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Transition form factors FPγ�γð�Þ of pseudoscalar mesons are studied within the framework of the domain

model of confinement, chiral symmetry breaking, and hadronization. In this model the QCD vacuum is
described by the statistical ensemble of domain wall networks which represents the almost everywhere
homogeneous Abelian (anti-)self-dual gluon field configurations. Calculations of the form factors are
performed consistently with mass spectra of mesons, their weak and strong decay constants. Influence of the
nonperturbative intermediate range gluon fields on behavior of pion transition form factor at large Q2 is of
particular interest. It is found that Q2Fπγ�γðQ2Þ approaches a constant value at asymptotically large Q2.
However, due to the contribution of confining gluon fields this limit exceeds the standard factorization bound,
though the form factor complies with Belle data more likely than with BABAR ones. At the same time the
generally accepted factorization bound is shown to be satisfied for the case of the symmetric kinematics,
Q2FPγ�γ� ðQ2Þ. Peculiarities of description of η, η0, and ηc form factorswithin themodel are discussed in detail.
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I. INTRODUCTION

Experimental data for pion transition form factor Fπγ�γ
obtained by the BABAR Collaboration [1] indicate growth
ofQ2Fπγ�γ at largeQ2 that is inconsistent with prediction of
QCD factorization theorems [2]

Fπγ�γ ∼
ffiffiffi
2

p
fπ

3Q2

Z
1

0

dx
ϕas
π ðxÞ
x

¼
ffiffiffi
2

p
fπ

Q2
;

ϕas
π ðxÞ ¼ 6xð1 − xÞ; ð1Þ

where fπ ¼ 131 MeV, and ϕas
π ðxÞ is the asymptotics of

pion distribution amplitude at large Q2. Published later
experimental results carried out by the Belle [3]
Collaboration demonstrate qualitatively different behavior
at large momenta, though they still allow violation of bound
(1). These intriguing though so far incomplete experimental
results have motivated extensive theoretical investigations
of pion electromagnetic transition form factor Fπγ�γ and
QCD factorization in exclusive hadronic processes.
Transition form factors were considered within the frame-
work of light-cone [4–6] and anomaly sum rules [7,8],
local-duality version of QCD sum rules [9], modified
perturbative approach based on the kT factorization theo-
rem [10,11], dispersion relations [12], light-front holo-
graphic QCD [13–16], Dyson-Schwinger equations [17],
nonlocal chiral quark models [18–21], light-front quark
model [22], vector-meson dominance model and its mod-
ifications [23,24], within chiral effective theory with
resonances [25], instanton liquid model [26], and models

involving physics beyond the Standard Model [27].
Contribution of Adler-Bell-Jackiw triangle anomaly to
π0 → γ�γ process was investigated in [28].
Disagreement between bound (1) and the BABAR data

aroused discussion about validity of the latter [4,17]. The
findings demonstrate that higher local operator product
expansion and αs corrections to Eq. (1) are too small to
describe BABAR data, and one should take into account
nonlocal or non-OPE contributions [7]. These corrections
may originate from nonlocal condensates, instantons, or
short strings. Alternatively, growth of Q2Fπγ�γ at large Q2

can be described by “flat” (nonvanishing at the endpoints
x ¼ 0 and x ¼ 1) distribution amplitude [29–31].
In this paper we consider behavior of the transition form

factors within the approach based on the description of
QCD vacuum as statistical ensemble of domain wall
networks representing an ensemble of almost everywhere
homogeneous Abelian (anti-)self-dual fields, which are
characterized by the nonzero gluon condensates, first of
all the scalar hg2F2i and the absolute value of the
pseudoscalar hjg2 ~FFji ¼ hg2F2i ones. Motivation for this
approach as well as details related to the study of static and
dynamical confinement, realization of chiral SULðNfÞ ×
SURðNfÞ andUAð1Þ symmetries in terms of quark-gluon as
well as colorless hadron degrees of freedom can be found in
papers [32–38] and references therein, where also deriva-
tion of the effective meson action used in the present paper
is described in detail. Relation of the present approach to
the methods based on a combination of the Bethe-Salpeter
equation with Dyson-Schwinger equations and functional
renormalization group and models based on soft wall AdS/
QCD approach was discussed in [37]. The effective meson
action allows one to compute the mass spectrum, decay,
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and transition constants as well as form factors describing
the strong, electromagnetic, and weak interactions of
various mesons within the universal for all mesons setup.
Parameters of the model are the infrared limits of the
renormalized quark masses and strong coupling constant,
scalar gluon condensate hαsF2i, and the mean domain size.
The latter can be related to topological susceptibility of
pure Yang-Mills vacuum. Overall precision of the approach
in the description of the wide range of meson phenom-
enology (masses of light, heavy-light mesons, and heavy
quarkonia, leptonic decay constants, transition constants,
all of the above including excited mesons) is about 10%–
15% with few exceptions. Throughout all calculations the
same values of parameters are used as it is supposed by
their physical meaning [37]; see Table I.
The main purpose of the present paper is to investigate

how the explicit presence of the background domain
structured gluon field affects transition form factors of
pseudoscalar mesons and strong decay constants of vector
mesons gVPP. In this context the most relevant feature of the
present approach is the invariance of meson effective action
with respect to the local gauge transformations of the
background field. The nonlocal meson-quark vertices
depend on the covariant derivatives in the presence of a
nonperturbative domain structured gluon field. Within the
formalism used in this paper, both quark propagators and
meson-quark vertices are translation invariant up to a gauge
transformation. As a result, energy-momentum is con-
served only in the entire diagram describing interaction
between mesons, leptons, and photons, but it is not
conserved in every meson-quark vertex separately.
Averaging of these diagrams over configurations of the
nonperturbative field leads to contributions that are absent
if just a global gauge invariance is assumed as it is usually
done in nonlocal models of hadronization. This is the most
relevant to our task feature of the effective meson action,
derived within the domain model, as it becomes a source
for violation of factorization properties since it may mix up
soft and hard parts of the amplitudes, short and large
distance subprocesses. It is shown that the background
gluon fields, typical for the domain model, do not cause
growth of Q2Fπγ�γ at large Q2, and calculation of the
asymptotic behavior indicates that

Fπγ�γ ∼ ϰγ�γ

ffiffiffi
2

p
fπ

Q2
; ϰγ�γ ¼ 1.23; ð2Þ

so that Q2Fπγ�γ approaches a constant value at large Q2 in
qualitative agreement with factorization prediction, but the

value of constant ϰγ�γ substantially differs from unity. At the
same time, asymptotic behavior of the form factor in sym-
metric kinematics with two photons with equal virtuality Q2,

Fπγ�γ� ∼ ϰγ�γ�

ffiffiffi
2

p
fπ

3Q2
; ϰγ�γ� ¼ 1; ð3Þ

calculated within the present model, matches factorization
prediction

Fπγ�γ� ∼
ffiffiffi
2

p
fπ

3Q2

Z
1

0

dxϕas
π ðxÞ ¼

ffiffiffi
2

p
fπ

3Q2
: ð4Þ

Within the present calculation, the deviation of ϰγ�γ from
unity manifestly originates from the nonconservation of the
energy-momentum in the quark-meson vertices and quark
propagators separately due to interaction of quarks and gluons
with the background confining gluon fields. The energy-
momentum is conserved only for the whole locally gauge
invariant amplitude of the process π → γ�γð�Þ. In the presence
of the vacuum gluon fields under consideration the propa-
gators and vertices are translation invariant only up to a gauge
transformation of the background gluon fields. Equivalently,
in the presence of the long/intermediate range vacuum gluon
fields, the locally gauge invariant amplitudes built of the
nonperturbative quark propagators and vertices are translation
invariant and ensure energy-momentum conservation.
For symmetric kinematics these specific effects are sup-

pressed and do not influence the asymptotic behavior, while
they directly contribute to asymptotic behavior of the form
factor for asymmetric kinematics. Relation (4) is reproduced
much better than (1). This observation looks natural because
a straightforward QCD factorization works best of all in the
former case, i.e. when both photons are highly virtual [4,39].
It is important for overall consistency of the formalism

that analogous terms originating from the local gauge
invariance of the physical amplitudes critically affect the
strong decays of vector mesons into a couple of pseudo-
scalar ones. Relaxation of the local color gauge invariance
to the global one leads to drastic disagreement between
experimental and calculated values of the decay constants
gVPP, particularly gρππ. In this context, strong underesti-
mation of decay constant gρππ typical for NJL-type models
of hadronization [40,41] cannot be attributed just to the
oversimplified local character of meson-quark interaction;
nonlocality itself is not sufficient for consistent description
of masses and strong decay constants. The local color
gauge invariance of the nonlocal effective meson-meson
interactions mediated by the quark-gluon interactions
appears to be of crucial importance.
The paper is organized as follows. Brief review of the

effective meson action is given in Sec. II. Details of
calculations of form factors are presented in Sec. III.
Section IV is devoted to decay constants of vector mesons
into a couple of pseudoscalar mesons. Section V contains
conclusions and discussion of the unsolved problems.
Details of calculations are given in the appendices.

