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The Dirac operator in finite-temperature QCD is equivalent to the Hamiltonian of an unconventional
Andersonmodel,with on-site noise provided by the fluctuations of the Polyakov lines. Themain features of its
spectrum and eigenvectors, concerning the density of low modes and their localization properties, are
qualitatively reproduced by a toy-model randomHamiltonian, based on an Ising-type spin model mimicking
the dynamics of the Polyakov lines. Here we study the low modes of this toy model in the vicinity of the
ordering transition of the spin model, and show that at the critical point the spectral density at the origin has a
singularity, and the localization properties of the lowest modes change. This provides further evidence of the
close relation between deconfinement, chiral transition, and localization of the low modes.
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I. INTRODUCTION

As is well known, the phase diagram of QCD at zero
chemical potential consists of a low-temperature confining
and chirally broken phase, and a high-temperature decon-
fined and (approximately) chirally restored phase.
Interestingly enough, the two transitions take place at nearly
the same temperature, or more precisely in the same small
temperature range, as both the deconfining and the chirally
restoring transition are actually steep but nevertheless
analytic crossovers [1,2]. The close connection between
the two transitions is evenmore striking in certain QCD-like
models where they are genuine phase transitions, like for
example SU(2) and SU(3) pure-gauge theories. In this case
lattice calculations show that the deconfinement and the
chiral transitions take place at the very same temperature (of
course, within the inherent numerical uncertainties of lattice
calculations) [3]. The same coincidence of the transition
temperatures has been observed in a model with SU(3)
gauge fields and unimproved staggered fermions on coarse
lattices [4–6]. Another interesting case is that of SU(3)
gauge fields with adjoint fermions: this model is known to
possess different deconfinement (Td) and chiral-restoration
temperatures (Tχ) [7], with Td < Tχ , but the chiral

condensate has a jump exactly at Td, signaling a first-order
chiral phase transition there. So far, no generally accepted
explanation has been provided for the coincidence of chiral
and deconfinement transitions in these models, and their
approximate coincidence in QCD.
In recent years there has been growing evidence that the

QCD finite-temperature transition is accompanied by a
change in the localization properties of the Dirac eigenm-
odes: while in the low-temperature phase all the Dirac
eigenmodes are delocalized in the whole volume [8,9], at
high temperature the lowest modes are spatially localized
[10–22]. This behavior of the lowest modes is not unique to
QCD, and has been found also in the above-mentioned
QCD-like models [i.e., SU(2) and SU(3) pure-gauge
theory, and unimproved staggered fermions]. There are
indications that the onset of localization takes place around
the same temperature at which QCD becomes deconfined
and chirally restored: this issue was first studied by García-
García and Osborn in Ref. [12]. To avoid the complications
related to the crossover nature of the QCD transition, it is
convenient to consider models where the transition is a
genuine phase transition. This was done in Ref. [20], which
employed the above-mentioned model with unimproved
staggered fermions, investigating the confining, chiral and
localization properties of the system. In that case, it was
found that deconfinement, (approximate) chiral restoration,
and onset of localization take place at the same value of the
gauge coupling, where the system undergoes a first-order
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phase transition. These results obviously suggest that
localization is closely related to deconfinement and to
the chiral transition.
Understanding why the lowest Dirac eigenmodes

become localized at the transition, and how localization
affects the corresponding eigenvalues, might help in shed-
ding some light on the relation between the deconfining and
the chiral transition. As was suggested in Ref. [15], and
later elaborated on in more detail in Refs. [23,24], locali-
zation of the lowest modes is very likely to be a conse-
quence of deconfinement. More precisely, the ordering of
the Polyakov-line configurations, and the presence therein
of “islands” of fluctuations away from the ordered value,
leads to the lowest Dirac modes localizing on the islands. In
Ref. [24] it was suggested that the ordering of the Polyakov
lines might also be responsible for the depletion of the
spectral region near the origin, which in turn leads to a
smaller condensate via the Banks-Casher relation, and so to
approximate chiral restoration.
The argument is most clearly formulated in the Dirac-

Anderson approach of Ref. [24]. This consists of recasting
the Dirac operator into the Hamiltonian of a three-
dimensional system with internal degrees of freedom,
corresponding to color and temporal momentum. This
Hamiltonian contains a diagonal part, related to the phases
of the Polyakov lines, representing a random on-site
potential for the quarks, and an off-diagonal part respon-
sible for their hopping from site to site, built out of the
spatial links on the different time slices. In this framework,
the accumulation of eigenmodes near the origin requires
two conditions: sufficiently many sites where the on-site
potential is small, and a sufficiently strong mixing (via the
hopping terms) of the different temporal-momentum com-
ponents of the quark wave function. The ordering of the
Polyakov lines acts against both these requirements, by
reducing the number of sites where the potential is small,
and localizing them on islands in a “sea” of sites where the
potential is large, and by inducing correlations among
spatial links on different time slices, which in turn makes
the mixing of different temporal-momentum components
less effective. This leads to the depletion of the spectral
region near the origin.
The argument above is based on the results of a detailed

numerical study of a QCD-inspired toy model, constructed
in such a way as to reproduce qualitatively all the important
features of the QCD Dirac spectrum and of the correspond-
ing eigenmodes. In this toy model the role of the Polyakov
lines is played by complex spin variables, with dynamics
determined by an Ising-like model. This spin model
possesses a disordered and an ordered phase, analogous
to the confined and deconfined phases of gauge theories.
As was shown in Ref. [24], the properties of the Dirac
spectrum in the ordered and disordered phases indeed
qualitatively match those found in the deconfined and
confined phases of QCD, respectively. More precisely, deep

