
Chiral separation effect in lattice regularization

Z. V. Khaidukov and M. A. Zubkov*

Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259, Russia
(Received 16 February 2017; published 11 April 2017)

We consider the chiral separation effect (CSE) in the lattice-regularized quantum field theory. We discuss
two types of regularization: with and without exact chiral symmetry. In the latter case this effect is
described by its conventional expression for the massless fermions. This is illustrated by the two particular
cases of Wilson fermions and the conventional overlap fermions. At the same time, in the presence of the
exact chiral symmetry the CSE disappears. This is illustrated by the naive lattice fermions, when the
contributions of the fermion doublers cancel each other. Another example is the modified version of
the overlap regularization proposed recently, where there is exact chiral symmetry, but as a price for this the
fermion doublers become zeros of the Green function. In this case the contributions to the CSE of zeros and
poles of the Green function cancel each other.
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I. INTRODUCTION

The family of nondissipative transport effects has been
widely discussed recently, both in the context of high-
energy physics and in the context of condensed matter
theory [1–8]. The possible appearance of such effects in the
recently discovered Dirac and Weyl semimetals has been
considered [9–16]. The chiral separation effect (CSE) [17]
is one of the members of this family. It manifests itself in
the equilibrium theory with a massless Dirac fermion,
where in the presence of an external magnetic field
(corresponding to the field strength Fij) and the ordinary
chemical potential μ the axial current is given by

jk5 ¼ −
1

4π2
ϵijk0μFij: ð1Þ

In the context of high-energy physics the possibility to
observe the CSE was discussed, in particular, in relation to
relativistic heavy-ion collisions (see, for example,
Refs. [18–20] and references therein).
At first sight, the CSE has the same origin (the chiral

anomaly1) as the so-called chiral magnetic effect, which
was discussed, for example, in Refs. [18,21–24]. Although
it was reported that the possible existence of the chiral
magnetic contribution to ordinary conductivity [25] was
observed in recently discovered Dirac semimetals [26], it
was shown that the original equilibrium [21] version
of the CME does not exist. In particular, in Refs. [5–8]
using various numerical methods the CME current was

investigated in the context of lattice field theory. It was
argued that the equilibrium bulk CME does not exist, but
close to the boundary of the system the nonzero CME
current may appear. It was demonstrated that in the given
systems the integrated total CME current remains zero. In
the context of condensed matter theory the absence of the
CME was reported within the particular model of a Weyl
semimetal [27]. Besides, it was argued that the equilibrium
CME may contradict the no-go Bloch theorem [28].
However, the way that the author of Ref. [28] tried to
extend the Bloch theorem to the field-theoretic systems
seems to us nonrigorous. Sufficient analytical proof of the
absence of the equilibrium CME (in the systems without
superconductivity) was presented by one of us in
Refs. [29,30]. This proof relied on the Wigner transforma-
tion technique [31–34] applied to the lattice-regularized
quantum field theory.
In the present paper we proceed in this line of research

and investigate the equilibrium CSE on the same grounds.
In the framework of the naive nonregularized quantum field
theory, the CSE was discussed recently, for example, in
Ref. [3]. Also, it was discussed in the framework of lattice
regularization in Ref. [8], where it was argued that the CSE
needs no ultraviolet regularization because the expression
for the current does not contain ultraviolet divergences. In
the present paper, however, we argue that the ultraviolet
regularization is important. We demonstrate that without it
there is an ambiguity in the calculation of the CSE current.
Namely, if the model is considered at small but finite
temperatures, then the calculation of the axial current gives
the conventional result if the summation over theMatsubara
frequencies is performed first, while if the integration over
the 3-momenta is performed first the expression for the
current remains undefined.We consider this as an indication
that the rigorous lattice regularization should be used.
Following the formalism developed in Ref. [29], in the
present paper we consider the CSE on the basis of the
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1It is worth mentioning that Eq. (1) does not follow directly

from the general expression for the chiral anomaly. The latter also
does not follow from Eq. (1) because in this expression μ is
constant. For a value of μ that is dependent on the coordinates, the
current jk5 should contain a term proportional to ∇μ, which will
also contribute the divergence ∂j5.
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Wigner transformation technique [31,32] applied to the
Green functions. Unlike the case of the CME, in the general
case the coefficient in the linear response of the axial current
to the external magnetic field is not a topological invariant.
However, it appears that the coefficient in the CSE current
standing at the product of the magnetic field and chemical
potential approaches a topological invariant when the mass
of the fermion tends to zero. This allows us to derive the
conventional expression for the CSE current. Thus, the link
between the CSE effect in lattice regularization andmomen-
tum-space topology is established.
It is worth mentioning that momentum-space topology is

a powerful method that was developed mainly within
condensed matter theory. It allows to describe in a simple
way, for example, the stability of the Fermi points, the
anomalous quantumHall effect, and the fermion zeromodes
on vortexes (for a review, see Refs. [35,36]). Recently,
certain aspects of momentum-space topology were dis-
cussed in the framework of four-dimensional lattice gauge
theory (see, for example, Refs. [37–39]).
The paper is organized as follows. In Sec. II, following