TABLE I. Values of parameters fitted to the mass spectrum [37]
and used for calculations in the present paper.

mu=d
(MeV)

ms
(MeV)

mc
(MeV)

mb
(MeV)

Λ
(MeV) αs R (fm)

145 376 1566 4879 416 3.45 1.12

SERGEI N. NEDELKO and VLADIMIR E. VORONIN PHYSICAL REVIEW D 95, 074038 (2017)

074038-2



II. EFFECTIVE MESON ACTION

Details of motivation of the domain model and derivation
of the effective action within the domain model have been
discussed from different points of view in several papers
[35,37]. A short overview of the hadronization procedure is
given in Appendix A. The Euclidean functional integral of
the domain model with the effective meson action derived
by means of the hadronization procedure has the following
structure:

Z¼N
Z

DϕQexp
�
−
Λ2

2

h2Q
g2C2

Q

Z
d4xϕ2

QðxÞ−
X∞
k¼2

1

k
Wk½ϕ�

�
;

ð5Þ

Wk½ϕ� ¼
X

Q1…Qk

hQ1
…hQk

Z
d4x1…

×
Z

d4xkΦQ1
ðx1Þ…ΦQk

ðxkÞΓðkÞ
Q1…Qk

ðx1;…; xkÞ;

ΦQðxÞ ¼
Z

d4p
ð2πÞ4 e

ipxOQQ0 ðpÞ ~ϕQ0 ðpÞ;

CQ ¼ CJ; C2
S=P ¼ 2C2

V=A ¼ 1

9
; ð6Þ

where condensed index Q≡ faJLng denotes all meson
quantum numbers like spin parity in the ground state
J ∈ fS; P; V; Ag, orbital momentum l contributing to the
total angular momentum (spin) for orbital excitations,
radial quantum number n, flavor SUðNÞ multiplets a,
and space-time indices. TransformationOQQ0 relates physi-
cal meson fields ϕQ to auxiliary fields ΦQ introduced
during hadronization. The meson masses MQ and quark-
meson coupling constants hQ are determined by the
quadratic part of the effective meson action via equations

1 ¼ g2C2
Q

Λ2
~ΠQð−M2

QjBÞ; ð7Þ

h−2Q ¼ d
dp2

~ΠQðp2jBÞjp2¼−M2
Q
; ð8Þ

where Π̄Qðp2jBÞ is two-point correlator ΓQQ0 diagonalized
with respect to all quantum numbers [see Fig. (1) and
Eqs. (10) and (11)] and put on mass shell p2 ¼ −M2:

~ϕ†
Qð−pÞ½OTðpÞ ~Γð2ÞðpÞOðpÞ�QQ0 ~ϕQ0 ðpÞjp2¼−M2

Q

¼ ~ΠQð−M2
QjBÞ ~ϕ†

Qð−pÞ ~ϕQðpÞjp2¼−M2
Q
: ð9Þ

Masses MQ correspond to the poles of meson propa-
gators, while relation (8) for meson-quark interaction
constants hQ provides correct residue at the pole. This
relation is known also as a compositeness condition for
meson fields. Integration variables ϕQ in the functional
integral (5) correspond to the physical meson fields that
diagonalize the quadratic part of the effective meson action
(6) in momentum representation, which is achieved by
means of transformation OðpÞ. Effective action (6) is
expressed in terms of colorless composite fields ΦQ related
to the physical meson fields through the transformation
OðpÞ,

~ΦQðpÞ ¼ OQQ0 ðpÞ ~ϕQ0 ðpÞ;

and k-point nonlocal vertex functions ΓðkÞ
Q1…Qk

:

Γð2Þ
Q1Q2

¼ Gð2Þ
Q1Q2

ðx1; x2Þ − Ξ2ðx1 − x2ÞGð1Þ
Q1
Gð1Þ

Q2
;

Γð3Þ
Q1Q2Q3

¼ Gð3Þ
Q1Q2Q3

ðx1; x2; x3Þ −
3

2
Ξ2ðx1 − x3ÞGð2Þ

Q1Q2
ðx1; x2ÞGð1Þ

Q3
ðx3Þ

þ 1

2
Ξ3ðx1; x2; x3ÞGð1Þ

Q1
ðx1ÞGð1Þ

Q2
ðx2ÞGð1Þ

Q3
ðx3Þ;

Γð4Þ
Q1Q2Q3Q4

¼ Gð4Þ
Q1Q2Q3Q4

ðx1; x2; x3; x4Þ −
4

3
Ξ2ðx1 − x2ÞGð1Þ

Q1
ðx1ÞGð3Þ

Q2Q3Q4
ðx2; x3; x4Þ

−
1

2
Ξ2ðx1 − x3ÞGð2Þ

Q1Q2
ðx1; x2ÞGð2Þ

Q3Q4
ðx3; x4Þ þ Ξ3ðx1; x2; x3ÞGð1Þ

Q1
ðx1ÞGð1Þ

Q2
ðx2ÞGð2Þ

Q3Q4
ðx3; x4Þ

−
1

6
Ξ4ðx1; x2; x3; x4ÞGð1Þ

Q1
ðx1ÞGð1Þ

Q2
ðx2ÞGð1Þ

Q3
ðx3ÞGð1Þ

Q4
ðx4Þ: ð10Þ

The vertices ΓðnÞ are expressed via quark loops GðlÞ
Q1…Qk

averaged over the background field
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GðkÞ
Q1…Qk

ðx1;…; xkÞ ¼
Z

dσBTrVQ1
ðx1jBÞSðx1; x2jBÞ…VQk

ðxkjBÞSðxk; x1jBÞ;

× GðlÞ
Q1…Ql

ðx1;…; xlÞGðkÞ
Qlþ1…Qk

ðxlþ1;…; xkÞ

¼
Z

dσBTrfVQ1
ðx1jBÞSðx1; x2jBÞ…VQk

ðxljBÞSðxl; x1jBÞg

× TrfVQlþ1
ðxlþ1jBÞSðxlþ1; xlþ2jBÞ…VQk

ðxkjBÞSðxk; xlþ1jBÞg; ð11Þ

where the bar denotes averaging over all configurations of
the background gluon field with measure dσB; see [34,35].
There are two types of contributions to vertex functions
ΓðkÞ—one-loop diagrams and n ≤ k-loop diagrams con-
nected by the correlators of the statistical ensemble of the
nonperturbative background fields—almost everywhere
homogeneous (anti-)self-dual Abelian gluon fields.
A simplified version of the domain model which allows

one to compute the effective action analytically is based on
two main approximations. Quark and gluon propagators are
computed in the homogeneous background field, which
represents the domain bulk, while the finite size of domains
is neglected at this step. The finite mean size is taken
into account through the domain ensemble correlators
Ξnðx1;…; xnÞ which have geometrical interpretation in
terms of a volume of overlap of n four-dimensional
hyperspheres with radius R and centers at the points
x1;…; xk according to the formalism derived in [34,35].

