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We present measurements of a combination of the decay constants of the light pseudoscalar mesons and
the gradient flow scale t0, which allow us to set the scale of the lattices generated by CLS with 2þ 1 flavors
of nonperturbatively improved Wilson fermions. Mistunings of the quark masses are corrected for by
measuring the derivatives of observables with respect to the bare quark masses.

DOI: 10.1103/PhysRevD.95.074504

I. INTRODUCTION

A lattice scale is a dimensionful quantity which can be
used to form dimensionless ratios of observables with a
well-defined continuum limit. In principle, its choice is
arbitrary; however, the precision to which we can extract
the scale on the lattice and the accuracy, to which its
experimental value is known, will affect the precision of the
final results.
Here, we will determine two such scales for the setup

chosen in the CLS simulations with Nf ¼ 2þ 1 flavors of
OðaÞ improvedWilson fermions and the tree-level Lüscher-
Weisz gauge action, which has been described in detail in
Ref. [1]. The two scales are a combination of the pseudo-
scalar decay constants fπ and fK as well as t0, the gluonic
dimension two quantity introduced by Lüscher in Ref. [2]
using the Wilson flow.
Other observables commonly used in scale setting are the

mass of the Ω− baryon [3], the ϒ −ϒ0 mass splitting [4] or
the scale r0 [5] defined from the force between two static
quarks. For the latter, like for t0, the physical value is not
known from experiment, but has to be computed on the
lattice. Still, such quantities can be very useful as inter-
mediate scales due to their high statistical accuracy and the
fact that their definition does not include valence quarks.
This makes them also useful in studies which connect
results with different flavor content in the sea. The study
presented here is in some aspects similar to the one by
QCDSF [6], where combinations of hadron masses are used
to set the scale in the determination of t0.
The results of lattice QCD simulations are dimensionless

ratios of observables. Since we restrict ourselves to three
flavors, with the two light ones degenerate, these ratios will
differ from those found in nature. Therefore the choice of
input observable will affect the global normalization of the
results. However, the scale also enters in the definition of
the physical quark mass point and therefore also directly
affects the ratios of observables. Because of the latter, Nf ¼
2þ 1 flavor results become unique only after specifying
the lattice scale and the observables used to set the quark

masses. Deviations from uniqueness, however, are very
small effects as long as one remains in the low energy
sector of the theory where decoupling holds [7].
The paper is organized as follows: In Sec. II, we first give

a brief overview of the ensembles as well as the observables
we consider. Section III discusses the issues which occur in
the extraction of the masses and matrix elements in the
presence of open boundary conditions in time, as used in
the CLS simulations. In Sec. IV, the method to correct for
mistunings by using mass derivatives of the observables is
detailed, before presenting the results in Section V and
concluding.

II. SETUP

We want to set the scale for the ensembles generated by
the CLS 2þ 1 effort which use the tree-level Oða2Þ
improved Lüscher-Weisz gauge action and improved
Wilson fermions with a nonperturbative csw [8]. Three
values of the coupling have been employed β ¼ 3.4, 3.55
and 3.7, which correspond roughly to a lattice spacing of
a ¼ 0.085 fm, 0.065 fm and 0.05 fm, respectively. Data
limited to degenerate quark masses are also available at
β ¼ 3.46. An overview can be found in Table I, with
ensemble N203 first described in Ref. [9].
Apart from β ¼ 3.46, these ensembles lie along lines of

constant sum of the bare quark masses amq ¼ ð1=κq − 8Þ=2
with degenerate light quarks mud ≡mu ¼ md and an aver-
age quark mass msym. κq is the standard hopping parameter
of theWilson quark action [10].Using the quarkmassmatrix
Mq ¼ diagðmu; md; msÞ, we therefore have

3msym ¼ trMq ¼ 2mud þms ¼ const: ð2:1Þ

This line has been chosen because it implies a constant OðaÞ
improved coupling [11],

~g20 ¼ g20

�
1þ 1

3
bgatrMq

�
; ð2:2Þ
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irrespective of the knowledge of the improvement coeffi-
cient bg.
To further specify the chiral trajectories, we have to

define a point in the ðmud; msÞ plane through which it is
supposed to pass. To this end, we have used the dimen-
sionless variables,

ϕ2 ¼ 8t0m2
π and ϕ4 ¼ 8t0

�
m2

K þ 1

2
m2

π

�
; ð2:3Þ

with the requirement that the chiral trajectory intersects the
symmetric line mud ¼ ms at ϕ4 ¼ 1.15. Here, mπ and mK
are the masses of the pseudoscalars corresponding to the
pion and the kaon. The value of ϕ4 ¼ 1.15 comes from a
preliminary analysis of the quark mass dependence of ϕ4;
only the final analysis can tell in how far this chiral
trajectory goes through the point of physical ϕ4 and ϕ2.
Three points in this strategy need special attention: First of

all, eq. (2.1) does not imply a constant sum of renormalized
quark masses, which is already violated to OðaÞ,

trMR ¼ Zmrm½ð1þ ad̄mtrMqÞtrMq þ admtrM2
q�; ð2:4Þ

as worked out in Ref. [12], whose notation we are using.
Secondly, the tuning in ϕ4 is correct only up to a certain
degree, and it is at the current stage by no means clear that
these defined trajectories also go through the physical quark
mass points. The potential mistuning needs to be taken into
account in the analysis.
Furthermore, the definition of the point of physical quark

masses depends at finite lattice spacing on the scale. The
tuning has been done using t0 for which the precise
experimental value is not known. It might therefore be
preferable to use the decay constants also at finite lattice
spacing, but this will necessarily lead to chiral trajectories
which are no longer matched to the same level of accuracy.