in the ordered phase the lowest eigenmodes are localized
and the spectral density vanishes near the origin, while in
the disordered phase the lowest eigenmodes are delocalized
and the spectral density is finite near the origin. This makes
us confident in the validity of the mechanism for chiral
symmetry restoration discussed above also in the physically
relevant case of QCD.
The magnetization transition of the spin model is

expected to be in the same universality class as that of
the 3D Ising model, so one expects it to be a genuine
second-order phase transition. It is thus worth studying the
localization properties of the lowest Dirac eigenmodes, and
the corresponding spectral density near the origin, close to
the magnetization transition. This is the subject of the
present paper. The purpose is twofold: on the one hand, this
model provides another testing ground for the idea that
deconfinement, chiral transition, and localization of the
lowest modes are closely connected. On the other hand, the
different order of the transition with respect to that taking
place in the model with unimproved staggered fermions
allows us to study the possible dependence of this con-
nection on the nature of the transition.
The paper is organized as follows. In Sec. II we review

the approach to the QCD Dirac spectrum as the spectrum of
a Hamiltonian with noise (“Dirac-Anderson” approach),
considerably simplifying the formalism of Ref. [24]. We
then briefly recall the main aspects of the toy model of
Ref. [24], which we reformulate equivalently in the new
formalism. In Sec. III we show our numerical results. We
first identify precisely the critical point of the spin model,
and then discuss the localization and chiral properties of
our toy model in its vicinity. Finally, in Sec. IV we report
our conclusions and show our prospects for the future.

II. THE DIRAC OPERATOR AS AN
ANDERSON-LIKE HAMILTONIAN

In this section we briefly review the derivation of the
Dirac-Anderson form of the staggered Dirac operator,
introduced in Ref. [24]. We also proceed to simplify the
formalism with respect to the original formulation.
The Dirac-Anderson Hamiltonian is nothing but a

suggestive name for (minus i times) the staggered Dirac
operator in the basis of the eigenvectors of the temporal
hopping term. More precisely, denoting it by H ¼ −iDstag,
it reads in compact notation

H ¼ η4Dþ 1

2i

X3
j¼1

ηj½VjT j − T †
jV

†
j �: ð1Þ

The Dirac-Anderson Hamiltonian, H~xak;~ybl, carries space,
color, and temporal-momentum indices, for ~x; ~y ∈ Z3

L,
a; b ¼ 1;…; Nc, and k; l ¼ 0;…; NT − 1. Here Z3

L ¼
f~xj0 ≤ xi ≤ L − 1g, and L and NT are the spatial and
temporal extension of the lattice, which have to be even
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integer numbers. Periodic boundary conditions in the
spatial directions are understood [25]. In Eq. (1), D is
the diagonal matrix consisting of the “unperturbed” eigen-
values of the temporal hopping term, Vj’s come from the
spatial hoppings, and T j is the translation operator in
direction j,

ðDÞ~xak;~ybl ¼ δ~x ~yδabδkl sinωakð~xÞ;
ðVjÞ~xak;~ybl ¼ δ~x ~yðVþjð~xÞÞak;bl;
ðT jÞ~xak;~ybl ¼ δ~xþĵ;~yδabδkl; ð2Þ

and moreover ημ ¼ ð−1Þ
P

ν<μ
xν are the usual staggered

phases. Let us explain the notation in detail. The effective
Matsubara frequencies ωakð~xÞ are given by

ωakð~xÞ ¼
π þ ϕað~xÞ þ 2πk

NT
; ð3Þ

with ϕað~xÞ being the phases of the Polyakov line
Pð~xÞ ¼ QNT−1

t¼0 U4ðt; ~xÞ. The following convention is
chosen for the Polyakov-line phases: ϕað~xÞ ∈ ½−π; πÞ for
a ¼ 1;…; Nc − 1, and

P
aϕað~xÞ ¼ 0 [26]. The spatial

hoppings read

ðVþjð~xÞÞak;bl ¼
1

NT

XNT−1

t¼0

ei
2πt
NT

ðl−kÞei
t

NT
ðϕbð~xþĵÞ−ϕað~xÞÞ

× ðUðtdÞ
j ðt; ~xÞÞab; ð4Þ

where UðtdÞ
j ðt; ~xÞ is the gauge link corresponding to

the lattice link ðt; ~xÞ → ðt; ~xþ ĵÞ in the temporal

diagonal gauge (or Polyakov gauge), UðtdÞ
4 ðt; ~xÞ ¼ 1 for

0 ≤ t < NT − 1, and UðtdÞ
4 ðNT − 1; ~xÞ ¼ diagðeiϕað~xÞÞ. One

can show that Vþjð~xÞ is a unitary matrix in color and
temporal-momentum space.
The expression Eq. (1) is obviously fully equivalent to the

staggered Dirac operator. Moreover, its structure is reminis-
cent of a 3DAnderson Hamiltonian with internal degrees of
freedom corresponding to color and temporal momentum,
and with antisymmetric rather than symmetric hopping term.
The diagonal noise is provided by the phases of the Polyakov
lines. The off-diagonal noise present in the hopping terms
comes both from the spatial links and from the Polyakov-line
phases. The amount of disorder is controlled by the size of the
fluctuations of the Polyakov lines and of the spatial links, and
therefore by the temperature of the system (as well as the
lattice spacing).
Differently from the usual Anderson models, the strength