Refs. [29,30], we describe how the Wigner transformation
technique may be applied to the lattice-regularized quantum
field theory. In Sec. III we consider the CSE in conventional
lattice regularizations (Wilson fermions and overlap fer-
mions). In Sec. IV we consider the CSE in the case of exact
chiral symmetry, for the naive lattice regularization with 16
doublers and in the lattice regularization with deformed
overlap fermions, where instead of the 15 doublers the zeros
of the Green function appear. In Sec. V we demonstrate the
ambiguity in the calculation of the CSE current that takes
place in the naive continuum theory. In Sec. VI we end with
the conclusions.

II. LATTICE FERMIONS IN THE PRESENCE
OF AN EXTERNAL Uð1Þ GAUGE FIELD

A. Lattice models in momentum space

In this section we briefly consider the lattice models
in momentum space following the methodology of
Refs. [29,30]. For a more detailed description of the method
and for references, see Refs. [29,30]. In the absence of the
external gauge field the partition function of the theory
defined on the infinite lattice may be written as

Z ¼
Z

Dψ̄Dψ exp

�
−
Z
M

dDp
jMj ψ̄

TðpÞG−1ðpÞψðpÞ
�
; ð2Þ

where jMj is the volume of momentum spaceM, D is the
dimensionality of space-time, and ψ̄ and ψ are the
Grassmann-valued fields defined in momentum space M.
G is specific for the given system. For example, the model
with 3þ 1-dimensionalWilson fermions corresponds to a G
that has the form

GðpÞ ¼ −i
�X

k

γkgkðpÞ − imðpÞ
�

−1
; ð3Þ

where γk are Euclidean Dirac matrices defined in the chiral
representation,

γ4 ¼
�
0 1

1 0

�
; γi ¼

�
0 iσi

−iσi 0

�
; i ¼ 1; 2; 3;

γ5 ¼
�
1 0

0 −1
�
;

where σi is the Pauli matrix. gkðpÞ and mðpÞ are the real-
valued functions (k ¼ 1, 2, 3, 4) given by

gkðpÞ ¼ sinpk; mðpÞ ¼ mð0Þ þ
X

a¼1;2;3;4

ð1 − cospaÞ:

ð4Þ

The fields in coordinate space are related to the fields in
momentum space as follows:

ψðrÞ ¼
Z
M

dDp
jMj e

iprψðpÞ: ð5Þ

At the discrete values of r corresponding to the points of the
lattice this expression gives the values of the fermionic field
at these points, i.e., the dynamical variables of the original
latticemodel. However, Eq. (5) allows to formally define the
values of fields at any other values of r. The partition
function may be rewritten in the form

Z ¼
Z

Dψ̄Dψ exp

�
−
X
rn

ψ̄TðrnÞ½G−1ð−i∂rÞψðrÞ�r¼rn

�
:

ð6Þ

Here the sum in the exponent is over the discrete coordinates
rn. However, the operator −i∂r acts on the function ψðrÞ
defined using Eq. (5). In order to derive Eq. (6) we use the
identity

X
r

eipr ¼ jMjδðpÞ: ð7Þ

In the particular case ofWilson fermions wemay rewrite the
partition function in the conventional way as

Z ¼
Z

Dψ̄Dψ exp

�
−
X
rn;rm

ψ̄TðrmÞðDrn;rmÞψðrnÞ
�
; ð8Þ

with
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Dx;y ¼ −
1

2

X
i

½ð1þ γiÞδxþei;y þ ð1 − γiÞδx−ei;y�

þ ðmð0Þ þ 4Þδxy: ð9Þ

Here ei is the unit vector in the ith direction.

B. Introduction of the gauge field

The gauge transformation of the lattice field takes the
form

ψðrnÞ → eiαðrnÞψðrnÞ: ð10Þ

In the case of Wilson fermions the Uð1Þ gauge field is
typically introduced as the following modification of the
operator D:

Dx;y ¼ −
1

2

X
i

½ð1þ γiÞδxþei;ye
iAxþei;y

þ ð1 − γiÞδx−ei;yeiAx−ei;y � þ ðmð0Þ þ 4Þδxy: ð11Þ
Here Ax;y ¼ −Ay;x is the gauge field attached to the links of
the lattice. In the same way, the gauge field is typically
incorporated into the models of solid state physics.
One can easily check that Eq. (8) may be rewritten as

Z ¼
Z

Dψ̄Dψ exp

�
−
Z
M

dDp
jMj ψ̄

TðpÞQ̂ði∂p; pÞψðpÞ
�
:

ð12Þ
Here

Q̂ ¼ G−1ðp − Aði∂pÞÞ; ð13Þ

while the pseudodifferential operator Aði∂pÞ is defined as
follows. First, we represent the original gauge field AðrÞ as
a series in powers of the coordinate r. Next, the variable r is
substituted in this expansion by the operator i∂p. Besides,
in Eq. (13) each product of the components of p − Aði∂pÞ
is substituted by the symmetric combination (for details,
see Ref. [29]). As it was mentioned above, for the case of
Wilson fermions the formulations of Eq. (12) and Eq. (8)
are exactly equivalent. For the other regularizations there
may be a difference, but it manifests itself in the terms that
are proportional to the field strength times a2 (here a is the
lattice spacing). Those extra terms may be neglected in
the continuum limit. Therefore, for any regularization we
accept Eq. (13) as the definition of the model in the
presence of an external Uð1Þ gauge field.

C. Electric current

Electric current is defined as the response of the effective
action − logZ to the variation of an external electromag-
netic field. This gives [29]

jkðRÞ ¼
Z
M

dDp
ð2πÞD Tr ~GðR; pÞ ∂

∂pk
½ ~Gð0ÞðR; pÞ�−1; ð14Þ

where the Wigner transformation of the Green function is
expressed as

~GðR; pÞ ¼
X
r¼rn

e−iprGðRþ r=2; R − r=2Þ; ð15Þ

while the Green function itself is

Gðr1;r2Þ¼−1

Z

Z
DΨ̄DΨΨ̄ðr2ÞΨðr1Þ

×exp

�
−
X
rn

½Ψ̄ðrnÞ½G−1ð−i∂r−AðrÞÞΨðrÞ�r¼rn �
�
:

ð16Þ

At the same time,

~Gð0ÞðR; pÞ ¼ Gðp − AðRÞÞ: ð17Þ

The application of the Wigner transformation technique to
the lattice models was developed in Refs. [29,30], follow-
ing its original formulation specific for the theory in
continuous space-time [31–34]. In Ref. [29], the following
expression was derived for the linear response of the
electric current to an external electromagnetic field:

jð1ÞkðRÞ ¼ 1

4π2
ϵijklMlAijðRÞ; ð18Þ

Ml ¼
Z

Trνld4p ð19Þ

νl ¼ −
i

3!8π2
ϵijkl

�
G
∂G−1

∂pi

∂G
∂pj

∂G−1

∂pk

�
: ð20Þ

III. LATTICE REGULARIZATION WITH
BROKEN CHIRAL SYMMETRY

A. Linear response of the chiral current
to an external magnetic field

In this sectionwe consider the linear response of the chiral
current to an external electromagnetic field. For the field
system in continuous coordinate space this response may
easily be calculated using Feynman diagrams. For the field
system in the lattice regularization, this response may be
calculated following the approach of Refs. [29,30,39] that
was briefly described above. In continuum theory the naive
expression for the chiral current is −ihψ̄γμγ5ψi. Several
different definitions for the particular lattice regularization
may give this expression in the naive continuum limit.
The evident choice of the definition of current in lattice

regularization is the functional derivative over the axial
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gauge field of the effective action. The latter field, in turn,
may be defined through the covariant derivative, which acts
on the left-handed and the right-handed fermions via
opposite charges. For the particular choice of the lattice
model with exact chiral symmetry (i.e., when G commutes
or anticommutes with γ5), this definition gives an expres-
sion similar to that of Refs. [29,30,39]:

j5kðRÞ¼
Z
M

dDp
ð2πÞDTrγ

5 ~GðR;pÞ ∂
∂pk

½ ~Gð0ÞðR;pÞ�−1; ð21Þ

where

~Gð0ÞðR; pÞ ¼ Gðp − γ5AðRÞÞ: ð22Þ

Actually, we are able to apply this definition to any lattice
theory even without the exact chiral symmetry. One can
easily check that in the naive continuum limit this definition
gives −ihψ̄γkγ5ψi.
In order to regularize our expressions for the case of truly

massless fermions, let us use the finite-temperature version
of the lattice theory. With the periodic boundary conditions
in the spatial directions and antiperiodic conditions in the
imaginary time direction, the lattice momenta will be

pi ∈ ð0; 2πÞ; p4 ¼
2π

Nt
ðn4 þ 1=2Þ; ð23Þ

where i ¼ 1, 2, 3, while n4 ¼ 0;…; Nt − 1. Temperature is
equal to T ¼ 1=Nt, in lattice units 1=a, where a is the
lattice spacing. Thus the imaginary frequencies are discrete,
p4 ¼ ωn ¼ 2πTðnþ 1=2Þ, where n¼ 0;1;…Nt−1, while
the axial current (also in lattice units) is expressed via the
Green functions as follows:

j5k ¼ −
i
2
T
XNt−1

n¼0

Z
d3p
ð2πÞ3 Trγ

5ðGðωn;pÞ∂pi
G−1ðωn;pÞ

× ∂pj
Gðωn;pÞ∂pk

G−1ðωn;pÞÞFij: ð24Þ

B. The linear response of the chiral current to a
chemical potential and external magnetic field

Now let us consider the system without exact chiral
symmetry. Recall that the exact chiral symmetry is to be
broken if we want to describe one Dirac fermion, which is
related to the Nielsen-Ninomiya theorem. For definiteness,
we first discuss Wilson fermions. But this is not necessary,
and the results of this subsection are valid for any lattice
model. We introduce the chemical potential in the standard
way, ωn → ωn − iμ. The derivative of the current with
respect to μ gives

j5k ¼ N ijk

4π2
Fijμ; ð25Þ

with

N ijk ¼ −
XNt−1

n¼0

1

2
T
Z

d3p
ð2πÞ ∂ωn

Trγ5Gðωn;pÞ∂pi
G−1ðωn;pÞ

× ∂pj
Gðωn;pÞ∂pk

G−1ðωn;pÞ: ð26Þ

We assume that the singularities of the Green function
(poles or zeros) may appear only at the finite sequence of
values of ω ¼ ωð0Þ;ωð1Þ;… that do not coincide with the
Matsubara frequencies. In the limit T → 0, the sum over
Matsubara frequencies becomes an integral that is regu-
larized as follows:

N ijk ¼
X
k

ð−N ijk
3 ðωðkÞ þ 0Þ þN ijk

3 ðωðkÞ − 0ÞÞ; ð27Þ

where N 3ðωnÞ is given by

N ijk
3 ðωnÞ ¼ −

1

2

Z
d3p
ð2πÞ2 Trγ

5Gðωn;pÞ∂pi
G−1ðωn;pÞ

× ∂pj
Gðωn;pÞ∂pk

G−1ðωn;pÞ: ð28Þ

It is clear that in a model in which there are no poles or
zeros of the Green function in the presence of exact chiral
symmetry, the linear response of the axial current to a
magnetic field is the sum of topological invariants, i.e., it
cannot be changed under continuous deformations of the
model. However, in a general case when γ5 does not (anti)
commute with the Green function, the terms in this
expansion are not topological invariants. We may also
rewrite

N ijk ¼ 1

2

Z
Σ

d3p
ð2πÞ2 Trγ

5Gðω;pÞ∂pi
G−1ðω;pÞ

× ∂pj
Gðω;pÞ∂pk

G−1ðω;pÞ; ð29Þ

where Σ is the three-dimensional hypersurface of infinitely
small volume that embraces the singularities of the Green
function concentrated at the Fermi surfaces (or Fermi
points). The advantage of this representation is that
Eq. (29) becomes a topological invariant if γ5 anticommutes
with the Green function in a small vicinity of its poles.
It is worth mentioning that the zeros of the Green

function seem to decouple if we consider the naive
perturbation expansion. However, a more detailed consid-
eration demonstrates that this is not so. More precisely, at
T → 0 the contribution to the expression of Eq. (26) of the
zero of the Green function is the same as the contribution of
the massless excitation. The actual reason for this is the
gauge-invariant lattice regularization, which requires the
derivative ∂kG−1 at each vertex of the perturbation expan-
sion instead of the matrix γk. In turn, this derivative is
singular at the position of the zero of the Green function.
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C. Regularization with Wilson fermions

For the case of Wilson fermions the singularities of the
Green function may appear at ω ¼ 0; π (for mð0Þ > 0 they
appear at ω ¼ 0 only). Then, the limit T → 0 gives

N ijk ¼ −N ijk
3 ðþ0Þ þN ijk

3 ð−0Þ þN ijk
3 ðπ − 0Þ

−N ijk
3 ðπ þ 0Þ: ð30Þ

An interesting particular case is when the parametermð0Þ
vanishes. In this case, at μ ¼ 0 the only Fermi point appears
at p ¼ 0 and on Σ we have fγ5;Gg ≈ 0. In this particular
case

N ijk ¼ ϵijk;

which gives the regular expression for the chiral separation
effect of Eq. (1). In order to confirm this prediction, we also
use numerical methods. Namely, we take Eq. (26) and
numerically calculate the integral over 3-momenta for the
component N 123 and the sum over ωn using the MAPLE

package. It is seen that at Nt → ∞ the answer tends to 1, as
it should.
In the presence of a nonzero mass (mð0Þ > 0) the

situation is changed, and the poles of the Green function
do not appear while μ < mð0Þ, which gives the vanishing
CSE current. At μ ≥ mð0Þ the Fermi surface appears, and it
contributes to the chiral current through Eq. (29). However,
in this case γ5 does not anticommute with G on Σ. In the

continuum limit mð0Þ ¼ mð0Þ
physa and μ ¼ μphysa, where

mð0Þ
phys and μphys are the parameters of the model in physical

units while a is the lattice spacing. At μphys ≫ mð0Þ
phys we

recover the conventional result for the CSE of Eq. (1).
Notice that the massive doublers cannot contribute the

expression for the response of the chiral current to an
external magnetic field at finite values of chemical potential
because their physical masses are as large as 1=a.