As it has already been mentioned, meson vertices ΓðkÞ
Q1…Qk

are averaged over all configurations of the homogeneous
(anti-)self-dual Abelian gluon fields: (anti-)self-duality,
color, and space-time orientation. The latter is achieved
by means of generating formula

hexpðifμνJμνÞi¼
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν�Jμν ~JμνÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν�Jμν ~JμνÞ

q ;

fαβ¼
n̂

2υΛ2
Bαβ; υ¼diag

�
1

6
;
1

6
;
1

3

�
; ð12Þ

where tensor fμν is related to the strength of the Abelian
(anti-)self-dual background field

B̂μ ¼ −
1

2
n̂Bμνxν; n̂ ¼ t3 cos ξþ t8 sin ξ;

~Bμν ¼
1

2
ϵμναβBαβ ¼ �Bμν; B̂ρμB̂ρν ¼ 4υ2Λ4δμν;

fαβ ¼
n̂

2υΛ2
Bαβ; υ ¼ diag

�
1

6
;
1

6
;
1

3

�
; fμαfνα ¼ δμν;

and Jμν is an arbitrary antisymmetric tensor. For example,
generating formula leads to

hfμνi ¼ 0; hfμνfαβi ¼
1

3
ðδμαδνβ − δμβδνα � εμναβÞ:

In this approximation vertex VaJln
μ1…μl is defined by the

formulas

VaJln
μ1…μl ¼ ClnMaΓJFnl

�
D
↔2ðxÞ
Λ2

�
TðlÞ
μ1…μl

�
1

i
D
↔
ðxÞ
Λ

�
;

C2ln ¼
lþ 1

2ln!ðnþ lÞ! ; FnlðsÞ ¼ sn
Z

1

0

dttnþl expðstÞ;

D
↔ff0

μ ¼ ξfD⃖μ − ξf0D⃗μ; D⃖μðxÞ ¼ ∂⃖μ þ iB̂μðxÞ;
D⃗μðxÞ ¼ ∂⃗μ − iB̂μðxÞ;

ξf ¼
mf0

mf þmf0
; ξf0 ¼

mf

mf þmf0
; ð13Þ

where Ma is the flavor matrix, ΓJ is a Dirac matrix with
J ∈ fS; P; V; Ag, and x is the center of mass of the quarks
with flavors f and f0 entering and exiting the vertex in (11).
The form of the radial part Fnl of the vertex is determined
by the propagator of the gluon fluctuations charged with
respect to the Abelian background. The quark propagator in
the presence of the Abelian (anti-)self-dual homogeneous
field has the form

FIG. 1. Diagrams contributing to the equation for the meson masses (7) and quark-meson coupling constants (8). Light gray color
denotes averaging over configurations of the domain bulk background field. Dark gray color denotes correlation of the quark loops
directly due to the finite range correlators in the domain ensemble. The two-loop diagram is particularly important for the masses of η
and η0.
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Sfðx; yjBÞ ¼ exp
�
−
i
2
n̂xμBμνyν

�
Hfðx− yjBÞ;

~HfðpjBÞ ¼
1

2υΛ2

Z
1

0

dseð−p2=2υΛ2Þs
�
1− s
1þ s

�
m2

f=4υΛ
2

×

�
pαγα � isγ5γαfαβpβ

þmf

�
P� þP∓

1þ s2

1− s2
−
i
2
γαfαβγβ

s
1− s2

��
:

ð14Þ

The values of parameters of the model given in Table I
were fitted to the masses of ground-state mesons
π; ρ; K; K�; J=ψ ;Υ; η0 and were used for calculation of
the decay and transition constants as well as masses of a
wide range of mesons [37]. The results are illustrated in
Fig. 2 and Table II, respectively.

III. TWO-PHOTON DECAY CONSTANTS AND
TRANSITION FORM FACTORS

Weak and electromagnetic interactions can be introduced
into meson effective action (6) by the standard requirement
of the local gauge invariance which generates two types of
gauge boson couplings—the standard one with the local
quark current and direct interaction with the nonlocal
quark-meson vertices. Detailed derivation for the model
under consideration can be found in paper [37]. In
particular, interaction of the pseudoscalar mesons with
two photons in the lowest order over quark-meson coupling
constants (or, equivalently, to the lowest order in 1=Nc) is
formally described by four terms represented diagrammati-
cally in Fig. 3, where diagrams C and D include additional
meson-quark-photon coupling. However, explicit calcula-
tions show that contribution of diagrams C and D vanish.
Two other diagrams include the standard local electromag-
netic interaction of quarks. Besides the triangle diagram A
there can be an additional term B, which directly includes
the correlator of the nonperturbative gluon field. The latter
term is analogous to the direct instanton contribution
considered in paper [26] within the instanton liquid model.
A nonzero contribution of diagram B to the form factors of
π and η mesons necessarily requires violation of flavor
symmetry. This condition is irrelevant to η0 and ηc mesons,
and one may expect that these mesons are much more
sensitive to correlations of the vacuum field ensemble
crucial for the two-loop diagram B. We shall return to
discussion of this issue after studying the form factors
generated by the triangle diagram. Its contribution to the
vertex for interaction between the meson ϕaP00ðxÞ and
electromagnetic fields AμðyÞ, AνðzÞ has the form

Tan
μνðx; y; zÞ ¼ haP0n

X
n0;f

Oab
nn0Tr

Z
dσBe2fM

b
ffCn00Fn00ðxÞiγ5

× Sfðx; yjBÞγμSfðy; zjBÞγνSfðz; xjBÞ: ð15Þ

Here f is the flavor index, and Tr denotes trace of the color
and Dirac matrices. The index n denotes the radial quantum
number. The quark-meson coupling constant haP00 is
defined by (8). The coefficients Oab

nn0 describe transforma-
tion from auxiliary meson fields Φb

n0 to physical meson
fields ϕa

n and perform the same transformation with vertices
of physical and auxiliary fields. The coefficients depend on
momentum [see Eq. (9)], and here they are put on the mass
shell of the physical meson field with quantum numbers
aP0n. Coefficients Oab

nn0 and masses are calculated con-
sistently via diagonalization of the term (9) of the effective
action and solution of Eq. (7). For η and η0 mesons Oab

0n
mixes not only the vertices Fn0 but also η0 and η8

components of the pseudoscalar nonet (15) (see
Table III). In momentum representation, the vertex has
the following structure:

 0

 2

 4

 6

 8

 10

π ρ K K* φ η η’ D D* Ds Ds
* ηc J/ψ B B* Bs Bs

* Bc Bc
* Υ

PDG
Domain
 model

M
, G

eV

n=0

n=1

n=2

FIG. 2. The masses of various radially excited mesons calcu-
lated with the values of parameters shown in Table II.

TABLE II. Decay and transition constants of various mesons
[37].

Meson n fexpP (MeV) fP (MeV) Meson n gexpVγ [42] gVγ

π 0 130 [42] 140 ρ 0 0.2 0.2
πð1300Þ 1 29 ρ 1 0.053
K 0 156 [42] 175 ω 0 0.059 0.067
Kð1460Þ 1 27 ω 1 0.018
D 0 205 [42] 212 ϕ 0 0.074 0.071
D 1 51 ϕ 1 0.02
Ds 0 258 [42] 274 J=ψ 0 0.09 0.06
Ds 1 57 J=ψ 1 0.015
B 0 191 [42] 187 ϒ 0 0.025 0.014
B 1 55 ϒ 1 0.0019
Bs 0 253 [43] 248
Bs 1 68
Bc 0 489 [43] 434
Bc 1 135
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Tan
μνðp2; k21; k

2
2Þ ¼ ie2δð4Þðp − k1 − k2Þεμναβk1αk2βTanðp2; k21; k

2
2Þ: ð16Þ

Below we shall use dimensionless notation for the masses and momenta: p2 ≡ p2=Λ2, k21 ≡ k21=Λ2, k22 ≡ k22=Λ2,
mf ≡mf=Λ. Using expressions (14) and (13) for the quark propagator and quark-meson vertices, we arrive at

Tanðp2; k21; k
2
2Þ ¼

haP0n
16π2Λ

X
n0;f;v

1

vn0!
Oab

nn0M
b
ffq

2
fmf

Z
1

0

ds1

Z
1

0

ds2

Z
1

0

ds3

Z
1

0

dttn
0 ∂n0

∂tn0

×

��
1 − s1
1þ s1

��
1 − s2
1þ s2

��
1 − s3
1þ s3

��
m2

f=4v 1

ð1 − s21Þð1 − s22Þð1 − s23Þ

×
1

ϕ2

�
λ1

F1

ϕ2
þ λ2

�
F2

ϕ2
þm2

f
F3

ϕ
− p2

F4

ϕ3
þ k21

F5

ϕ3
þ k22

F6

ϕ3

�
þ λ3½ðp2 − k21 − k22Þ2 − 4k21k

2
2�
F7

ϕ4

�

× exp

�
−k21

ϕ11

2vϕ
− k22

ϕ12

2vϕ
− p2

ϕ1

4vϕ

�
: ð17Þ

where qf is the electric charge of a quark with flavor f in
units of electron charge. Polynomialsϕ;ϕ1;ϕ11;ϕ12 look as

ϕ¼ s1þ s2þ s3þ s1s2s3þ 2vtð1þ s1s2þ s1s3þ s2s3Þ;
ϕ1 ¼ ðs1− s2þ s3 − s1s2s3Þvtþ 2s1s3;

ϕ11 ¼ s2½s1þ tvð1þ s1s3Þ�;
ϕ12 ¼ s2½s3þ tvð1þ s1s3Þ�: ð18Þ

Exact expressions for momentum independent polynomials
Fiðs1; s2; s3; tÞ are given in Appendix B.