of the disorder is fixed, since the absolute value of the
diagonal terms is bounded by 1, and since the hopping terms
are unitary matrices.What is different on the two sides of the
deconfinement transition is the distribution of the diagonal

terms, and the matrix structure of the hoppings. Indeed, at
high temperature the ordering of the Polyakov line leads to
the enhancement of diagonal terms corresponding to the
trivial phaseϕað~xÞ ¼ 0, which form a sea of large (i.e., close
to 1) unperturbed eigenvalues. Fluctuations away from the
trivial phase form localized islands of smaller unperturbed
eigenvalues. Moreover, the ordering of the Polyakov lines
leads to strong correlations among spatial links on different
time slices. These correlations tend to reduce the off-diagonal
entries of the hopping term in temporal-momentum space in
the sea region, thus approximately decoupling the different
temporal-momentum components of the quark wave func-
tion. At low temperatures, on the other hand, correlations
across time slices are weaker, and the different temporal-
momentum components of the quark wave function mix
effectively.

A. Simplifications of the Dirac-Anderson Hamiltonian

We now discuss a few convenient simplifications of the
Dirac-AndersonHamiltonian, Eq. (1). First of all, bymaking
a suitable gauge transformation we will disentangle the two
sources of noise, i.e., we will make the hopping terms
independent of the Polyakov-line phases. Let us define

Wð~xÞ ¼ diag
�
ei

ϕað~xÞ
NT

�
; ð5Þ

which satisfiesWð~xÞNT ¼ Pð~xÞ, and moreover is easily seen
to be unitary and unimodular, thanks to our choice of
convention for the phases of the Polyakov lines.
Equation (4) can then be recast as

Vþjð~xÞ ¼
1

NT

XNT−1

t¼0

ei
2πt
NT

ðl−kÞÛjðt; ~xÞ; ð6Þ

where

Ûjðt; ~xÞ ¼ ½Wð~xÞ†�tUðtdÞ
j ðt; ~xÞ½Wð~xþ ĵÞ�t: ð7Þ

Since Wð~xÞ ∈ SUðNcÞ, Eq. (7) is just a gauge transforma-
tion, that leads to the “uniform diagonal” gauge: since
Û4ðt; ~xÞ ¼ ½Wð~xÞ†�tWð~xÞtþ1 ¼ Wð~xÞ, one has that the tem-
poral links are constant and diagonal. For future reference,
we notice that in this gauge the contribution of time-space
plaquettes to the Wilson action, which in the temporal
diagonal gauge is proportional to

ΔSts ¼
X
j;~x

XNT−2

t¼0

Re tr½UðtdÞ
j ðt; ~xÞUðtdÞ

j ðtþ 1; ~xÞ†�

þ
X
j;~x

Re tr½UðtdÞ
j ðNT − 1; ~xÞPð~xþ ĵÞ

×UðtdÞ
j ð0; ~xÞ†Pð~xÞ†�; ð8Þ
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becomes

ΔSts ¼
X
j;~x

XNT−1

t¼0

Re tr½Ûjðt; ~xÞWð~xþ ĵÞ

× Ûjðtþ 1; ~xÞ†Wð~xÞ†�: ð9Þ

The form of the space-space plaquettes is unaffected by the
gauge transformation, and so

ΔSss ¼
X

j<j0;~x;t

Re tr½UðtdÞ
j ðt; ~xÞUðtdÞ

j0 ðt; ~xþ ĵÞ

×UðtdÞ
j ðt; ~xþ ĵ0Þ†UðtdÞ

j0 ðt; ~xÞ†�
¼

X
j<j0;~x;t

Re tr½Ûjðt; ~xÞÛj0 ðt; ~xþ ĵÞ

× Ûjðt; ~xþ ĵ0Þ†Ûj0 ðt; ~xÞ†�: ð10Þ

The second simplification is obtained by using the following
property of the diagonal entries,

sinωak̄ð~xÞ ¼ − sinωakð~xÞ; k̄≡
�
kþ NT

2

�
NT

; ð11Þ

where ðaþ bÞNT
≡ aþ b mod NT , and the cyclicity of

Vþj, in particular the property

ðVþjð~xÞÞak;bl ¼ ðVþjð~xÞÞak̄;bl̄: ð12Þ

This allows us to organize thematricesD and Vj in blocks of
size NT

2
× NT

2
. Explicitly, we can write

D ¼
�
D 0

0 −D

�
¼ DΣ3;

Vj ¼
�
Aj Bj

Bj Aj

�
¼ Aj þBjΣ1; ð13Þ

where

ðDÞ~xak;~ybl ¼ δ~x ~yδabδkl sinωakð~xÞ;
ðAjÞ~xak;~ybl ¼ ðVjÞ~xak;~ybl;
ðBjÞ~xak;~ybl ¼ ðVjÞ~xak;~ybl̄; ð14Þ

with k; l ¼ 0;…; NT
2
− 1, and where Σi ¼ σi ⊗ 1NT

2

, i.e.,

Σ1 ¼
�
0 1

1 0

�
;

Σ2 ¼
�

0 −i1
i1 0

�
;

Σ3 ¼
�
1 0

0 −1

�
: ð15Þ

For future utility we also define

ðTjÞ~xak;~ybl ¼ δ~xþĵ;~yδabδkl;

k; l ¼ 0;…;
NT

2
− 1: ð16Þ

We now make use of the block structure of the Dirac-
Anderson Hamiltonian [see Eq. (13)], and of the fact that it
anticommutes with the unitary matrix Q ¼ η4Σ1 [27], to
simplify the study of the eigenvalue problem. The eigen-
vectors of Q are of the form