A. Observables

The physical quantity used here to convert the lattice
measurements to physical units is the combination of the
pseudoscalar decay constants of pion fπ and kaon fK,
which along with its next-to-leading-order expansion in
SU(3) chiral perturbation theory [13] is given by

fπK ≡ 2

3

�
fK þ 1

2
fπ

�

≈ f

�
1 −

7

6
Lπ −

4

3
LK −

1

2
Lη þ

16BtrM
3f2

ðL5 þ 3L4Þ
�
:

ð2:5Þ
The a priori unknown low-energy constants L4

and L5 (defined at the scale μ ¼ 4πf) appear only in
the trM term and logarithms are given by Lx ¼
m2

x=ð4πfÞ2 lnðm2
x=ð4πfÞ2Þ. A constant trM therefore

implies a constant fπK up to logarithmic corrections.
Note that due to Eq. (2.4) we also expect OðamÞ effects
to violate the constancy of this combination.
With fπK as a scale, we can define a second set of

dimensionless variables

yπ ¼
m2

π

ð4πfπKÞ2
and yK ¼ m2

K

ð4πfπKÞ2
ð2:6Þ

for which the linear combination yπK ¼ yπ=2þ yK is again
constant in leading-order ChPT along our chiral trajectory.
Using the experimental values of the meson masses

corrected for isospin breaking effects [14] and the PDG
values for the decay constants [15], we use as input
parameters

mπ ¼ 134.8ð3Þ MeV; mK ¼ 494.2ð3Þ MeV

fπ ¼ 130.4ð2Þ MeV; fK ¼ 156.2ð7Þ MeV: ð2:7Þ

TABLE I. List of the ensembles. In the id column, the letter gives the geometry, the first digit the coupling and the final two label the
quark mass combination.

id β Ns Nt κu κs mπ [MeV] mK [MeV] mπL

H101 3.40 32 96 0.13675962 0.13675962 420 420 5.8
H102 3.40 32 96 0.136865 0.136549339 350 440 4.9
H105 3.40 32 96 0.136970 0.13634079 280 460 3.9
C101 3.40 48 96 0.137030 0.136222041 220 470 4.7
H400 3.46 32 96 0.13688848 0.13688848 420 420 5.2
H401 3.46 32 96 0.136725 0.136725 550 550 7.3
H402 3.46 32 96 0.136855 0.136855 450 450 5.7
H200 3.55 32 96 0.137000 0.137000 420 420 4.3
N202 3.55 48 128 0.137000 0.137000 420 420 6.5
N203 3.55 48 128 0.137080 0.136840284 340 440 5.4
N200 3.55 48 128 0.137140 0.13672086 280 460 4.4
D200 3.55 64 128 0.137200 0.136601748 200 480 4.2
N300 3.70 48 128 0.137000 0.137000 420 420 5.1
J303 3.70 64 192 0.137123 0.1367546608 260 470 4.1
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The value of fK comes from a direct experiment only
up to the contribution of the CKM matrix element Vus,
which ultimately is extracted using theory input. At the
current level of accuracy, the associated uncertainties are
acceptable; however, in the future, a direct measurement
from our simulations will be an interesting verification of
this assumption.

B. Finite volume effects

The finite spatial volume of the lattices can affect the
quantities we are interested in. A detailed study of these
effects is planned in the future, but a general requirement is
that one has to ensure fπL ≫ 1 and mπL ≫ 1 for them to
be small.
For the lattices apart from H200 listed in Table I, we have

L ≥ 2.4 fm and mπL > 4 throughout. The chiral perturba-
tion theory prediction [16,17] indicates that the systematic
effects on fπ and mπ are below our statistical uncertainties
on the ensembles which enter our analysis, however, in
some cases they are not completely negligible. The largest
finite volume effect is on the N200 ensemble, where it
amounts to 70% of the statistical error. We, therefore, apply
the one-loop finite volume corrections to all data. The
remaining effect, not accounted for by this correction,
should be significantly below the statistical uncertainty and
can therefore be neglected.
The H200 ensemble is excluded from the analysis,

because the finite volume effect in the decay constant is
too large. It is at the same physical parameters as the N202
ensemble, but with L=a ¼ 32 instead of 48 and is therefore
the only lattice with L ≈ 2 fm. The measured finite volume
effect between the two volumes in the decay constant is
−2.5ð1.0Þ%, where ChPT predicts a −0.9% correction.
While the accuracy of the data is not high enough for a
detailed comparison, the correction beyond the ChPT
prediction is to be significantly smaller for the larger
volumes on which we base our computation.