Functions λi originate from averaging of the triangle
diagram over the space-time direction of the vacuum field
according to Eq. (12). Before averaging, the triangle
diagram is represented by the integral over variables
s1, s2, s3, and t with the integrand proportional to the
exponential factor

exp fifμνJμνg;

Jμν ¼
ϕ2ðs1; s2; s3; tÞ
2vϕðs1; s2; s3; tÞ

ðk1μk2ν − k1νk2μÞ;

ϕ2 ¼ s2ðs1s3 þ ðs1 þ s3ÞtvÞ: ð19Þ

(a) (b) (c) (d)

FIG. 3. Diagrams which in principle could contribute to the transition form factor. In the approximation to the quark and gluon
propagators that is used in the present calculation the only nonzero contribution comes from the diagram A.

TABLE III. Matrix elements of the on-shell mixing matrix OQQ0 for π, η, η0, and ηc. For π and ηc mesons the quantities Oπ=ηc
n ≡

Oπ=ηc
0n ð−M2

π=ηc
Þ characterize the weight of the vertices (13) with different radial number n in interaction of quarks with the physical

ground state π and ηc mesons. For η and η0 mesons mixing between octet and singlet states (a ¼ 0, 8) is taken into account
simultaneously with the radial number mixing.

Meson a O0 O1 O2 O3 O4 O5 O6

π – 0.7595 −0.4510 0.3067 −0.2294 0.1826 −0.1515 0.1293
ηc – 0.6225 −0.47789 0.3788 −0.3079 0.2554 −0.2155 0.1846
η 0 0.244 −0.1437 0.1036 −0.0812 0.0662 −0.0553 0.0471

8 −0.6724 0.4495 −0.3189 0.2406 −0.191 0.1574 −0.1334
η0 0 þ0.0139 −0.5106 0.4346 −0.2968 0.198 −0.1388 0.1049

8 −0.6140 −0.0201 0.0985 −0.0664 0.0312 −0.0096 −0.0013
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This factor is directly related to the local gauge invariance
of the meson effective action with respect to the local gauge
transformations of the background field which is provided
by the covariant derivatives in the vertex (13) and the
exponential phase factor (sometimes called the Schwinger
phase) in the quark propagator (17). As a result of
averaging, the final representation contains functions

λ1ðrÞ ¼
sin r
r

; λ2ðrÞ ¼ −
1

r
∂
∂r λ1ðrÞ;

λ3ðrÞ ¼ −
1

r
∂
∂r λ2ðrÞ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � Jμν ~JμνÞ

q
¼ ϕ2

vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21k

2
2 − ðk1k2Þ2

q

¼ ϕ2

2vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k21k

2
2 − ðp2 − k21 − k22Þ2

q
: ð20Þ

For p2 ¼ −M2, that is relevant to the transition form
factors, the argument r becomes imaginary r ¼ iρ,

ρ ¼ ϕ2

2vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ ðk21 − k22Þ2 þ 2M2ðk21 þ k22Þ

q
; ð21Þ

and one gets

λ1 ¼
sinh ρ
ρ

; λ2 ¼ −
cosh ρ
ρ2

þ sinh ρ
ρ3

;

λ3 ¼
sinh ρ
ρ3

− 3
cosh ρ
ρ4

þ 3
sinh ρ
ρ5

: ð22Þ

Unlike the exponent with the function ϕ1 in Eq. (17), these
factors demonstrate a manifestly nonperturbative impact of
the long range confining vacuum gluon fields on the
behavior of form factors at short distances, as meson mass
M turns out to be entangled with a highly virtual momenta
of photons.
An important observation is that the behavior of the

functions λi at large Q2 is very different for symmetric
(k21 ¼ k2 ¼ Q2) and asymmetric (k21 ¼ Q2, k22 ¼ 0)
kinematics since

ρsym ¼ ϕ2

2vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ 4M2Q2

p
→

ϕ2

vϕ
MjQj;

for k21 ¼ k22 ¼ Q2 ≫ M2;

ρasym ¼ ϕ2

2vϕ
ðM2 þQ2Þ → ϕ2

2vϕ
Q2;

for k22 ¼ 0; k21 ¼ Q2 ≫ M2;

which results in the linear exponential increase of λi as a
function of jQj in the integrand of the expression for the
form factor in the symmetric kinematics, while quadrati-
cally growing exponents in λi are characteristic for the
asymmetric one. Nevertheless, as it is shown in

Appendix C, both regimes demonstrate 1=Q2 behavior
for asymptotically large Q2. However, a qualitatively
different form of functions λi for these kinematic regimes
results in a rather different degree of correspondence to
factorization bound for the coefficients in front of 1=Q2, as
is also illustrated in Fig. 4.
Below we use the notation P for a couple of indices ðanÞ.

The transition form factor of meson P is defined as

FPγ�γðQ2Þ ¼ TPð−M2
P;Q

2; 0Þ;

and corresponds to asymmetric kinematics with one on-
shell photon. The form factor in symmetric kinematics

FPγ�γ� ðQ2Þ ¼ TPð−M2
P;Q

2; Q2Þ ð23Þ

corresponds to two virtual photons. The decay width into a
couple of real photons is expressed via decay constant gPγγ

ΓðP→ γγÞ¼π

4
α2M3

Pg
2
Pγγ; gPγγ ¼TPð−M2

P;0;0Þ: ð24Þ

Experimental and calculated by means of triangle diagram
values of gPγγ are given in Table IV. Results of numerical
computations of transition form factors for π, η, η0, and ηc
mesons in comparison with experimental data are shown
in Figs. 5 and 6. It should be stressed again that all
calculations have been performed consistently with calcu-
lation of the masses, weak decay, and transition constants
(Fig. 2 and Table II) [37].
Two-photon decay constants of π and η mesons are

obtained with rather high accuracy, and overall behavior of
their form factors is reproduced quite well. Moreover, high
Q2 asymptotics of the pion form factor looks more con-
sistent with Belle data. Figure 5 manifestly demonstrates a
qualitative difference between the asymmetric (solid line)
and symmetric (dashed line) regimes of kinematics.
The constant value of Q2Fπγ�γðQ2Þ is achieved at very

large Q2. It deviates from the factorization limit by more
than 20% [see Eq. (2)]. At the same time, form factor
Q2Fπγ�γ� ðQ2Þ approaches the asymptotic value at quite low
momenta and fits the factorization limit identically, as has
already been indicated in Eq. (3). Appendix C contains
more detailed consideration of the asymptotic behavior
of the form factor. It is explicitly demonstrated that the

TABLE IV. Two-photon decay constants of pseudoscalar
mesons.

meson gexpPγγ ;, GeV
−1 [42] gPγγ , GeV−1

π0 0.274 0.272
η 0.274 0.267
η0 0.344 0.44
ηc 0.067 0.055
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translation noninvariant factor (19) manifestly contributes
to the constant limit of Q2Fπγ�γðQ2Þ for Q2 → ∞. This
factor is completely irrelevant for the asymptotic value of
Q2Fπγ�γ� ðQ2Þ, which exactly reproduces the factorization
bound for symmetric kinematics.
At this step we conclude that the long range confining

gluon fields do not change the conventional character of the
momentum dependence of the form factor but, depending
on kinematic regime, may influence the coefficient in front
of the 1=Q2 asymptotics. The coefficient coincides
identically with factorization prediction in the case of
symmetric kinematics in line with the analysis of papers
[18–20]. Contribution of the confining Abelian (anti-)self-
dual fields increases asymptotics of Q2Fπγ�γðQ2Þ by

approximately 23% in comparison with the factorization
limit. This increase does not lead to contradiction with the
current experimental data. If we neglect the main contri-
bution of these long-range fields to Fπγ�γ by taking ρ ¼ 0 in
the integrand of (17) than the asymptotics complies with
the factorization bound as well (see Appendix C). Both the
two-photon decay constant and the transition form factor of
the η meson turn out to be also described rather satisfac-
torily. These findings together with previously obtained
results for masses, decay, and transition constants of
various mesons and new results on strong decays (see
next section) take shape of a self-consistent picture.
However, consideration of η0 and ηc mesons indicates that
the approximation scheme used for the quark propagators
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p
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from meson-quark vertices (13) with various radial number n. For the sake of brevity,On denotes matrix elementsO33
0n which correspond

to the ground state of π0 that diagonalizes the quadratic part of the effective meson action. The values of these matrix elements are given
in Table III.
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in the domain wall network background has to be refined
by explicitly taking into account the inhomogeneity of the
background field at domain boundaries. Without imple-
mentation of this technically complicated enhancement, the
picture appears to be incomplete. We shall discuss this
difficult issue in the last section of the paper.

