sets in
only for very small values of the quark mass. In general one
will see an effective exponent γeff , which will closely
resemble the situation at B ¼ 0, i.e. γeff ≃ 1 − 1=δ. This
can be seen from the fits to the peak heights of disconnected
chiral susceptibilities with an ansatz of bðmq −mc

qÞγeff
where γeff is a fit parameter. The fit results are shown in
the left plot of Fig. 7. The fit to the entire quark mass region

TABLE II. A list of the pseudocritical gauge coupling βcðmqÞ
and the peak height of the disconnected chiral susceptibility
χcq;disc=T

2 as well as the chiral condensate at the pseudocritical

gauge coupling hψ̄ψicq=T3 for various quark masses and volumes.

Lattice dim. mq βcðmqÞ χcq;disc=T
2 hψ̄ψicq=T3

163 × 6 0.0075 6.00(3) 92(4) 15(2)
243 × 6 0.00375 5.941(8) 155(6) 14.3(7)
163 × 6 0.00375 5.88(2) 177(8) 18(2)
123 × 6 0.00375 5.77(2) 220(11) 24(2)
103 × 6 0.00375 5.70(2) 246(10) 27(1)
243 × 6 0.0025 5.92(2) 241(11) 14(2)
243 × 6 0.001875 5.90(1) 309(14) 13(1)
243 × 6 0.00125 5.87(1) 463(21) 14(1)
243 × 6 0.0009375 5.854(7) 649(28) 14.0(7)
163 × 6 0.0009375 5.77(1) 737(35) 17(1)
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FIG. 6. βc as a function of quark mass mq. The red solid and
blue dashed lines represent linear fits using an ansatz of
−mq=Bþ c with and without the data point at the heaviest
quark mass, respectively.
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is denoted by the purple solid line and it gives χ2=dof ¼
0.88 and ðmc

q; γeffÞ ¼ ð0.0004ð1Þ; 0.78ð6ÞÞ. We also
investigate the dependence of fit results on the fit range.
A fit leaving out the largest quark mass (denoted by
the red solid line) yields χ2=dof ¼ 0.44 and ðmc

q; γeffÞ ¼
ð0.00012ð19ÞÞ; 0.95ð11ÞÞ while the fit leaving out the two
largest quark masses (denoted by the blue solid line) gives
χ2=dof ¼ 0.004 and ðmc

q; γeffÞ ¼ ð0.0004ð2Þ; 0.70ð1ÞÞ.
We thus have fixed γeff to 1 − 1=δ in the following

analysis. In the right plot of Fig. 7 we show the fit results
for T2=χq;disc by using the ansatz bðmq −mc

qÞ1−1=δ. The
critical quark mass mc

q can easily be obtained from the
intercept of the fitting function and the quark mass axis.
The fit to the whole quark mass region has a
χ2=dof ¼ 0.67. It is shown in the right plot of Fig. 7
labeled by the purple solid line. The estimated critical quark
mass is mc

q ¼ 0.00035ð3Þ with only the uncertainty from
the fit. This corresponds to mc

π ≃ 50 MeV. We also
consider uncertainties arising from the fit range, i.e. the
validity range of the scaling ansatz used for our fit. We did
this by fitting to data without the data point at the largest
quark mass, i.e. mq ¼ 0.0075. The χ2=dof which resulted
from the fit (denoted as the red solid line) without the data
point at mq ¼ 0.0075 remains almost the same. It gives a
similar critical quark mass value mc

q ¼ 0.00037ð4Þ. While
omitting the third heaviest quark mass in the fit results in a
very small χ2=dof i.e. 0.07. Nevertheless the obtained
mc

q ¼ 0.00032ð2Þ is consistent with previous two estimates
within errors. We also tried to fit the data with an ansatz
motivated by the scaling behavior in the three-dimensional
Z(2) universality class but with a vanishing critical quark
mass mc