ψ�½φ� ¼
1ffiffiffi
2

p
�

φ

�η4φ

�
; Qψ�½φ� ¼ �ψ�½φ�; ð17Þ

where φ are NT
2
dimensional. One can easily show that

Σ1ψ�½φ� ¼ �η4ψ�½φ�;
Σ3ψ�½φ� ¼ ψ∓½φ�;
T jψ�½φ� ¼ ψ∓½Tjφ�: ð18Þ

Making use of this we find

Hψ�½φ� ¼ ψ∓½H�φ�;

H� ¼ η4Dþ 1

2i

X
j

ηj½U∓
j Tj −T†

jU
�
j
†�; ð19Þ

where the matrices

U�
j ≡Aj � η4Bj ð20Þ

are unitary, as a consequence of the unitarity of Vj. One can
also prove that detVj ¼ detðAj þBjÞ detðAj −BjÞ ¼
detUþ

j detU−
j . From the orthogonality of ψþ and ψ− it

follows that

ðψ s1 ½φk�;Hψ s2 ½φk0 �Þ ¼ δs1;−s2ðφk;Hs2φk0 Þ;
s1;2 ¼ �; ð21Þ

i.e., in the basis ψ�½φk�, with fφkg a basis of the V · NT
2
· Nc–

dimensional space, one finds
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½H� ¼
�

0 H−

Hþ 0

�
: ð22Þ

In order to determine the spectrum of H, it is convenient to
first diagonalize H2,

½H2� ¼
�
H−Hþ 0

0 HþH−

�
¼

�
H†

þHþ 0

0 HþH
†
þ

�
:

ð23Þ

If H†
þHþφλ2 ¼ λ2φλ2 , with λ ≠ 0, then we have

ðHþH
†
þÞHþφλ2 ¼ HþðH†

þHþÞφλ2 ¼ λ2Hþφλ2 , so that
Hþffiffiffi
λ2

p φλ2 is a normalized eigenvector of HþH
†
þ with eigen-

value λ2 if φλ2 is a normalized eigenvector of H†
þHþ. In

conclusion, the eigenvectors of H2 are of the form ψþ½φλ2 �
and ψ−½Hþffiffiffi

λ2
p φλ2 �.

In this paper we are interested in the localization
properties of the eigenmodes. As discussed in Ref. [24],
a convenient measure of localization is provided by the
participation ratio PR ¼ IPR−1=V, where V ¼ L3 is the
lattice volume and IPR is the inverse participation ratio,
defined as

IPR ¼
X
~x

�X
a;k
jψakð~xÞj2

�
2

: ð24Þ

With this definition, the knowledge of φλ2 is sufficient to
determine the IPR: indeed,

IPR ¼
X
~x

�X
a;k
jψ�ak½φð~xÞ�j2

�
2

¼
X
~x

�X
a;0≤k<NT

2

jφakð~xÞj2
�

2

: ð25Þ

For our purposes the problem is thus reduced to a
V · NT

2
· Nc–dimensional one. This reduction is the ana-

logue, in the present basis, of the well-known reduction of
D2

stag to the sum of two operators, each of which connects
only even or odd sites, in the usual (coordinate) basis.

B. Dirac-Anderson Hamiltonian for NT =Nc = 2

In the case NT ¼ Nc ¼ 2 the problem simplifies con-
siderably. In this case NT

2
¼ 1, so a single temporal-

momentum component has to be considered, and U�
j have

the same dimensionality as Ûj. We have

D ¼ cos
ϕ

2
1c; ð26Þ

where cos ϕ
2
¼ diagðcos ϕ~x

2
Þ is a diagonal matrix in position

space, and 1c is the identity in color space. Moreover,

Ajð~xÞ ¼
1

2
ðÛjð0; ~xÞ þ Ûjð1; ~xÞÞ;

Bjð~xÞ ¼
1

2
ðÛjð0; ~xÞ − Ûjð1; ~xÞÞ; ð27Þ

and so

U�
j ð~xÞ ¼ δ�ð~xÞÛjð0; ~xÞ þ δ∓ð~xÞÛjð1; ~xÞ; ð28Þ

where δ� are the projectors on the even and the odd
sublattices,

δ�ð~xÞ ¼
1� η4ð~xÞ

2
; δ2� ¼ δ�; δ�δ∓ ¼ 0: ð29Þ

Inverting these relations we find

Ûjð0; ~xÞ ¼ δþð~xÞUþ
j ð~xÞ þ δ−ð~xÞU−

j ð~xÞ;
Ûjð1; ~xÞ ¼ δþð~xÞU−

j ð~xÞ þ δ−ð~xÞUþ
j ð~xÞ: ð30Þ

Notice that changing integration variables toU�
j leaves the

link integration measure unchanged. Let us work out in
detail the contribution ΔSts to the action. Since

Wð~xÞ ¼ diagðeiϕð~xÞ2 ; e−i
ϕð~xÞ
2 Þ

¼ cos
ϕð~xÞ
2

1c þ i sin
ϕð~xÞ
2

ðσ3Þc; ð31Þ

after simple algebra one finds

ΔSts ¼ 2
X
j;~x

cos
ϕð~xÞ
2

cos
ϕð~xþ ĵÞ

2
Re tr½Uþ

j ð~xÞU−
j ð~xÞ†�

þ sin
ϕð~xÞ
2

sin
ϕð~xþ ĵÞ

2
Re tr½Uþ

j ð~xÞσ3U−
j ð~xÞ†σ3�:

ð32Þ

As for the Hamiltonian, it is entirely determined by

H� ¼ η4 cos
ϕ

2
þ 1

2i

X3
j¼1

ηj½U∓
j Tj −T†

jU
�
j
†�: ð33Þ

C. Toy model

The toy model of Ref. [24] consists simply of replacing
the Polyakov-line phases and spatial links in the various
terms appearing in Eq. (1) with suitable toy-model vari-
ables, and in choosing appropriate dynamics for these
variables, intended to mimic that of the corresponding
variables in QCD. In particular, the (diagonal) Polyakov
lines eiϕað~xÞ are replaced by complex spin variables sa~x ¼
eiϕ

a
~x , with dynamics governed by a suitable spin model. The

only thing changing for the spatial links is the dynamics,
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which is still determined by a Wilson-like action (in the
temporal diagonal gauge), obtained by dropping the con-
tributions from spatial plaquettes, replacing the Polyakov
lines with the diagonal matrices diagðsa~xÞ, and omitting the
backreaction of the gauge links on the spins, i.e., treating
the spins as external fields for the gauge links. The
backreaction of fermions in the partition function is also
omitted, i.e., the fermion determinant is dropped.
The simplifications of the Dirac-Anderson Hamiltonian

discussed previously translate directly into simplifications
for the toy model. Indeed, such simplifications are obtained
by means of a gauge transformation for the link variables
and of a change of basis for the Hamiltonian. In both cases,
they amount to a unitary transformation of the Hamiltonian,
which therefore leaves the spectrum unchanged. Moreover,
since these transformations are local in space, they do not
alter the localization properties of the eigenmodes. The toy
model obtained by making the substitutions discussed in
the previous paragraph in the Hamiltonian ½H�, Eq. (22), is
thus unitarily equivalent to the one obtained by making the
same substitutions in Eq. (1). In the case Nc ¼ NT ¼ 2,
which is the one studied numerically in Ref. [24], one can
also make a change of variables for the links, as described
in Eq. (30), leading to further simplifications.
All in all, the toy model for Nc ¼ NT ¼ 2 of Ref. [24]

can be equivalently formulated as follows. The toy model
Hamiltonian reads

Htoy ¼
�

0 Htoy
−

Htoy
þ 0

�
;

Htoy
� ¼ η4 cos

ϕ

2
þ 1

2i

X
j

ηj½U∓
j Tj −T†

jU
�
j
†�; ð34Þ

where it is understood that all variables are now the toy-
model variables, e.g., cos ϕ

2
¼ diagðcosϕ~x

2
Þ. The dynamics of

the spin phases ϕ~x ∈ ½−π; πÞ is governed by the spin-model
Hamiltonian

βHnoise ¼ −β
X
~x;j

cosðϕ~xþĵ − ϕ~xÞ − h
X
~x

cosð2ϕ~xÞ; ð35Þ

as in Ref. [24]. Here β is the inverse temperature of the spin
model, and h is a coupling which breaks the U(1) symmetry
of the first term down toZ2. The dynamics of the toy-model
link variables U�

j ð~xÞ ∈ SUð2Þ is governed by the action

Su ¼ 2β̂
X
j;~x

cos
ϕ~x

2
cos

ϕ~xþĵ

2
Re tr½Uþ

j ð~xÞU−
j ð~xÞ†�

þ sin
ϕ~x

2
sin

ϕ~xþĵ

2
Re tr½Uþ

j ð~xÞσ3U−
j ð~xÞ†σ3�; ð36Þ

where β̂ plays the role of gauge coupling. Expectation
values are defined as follows:

hOi ¼
R
Dϕe−βHnoise½ϕ�

hR
DUe−Su ½ϕ;U�O½ϕ;U�R

DUe−Su ½ϕ;U�

i
R
Dϕe−βHnoise½ϕ� ; ð37Þ

where we have denoted
R
Dϕ ¼ Q

~x

Rþπ
−π dϕ~x and DU ¼Q

~x;jdU
þ
j ð~xÞdU−

j ð~xÞ, with dU�
j ð~xÞ the Haar measure.

Notice the absence of backreaction of the gauge links on
the spins. In practice, configurations are obtained by first
sampling the spin configurations fϕ~xg according to their
Boltzmann weight e−βHnoise½ϕ�, and then, for a given fϕ~xg, by
sampling the spatial link configurations fU�

j ð~xÞg accord-

ing to their Boltzmann weight e−Su½ϕ;U�.
The features that have been stripped from QCD in order

to build the toy model are those deemed irrelevant for the
qualitative behavior of eigenvalues and eigenvectors of the
Dirac operator. What has been kept is the presence of order
in the configuration of the variables governing the diagonal
noise of the Hamiltonian, and the correlations that such
order induces on the spatial links. Due to our drastic
simplifications [especially the decoupling of the spin/
Polyakov-line dynamics from that of the spatial links,
see Eq. (37)] we do not expect any quantitative correspon-
dence between our model and lattice QCD, but just a
qualitative one. More precisely, there is no simple way to
set the parameters of the toy model to get quantitative
agreement with lattice QCD. In particular, intuition from
QCD about scales (lattice spacing, localization lengths,
etc.) cannot be used in the toy model, as this has its own
dynamics that set these scales. One might also be worried
by our choice NT ¼ 2, which is known to be problematic in
QCD, and not likely to lead to good quantitative results
there. Nevertheless, this is a legitimate (and indeed the
simplest) choice one can make to build a toy model which
qualitatively resembles QCD with staggered fermions (see
Ref. [24] for a more detailed discussion). In particular, one
need not be worried about the fact that a very coarse lattice
is needed in lattice QCD with NT ¼ 2 to reach the
transition temperature: having decoupled the spin dynamics
from the rest, whether or not the spin system undergoes a
transition is entirely independent of NT . The results of
Ref. [24] show that the toy model described above is indeed
capable of reproducing the important features of the
spectrum and of the eigenmodes, both in the ordered
and in the disordered phase.