D. Overlap fermions

Let us discuss the regularization using overlap fermions
[40]. The massless overlap Dirac operator is defined as

Do ¼ mð1̂þDð−mÞðDð−mÞDþð−mÞÞ−1=2Þ; ð31Þ

where Dðmð0ÞÞ is the dimensionless Wilson-Dirac operator
given by Eq. (9), where we substitute the negative value of
the mass parameter mð0Þ ¼ −m. The operator Do obeys the
Ginsparg-Wilson relation, which may be written in the
following form:

fD−1
o ; γ5g ¼ γ5

m
: ð32Þ

It is sometimes called “exact” chiral symmetry on the
lattice. However, this statement is not precise, and actually
the conventional overlap propagator does not obey the
exact chiral symmetry, which is fD−1

o ; γ5g ¼ 0.
In momentum space we have

D−1
o ¼ −iγμCμ þ

1

2m
; ð33Þ

with

CμðpÞ ¼
1

2m

kμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2μ þ A2

q
þ A

; A ¼ k̂2μ
2
−m; ð34Þ

and

kμ ¼ sinðpμÞ; k̂ ¼ 2 sin

�
pμ

2

�
: ð35Þ

In this model the fermion Green function

G ¼ D−1
o

only has a pole at ω ¼ 0, p ¼ 0. At p ¼
ðn1π; n2π; n3π; n4πÞ with integer ni ¼ 0, 1 such that
n1 þ n2 þ n3 þ n4 ≠ 0, we have the value GðpÞ ¼ 1

2m.
Again, the above consideration may be applied to the

model in this regularization, and we have the expression for
the linear response to the magnetic field given by Eq. (25)
with N of Eq. (29). In particular, in the continuum limit
when m → 0 and μ ¼ 0 we get N ijk ¼ ϵijk, which results
in the usual expression for the CSE current of Eq. (1).

IV. LATTICE REGULARIZATION WITH
EXACT CHIRAL SYMMETRY

A. Naive lattice fermions

In this section we consider the case of the lattice model
with exact chiral symmetry, when

fγ5;Gg ¼ 0:

The simplest example of such a system is given by the naive
lattice fermions with the Green function in momentum
space of the form

GðpÞ ¼ −i
�X

k

γkgkðpÞ − imð0Þ
�

−1
; ð36Þ

where γk are Euclidean Dirac matrices, while gkðpÞ are the
real-valued functions (k ¼ 1, 2, 3, 4) given by

gkðpÞ ¼ sinpk: ð37Þ
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In this model at mð0Þ ¼ 0, instead of one massless Dirac
particle, in the continuum limit there are 16 massless
particles. In this case the linear response of the chiral current
to an external magnetic field and chemical potential is given
by Eq. (25) with N of Eq. (29). The contributions of the
doublers differ due to the orientation of the effective vierbein,
i.e., the corresponding low-energy effective theory for
massless particle has the one-particle Euclidean Lagrangian

L ¼ jejeμaγai∇μ;

where

jejeμa ¼

0
BBBB@

ð−1Þn1 0 0 0

0 ð−1Þn2 0 0

0 0 ð−1Þn3 0

0 0 0 ð−1Þn4

1
CCCCA

with ni ¼ 0, 1. As a result, the contributions to the CSE
current of these 16 doublers cancel each other. Thus, unlike
the case of the previous section, in the continuum limit when
m → 0 andμ ¼ 0 all doublers contribute the sum, thus giving
N ¼ 0, and canceling the overall CSE current.

B. Modified overlap fermions

It was proposed (see, for example, Ref. [40]) to redefine
the overlap fermions as follows:

G ¼ D−1
o −

1

2m
:

In this case the chiral symmetry is exact,

fG; γ5g ¼ 0: ð38Þ

But the price for this is that at p ¼ ðn1π; n2π; n3π; n4πÞ
with n1 þ n2 þ n3 þ n4 ≠ 0 we have a vanishing value of
the Green function, GðpÞ ¼ 0.
The zeros of the Green function are in many aspects

similar to poles. In particular, they contribute to the CSE in
such a way that the total current vanishes. Let us define

fðk2Þ ¼ 2mð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ A2

p
þ AÞ

k2
:

Then,

G ¼ −i
kμγμ

fðk2Þk2 : ð39Þ

At finite temperatures we have

j5k ¼ −iT
2π

XNt−1

n¼0

N 3ðωnÞϵijkFij: ð40Þ

At any value of n the functional N 3ðωnÞ is a topological
invariant, i.e, it is not changed under any variation G →
Gþ δG if during such modification the poles or zeros of G
do not appear. It is given by