q. The ansatz, thus, is T2=χcq;disc ¼ bm1−1=δ
q with

only one fit parameter b. Such a fit obviously cannot

describe the data at all,4 as can be seen from dashed lines in
the right plot of Fig. 7. However, an ansatz of bmγeff

q can
describe the data well when the largest two quark masses
are excluded from the fit as shown in the left
plot of Fig. 7. We thus cannot rule out that mc

q can actually
be zero.
In Fig. 7 we also show T2=χcq;disc obtained for different

volumes at the second highest and the smallest quark
masses as the black triangles. Since T2=χcq;disc reduces with
decreasing volume, it is expected that effects arising from a
finite volume overestimate mc

q; i.e. in the thermodynamic
limit, mc

q becomes smaller. Note that in our current
simulations with Nσ ¼ 24, even for the lightest quark
mass, the finite volume effects are expected to be less
than 10% on T2=χcq;disc and, consequently, the change in the
estimate of mc

q in the thermodynamic limit is moderate.
With the limitations of finite volume effects and the fit
results shown in Fig. 7, at present, we can only provide
an estimate for the upper bound of the critical pion
mass, mπ ≃ 50 MeV.5 This result is compatible with that
obtained from calculations using the stout action onNτ ¼ 6
lattices [19].
To have a better understanding of the uncertainties in the

estimate of mc
q, we also take into account possible con-

tributions arising from the regular part of chiral observ-
ables; i.e., for the chiral condensate, we use a fit ansatz of
the form a1ðmq −mc

qÞ1=δ þ a2ðmq −mc
qÞ þ a3. Here, a2
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FIG. 7. The inverse of the maxima of the disconnected chiral susceptibility versus the bare quark mass,mq. The solid lines and dashed
lines show fits based on a scaling ansatz bðmq −mc

qÞexponent and bðmqÞexponent, respectively. The fit results shown in the left plot were
obtained using an exponent of γeff as a free parameter while in the right plot the exponent being fixed to 1 − 1=δ. The fits with different
upper limits for the fit range in the quark mass, i.e. 0.0075, 0.00375 and 0.0025 are also shown. The black triangles represent the data
points for smaller volumes, i.e. Nσ ¼ 16 with mq ¼ 0.0009375 and Nσ ¼ 16, 12 and 10 with mq ¼ 0.00375. For more details see
discussions given in the text.

4In the case mc
q ¼ 0, one would, of course, expect that OðNÞ

critical exponents are more relevant than the Z(2). These critical
exponents, however, are quite similar and would not change the
conclusion given here.

5We will nevertheless show in Appendix B the fit results with a
critical exponent of γ which supports current upper bound of mc

q.
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includes contributions from an mq-type additive ultraviolet
divergent term, as well as the regular part of the chiral
susceptibility, and a nonvanishing a3 reflects that the chiral
order parameter is not the correct order parameter and will
approach a nonvanishing value at ðmc

q; βcÞ. Since this
involves four fit parameters and we only have six data
points corresponding to the six different quark masses, we
performed a joint fit to both the chiral condensate and the
disconnected part of the chiral susceptibility. For the fit to
the disconnected part of the chiral susceptibility, we assume
that the singular behavior of the chiral condensate is
completely encoded within the disconnected chiral suscep-
tibility, and not partly within the connected part of the chiral
susceptibility. Further, the disconnected chiral susceptibility
does not contain 1=a2 power-law divergences, and we
assume that any additional contribution from the regular
part of the chiral condensate to a diverging chiral suscep-
tibility can be neglected. Thus, for the disconnected chiral
susceptibility, we use as a fit ansatz a1=δ·ðmq−mc

qÞ1=δ−1.
Results from such a combined fit are shown in Fig. 8. This
yields a1 ¼ 8.6ð2Þ, mc

q ¼ 0.00035ð3Þ and a3 ¼ 11.8ð4Þ
with χ2=dof ¼ 0.46. The value of a1 is consistent with
δ=bwhere b ¼ 0.55ð1Þ is obtained from the fit shown in the
right plot of Fig. 7. The current estimate of mc