III. NUMERICAL RESULTS

In this section we report the results of a numerical study
of the toy model defined by Eqs. (34)–(37) in the vicinity of
the phase transition in the underlying spin model.
Numerical simulations near a critical point are hampered
by critical slowing down, but this problem can be overcome
using a suitable cluster algorithm. This is discussed in
Sec. III A, where we report the results of a detailed finite-
size-scaling study of the spin model Eq. (35), aimed at
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determining the critical coupling and the universality class
of the transition.
We then proceed to study in our toy model the issues of

localization and chiral transition, the latter understood here
as a singularity in the spectral density at the origin. The
most effective observables in pinning down the coupling(s)
at which localization appears and/or where a chiral tran-
sition takes place, are respectively the participation ratio of
the lowest eigenmode and the corresponding level spacing.
This is discussed in Sec. III B, where we also report the
results of our numerical study.

A. Finite-size-scaling study of the spin model

We begin by studying the spin model on its own near the
critical point. The formulation of a cluster algorithm to this
end is made easier by noticing that Eq. (35) can be recast as

βHnoise ¼ −β
X
~x;j

n̂~x · n̂~xþĵ − h
X
~x

½2ðn̂~x · n̂�Þ2 − 1�; ð38Þ

where

n̂~x ¼
�
cosϕ~x

sinϕ~x

�
; n̂� ¼

�
1

0

�
: ð39Þ

Near the transition n̂~x tends to be aligned to �n̂�, forming
large clusters of like-oriented spins, and this leads to long
autocorrelation times in the simulation history. To over-
come critical slowing down we thus employed a Wolff-type
cluster algorithm [28] consisting of the following steps.
(1) Given a spin configuration, we pick a site at random

and build a cluster, adjoining nearby sites ~x and
~x� ĵ with probability

Pð~x; ~x� ĵÞ ¼ 1 − e−2βjn̂~x·n̂�jjn̂~x�ĵ·n̂�j

¼ 1 − e−2βj cosϕ~xjj cosϕ~xþĵj: ð40Þ

(2) Once the cluster is built, we flip n̂~x → −n̂~x, i.e., we
send ϕ~x → πsgnðϕ~xÞ − ϕ~x, for all sites ~x in the
cluster.

This algorithm is easily shown to respect detailed balance,
but it obviously fails at being ergodic. For this reason, we
paired it with a standard Metropolis algorithm, which
restores ergodicity.
We studied the model as a function of β keeping the

symmetry-breaking term fixed at h ¼ 1.0. Defining the
magnetization of the system as

m ¼
X
~x

Re s~x ¼
X
~x

cosϕ~x; ð41Þ

we measured the susceptibility and the fourth-order Binder
cumulant:

χ ¼ 1

V
ðhm2i − hmi2Þ; B ¼ 1

2

� hm4i
hm2i2 − 1

�
: ð42Þ

Our definition of B is such that B → 1 in the disordered
phase and B → 0 in the ordered phase. Near the critical
point, βc, the expected behavior of B and χ is

BðβÞ ≈ fðL1
νðβ − βcÞÞ;

χðβÞ ≈ L
γ
νgðL1

νðβ − βcÞÞ: ð43Þ

We thus fitted the numerical data in the range β ∈
½0.302; 0.303� and for the available volumes with the
functional forms of Eq. (43), using polynomial approx-
imations of f and g of increasing order, and assessing the
error by means of constrained fit techniques [29]. Our
results for the critical point, the critical exponents ν and γ,
and the critical Binder cumulant B� are reported in Table I.
These values give an excellent “collapse” of the data points
on a single, volume-independent curve, as shown in Figs. 1
and 2. For comparison, in Table I we report also the results
of Blöte et al. for the 3D Ising model [30]. The tension in
the results for B� and γ is probably due to the fact that we
are not including the effect of irrelevant couplings in our
analysis. Nevertheless, our results strongly support the fact
that the transition observed in our model belongs to the 3D
Ising universality class.

TABLE I. Critical point, critical Binder cumulant, and critical
exponents of our spin model, and of the 3D Ising model [30].