IV. STRONG DECAYS OF VECTOR MESONS

Analysis of the previous section emphasized the impor-
tant role of long range confining gluon fields and related
local gauge invariance of the meson effective action in
formation of the transition form factors. Strong decays of
vector mesons allow one to verify the validity of such an
emphasis.
The amplitude of vector meson decay into a couple of

pseudoscalar mesons includes two form factors,

Aμ ¼ 2qμA1ðp2; q2; pqÞ þ pμA2ðp2; q2; pqÞ;

where pμ is momentum of the decaying meson, and
qμ ¼ k1μ − k2μ is the relative momentum of pseudoscalar
mesons. The corresponding decay constant is defined as the
on-shell form factor

gVPP ¼ A1ðp2; q2; pqÞ; p2 ¼ −M2
1;

k21 ¼ −M2
2; k21 ¼ −M2

3:

The diagram for the amplitude Aμ shown in Fig. 8 for
ground state mesons corresponds to the expressions

Aμ
aV;bP;cPðp; k1; k2Þ ¼ haV00hbP00hcP00

X
n1n2n3

Oa
0n1

ðpÞOb
0n2

ðk1ÞOc
0n3

ðk2Þ ~Γμ
aVn1;bPn2;cPn3

ðp; k1; k2Þ;

Γμ
aVn1;bPn2;cPn3

ðx; y; zÞ ¼
Z

dσBTrγμMaFn1ðxÞSðx; yÞiγ5MbFn2ðyÞSðy; zÞiγ5McFn3ðzÞSðz; xÞ;

where we have written flavor multiplet indices ða; b; cÞ explicitly. In this case matrices O are diagonal with respect to
multiplet indices, which is denoted by a single index. The final result for the decay constant has the following general
structure:

gVP1P2
¼ hVhP1

hP2

Z
1

0

Z
1

0

Z
1

0

Z
1

0

Z
1

0

Z
1

0

ds1ds2ds3dt1dt2dt3

�
1 − s1
1þ s1

�m2
1

4v
�
1 − s2
1þ s2

�m2
2

4v
�
1 − s3
1þ s3

�m2
3

4v

× exp
�X3

i¼1

ϕiM2
i

��
λ1 þ λ1

X3
i¼1

F1iM2
i þ λ2

�X3
i¼1

F2iM2
i þ

X
i;j¼1;2;3

i≤j

F3ijM2
i M

2
j

�
þ λ3

X
i;j;k¼1;2;3
i≤j≤k

F4ijkM2
i M

2
jM

2
k

�
;

where M1 is the mass of the vector meson, M2 and M3 are masses of pseudoscalar mesons, and ϕ and F are rational
functions of integration variables si and ti independent of the meson masses. Quark masses mf correspond to the flavor
content of the mesons.
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Functions λiðζÞ are given by the same Eq. (20) as in the
case of two-photon decay of pseudoscalar mesons but now
with the argument

ζ ¼ ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

1 −M2
2 −M2

3Þ2 − 4M2
2M

2
3

q
;

where ψ is a function of the integration variables, which
obviously differs from the corresponding function in Eq. (21).
The origin and physical content of the λ-functions

discussed above in the context of the transition form factors
is completely applicable to the strong V → PP decays as
well. An important observation is that these functions turn
out to be of crucial importance for an adequate description
of the experimental results for V → PP decay constants.
The results are shown in Table V. The value of gωππ is
exactly zero in our calculation because of ideal mixing of ω
and ϕ mesons and employed approximation of SUð2Þ
isospin symmetry (mu ¼ md). If one neglects translation
noninvariant phases in the quark propagator and drops the
background field dependence in the quark-meson vertices,
that means turning to just global gauge invariance of
meson-meson interaction vertices, then the argument of
λi has to vanish ξ → 0, and the results of the calculation

change dramatically as is seen from comparison of the third
and fourth columns in Table V. The calculated decay
constants become strongly underestimated for light mesons
and overestimated for heavy-light mesons. This is quite a
known issue—it is difficult to get a consistent description
of both meson masses and strong decay constants. Usually
gρππ turns out to be strongly underestimated [40,41].
The main observation of this section is that the local

gauge invariance of the meson effective action is highly
important for a simultaneous description of meson masses
and the strong decay constants gVPP. This conclusion
supports the analysis of the impact of the confining long
range gluon fields on P → γγ transition form factors.

V. DISCUSSION AND OUTLOOK

Two-photon decay constants for ηc and, particularly, η0
mesons turn out to deviate from experimental values by 18%
and 24%, respectively, which demonstrates much less
accuracy of description than in the case of π and η mesons.
At a glance the ηc form factor in Fig. 6, calculated by means
of Eq. (17), fits experimental data very well. However, the
normalized at zero momentum form factor shown in Fig. 7
exposes its functional form more clearly, and, though an
agreement is still quite reasonable, there is a visible excess of
the calculated form factor with respect to the experimental
points. Bearing in mind 18% underestimation of gηcγγ we
conclude that a good description seen in Fig. 6 is a result of
mutual compensation of two inaccuracies. Equation (17)
leads to a strong overestimation of the normalized form
factor of the η0 meson as the left-hand side plot in Fig. 7
demonstrates. Simultaneously the decay constant gη0γγ
exceeds the experimental value. The left-hand side plot in
Fig. 6 demonstrates the heavy overall disagreement of
Q2Fη0γ�γðQ2Þ with experimental data.
Bearing in mind systematically good accuracy of the

present approach in the description of diverse properties of
various mesons, one gets an impression that the odd situation

TABLE V. The strong decay V → PP constants for various
decays. Here gVPP is the result of the full calculation with locally
gauge invariant meson-meson amplitudes, and g�VPP is a sim-
plified, only globally gauge invariant calculation.

Decay gexpVPP [42] gVPP g�VPP
ρ0 → πþπ− 5.95 7.61 1.14
ω → πþπ− 0.17 0 0
K�� → K�π0 3.23 3.56 0.65
K�� → K0π� 4.57 5.03 0.91
φ → KþK− 4.47 5.69 1.11
D�� → D0π� 8.41 7.94 16.31
D�� → D�π0 5.66 5.62 11.53
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with η0 has to be attributed to someeffects, that are particularly
important for η0 meson. If so then it can be plausible that the
triangle diagram A in Fig. 3 does not represent all potentially
important contributions to the transition form factor, which
are specifically large in the case of the η0 meson.
It is known that within the instanton liquid model the

analogue of diagram B gives an important contribution to
the transition form factor FPγ�γ; under certain conditions it
can become as large as the contribution of the triangle
diagram.A detailed analysis of the direct instanton effects in
the pion transition form factor was performed in paper [26].
It was shown that if flavor SUð2Þ symmetry is broken due to
different current masses of up and down quarks then direct
instanton effects are not small and may lead to a consid-
erable increase of the pion form factor at large Q2. The
addition to the form factor is equal to the difference of two
terms related to the up and down quarks, which together
with other factors define its overall sign. Obviously for
unbroken flavor SUð2Þ symmetry, this effect vanishes.
This approach can be extended to all pseudoscalar

neutral mesons. Contribution of the diagram B to the form
factors of the η8 and η0 states is expected to be nonzero for
broken SUð3Þ flavor symmetry. However there is an
important difference between octet and singlet states.
Contribution to the η8 form factor is given by the difference
of terms related to the light quarks and the s-quark, while
addition to the η0 form factor is given by a sum of terms and
does not vanish even for the case of unbroken SUð3Þ. This
means that the strongest effect can be expected for the case
of η0 with a sign being opposite to the sign of octet states. In
other words, contribution of diagram B may increase the
form factors of octet states and decrease the η0 and ηc form
factors. The same as for the η0 state argumentation is
applicable to the ηc meson form factor but in a much more
smeared form due to the large c-quark mass.