q is within the
upper boundwe obtained before, and the nonzero value of a3
is certainly consistent with a nonzero value of mc

q. The
consistency can be understood since the chiral condensate is
not a true order parameter as discussed in the Appendix A.
This estimate on mc

q is consistent with what we obtained
from the fit shown in Fig. 7. We also performed similar
joint fits by taking into account a regular contribution
to the disconnected chiral susceptibility with an ansatz
a1=δðmq −mc

qÞ1=δ−1 þ a4. Within errors, the fitted values
of a1 and mc were found to be consistent with the previous
case while a4 turned out to be vanishingly small compared
to a2.

V. CONCLUSION

We carried out calculations for 3-flavor QCD using the
HISQ action on Nτ ¼ 6 lattices. We used six values of pion
masses in the mass range 80 MeV≲mπ ≲ 230 MeV.
From the study of chiral condensates and chiral suscep-
tibilities, we found no direct evidence for the existence of a
first-order chiral phase transition in this pion mass region.
Assuming that the quark masses used in this study lie
within the critical scaling window of the anticipated chiral
critical point of the 3-flavor QCD, we investigated three-
dimensional Z(2) scaling behaviors of the chiral observ-
ables. Relying on these scaling studies, we were able to
estimate an upper bound of the critical pion mass, i.e.
mπ ≲ 50 MeV. As pointed out before, estimates of critical
pion masses tend to yield smaller values as one approaches
closer to the continuum limit, either by going to finer lattice
spacings or through using improved actions. In the future,
however, it will be essential to carry out lattice QCD
calculations for smaller quark masses and closer to the
continuum limit to establish the first-order chiral phase
transition region of 3-flavor QCD, and it is likely that this
region will remain bounded by the critical pion mass
estimated in the present study. The estimated smallness
of the critical pion mass for 3-flavor QCD suggests that the
first-order chiral phase transition region of 3-flavor QCD
might have little influence on the phase structure of
physical QCD, both for zero and nonzero baryon chemical
potential.
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APPENDIX A: GENERAL BEHAVIOR OF ORDER
PARAMETER AND CHIRAL CONDENSATE

Wewant to discuss here the scaling behavior of the chiral
condensate and its susceptibility at a possible critical point
in the coupling-quark mass plane which belongs to the
three-dimensional Z(2) universality class. At this critical
point, the chiral condensate itself is not a true order
parameter, but is part of a mixture of operators that define
the true order parameter M.
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FIG. 8. A simultaneous joint fit using a 4-parameter ansatz to
both light quark chiral condensate and the disconnected part of its
susceptibility at βc.
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The behavior of the order parameter M for this phase
transition as a function of the quark mass at different values
of temperature is depicted in the left plot of Fig. 9. At fixed
temperature, the order parameter M decreases when
decreasing the external field h. From Eq. (9), it follows
that this corresponds to a decreasing quark mass,

mq ¼ h0hþmc
q − Bðβ − βcÞ: ðA1Þ

The h ¼ 0 line is indicated in Fig. 9 by a dashed (red) line.
For B < 0, the lines of constant temperature, i.e. constant β,
will end for h ¼ 0 at coordinates of ðM > 0; mq < mc

qÞ in
the M −mq plane in the symmetry broken phase where
β < βc and at ðM ¼ 0; mq ≥ mc

qÞ in the symmetry restored
phase where β > βc. In particular, at T ¼ Tcðmq ¼ mc

qÞ
and mq ¼ mc

q, the line of constant temperature ends at
M ¼ 0 marked by a big blue dot in the left plot of
Fig. 9. When changing the external field h from positive
to negative values at T < Tcðmq ¼ mc