Our model 3D Ising model

βc 0.3023210(38) � � �
B� 0.2952(13) 0.3022(13)
ν 0.6393(84) 0.6301(8)
γ 1.2660(26) 1.237(2)

FIG. 1. Finite-size-scaling analysis for the Binder cumulant B.
The scaling function is also shown (the solid line).
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B. Onset of localization and chiral transition
in the toy model

Let us discuss first the issue of localization. The simplest
way to check for localization is to compute the so-called
participation ratio, PRn, of the nth eigenmode, ψn,
defined as

PRn ¼
1

V
IPR−1

n ¼ 1

V

�X
~x
jψ†

nð~xÞψnð~xÞj2
�
−1
; ð44Þ

where IPR stands for “inverse participation ratio,” and
ψ†
nψn ¼

P
a;kðψnÞ�akðψnÞak stands for summation over the

color and temporal-momentum degrees of freedom. Here
V ¼ L3 is the spatial volume. If the nth mode is localized,
then the average of PRn over configurations, which we
denote by PRn, is expected to vanish in the large-volume
limit. On the other hand, for delocalized modes this
quantity becomes constant at large volume. We already
know from Ref. [24] that localized modes appear first near
the origin, so in order to check whether there are localized
modes or not, it is sufficient to compute the participation
ratio of the first eigenmode, and check how it changes with
the volume. In Fig. 3 we show the average participation
ratio of the first eigenmode, PR1, as a function of β for
different system sizes, namely L ¼ 24, 32, 40 and, in the
ordered phase only, also L ¼ 48. The localization proper-
ties of the lowest mode are clear below βc and well above it.
In the disordered phase the lowest mode is delocalized,
while it is localized deep in the ordered phase. Starting
from large β and going down towards βc the scaling with V
becomes slower, and very close to βc the participation ratio
actually grows up to L ¼ 40. Nevertheless, PR1 displays a
jump at βc, and the largest volume always gives the
smallest participation ratio. We take these findings as an
indication that also right above βc the lowest eigenmode
has the tendency to localize. This tendency is, however,
hampered by the fact that the typical localization length is

bigger than or comparable to the system sizes under
consideration. As a consequence, the would-be (lowest)
localized eigenmode is effectively delocalized on the whole
lattice, thus having a strong overlap with the extended
modes, and therefore mixing easily with them under
fluctuations of the spins and of the gauge fields.
Moreover, we expect its participation ratio to grow until
the system is big enough to accommodate a localized mode,
whereas it will start to decrease for even larger sizes. In
conclusion, we expect that for sufficiently large systems the
lowest eigenmode is localized as soon as β > βc. The closer
one is to βc, the larger the system has to be for localization
to be fully visible.
Let us consider next the issue of the chiral transition. In

principle (and by definition), this issue should be studied by
analyzing the spectral density near the origin. In practice,
however, this is very hard in the vicinity of the critical
point, and could be done reliably only using high statistics
and large volumes, in order to sample properly the near-
zero spectral region. Rather than attempting a (difficult)
direct measurement, we relied upon the following relation:

~ρ0 ≡ 1

Vhλ2 − λ1i
→

V→∞

ρð0Þ
V

; ð45Þ

which is based on the following argument. In the large-
volume limit, the spectral density at the origin is equal to
the inverse of the average level spacing in the near-zero
spectral region. In the same limit, and for fixed j, one has
for the eigenvalues of the Dirac operator (and thus for those
of our toy-model Hamiltonian) that λj → 0. Equation (45)
then follows. This applies to any fixed j, but of course one
expects that for too large j the finite-size effects would
completely obscure the limit (however, see below for some
numerical results for j ¼ 2, 3). In Fig. 4 we show ~ρ0 as a
function of β for the available system sizes. It is clear that
below βc this quantity tends to a finite constant as the
volume is increased. For our largest values of β above βc,

FIG. 2. Finite-size-scaling analysis for the magnetic suscep-
tibility χ. The scaling function is also shown (the solid line).

FIG. 3. Average participation ratio of the first eigenmode as a
function of β.
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on the contrary, there is a clear tendency for ~ρ0 to vanish as
V → ∞. The region which is most difficult to understand is
right above βc. There ~ρ0 apparently tends to a finite
constant, different from the one right below βc.
Although it is possible that there are two jumps in ~ρ0,
one at βc and another at some higher value of β where ~ρ0
jumps to zero, we think that there is a more plausible
explanation for this behavior. In fact, as we have already
mentioned above, the relative smallness of the system,
which causes the lowest mode to be effectively delocalized,
is also responsible for its mixing with nearby modes under
fluctuations of spins and link variables. The behavior of the
lowest mode is thus expected to be similar in all respects to
what is found in the disordered phase, and more generally
the low end of the spectrum is expected to look the same as
it looks in the disordered phase. This includes a nonzero
spectral density near the origin. It is likely that for large
enough systems, ~ρ0 will start to show a nontrivial scaling
with V, indicating the vanishing of the spectral density at
the origin in the thermodynamic limit. In any case, whether
ρð0Þ vanishes right above βc or not, it is clear that at βc it
displays a singularity. This indicates that the system has a
chiral transition at βc.
An alternative way of determining ρð0Þ is based on its

relation with the expectation value of the lowest eigenvalue,
hλ1i. In the disordered phase, where ρð0Þ ≠ 0, the prob-
ability distribution of the lowest eigenvalue is expected to
be described by the appropriate ensemble of chiral random
matrix theory (ChRMT). In the case at hand, this should be
the symplectic ensemble for the quenched theory in the
trivial topological sector, and so [31–35]

p1ðzÞ ¼
ffiffiffi
π

2

r
z
3
2I3

2
ðzÞe−z2

2 ; ð46Þ

where z ¼ λ1πρð0Þ. From this one obtains the appropriate
proportionality factor between hλ1i and ρð0Þ, namely

ρð0Þ ¼
ffiffiffiffiffiffi
e
2π

r
1

hλ1i
: ð47Þ

For localized modes one expects instead that the corre-
sponding eigenvalues obey Poisson statistics. In this case,
assuming a power-law behavior ρðλÞ ¼ CVλα for the
spectral density near the origin, one finds [13] that

FIG. 4. The quantity ~ρ0, defined in Eq. (45). FIG. 5. The quantity ρ̄0 defined in Eq. (48).