III. OPEN BOUNDARIES AND HADRONIC
OBSERVABLES

Three types of fermionic observables are required for the
scale setting in this paper: the masses and decay constants
of the pseudoscalar mesons, as well as the PCAC quark
masses. The open boundary conditions of the gauge field
configurations do not pose a fundamental problem in the
analysis due to the fact that the transfer matrix is not
changed [18,19]. Still some parts of the analysis have to be
adapted because of the broken translational invariance at
the boundaries at x0 ¼ 0 and x0 ¼ T. By construction, the
boundary states share the quantum numbers of the vacuum
and, if source or sink of the two-point functions come close
to the boundaries, the whole tower of these states contrib-
utes to correlation functions.
As usual, pseudoscalar masses and decay constants are

extracted from correlation functions of the pseudoscalar

density Prs ¼ ψ̄ rγ5ψ
s and the improved axial vector

current Aμ ¼ ψ̄ rγμγ5ψ
s þ acA ~∂μPrs with nonperturba-

tively tuned coefficient cA [20]. The two-point functions

frsP ðx0; y0Þ ¼ −
a6

L3

X
~x;~y

hPrsðx0; ~xÞPsrðy0; ~yÞi;

frsA ðx0; y0Þ ¼ −
a6

L3

X
~x;~y

hArs
0 ðx0; ~xÞPsrðy0; ~yÞi; ð3:1Þ

where r and s are flavor indices, are estimated with
stochastic sources located on time slice y0, for which we
choose either y0 ¼ a or y0 ¼ T − a. This choice and the
general procedure are suggested by the comparison of
various strategies in Ref. [21].

A. Excited states and boundary effects

To obtain the vacuum expectation values, we have to
define the plateaux regions in which excited state contri-
butions can be neglected. As in Ref. [22], the general
strategy to define plateaux is divided in two steps. First, we
perform preliminary fits including the first excited state,
where the fit interval is chosen such that this model
describes the data well by using a χ2 test.
In the second step, only the function describing the

ground state contribution is used, with the fit range given by
the region where the excited state contribution as deter-
mined by the first fit is negligible compared to the statistical
errors of the data.
From our measurements of fP and fA we observe, at

fixed lattice spacing, that boundary effects increase as the

FIG. 1. The effective quantity R ¼ RPSðx0; aÞ defined in
Eq. (3.4), from which the decay constants are extracted, for
ensembles N202 and D200. Both of them share the same
β ¼ 3.55, but differ in the quark masses, the pion having a mass
of ≈420 MeV for the former and 200 MeV for the latter. For the
combined observable, the sources are at y0 ¼ a and y0 ¼ T − a,
with the sink varying over the temporal extent of the lattice. The
horizontal lines indicate the plateau average and its uncertainty,
the vertical lines the plateau ranges. Smaller pion mass leads to
boundary effects reaching farther into the bulk.
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up-down quark masses are lowered. This turns out to be
particularly relevant for the quantity RPSðx0; y0Þ defined
below in Eq. (3.4) where, according to our criterion for the
definition of a plateau, boundary effects can be neglected
starting from x0 ≈ 3 fm for pion masses around 200 MeV,
as shown in Fig. 1. Nevertheless, despite the fraction of the
lattice which is discarded, we have been able to extract
meson decay constants with 1% accuracy (and higher) on
all ensembles, as reported in Table II. Here, and all other
cases presented, we use the statistical analysis method of
Ref. [23], taking into account the autocorrelation of the data
including contributions from the slowest observed modes
of the Markov chain Monte Carlo as determined in Ref. [1].
For the PCAC masses deviations from a flat behavior

constitute a pure discretization effect. We have observed the
largest ones at β ¼ 3.4, where a plateau can be identified at
distances of around 1.7 fm from the boundaries, while at
β ¼ 3.7 this distance shrinks to 0.7 fm.

B. Meson masses

In the presence of open boundary conditions, the
pseudoscalar correlator fP has the asymptotic behavior

fPðx0; y0Þ ¼ A1ðy0Þe−mPSx0 þ A2ðy0Þe−m0x0

þ B1ðy0Þe−ðE2PS−mPSÞðT−x0Þ þ � � � ; ð3:2Þ

for T ≫ x0 ≫ y0, where we included the contribution from
the first excited state. The third exponential term originates
from the first boundary excited state, a finite volume two
pion state. In large volume, E2PS ≈ 2mPS, leading to the
sinhlike functional form presented in Ref. [19].
Taking into account the leading corrections from excited

states for this formula, which are exponentially suppressed
with the distance of the sink from the source and the
boundaries, respectively, results in

ameffðx0Þ≡ log
fPðx0Þ

fPðx0 þ aÞ
¼ amPSð1þ c1e−E1x0 þ c2e−E2PSðT−x0Þ þ � � �Þ;

ð3:3Þ

with E1 ¼ m0 −mPS and only c1 and c2 depending on the
source position y0. As discussed in the previous section, we
determine the plateau range in x0, where the exponential
corrections can be safely neglected compared to the
statistical uncertainties. The results of the plateau fits
can be found in Table II.
To check for possible systematics, also direct fits of

Eq. (3.2) including terms of excited states have been tried,
without going through the effective mass. The differences
of the results are significantly below our statistical
accuracy.