In the present approach, the η0 and η8 ground and
radially excited states are mixed with each other to form
the physical η, η0 mesons and their physical radial excita-
tions. Mixing with ηc is negligible. Physical meson fields
diagonalize the quadratic part of the effective action (6).
Table III demonstrates the on-shell coefficients of the
mixing. It should be noted that on-shell singlet-octet
mixing cannot be described by one or two mixing angles
since the presence of radially excited modes requires a
much more complicated parametrization expressed in terms
of the transformation O (for details see [37]). Here it is
important to note that both diagrams shown in Fig. 1
contribute to the mixing. The right-hand side diagram
includes a two-point correlator of the background gluon
fields that is particularly crucial for the description of the η
and η0 masses. The diagram B in Fig. 3 is akin to the right-
hand side diagram in Fig. 1. The simplified scheme for
taking into account the finite size of domains in terms of the
background field correlators has been sufficient for esti-
mation of η and η0 masses, but it appears to be unable to
catch the contribution to the form factor potentially arising
from the diagram B. Being locally (color) gauge invariant,
the quark polarization two-point subdiagram is translation
invariant despite the presence of translation noninvariant
phases in the quark propagators. As a result of this, the
tensor structure (16), generated initially by the presence of
the (anti-)self-dual background gluon field, turns out to be
eliminated by the energy-momentum conservation in the
polarization loop separately from the whole diagram.
Thus we conclude that the effect of direct correlations

of the vacuum fields encoded in diagam B in Fig. 3 is
missed in our present calculation due to the oversimplified
approximation used for the quark propagators in the
presence of the domain structured background gluon field.
Namely, the propagator in the bulk of the domain with
finite size is approximated by the propagator in the infinite
space-time. This appears to be an excessive simplification:
the latter propagator is translation invariant up to an
appropriate gauge transformation, while the lack of trans-
lation invariance in the former one relates also to the finite
size and random space-time position of a given domain. In
principle this mismatch can be improved by the use of the
quark propagator represented in terms of quark eigenmodes
inside the finite domain filled by the Abelian (anti-)self-
dual homogeneous gluon field analytically obtained in
paper [44]. At least an estimation based on the few lowest
eigenmodes (analogous to the analysis of [26]) seems to be
a technically realistic task to be tackled in due course.
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FIG. 9. Diagrams for the weak decay constant of charged
pseudoscalar mesons.
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APPENDIX A: HADRONIZATION WITHIN THE
DOMAIN MODEL OF QCD VACUUM

Nonperturbative gluon fields are represented in the
model by the ensemble of domain-structured fields with
the field strength tensor [34–36]

Fa
μνðxÞ ¼

XN
k¼1

nðkÞaBðkÞ
μν θð1 − ðx − zkÞ2=R2Þ;

BðkÞ
μν B

ðkÞ
μρ ¼ B2δνρ; B ¼ 2ffiffiffi

3
p Λ2;

~BðkÞ
μν ¼ �BðkÞ

μν ; n̂ðkÞ ¼ t3 cos ξk þ t8 sin ξk;

ξk ∈
�
π

6
ð2lþ 1Þ; l ¼ 0;…; 5

�
;

where scale Λ and mean domain radius R are parameters of
the model related to the scalar gluon condensate and
topological susceptibility, respectively, Bμν is a constant
(anti-)self-dual tensor for the field strength in kth domain,
and θð1 − ðx − zkÞ2=R2Þ is a characteristic function of the
kth domain.
The measure of integration over the ensemble of back-

ground fields is defined as

Z
B
dσB… ¼

Y
i

1

24π2

Z
V

d4zi
V

Z
2π

0

dφi

Z
π

0

dθi sin θi

×
Z

2π

0

dξi
X3;4;5

l¼0;1;2

δ

�
ξi −

ð2lþ 1Þπ
6

�

×
Z

π

0

dωi

X
k¼0;1

δðωi − πkÞ…;

where angles φi, θi characterize direction of the chromo-
magnetic field, ωi is the angle between the chromomag-
netic and chromoelectric fields, and ξi describes the color
“orientation” of the background filed in the ith domain,
centered at the space-time point zi.
Recalling the definition of the n-point Green’s functions

for QCD in the presence of the background field B,

Ga1…an
μ1…μn ðx1;…; xnjBÞ ¼

1

gn
δn lnW½j�

δja1μ1ðx1Þ…δjanμnðxnÞ
				
j¼0

;

where W½j� is the generating functional, one may integrate
out ghost and gluon field fluctuations and arrive at the
representation for QCD functional integral in the back-
ground gauge

Z ¼ N
Z

dσB

Z
Ψ
DψDψ̄ exp

�Z
dxψ̄ði∂ þ gB −mÞψ

�
W½J�;

W½J� ¼ exp

�X
n

gn

n!

Z
d4x1…

Z
d4xnj

a1
μ1ðx1Þ…janμnðxnÞGa1…an

μ1…μn ðx1;…; xnjBÞ
�
;

where jaμðxÞ ¼ ψ̄ðxÞγμtaψðxÞ is the quark current. By
construction the gauge coupling constant g here appears
to be renormalized within some appropriate renormaliza-
tion scheme, and the n-point correlators are exact renor-
malized n-point gluon Green functions of pure gauge
theory in the presence of the background field B. Needless
to say, the exact form of the Green functions is not known,
and certain reliable approximations have to be introduced.
We truncate the exponent in W½j� up to the four-fermion
interaction term and approximate the two-point correlation
function by the gluon propagator in the presence of
homogeneous Abelian (anti-)self-dual field neglecting
radiative perturbative corrections. The randomness of the
domain ensemble is taken into account implicitly by means
of averaging the quark loops over all possible configura-
tions of the homogeneous background field at the final
stage of derivation of the effective meson action [34,35].
The approximated functional integral reads

Z ¼
Z
B
dB

Z
Ψ
DψDψ̄ exp

�Z
d4xψ̄ði∂þ gB−mÞψ þL

�
;

L¼ g2

2

Z
d4x

Z
d4yGab

μνðx;yjBÞjaμðxÞjbνðyÞ; ðA1Þ

where m is a diagonal quark mass matrix. By means of the
Fiertz transformation of color, Dirac and flavor matrices,
the four-quark interaction can be rewritten as

L¼ g2

2

X
c;J

CJ

Z
d4x

Z
d4yDðx− yÞJJcðx;yjBÞJJcðy;xjBÞ;

where numerical coefficients CJ are different for different
spin-parity J ¼ S, P, V, A. Here bilocal color neutral quark
currents

JJcðx; yjBÞ ¼ ψ̄ if
α ðxÞλcff0Γαα0

J

��
i
2
xμB̂μνyν

��
ii0

ψ i0f0
α0 ðyÞ

are singlets with respect to the local background gauge
transformations, B̂μν denotes background field strength in
the fundamental representation, and i, f, and α are color,
flavor, and space-time indices respectively. In the center
of quark mass coordinate system, bilocal currents take the
form
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JJcðx; yjBÞ → JJcðx; zjBÞ ¼ ψ̄ if
α ðxÞtcff0Γαα0

J

× ½exp fizμD
↔

μðxÞg�
ii0

ff0ψ
i0f0
α0 ðxÞ;

D
↔ff0

μ ðxÞ ¼ ξfD⃖μðxÞ − ξf0D⃗μðxÞ;
ξf ¼ mf

mf þmf0
; ξf0 ¼

mf

mf þmf0
;

and their interaction is described by the action

L ¼ g2

2

X
c;J

CJ

Z
d4x

Z
d4zDðzÞJ†Jcðx; zjBÞJJcðx; zjBÞ;

ðA2Þ
DðzÞ ¼ 1

4π2z2
exp

�
−
1

4
Λ2z2

�
; ðA3Þ

where xμ is the center of mass coordinates, and zμ
represents the relative coordinates of quark and antiquark
and Λ2 ¼ ffiffiffi