FIG. 6. Average participation ratio of the second and third
eigenmode as a function of β.
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hλ1i ∼ V− 1
1þα, and in particular ρð0Þ ¼ 1

hλ1i for α ¼ 0. Our

results for ρ̄0,

ρ̄0 ≡
ffiffiffiffiffiffi
e
2π

r
1

Vhλ1i
; ð48Þ

are shown in Fig. 5. Comparing this with Fig. 4 we see that
the ChRMT result works well below βc, while it works less
and less well as β increases above βc. In particular, for large
β one has that ρ̄0 tends to vanish as the volume is increased,
signaling a vanishing spectral density at the origin. As
before, the region right above βc is the one where things are
less clear. A nonvanishing ρð0Þ accompanied by localiza-
tion of the lowest modes right above βc should yield a ρ̄0
appreciably smaller than ρð0Þ, and so of ~ρ0, while the two
quantities compare well. This is most likely another
consequence of the smallness of the system size compared
to what would be required to properly investigate the region
near the critical point. In fact, the effective delocalization
and easy mixing of the lowest mode mentioned above leads
to correlations building up among eigenvalues, thus leading
to a ChRMT-like statistical behavior, which should go
over to Poisson behavior as the system size increases.
For completeness, we conclude this section by showing

our numerical results concerning the second and third

lowest eigenmodes. In Fig. 6 we show the average
participation ratios PR2 and PR3. The situation is entirely
analogous to that encountered when studying the lowest
mode, with similar finite-size effects near the transition
which slow down the localization of these modes. In Fig. 7
we show the quantities

~ρ00 ≡ 1

Vhλ3 − λ2i
; ~ρ000 ≡ 1

Vhλ4 − λ3i
; ð49Þ

which in the large-volume limit should also approach ρð0Þ
V .

In this case the volume scaling is somewhat more clear,
with the tendency to go to zero as V is increased showing
up for lower values of β. These results clearly do not change
the conclusions discussed above.

IV. CONCLUSIONS AND OUTLOOK

There are by now several hints at a close connection
between the deconfining and chiral transitions and locali-
zation of the lowest eigenmodes of the Dirac operator. In
this paper we have further studied the toy model of
Ref. [24], which mimics the effects of the ordering of
Polyakov loops in QCD, i.e., deconfinement, on the
spectral density of the low Dirac eigenmodes and the
corresponding localization properties. In particular, we
have focused on the region near the magnetic transition
of the underlying spin model, which corresponds to
deconfinement in a gauge theory. We have then studied
numerically the localization properties of the lowest eigen-
mode, and the spectral density at the origin. Our findings
are consistent with a chiral transition taking place in
correspondence with the magnetic transition, accompanied
by the appearance of localized modes. This further supports
our expectation that deconfinement plays a major role in the
chiral transition and in the localization of the low Dirac
modes observed in QCD.
There are, however, several aspects that deserve further

study. The presence of a chiral transition in our toy model
when the spins get ordered is quite clear, since the spectral
density at the origin shows a jump there. However, it is not
clear yet if such a jump is from the finite value of ρð0Þ in the
disordered phase to zero in the ordered phase, or to a
different finite value. Although the latter possibility seems
unlikely, nevertheless the presence of strong finite-size
effects makes it difficult to extrapolate to the infinite-
volume limit. The origin of such effects lies in the fact that
although the lowest modes would like to be localized, their
typical localization length is bigger than the system sizes at
our disposal. This makes those modes effectively delocal-
ized on our finite lattices, and so easily mixed by fluctua-
tions with other nearby modes. In turn, this is probably
responsible for a smaller typical level spacing between the
first two eigenvalues, from which the spectral density was
extracted. Consequently, we are probably overestimating
ρð0Þ. Moreover, the lowest eigenmode correlates with the

FIG. 7. The quantities ~ρ00 and ~ρ000 , defined in Eq. (49).
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nearby modes, which results in statistical properties closer
to those predicted by ChRMT than to those expected for
localized modes, which should obey Poisson statistics. In
order to overcome these problems, and unveil the true
nature of the lowest modes, bigger lattices should be
employed.
This situation should be contrasted to that found with

unimproved staggered fermions on coarse lattices [20]. In
that case the coincidence of deconfinement, chiral tran-
sition, and appearance of localized modes is more clean cut.
A possible explanation of the difference lies in the different
nature of the deconfining transition in that system, which is
a first-order transition, and the magnetic transition in our
toy model, which is a second-order phase transition of the
3D Ising universality class. In the case at hand, the presence
of a huge correlation length near the critical point, and at
the same time the fact that the magnetization is very small
there, makes it more difficult for the low modes to properly
localize. As we said above, this is expected to be the source
of the large finite-size effects observed in our determination
of ρð0Þ.

Despite these difficulties, we think that our results
confirm those of previous studies in other models, in
showing that deconfinement, chiral transition, and locali-
zation are closely tied to each other. There are several
possible extensions of the present study. One obvious
possibility is to consider our toy model for gauge group
SU(3), thus making it closer to QCD. This involves a
different spin model to mimic the behavior of the Polyakov
lines than the one employed here (see Ref. [24] for details).
A more interesting possibility is to extend the toy
model to the case of adjoint fermions: this could
help in understanding why for adjoint fermions deconfine-
ment and chiral restoration take place at different
temperatures [7].
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