TABLE II. Values of t0, the pseudoscalar quark masses and decay constants as well as the PCAC masses. For each ensemble we give
the measured values in the rows with the labels and in the row below the values after a shift to ϕ4 ¼ 1.11.

id t0=a2 amπ amK am12 am13 afπ afK

H101 2.8469(59) 0.18302(57) 0.18302(57) 0.009202(45) 0.009202(45) 0.06351(34) 0.06351(34)
2.8619(56) 0.17979(17) 0.17979(17) 0.008893(36) 0.008893(36) 0.06296(37) 0.06296(37)

H102 2.8801(73) 0.15412(65) 0.19165(52) 0.006520(48) 0.010187(47) 0.06057(34) 0.06369(27)
2.8861(54) 0.15306(23) 0.19068(16) 0.006428(35) 0.010091(39) 0.06053(31) 0.06358(26)

H105 2.8933(78) 0.12185(95) 0.20127(62) 0.003956(50) 0.011258(47) 0.05723(57) 0.06388(31)
2.8920(74) 0.12151(34) 0.20166(23) 0.003952(46) 0.011304(36) 0.05752(59) 0.06432(28)

C101 2.9080(51) 0.09759(87) 0.20645(36) 0.002494(42) 0.011872(31) 0.05561(40) 0.06383(21)
2.9044(39) 0.09901(36) 0.20708(11) 0.002566(29) 0.011935(25) 0.05573(38) 0.06390(21)

H400 3.635(13) 0.16345(66) 0.16345(66) 0.008228(36) 0.008228(36) 0.05690(37) 0.05690(37)
3.662(12) 0.15896(28) 0.15896(28) 0.007786(63) 0.007786(62) 0.05631(52) 0.05631(52)

H402 3.558(16) 0.17727(62) 0.17727(62) 0.009779(44) 0.009779(44) 0.05887(41) 0.05887(41)
H200 5.150(25) 0.13717(76) 0.13717(76) 0.006856(30) 0.006856(30) 0.04704(43) 0.04704(43)
N202 5.164(16) 0.13407(43) 0.13407(43) 0.006855(16) 0.006855(16) 0.04829(20) 0.04829(20)

5.166(15) 0.13382(20) 0.13382(20) 0.006832(39) 0.006832(36) 0.04829(21) 0.04829(21)
N203 5.1433(74) 0.11224(30) 0.14369(23) 0.004751(15) 0.007902(12) 0.04632(17) 0.04901(14)

5.1427(80) 0.11233(16) 0.14377(11) 0.004761(26) 0.007912(26) 0.04639(18) 0.04906(14)
N200 5.1590(76) 0.09222(34) 0.15066(24) 0.003150(11) 0.008649(12) 0.04422(18) 0.04911(20)

5.1600(76) 0.09197(20) 0.15053(11) 0.003137(22) 0.008636(19) 0.04432(19) 0.04915(20)
D200 5.1802(78) 0.06502(35) 0.15644(16) 0.001536(12) 0.009379(11) 0.04233(16) 0.04928(21)

5.1761(82) 0.06611(30) 0.156912(86) 0.001591(16) 0.009436(17) 0.04253(18) 0.04943(20)
N300 8.576(30) 0.10630(34) 0.10630(34) 0.0055046(91) 0.0055046(91) 0.03790(20) 0.03790(20)

8.596(27) 0.10376(16) 0.10376(16) 0.005237(47) 0.005237(37) 0.03770(23) 0.03770(23)
J303 8.613(20) 0.06514(35) 0.12015(19) 0.002053(17) 0.007204(33) 0.03424(24) 0.03854(37)

8.637(24) 0.06259(28) 0.11879(11) 0.001884(44) 0.007027(67) 0.03399(36) 0.03845(50)
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C. Decay constants and quark masses

The vacuum expectation values needed for the extraction
of the decay constants are obtained from the plateaux in x0
of the ratio (where we drop the flavor indices rs),

RPSðx0; y0Þ ¼
�
fAðx0; y0ÞfAðx0; T − y0Þ

fPðT − y0; y0Þ
�
1=2

: ð3:4Þ

This ratio is formed such that matrix elements of operators
close to the boundary drop out. In this case, the plateaux are
defined by fitting the ratios RPS with

RPSðx0; y0Þ ¼ Rð1þ c1ðy0Þ cosh½−E1ðT=2 − x0Þ�Þ; ð3:5Þ

since it is invariant under time reversal transformations.
Once the relevant matrix element is known, the pseudo-
scalar decay constants are computed from

fPS ¼ ZAð~g0Þ½1þ b̄AatrMq þ ~bAamrs�fbarePS ð3:6Þ

fbarePS ¼
ffiffiffiffiffiffiffiffi
2

mPS

s
Raver
PS ; ð3:7Þ

where Raver
PS is the plateau average of the ratio previously

introduced.
The third observable we are interested in is the PCAC

quark mass mrsðx0; y0Þ ¼ ~∂x0f
rs
A ðx0; y0Þ=ð2frsP ðx0; y0ÞÞ

where ~∂x0 is the symmetric derivative in time direction.
With the same technique described for the effective mass in
Sect. III B, plateaux in x0 are also found for this quantity,
which is then multiplicatively renormalized (up to Oða2Þ
corrections) according to

mrs;R ¼ ZA

ZP
½1þ ðb̄A − b̄PÞatrMq þ ð ~bA − ~bPÞamrs�mrs:

ð3:8Þ

The present knowledge of the improvement coefficients for
the action that we used is limited to one-loop1 perturbation
theory [25]

~bA − ~bP ¼ −0.0012g20 þOðg40Þ;
~bA ¼ 1þ 0.0472g20 þOðg40Þ; b̄A ¼ b̄P ¼ Oðg40Þ:

ð3:9Þ

The finite renormalization factor ZA has been computed
using the Schrödinger Functional [26] and its chirally
rotated variant [27]. We use the latter result due to its
higher statistical accuracy, measured directly at the

simulated values of g0, thus neglecting terms of order
bgg40. The nonperturbative running of the scale-dependent
factor ZP is not yet completed [28]. Hence, in the following
we will consider only ratios of renormalized PCAC masses
which do not depend on renormalization factors.
Starting from the leading matrix element of fP, a second

possibility to obtain the decay constants is based on the
PCAC relation. The former can be obtained from a ratio
similar to RPS where the axial two point functions in the
numerator are simply replaced by their corresponding fP.
For this quantity, however, we observed much stronger
boundary contaminations and therefore we did not follow
this strategy to compute the pseudoscalar decay constants.

IV. MASS CORRECTIONS

As we have seen above, it is necessary to control small
corrections in the quark masses from the ones at which the
simulations have been performed. This could be done by
reweighting [29,30], but here we only consider the leading
corrections in a Taylor expansion. Since the required shifts
are typically determined from the fit to the data, this has the
advantage that we can include its effect easily in the full
data analysis without need of interpolation between the
measured points of a reweighting.
For a general function fðĀ1ðmÞ;…; ĀnðmÞÞ of expect-

ation values of primary observables Āi ¼ hAii, the deriva-
tive with respect to a parameter m of the theory reads

d
dm

f ¼
X
i

∂f
∂Āi

��∂Ai

∂m
�
−
�
ðAi − ĀiÞ

�∂S
∂m −

∂S
∂m

���

ð4:1Þ

with S denoting the action of the theory. In the analysis, we
then use

fðm0Þ → fðmÞ þ ðm0 −mÞ d
dm

fðmÞ; ð4:2Þ

neglecting higher-order terms.

A. Measurements

For the measurement of the derivative, we therefore need
to compute the explicit derivative of the observable as well
as the one of the action. If m is the bare quark mass, the
derivative of hadronic correlation functions is easily evalu-
ated as in

∂mtr

�
1

Dþm
Γ

1

Dþm0 Γ
0
�
¼ −tr

�
1

ðDþmÞ2 Γ
1

Dþm0 Γ
0
�
:

ð4:3Þ

The numerical effort is limited: for each propagator, a
second inversion on the solution is necessary.

1Nonperturbatively determined values have become available
while writing up the present analysis [24].

SETTING THE SCALE FOR THE CLS 2þ 1 FLAVOR … PHYSICAL REVIEW D 95, 074504 (2017)

074504-5



The second term in Eq. (4.1) contains the derivative of
the action

−∂m log detðDþmÞ ¼ −trðDþmÞ−1; ð4:4Þ

which can be evaluated using stochastic estimates of the
trace. For our ensembles, we used 16 sources and found
the noise introduced by them to be significantly inferior to
the gauge noise of this observable.

B. Examples

To test the method we use ensembles at β ¼ 3.46 which
have been generated along the symmetric line H400, H401
and H402, where H402 has a sea quark mass which is
roughly 19% larger than the one of H400 and H401 has
roughly twice this mass. The results are displayed in Fig. 2.
We give the direct measurements on the three ensembles as
well as the prediction indicated by the shaded band
obtained from ensemble H400.
For t0 we can shift roughly 9% in the quark mass before

doubling the statistical uncertainty, for the decay constant
this level is reached at a 5% shift. No deviations from the
linear approximation beyond the statistical error are visible
in the displayed region. Since the shifts we apply in
the following are smaller than those, we assume that the
systematic error from dropping higher orders in the Taylor
expansion can be neglected compared to the increase in
statistical uncertainty.

V. CHIRAL AND CONTINUUM EXTRAPOLATION

There is no unique choice of chiral trajectory in themud–ms
plane alongwhich onemoves as the pionmass is changed, as
there is no unique choice of matching condition between
different lattice spacings. These choices, however, have an
impact on the ease with which the extrapolation to physical
quark masses and to the continuum can be performed.