3
p

B=2. FunctionDðzÞ originates from the gluon
propagator in the presence of the homogeneous Abelian
(anti-)self-dual gluon field. It differs from the free massless
scalar propagator by the Gaussian exponent, which com-
pletely changes the IR properties of the propagator. In
momentum representation it takes the form

Gðp2Þ ¼ 1

p2
ð1 − e−p

2=Λ2Þ:
There are two equivalent ways to derive an effective

meson action based on the functional integral (A1) with the
interaction term L taken in the form (A2). The first one is a
bosonization of the functional integral in terms of bilocal
mesonlike fields. Another, more transparent in our opinion,
way is to decompose the bilocal currents over a complete
set of functions fnlμ1…μlðzÞ characterized by the radial
quantum number n and orbital momentum l and orthogonal

with the weight determined by the gluon propagator (A3) in
Eq. (A2),

JaJðx; zÞ ¼
X
nl

ðz2Þl=2fnlμ1…μlðzÞJaJlnμ1…μlðxÞ:

The choice of functions fnlðzÞ is unambiguously deter-
mined by the gluon propagator

fnlμ1…μl ¼ Lnlðz2ÞTðlÞ
μ1…μlðnzÞ; nz ¼ z=

ffiffiffiffiffi
z2

p
; ðA4Þ

where TðlÞ
μ1…μl are irreducible tensors of the four-dimensional

rotational group, and generalized Laguerre polynomials Lnl
obey the relationZ

∞

0

duρlðuÞLnlðuÞLn0lðuÞ ¼ δnn0 ;

ρlðuÞ ¼ ule−u: ðA5Þ
The weight ρlðuÞ originates from the gluon propagator

(A3). Nonlocal quark currents JaJlnμ1…μl with a complete set of
meson quantum numbers depend only on the center of mass
coordinate x [33,35],

JaJlnμ1…μlðxÞ ¼ q̄ðxÞVaJln
μ1…μl

�
D
↔ðxÞ
Λ

�
qðxÞ:

An explicit form of the vertex operator VaJln
μ1…μl is given

in (13). The four-fermion interaction takes the form

L ¼ g2

2

X
a;J;l;n

CJ

Z
d4xJ†aJlnðxÞJaJlnðxÞ:

Details of decomposition of bilocal quark currents and the
bosonization procedure can be found in [33,35]. By means
of bosonization, the truncated QCD functional integral
can be rewritten as the integral over composite colorless
mesonlike fields Φ given in (5).

APPENDIX B: TRANSITION FORM FACTOR

Polynomial functions Fiðs1; s2; s3; tÞ in Eq. (17) have the following form:

F1 ¼ −2ð2s41ð2ðs2 − 1Þðs2 þ 1Þt2v2ðs22ðs23 − 2Þ þ s2s3ðs23 − 1Þ þ s23ð2s23 − 1ÞÞ
þ tvðs42s3ðs23 − 4Þ − 2s32ðs43 − s23 þ 1Þ þ s22s3ðs23 þ 3Þ þ 2s2s23 − 2s33 þ s3Þ
− −s2s3ðs2 − s3Þðs2 þ s3Þðs2s3 þ 1ÞÞ þ s31ððs2 − 1Þðs2 þ 1Þtvðs22ð5s43 þ 3s23 − 4Þ
þ s2ð5s23 − 9Þs3 þ 4s43 − 4s23 − 2Þ þ 2ðs2 − 1Þðs2 þ 1Þt2v2ð5s22ðs23 − 1Þs3 þ s2ðs43 þ s23 − 2Þ þ 6s33 − 4s3Þ
þ 2ðs2ð−s32s3 þ 2s2ðs22 − 1Þs33 − ðs22 þ 1Þs23 þ s43 þ 1Þ þ s3ÞÞ þ s21ð2s42s23 − 2s22ðs43 þ 3s23 − 2Þ
þ 2ðs2 − 1Þðs2 þ 1Þt2v2ðs22ð3s43 − s23 þ 2Þ þ s2ðs3 − s33Þ − 2s43 þ 2s23 − 2Þ þ tvð4ðs32 þ s2Þ
þ s2ð3s22 þ 5Þs43 − s2ð7s22 þ 9Þs23 þ ð7s42 − 11s22 þ 4Þs33 þ ðs42 − 3s22 þ 2Þs3Þ − 4s2s3ðs23 − 1Þ þ 4s23 − 2Þ
þ 2s1ðs42ð−s33Þ − s32s

4
3 þ s32s

2
3 þ s32 − 2ðs2 − 1Þðs2 þ 1Þt2v2ðð2s22 þ 3Þs33 − 2ðs22 þ 1Þs3 þ s2s43 − s2Þ

− ðs2 − 1Þðs2 þ 1Þtvðs22ð3s43 − 1Þ þ s2ð3s23 − 5Þs3 þ s43 þ 2s23 − 4Þ þ 2s22s3 þ s2s23 − 2s2 þ s33 − 2s3Þ
þ 2tvðs42ðs3 − 2s33Þ þ 2s32ð−s43 þ s23 þ 1Þ þ 3s22s3 þ 2s2ðs23 − 2Þ þ 2s3ðs23 − 2ÞÞ
− 4ðs2 − 1Þðs2 þ 1Þt2v2ðs3ðs2ðs2ð2s23 − 1Þs3 þ s23 − 1Þ þ 2s3Þ − 2Þ þ 2ðs2 þ s3Þ2ðs2s3 − 1ÞÞ
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F2 ¼ −2ð2ðð2ðs23 − 3Þs23 − ð7s23 þ 4Þtvs3 þ 2ð2 − 5s23Þt2v2Þs42 þ ðs3ð4s23 þ 6ðs23 − 1Þtvs3
þ 6ðs23 − 1Þt2v2 − 5Þ − 2tvÞs32 þ ð4s43 þ 2s23 þ ð13s23 þ 7Þtvs3 þ 4ðs43 þ 2Þt2v2 þ 1Þs22
þ ðs33 − 14ðs23 − 1Þt2v2s3 þ 2ð−2s43 þ s23 þ 2ÞtvÞs2 − 3s3ðs3 þ tvÞð2s3tvþ 1ÞÞs41
þ ð2s3ð6s23 − 5Þs42 þ 2ð4s43 − 5s23 þ 2Þs32 þ ð8s33 − 4s3Þs22 þ 2ðs43 − s23 − 1Þs2 − 12s33

þ 2ð−17s3ðs23 − 1Þs42 þ 3ðs43 þ s23 − 2Þs32 þ s3ð11 − 5s23Þs22 þ ð−11s43 − 3s23 þ 14Þs2
þ 6s3ðs23 − 2ÞÞt2v2 þ 6s3 − ðs2 − 1Þðs2 þ 1Þð−12s43 þ s2ð27 − 31s23Þs3 þ s22ð5s43 − 13s23 þ 4Þ − 6ÞtvÞs31
þ ðð−6s43 þ 10s23 þ ð25s23 − 1Þtvs3 − 2ð7s43 − 29s23 þ 10Þt2v2 þ 2Þs42
− ðs23 − 1Þð4tvþ s3ð3tvð5s3 þ 2tvÞ þ 4ÞÞs32 − ðs3ð17tvþ s3ð2s23 þ 25tvs3 þ 6ðs23 þ 5Þt2v2 þ 6ÞÞ þ 4Þs22
þ ðs23 − 1Þð12tvþ s3ðtvð7s3 þ 6tvÞ − 8ÞÞs2 − 12ðs43 − 3s23 þ 1Þt2v2 − 6s23ðs23 − 2Þ þ 18s3tvÞs21
þ 2ð−5s33s42 þ 4s3s42 − 5s43s

3
2 þ 5s23s

3
2 − s32 − 2s33s

2
2 þ s23s2 þ 3s33 þ 2ð10s3ðs23 − 1Þs42 − 3ðs43 − 1Þs32

þ s3ðs23 − 4Þs22 þ 7ðs43 − 1Þs2 − 3s33 þ 6s3Þt2v2 − ðs2 − 1Þðs2 þ 1Þððs22 − 3Þs43 þ 9s2s33 þ 2ðs22 þ 6Þs23
− 7s2s3 − s22ÞtvÞs1 þ 2s2ðs3ðs2s3 − 1Þðs2 þ s3Þ2 þ 2ð2s2ðs22 þ 2Þs43 þ ð7 − 3s22Þs33 − s2ð5s22 þ 3Þs23
þ ð3s22 − 7Þs3 þ 2s2Þt2v2 þ ð4s43 − 6s23 þ s2ð2s23 − 1Þs3 þ s32ðs3 − 2s33Þ þ 2s22ð−s43 þ s23 þ 1ÞÞtvÞÞ