qÞ, the order param-
eter M will change discontinuously; i.e., this temperature
range corresponds to the first-order transition region in
3-flavor QCD. Finally, at temperatures lower than the
critical temperature in the chiral limit, i.e. when
T < Tcðmq ¼ 0Þ, no phase transition occurs, irrespective
of the value of quark mass. For any value of the quark mass,
the system is in the spontaneously broken phase.
The situation is similar for the quark chiral condensate

hψ̄ψi, which obviously is not the order parameter for
3-flavor QCD. However, for small values of the mixing
parameter B, it is a dominant component of the order
parameter. We sketch its behavior in Fig. 9 (right). Of
course, the relation between m and h given by Eq. (A1)
remains the same in this case. However, the y coordinate
for the line corresponding to h ¼ 0 gets distorted

because hψ̄ψi stays finite at the critical point ðβc; mcÞ,
which is marked also by a big blue dot in the right-hand part
of Fig. 9. From this, it is apparent that also for
T > Tcðmq ¼ mc

qÞ and mq > mc
q the chiral condensate

hψ̄ψi does not vanish at h ¼ 0 as it is not the proper order
parameter. The h ¼ 0 line is also indicated by a dashed line
in the figure. Also note that, at the temperature correspond-
ing to the chiral limit [T ¼ Tcðmq ¼ 0Þ], the chiral con-
densate drops from a finite value directly to zero.
In general, we have no direct access to the order

parameter itself, which needs to be constructed from,
e.g., a linear combination of the chiral condensate and
the gauge action. For our purpose, however, it is sufficient
to relate the chiral condensate and its susceptibility to the
singular part of the free energy introduced in Eqs. (3)
and (4). For the contribution of the singular part of the free
energy to the chiral condensate, we then obtain

hψ̄ψising ¼ h1=δ ~fGðt; hÞ; ðA2Þ

with t and h introduced in Eqs. (8) and (9), respectively. For
A ¼ B ¼ 0, the function ~fGðt; hÞ reduces to the scaling
function fGðzÞ. However, for A ≠ 0, t as well as h depend
on the quark mass and ~fG, thus, receives contributions from
partial derivatives of both arguments of fsing

~fGðt; hÞ ¼ −
�
1þ 1

δ

�
fsðzÞ −

1

βδ

∂z
∂mq

∂fsðzÞ
∂z

¼ −
�
1þ 1

δ

�
fsðzÞ −

z
βδ

�
Aβδ

h
t
− 1

� ∂fsðzÞ
∂z

¼ fGðzÞ − Ahω
∂fsðzÞ
∂z

h0
t0
; ðA3Þ

FIG. 9. Left: The order parameter M of the phase transition in the 3-flavor QCD as a function of quark masses at different
temperatures. Right: Same as the left plot but for the chiral condensate. Here TcðmqÞ is the (pseudo) critical temperature of QCD with
different values of quark massesmq. The red dashed line indicates the line of vanishing external field, h ¼ 0, and the blue dots mark the
location of the critical point at T ¼ Tcðmc

qÞ.

A. BAZAVOV et al. PHYSICAL REVIEW D 95, 074505 (2017)

074505-10



with ω ¼ 1 − 1=βδ. In general, the singular part of the free
energy thus does not lead to a simple scaling form of the
chiral condensate. It receives corrections to scaling, which,
relative to the h dependence of the chiral condensate, are
suppressed by a factor hω ≃ h1=2.
Similarly, we can analyze the scaling properties of the

chiral susceptibility,

χq ¼
∂hψ̄ψi
∂mq

: ðA4Þ

The singular contribution to χq can then be obtained from
Eq. (A3),

χsingq ¼ ∂hψ̄ψising
∂mq

¼ 1

h0
h1=δ−1 ~fχðt; hÞ; ðA5Þ

with

~fχðt; hÞ ¼ fχðzÞ þ Ahω
h0
t0
P1ðzÞ þ

�
Ahω

h0
t0

�
2

P2ðzÞ;