A. Chiral trajectory

As already mentioned above, the chiral trajectories
defined by trMq ¼ const lead to discretization effects of
OðamÞ given in Eq. (2.4). To avoid them, an improved
proxy for the quark mass is needed. There are basically two
options: the PCAC quark masses and the meson masses.
The former has the advantage that a trajectory defined
through a constant sum of these quark masses automati-
cally leads to a constant coefficient of bg in Eq. (2.2). The
disadvantage is that the improvement coefficients bA − bP
and ~bA − ~bP are known only perturbatively. However, our
masses are small and so are the one-loop values of these
combinations.
We opt for using the sum of the mass squares of

pseudoscalar mesons m2
K þ 1

2
m2

π , which in the leading
order of chiral perturbation theory is proportional to the
sum of the three light quark masses. While these do not
introduce any discretization effects at OðaÞ, it might
introduce a small variation of the improved coupling, since
the sum of quark masses varies due to higher-order effects
in ChPT. As we will see below, on a chiral trajectory
defined through a constant ϕ4 ¼ 8t0ðm2

K þ 1
2
m2

πÞ also the
sum of the renormalized quark masses is constant on the
percent level. We can therefore safely assume that the effect
of a variation in the term coming with bg can be neglected.

B. Strategy 1

The obvious extension of the strategy used in the
planning of the simulation is to continue with t0 as a scale
parameter, i.e. finding the physical value of ϕ4 along which
we move towards the chiral limit. Since the physical value
of t0 is not known beforehand, we determine it implicitly
from another dimensionful observable.
The analysis therefore starts by assuming a certain

physical value of t0 ¼ ~t0. Together with Eq. (2.7), this
defines the target point ð ~ϕ2; ~ϕ4Þ at which we can read off
physical results of the calculations. Starting from the
simulated ensembles, shifts along the line Δmu ¼ Δmd ¼
Δms are now performed to reach ~ϕ4. This is the direction in

FIG. 2. Examples of the mass shifts for the t0 and fπ along the symmetric linemud ¼ ms at β ¼ 3.46. The data points correspond to the
measurements on the ensembles H400 and H402 as well as H401 in the case of t0. The shaded bands give the linear approximation to
the mass dependence starting from the leftmost point. Deviations from the linear approximation are smaller than the increase in the
statistical uncertainties.
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which trMq changes fastest and therefore the effects due to
the truncation of the Taylor expansion are expected to be
smallest at the target ~ϕ4. As an intermediate result, we get
values of

ffiffiffiffi
t0

p
=a, afπKðϕ2Þ and their product at constant

ϕ4 ¼ ~ϕ4, which now have to be extrapolated to ~ϕ2.
For this extrapolation, we use two different functional

forms, one given by NLO ChPT, the other a Taylor
expansion around the symmetric point. As noted in
Ref. [31], along the line adopted in our simulations, the
linear term in the quark mass does not contribute to the
Taylor expansion and we can therefore use Fcont

T ðϕ2Þ ¼
c0 þ c1ðϕ2 − ϕsym

2 Þ2.
The ChPT formula Fχðϕ2Þ can easily be derived from

Eq. (2.5). Note that in NLO ChPT t0 is constant along our
trajectory at this order [32] and we have a straightforward
relation between ϕ2, ϕ4 and the meson masses. At NLO,
the ratios are therefore unambiguously given by the
logarithms predicted by ChPTffiffiffiffi

t0
p

fπK
ð ffiffiffiffi

t0
p

fπKÞsym
¼ fπK

ðfπKÞsym

¼ 1 −
7

6
ðLπ − Lsym

π Þ − 4

3
ðLK − Lsym

K Þ

−
1

2
ðLη − Lsym

η Þ: ð5:1Þ

These continuum relations are augmented by a term to
account for the leading discretization effects. In general, we
adopt

ffiffiffiffi
t0

p
fπK ¼ Fcont

T=χ ðϕ2Þ þ cT=χ
a2

tsym0

ð5:2Þ

and will see below that our data are well compatible with
this ansatz.
One result is a value of

ffiffiffiffi
t0

p
fπK at ~ϕ2 and ~ϕ4 as defined

by ~t0. Using the physical value of fπK, this gives a value of
t0 in physical units. The final goal is to find the fixed point,
at which this value agrees with the input ~t0. This then
defines the physical value of t0 and in turn the physical
value of ϕ4.
As we see from Fig. 3, both the ChPT formula as well as

the Taylor expansion, fitted to our data, hardly differ in the
range of our points. Also at physical quark masses, the
difference amounts to roughly half the statistical uncer-
tainty. However, such a difference might not be enough to
properly quantify the systematic uncertainty associated to
the chiral extrapolations. More specifically, in ChPT a
sensible way to estimate the size of the higher-order terms
is by changing the expansion parameter. In SU(2) chiral
perturbation this is done by using either the constant f in
the chiral limit or fπðmπÞ, which leads to the x and ξ
expansions. To mimic this, we use either a constant scale
proportinal to

ffiffiffiffi
t0

p
or fπKðmπÞ, thus leading to ϕ2 and yπ

respectively.
Taking into account the full propagation of the errors

through the fixed point condition, we therefore arrive at
physical values of

FIG. 3. The dimensionless quantity
ffiffiffiffi
t0

p
fπK along the line ϕ4 ¼ 1.110 in the top row, along the line of yπK ¼ 0.074 in the bottom row.