N 3ðωnÞ ¼
1

2 × 3!
ϵijk

Z
d3p
ð2πÞ2 Trγ

5Gðωn;pÞ∂pi
G−1ðωn;pÞ

× ∂pj
Gðωn;pÞ∂pk

G−1ðωn;pÞ: ð41Þ

Therefore, in the model in which there are no poles or zeros
of the Green function in the presence of exact chiral
symmetry the linear response of the axial current to a
magnetic field is the sum of topological invariants, i.e., it
cannot be changed under continuous deformations of
the model. The pole of the Green function at finite
temperature may appear if there exists an integer n such
that ωn ¼ 2π

Nt
ðnþ 1=2Þ ¼ π. This gives the equation

2nþ 1 ¼ Nt;

which has a solution for odd values of Nt. Therefore, for
simplicity in the following we assume that Nt is even.
The ordinary chemical potential cannot cause the appear-

ance of poles or zeros of the Green function, which is seen
from the following consideration. Again, let us assume that
the chemical potential appears as the imaginary contribu-
tion to the Matsubara frequency. In this case the poles or
zeros of the Green function may appear if

sin2ðωn − iμÞ þ
X3
l¼1

sin2ðpiÞ ¼ 0: ð42Þ

We obtain the following system:

�
1 − cosð2ωnÞchð2μÞ þ 2

P
3
l¼1 sin

2ðpiÞ ¼ 0;

shðμÞ sinð2ωnÞ ¼ 0:
ð43Þ

The second equation has a solution in real variables. We
obtain ωn ¼ π=2 or ωn ¼ π. In the former case the first
equation does not have solutions. The latter case is realized
for odd values of Nt only, and then the poles of the Green
function appear as the solution of the equation

1þ 2
X3
l¼1

sin2ðpiÞ ¼ chð2μÞ:

However, as above we can always choose an even value for
Nt, and therefore the poles of the Green function do not
appear if we modify the value of μ. Therefore, we are able
to calculate N 3ðωnÞ for vanishing μ, and the result gives
the answer for finite μ. This calculation is represented in
the Appendix, and as expected it gives the vanishing
CSE current.
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V. NAIVE CONTINUUM EXPRESSIONS
FOR THE CSE CURRENT

A. The integration over 3-momenta before the
summation over Matsubara frequencies

Above we considered the CSE using rigorous lattice
regularizations. Also, we feel it instructive to present here
the discussion of the chiral separation effect in the
framework of naive continuous field theory. We will see
that there is an ambiguity in this consideration, which is
reflected by the lattice constructions with and without exact
chiral symmetry.
Let us consider the propagator of massless noninteract-

ing Dirac fermions,

Gðωn;pÞ ¼
1

γμpμ
: ð44Þ

Here pμ ¼ ðω;pÞ. We will consider the case when the
magnetic field is directed along the z axis (i.e., F12 ¼ −B).
The expression for the chiral current has the form:

j5z ¼ 4Ti
X∞
n¼−∞

Z
d3p
ð2πÞ3

ωn

ððωnÞ2 þ p2Þ2 B; ð45Þ

and after integration over 3-momenta we arrive at

j5z ¼ 4Tiπ2
X∞
n¼−∞

signðωnÞB: ð46Þ

Thus, formally, in the case of massless fermions the chiral
current is equal to the sum of the integer numbers. If, as a
result of the interaction in medium, G is changed as
ωn→fðωnÞ;pi→gðpiÞ, then the result depends on sign f.
We introduce the chemical potential in the standard way,

ωn → ωn − iμ. In this case we need an analytical continu-
ation of the sign function. We may try to use, for example,
the rule

signðωn − iμÞ ¼ signðReðωn − iμÞÞ: ð47Þ

Then, from this naive consideration the conclusion may be
drawn that the chemical potential does not influence the
CSE current. Below we will see that the formal expressions
in the continuum theory will lead to a different answer if the
summation over the Matsubara frequencies is performed
before the integration over momenta.

B. The integration over 3-momenta after the
summation over Matsubara frequencies

In the previous section we have shown that the axial
current in an external magnetic field is expressed as the sum
of the topological invariants multiplied by the field
strength. This expression would become the exact result,
but only if the theory does not contain divergences.