ðA6Þ

and

P1ðzÞ ¼ f0GðzÞ −
�
ωþ 1

δ

�
f0sðzÞ þ

z
βδ

f00s ðzÞ;

P2ðzÞ ¼ −f00s ðzÞ: ðA7Þ

One, thus, finds that the chiral susceptibility diverges in the
vicinity of the critical point just like the order parameter
susceptibility, i.e. χq ∼ h1=δ−1, as shown in Eq. (12).
In order to make sure that the scaling arguments given in

connection with Eq. (12) are valid also for a pseudocritical
coupling extracted from the location of a peak in the chiral

susceptibility rather than the true order parameter M, we
also need to check that the locaton of this peak corresponds
to a constant value of the scaling variable z. I.e. in the chiral
limit the peak is located at some position z ¼ zc. Ignoring
the corrections to scaling in Eq. (A5), we may determine
the location of the peak of χq at fixed quark mass. We need
to solve

0 ¼ ∂
∂β h

1=δ−1fχðzÞ

¼ B

�
1

δ
− 1

�
fχðzÞ −

�
hω −

B
βδ

z

�
f0χðzÞ: ðA8Þ

Obviously, for B ¼ 0, the peak of χq at fixed quark mass
corresponds to the peak of fχðzÞ, i.e., zp. For B ≠ 0,
Eq. (A8) is a function of the scaling variable z aside from
some corrections to scaling that are proportional to hω. The
location of the peak in the chiral susceptibility, thus, is
controlled by a value of the scaling variable z ¼ zc up to
some corrections to scaling that vanish in the limit h → 0.
For small values of B, we can determine zc by expanding
around z ¼ zp, i.e., Δz=zp¼zc=zp−1¼Bð1=δ−1ÞfχðzpÞ=
ðz2pf00χðzpÞðht jzp h0t0 − B

βδÞÞ.

APPENDIX B: MIXING COEFFICIENT AND
EFFECTIVE CRITICAL EXPONENT

As seen from Eq. (11), the dominant term determining
the relation between Δβ and Δm in the limit Δβ → 0 is
proportional to B, which will be small in QCD when the
critical quark mass is small. Outside a small asymptotic
scaling region, the second term in Eq. (11), thus, will be
dominant and χM may show an effective scaling controlled
by the exponent 1 − 1=δ. To illustrate this, we consider the
simple scaling form,
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FIG. 10. The effective scaling exponent, γeff ¼ − lnðχpeakM Þ= lnðΔmÞ, extracted from the peak value of the order parameter
susceptibility obtained from Eq. (B1). Here, γeff ¼ γ when B ¼ 0. Left: For z0=zp ¼ 1 and several values of the mixing coefficient
B. Right: For B ¼ −0.05 and several different values of z0=zp.
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χpeakM ∼ h1=δ−1 ∼ ðð1þ B2ÞΔβ − Bðz0=zpð1þ B2ÞΔβÞβδÞ−γ;
ðB1Þ

where we used Eqs. (10) and (11) to express the external
field h, introduced in Eq. (9), in terms of Δβ only.

We show in Fig. 10 the effective exponent γeff describing

the behavior of χpeakM as a function of Δβ. This shows that
we may expect to find a rather complicated scaling

behavior of χpeakM . We can see that, as long as the
value of B is small, the effective exponent is much closer
to 1 − 1=δ rather than γ in most cases that might apply to
our current investigation.
As discussed above and also in Sec. IV C, the effective

critical exponent is expected to be rather close to 1=δ − 1.
We nevertheless would like to check the uncertainties in
the estimate of the critical quark mass arising from the
critical exponents. We, thus, use an ansatz of bðmq −mc

qÞγ
to fit the inverse of the disconnected part of the chiral
susceptibilities at βcðmqÞ. The fit result is shown in
Fig. 11. All the fits to the data sets with all the masses,
without the heaviest mass point and without two heaviest
mass points prefer negative values of mc

q, which can be
seen clearly from the intercept of the solid lines with the
x axis.
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