In the left panels, we present all measurements as a function of ϕ2 together with the fit result of the quadratic function (solid) and the
ChPT Eq. (5.1). The lattice spacing increases from bottom to top, with the uppermost lines corresponding to the continuum limit. In
the right panel, the continuum extrapolation of the data at the symmetric point is shown. We observe discretization effects up to 7% for
the coarsest lattice spacing.
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ϕphys
4 ¼ 1.122ð16Þ and

ffiffiffiffiffiffiffiffiffiffiffi
8tphys0

q
¼ 0.4153ð29Þ fm

ð5:3Þ

for the ChPTansatz with yπ. The fit has an excellent quality
characterized by a χ2 ¼ 8 at 8 degrees of freedom. The
quadratic extrapolation gives

ϕphys
4 ¼ 1.119ð21Þ and

ffiffiffiffiffiffiffiffiffiffiffi
8tphys0

q
¼ 0.4148ð39Þ fm

ð5:4Þ

at a χ2 ¼ 2.9, again with 8 degrees of freedom.
By repeating the two fit ansatz with ϕ2 as the extrapo-

lation variable, we obtain a second pair of values for ϕphys
4 :

in the case of the Taylor expansion the difference is
negligible, instead for the ChPT fits the difference is
−0.0022ð18Þ, i.e. below the statistical accuracy of the final
result. We take this number as our final systematic
uncertainty since it covers also the discrepancy between
the results of the Taylor and ChPT extrapolations quoted
above. This leads toffiffiffiffiffiffiffiffiffiffiffi

8tphys0

q
¼ 0.415ð4Þð2Þ fm ð5:5Þ

as the final result of this strategy. Note that the systematic
error also includes possible uncertainties on the validity
range of the chiral extrapolations, which turn out to be
extremely stable (with variations on the 0.5% level) under
the exclusion, from our fits, of the two most chiral points
and the four symmetric ones. For convenience, we give the
values of our observables shifted to ϕ4 ¼ 1.11 in Table II.
With this result, we have fixed the chiral trajectory

ϕ4 ¼ ϕphys
4 , such that now we are in a position to set the

scale. One method to obtain the lattice spacing in physical
units would be to chirally extrapolate t0=a2 to ϕphys

2 and
divide the result by tphys0 of Eq. (5.5). We prefer a slightly
different method, which avoids this last chiral extrapolation
and is instead based on directly measured values of t0=a2 at
the symmetric point. Eq. (5.2) is fitted to

ffiffiffiffiffiffiffiffi
tsym0

p
fπKðϕ2Þ

along the line of ϕ4 ¼ ϕphys
4 . Dividing the continuum and

chirally extrapolated result by the experimental value of
fπK yields

ffiffiffiffiffiffiffiffiffiffi
8tsym0

q
¼ 0.413ð5Þð2Þ fm: ð5:6Þ

The lattice spacings in physical units are obtained by
dividing tsym0 =a2 by tsym0 ½fm2� and their values are reported
in Table III.

C. Strategy 2

In the second strategy, we use fπK to set the scale,
shifting each simulated lattice such that yπK equals its

physical value yphysπK ¼ 0.07363. This strategy is simpler
since its physical value is known, see Eq. (2.7). To set the
lattice spacing one would compute afπK along the line of
constant yπK .
The disadvantage of this approach is that the parameters

of our ensembles are farther away from this chiral trajectory
and therefore require larger shifts. This increases the
statistical uncertainties and also potential higher-order
effects in the Taylor expansion, which we neglect. To
show which accuracy can be reached with the current data,ffiffiffiffi
t0

p
fπK is plotted after the shift to physical yπK in the

bottom plots of Fig. 3. As we can see, the statistical
uncertainties are significantly larger than the ones encoun-
tered in strategy 1, such that the applicability of the linear
correction terms alone is no longer clear. We therefore do
not consider this strategy to be competitive on the cur-
rent data.
Employing the same analysis strategy as in the previous

section, using a polynomial function and the one given by

ChPT, we arrive at
ffiffiffiffiffiffiffiffiffiffiffi
8tphys0

q
¼ 0.417ð9Þ fm for the former

and
ffiffiffiffiffiffiffiffiffiffiffi
8tphys0

q
¼ 0.416ð10Þ fm for the latter.

The advantage of the strategy for the scale setting is a
direct value of the lattice spacing from fπK ¼
147.6ð5Þ MeV at the physical point. This leads to
a ¼ 0.0790ð11Þ fm, 0.071(2) fm, 0.0613(9) fm and
0.0481(8) fm for β ¼ 3.4, 3.46, 3.55 and 3.7, respectively.
The difference to the results in the previous section is a
discretization effect, which is already visible in the plots on
the right hand side of Fig. 3.