We may extract another result from the above expres-
sions. Namely, let us first perform the initial summation
over the frequencies, and only after that the integration over
momenta,

j5z ¼ 4Ti
X∞
n¼−∞

Z
d3p
ð2πÞ3

ωn − iμ
ððωn − iμÞ2 þ p2Þ2 B ð48Þ

¼ 2

Z
C

dz
2iπ

Z
d3p
ð2πÞ3

z
ðz2 − p2Þ2 th

�
z − μ

T

�
B; ð49Þ

where C is the contour that surrounds poles of the hyper-
bolic tangent function. We use the relation

resz¼z0fðzÞ ¼
1

ðm − 1Þ! limz→z0

dm−1

dzm−1 fðzÞðz − z0Þm ð50Þ

to calculate the value of the integral using the theory
of residues. We deform the contour C in such a way that
it surrounds the points z ¼ �z0. After this deformation
we have

j5z ¼ −2
Z

d3p
ð2πÞ3

"
z

ðzþ pÞ2
d
dz

th

�
z − μ

2T

�����
z¼p

þ z
ðz − pÞ2

d
dz

th

�
z − μ

2T

�����
z¼−p

#
: ð51Þ

We can write the equation in this form because

d
dz

z
ðz ∓ pÞ2

����
z¼∓p

¼ 0: ð52Þ

Thus we can rewrite the integral as

j5z ¼ −2B
Z

d3p
ð2πÞ3

�
1

4p
d
dp

th

�
p − μ

2T

�

−
1

4p
d
dp

th

�
pþ μ

2T

��
; ð53Þ

and after the substitution d3p ¼ 4πp2dp we find that

j5z ¼−
B
2π2

Z
dpðnfðp−μÞ−nfðpþμÞÞ¼−

Bμ
2π2

: ð54Þ

This expression coincides with the conventional expression
(1) (see, for example, Ref. [17]), and it also coincides with
the result obtained above using Wilson fermions and
conventional overlap fermions. It is still protected from
the renormalization of the 3-momentum [pi → gðpiÞ].
However, although the result of the rigorously regular-

ized theory (using, say, lattice Wilson fermions) is repro-
duced by the approach of the present subsection, we would
like to emphasize once again that this approach itself is not
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self-consistent, and its application to the other problems
may be limited. In particular, let us consider a modification
of the system that leads to the replacement of iωn by a
function fðiωnÞ such that it tends to iωn at large n. Looking
at Eq. (45), we may come to the conclusion that such a
modification cannot change the value of the axial current.
However, Eq. (49) is not invariant under the substitution
iωn → fðiωnÞ. This demonstrates once again that the
rigorous ultraviolet regularization is needed in order to
calculate the response of the axial current to the external
field strength.

VI. CONCLUSIONS AND DISCUSSIONS

In the present paper we discussed the chiral separation
effect in the framework of both the naive continuum
nonregularized quantum field theory and the lattice regu-
larized theory. In both cases we also regularized the theory
using finite temperatures.
We demonstrated that the naive continuum formulation

suffers from ambiguities related to the order of taking the
integral over the 3-momenta and the sum over Matsubara
frequencies. If the Matsubara frequencies are summed first,
then the divergences are not encountered and the conven-
tional expression for the chiral current in the presence of an
external magnetic field is reproduced. At the same time, if
the 3-momenta are integrated first, then the resulting
expression is given by the sum of Eq. (46), where each
term is equal to either 1 or −1. This sum is not well defined,
but each term in this sum is independent of the chemical
potential.
This ambiguity points out that, although certain compu-

tational schemes of the CSE current do not encounter the
ultraviolet divergences, the theory should be considered in
the ultraviolet regularization in order to obtain rigorous
results. Therefore, we considered several types of lattice
regularization. First of all, we considered the naive lattice
regularization, where 16 doublers represent the indepen-
dent physical excitations. These excitations differ by the
orientation of the effective vierbein, and as a result their
contributions to the CSE current cancel each other.
Recently, a modification of the regularization using

overlap fermions was proposed (see, for example,
Ref. [40]) in which a massless physical excitation appears
at ω ¼ p ¼ 0, while at the positions of the other 15
doublers (of naive lattice fermions) the zeros of the
Green function appear. As a result the exact lattice chiral
symmetry is obeyed, just like in the case of naive lattice
fermions. The physical meaning of the zeros of the Green
function remains unclear, but it has been discussed in
certain publications (mostly in the framework of condensed
matter theory). We demonstrated that the contribution of
those zeros of the Green function to the CSE cancels the
contribution of the physical massless excitation. Thus, in
both considered cases of the lattice theory with exact chiral
symmetry the CSE does not appear.

Typically, in the lattice models the exact chiral symmetry
is broken, which is the price for the elimination of the
fermion doublers. We considered two particular cases of
such conventional regularization: the case of lattice Wilson
fermions and the case of conventional overlap fermions. In
both cases the massless excitation appears at ω ¼ p ¼ 0
only, the other doublers disappear, and there are no zeros of
the Green function. The price for this is the absence of the
exact chiral symmetry. However, in the case of overlap
fermions there is the Ginsparg-Wilson relation instead. In
both of these regularizations we observed the emergence of
the chiral separation effect. The corresponding current
tends to its conventional expression (1) in continuum limit
of the model with massless fermions. In the case when the
theory describes massive fermions with mass m, the CSE
current is absent at μ < m. It appears at μ ≥ m, and is given
by the same expression of Eq. (1) in the limit μ ≫ m.
Actually, our consideration may easily be extended to the

other lattice models, including those with interactions. The
necessary condition is the presence of the massless Dirac
fermions in continuum limit. Therefore, Eq. (1) should be
regularization independent. We took the limit T → 0,
which allowed us to substitute the sum over Matsubara
frequencies by the integral. This consideration also dem-
onstrates that for the noninteracting system the same
answer for the CSE current is obtained at finite temperature.
This is because the limit Nt → ∞ implies the transition to
the continuum limit, and the appropriate tuning of the
lattice spacing a allows to treat the final answer as the axial
current at finite temperature, T ¼ 1=ðNtaÞ. However, for
the interacting system the situation may be different, and at
finite temperatures the corrections to the CSE current may
appear [41], an effect that we did not discuss here.
We conclude that in the physical regularizations with

Wilson and overlap fermions the conventional CSE
emerges. At the same time, we suppose that the model
with the modified overlap fermions [40] with exact chiral
symmetry [Eq. (38)] is unphysical. Although the zeros of
the Green function do not contribute to the ordinary
perturbation expansion on the same grounds as the physical
excitations, they contribute the topological quantities
responsible for the CSE in the same way as the fermion
doublers. In this respect the modified overlap fermions with
Eq. (38) are similar to the naive lattice fermions with 16
doublers, and they do not possess the CSE.
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APPENDIX: AXIAL CURRENT FOR THE
MODIFIED OVERLAP FERMIONS

Here we calculate the chiral current for the version of
overlap fermions with exact chiral symmetry, fG; γ5g ¼ 0.
Let us use the following expression for the axial current:

j5k ¼ −
i
2

XNt

n¼1

Z
d3p
ð2πÞ3 Trðγ

5Gðωn;pÞ∂pi
G−1ðωn;pÞ

× ∂pj
Gðωn;pÞ∂pk

G−1ðωn;pÞÞFij: ðA1Þ

We substitute Eq. (39) into this expression:

j5k ¼ −
i
2

XNt

n¼1

Z
d3p
ð2πÞ3 Tr

�
γ5

γμkμ
k2fðk2Þ ∂

iðγνkνfðk2ÞÞ

× ∂j

�
γλkλ

k2fðk2Þ
�
ð∂kγρkρfðk2ÞÞ

�
Fij: ðA2Þ

It may be written as

j5k ¼ −2i
XNt

n¼1

ϵρμνλ
Z
M

d3p
ð2πÞ3

f2ðk2Þkμ∂ikν∂jkλ∂kkρ
f2ðk2Þk4 Fij:

ðA3Þ

We introduce the notation gμ ¼ kμffiffiffiffi
k2

p , and the expression for

the axial current is given by

j5k¼−
2i

3!ð2πÞ3
XNt

n¼1

ϵμνλρ
Z
M
gμdgν∧dgλ∧dgρϵijkFij: ðA4Þ

To calculate the topological invariant

N 3ðωnÞ ¼
1

12π2
ϵμνλρ

Z
M
gμdgν ∧ dgλ ∧ dgρ; ðA5Þ

we will use the method of Ref. [29] and the following
parametrization:

g4 ¼ sinðαÞ; gi ¼ ki cosðαÞ; ðA6Þ

where i ¼ 1, 2, 3 and
P

ik
2
i ¼ 1, while α ∈ ½−π

2
; π
2
�. Thus

dg4 ¼ cosðαÞdα; dgi ¼ dki cosðαÞ − ki sinðαÞdα;
ðA7Þ

and

N 3 ¼
3

12π2
ϵijk

Z
M
cos2ðαÞkidα ∧ dkj ∧ dkk

¼ 3

12π2
ϵijk

Z
M
ki

�
1 − cosð2αÞ

2

�
dα ∧ dkj ∧ dkk

¼ 3

12π2
ϵijk

Z
M
kid

�
α

2
þ 1

4
sinðαÞ

�
∧ dkj ∧ dkk

¼ −
X
l

3

12π2
ϵijk

Z
∂Ω

ki

�
α

2
þ 1

4
sinðαÞ

�
dkj ∧ dkk:

ðA8Þ

In this expression ∂Ω is the small vicinity of the point yl of
momentum space where the vector kl is undefined. The
absence of the singularities of gk implies that α → � π

2
at

such points.
Thus we see that the expression under the integral is the

total derivative. We can rewrite it in the form

N 3 ¼ −
1

2

X
l

signðg4ðylÞÞResðylÞ; ðA9Þ

where we have used the notation [30]

ResðylÞ ¼
1

8π
ϵijk

Z
∂Ω

gidgj ∧ dgk: ðA10Þ

It is worth mentioning that this symbol obeysP
lResðylÞ ¼ 0. At each n the value of sign g4 is constant.

Therefore, N 3ðωnÞ ¼ 0 for any n.
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