D. Discretization effects

Because of the large statistical error encountered in
strategy 2, we will now restrict ourselves to the data
obtained with the first strategy. One assumption entering
the analysis presented above is that the data presented here
can be described by the leading discretization effects of
order a2 at the level of statistical accuracy. To get a handle
on this, in Fig. 3 the dimensionless product

ffiffiffiffi
t0

p
fπK is

displayed as a function of a2=t0 at the symmetric point
given by ϕ4 ¼ ϕphys

4 . As we can see, the data exhibit no

TABLE III. Lattice spacings from strategy 1 set by t0 at the
symmetric point and physical value of ϕ4 as given in Eq. (5.5).
Note the numbers in the second column are weakly correlated,
whereas the values of the lattice spacings have strong correlations
due to Eq. (5.6).

β tsym0 =a2 a½fm�
3.4 2.860(11)(03) 0.08636(98)(40)
3.46 3.659(16)(03) 0.07634(92)(31)
3.55 5.164(18)(03) 0.06426(74)(17)
3.7 8.595(29)(02) 0.04981(56)(10)
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deviation from a linear behavior, supporting further the
assumption made in the ansatz (5.2).

E. Chiral extrapolation

The effect of the chiral extrapolation is best studied by
forming ratios between the value of the observable at the
symmetric point and the one at parameters closer to the
chiral limit but at the same lattice spacing. In these ratios,
some of the lattice systematics cancels such that for the
chiral effects a high sensitivity can be reached.
The original ensembles are along trajectories of constant

sum of bare quark masses, matched at the 1% level using ϕ4

at the symmetric point. The results for the ratios can be
found in the left column of Fig. 4. As we can see from the
lower plot, the sum of renormalized quark masses is not
constant. These masses have been improved with a non-
perturbatively determined cA, effects of the b-terms have
been neglected. The fact that the renormalized sum is not
constant is a discretization effect. At β ¼ 3.4 their size is so
large that they cannot be attributed to contributions linear in

the quark masses alone; higher-order contributions are
noticeable at this coarse lattice spacing.
In the right column of this plot we see the effect of the

shift to a constant ϕ4 ¼ 1.11, which is close to the physical
value. The renormalized quark mass is now constant on the
percent level even for the coarsest lattice spacing, with the
remaining effects compatible with reasonable values of
the b-terms. This also justifies our choice of aiming for a
constant ϕ4 versus a constant trMR: the difference between
these two options cannot be resolved by the statistical
accuracy of the data and in any case is limited to the
percent level.
The effect on the ratios of t0 and fπK is less dramatic. In

agreement with the expectation both based on the Taylor
expansion of a flavor symmetric quantity around the
symmetric point [6,31] and ChPT [32], the chiral correc-
tions are tiny, in particular for the finer lattices. At the
coarsest lattice spacing, some deviation from the constant
behavior is still observed, which is reduced by the shift
to ϕ4 ¼ const.

FIG. 4. Effect of the chiral extrapolation on t0, fπK and the sum of perturbatively improved PCAC masses. The data are always
normalized by the symmetric point. In the left column, the data as measured on the simulated ensembles, where trðMqÞ is kept fixed. On
the right after the shifts to a constant ϕ4 ¼ 1.11 has been applied. In particular for the quark mass sum we observe a significant effect.
While the violation of trðMR

q Þ ¼ const before the shift cannot be explained by effects linear in the lattice spacing, we observe that
constant ϕ4 implies constant renormalized quark mass to high accuracy.
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The chiral effect in fπK is more noticeable, with a
correction on the level of 3%–4% to the physical light
quark mass point. Notice that our data agree well with the
logarithms predicted by ChPT2 in Eq. (2.5).

VI. CONCLUSIONS

Many observables can be used as a lattice scale, all agree
up to effects which come from an incomplete description of
nature. Here we neglect, for instance, quarks heavier than
the strange, electromagnetism and isospin breaking. The
main strategy pursued in the present study is to use t0 as an
intermediate scale, with the approach to the chiral limit
along lines of constant ϕ4 ¼ 8t0ðm2

K þm2
π=2Þ. Using fπK

as physical input, this allows the determination of the
physical value of t0. This strategy is preferred due to the
currently available ensembles in the CLS effort, because
the ensembles have been tuned with t0 as a scale.
Starting with statistical accuracies for the decay con-

stants on the level of 0.5%, we are able to determine t0 at
the percent level ffiffiffiffiffiffi

8t0
p

¼ 0.415ð4Þð2Þ fm: ð6:1Þ
This compares well to previous determinations using

2þ 1 flavors by the BMW collaboration [33] that quotesffiffiffiffiffiffi
8t0

p ¼ 0.414ð7Þ fm and is also within 2σ of the QCDSF
result [6] 0.427(7) fm as well as RBC-UKQCD’s
value [34] of 0.407(2) fm. Using 2þ 1þ 1 dynamical
flavors the MILC [35] and HPQCD [36] collaborations find

ffiffiffiffiffiffi
8t0

p ¼ 0.4005ð22
11
Þ fm and 0.4016(22) fm, respectively,

which might be an effect of the number of flavors in the
sea as is the two-flavor result

ffiffiffiffiffiffi
8t0

p ¼ 0.434ð3Þ fm [37].
With additional ensembles becoming available, the

analysis presented here will improve. However, even the
accuracies of the current study will already allow us to
reach a good precision in many physics projects.
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