F3 ¼
4

v
ðs1ðs2 − s3Þ þ s2s3 − 1Þðs1s2s3 þ s1 þ s2 þ s3Þðtvðs1 þ s3Þ þ s1s3Þs2

F4 ¼ −
1

v
2s2ðs1ðs2 − s3Þ þ s2s3 − 1Þðtvðs1 þ s3Þ þ s1s3Þðs31s32s33 þ s31s

2
2s

2
3 − 2s31s2s

3
3 þ s31s2s3 − 2s31s

2
3 þ s31

þ s21s
3
2s

2
3 þ s21s

2
2s

3
3 þ 2tvðs1s2s3 þ s1 þ s2 þ s3Þðs21ðs2ðs3ðs2 − 2s3Þ þ 2Þ − s3Þ

þ s1ðs22 − 1Þðs23 − 1Þ − s2ðs3ðs2 − 2s3Þ þ 2Þ þ s3Þ þ 2ðs21 − 1Þðs23 − 1Þt2v2ðs2s3ðs1ðs22 − 3Þ − 3s2Þ
− 3s1s22 þ s1 þ s32 − 3s2 þ s3Þ − 2s21s2s

2
3 þ s21s2 − 2s21s

3
3 þ s21s3 − s1s32s3 − s1s22

þ s1s2s33 þ s1s23 − s32 − s22s3 þ s2s23 þ s33Þ

F5 ¼ −
1

v
2s2ðs1ðs2 − s3Þ þ s2s3 − 1Þðtvðs1 þ s3Þ þ s1s3Þð−s31s32s33 þ 2s31s

3
2s3 − s31s

2
2s

2
3 þ 2s31s

2
2 − s31s2s3

− s31 − s21s
3
2s

2
3 þ 2s21s

3
2 − s21s

2
2s

3
3 þ 4ðs21 − 1Þs2ðs23 − 1Þt2v2ðs1ðs22 − 2Þs3 − s1s2 þ s22 − s2s3 − 2Þ

þ 2tvðs1s2s3 þ s1 þ s2 þ s3Þðs21ðs2ðs3ðs2 − 2s3Þ þ 2Þ − s3Þ − s1ðs22 − 1Þðs23 − 1Þ
− s2ðs3ðs2 − 2s3Þ þ 2Þ þ s3Þ þ 2s21s

2
2s3 − s21s2 − s21s3 − s1s32s3 − s1s22 þ s1s2s33þs1s23 − s32 − s22s3 þ s2s23 þ s33Þ

F6ðs1; s2; s3; tÞ ¼ F5ðs3; s2; s1; tÞ

F7 ¼ −
1

2v2
s22ðtvðs1 þ s3Þ þ s1s3Þ2ð2s41ðs42s3ðs3ðtvð3s3 þ 2tvÞ þ 2Þ þ 2tvÞ þ s32s3ð1 − 2tvð3ðs23 − 1Þtv

þ s3ðs23 − 2ÞÞÞ þ s22ð−2s43 − ð5s23 þ 3Þs3tv − 4ðs43 − s23 þ 1Þt2v2 − 1Þ þ s2ð−s33 þ 6ðs23 − 1Þs3t2v2 − 2tvÞ
þ s3ðs3 þ tvÞð2s3tvþ 1ÞÞ þ s31ð2ðs2 − 1Þðs2 þ 1Þt2v2ð3s22s3ðs23 − 1Þ − s2ð5s43 þ s23 − 6Þ þ 2s3ðs23 − 2ÞÞ
þ ðs2 − 1Þðs2 þ 1Þtvðs22ð3s43 þ s23Þ þ s2ð9 − 5s23Þs3 − 4s43 − 2Þ þ 2ðs42s3 þ s32ð3s23 − 2Þ − 2s22s

3
3

− s2ðs43 þ s23 − 1Þ þ 2s33 − s3ÞÞ þ s21ðs42ð−ð3s23 þ 5Þs3tvþ 2ðs23 − 1Þs23 þ 2ðs43 − 7s23 þ 2Þt2v2 − 2Þ
þ s32s3ðs23 − 1Þðtvð9s3 þ 2tvÞ þ 4Þ þ s22ðð3s23 þ 11Þs3tvþ 2ðs23 − 1Þs23 þ 2ð5s43 − 3s23 þ 4Þt2v2 þ 4Þ
− s2ðs23 − 1Þtvðs23 þ 2s3tvþ 8Þ þ 2s23ðs23 − 2Þ þ 4ðs43 − 3s23 þ 1Þt2v2 − 6s3tvÞ
þ 2s1ðs42s33 − 2s42s3 þ s32s

4
3 − 3s32s

2
3 þ s32 þ ðs2 − 1Þðs2 þ 1Þtvðs22ðs43 − 2s23 − 1Þ þ s2ð3s23 − 5Þs3 − s43 þ 4s23Þ

− 2ðs2 − 1Þðs2 þ 1Þt2v2ð2s22ðs23 − 1Þs3 − 3s2ðs43 − 1Þ þ s33 − 2s3Þ þ 2s22s3 þ s2s23 − s33Þ
− 2s2tvðs2ðs22 − 1Þs3 þ 2s22 þ 2s43 − 4s23Þ þ 4s2t2v2ð3ðs22 − 1Þs33 þ s2ðs22 þ 3Þs23 − 3ðs22 − 1Þs3
− 2s2s43 − 2s2Þ − 2s2s3ðs2 þ s3Þ2ðs2s3 − 1ÞÞ:
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APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE FORM FACTOR

In essence, calculation of the asymptotic behavior of the form factor (17) at p2 ¼ −M2 is reduced to consideration of the
integral

IfnðM2; k21; k
2
2Þ ¼

Z
1

0

ds1

Z
1

0

ds2

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn exp
�
−
k21ϕ11 þ k22ϕ12

2vϕ
þM2ϕ1

4vϕ

�

×

��
1 − s1
1þ s1

��
1 − s2
1þ s2

��
1 − s3
1þ s3

��
m2

f=4v 1

ð1 − s21Þð1 − s22Þð1 − s23Þ

×
1

ϕ2

�
λ1

F1

ϕ2
þ λ2

�
F2

ϕ2
þm2

f
F3

ϕ
þM2

F4

ϕ3
þ k21

F5

ϕ3
þ k22

F6

ϕ3

�
þ λ3½ðM2 þ k21 þ k22Þ2 − 4k21k

2
2�
F7

ϕ4

�
ðC1Þ

in different regimes over momenta k21 and k22. Here and below dimensionless notations for momenta and masses like
M≡M=Λ are used. It is convenient to use the following representation for λi-functions (22)

λ1ðρÞ ¼
1

2

Z
1

−1
dκ exp κρ; λ2ðρÞ ¼

1

4

Z
1

−1
dκðκ2 − 1Þ exp κρ; λ3ðρÞ ¼

1

16

Z
1

−1
dκðκ2 − 1Þ2 exp κρ;

in the integral (C1) in order to represent it as

IfnðM2; k21; k
2
2Þ ¼

Z
1

−1
dκ

Z
1

0

ds1

Z
1

0

ds2

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn

× exp

�
−
k21ϕ11 þ k22ϕ12

2vϕ
þM2ϕ1

4vϕ
þ κ

ϕ2

2vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ ðk21 − k22Þ2 þ 2M2ðk21 þ k22Þ

q �
ðC2Þ

×

��
1 − s1
1þ s1

��
1 − s2
1þ s2

��
1 − s3
1þ s3

��
m2

f=4v 1

ð1 − s21Þð1 − s22Þð1 − s23Þ

×
1

ϕ2

�
F1

2ϕ2
þ 1

4
ðκ2 − 1Þ

�
F2

ϕ2
þm2

f
F3

ϕ
þM2

F4

ϕ3
þ k21

F5

ϕ3
þ k22

F6

ϕ3

�

þ 1

16
ðκ2 − 1Þ2½ðM2 þ k21 þ k22Þ2 − 4k21k

2
2�
F7

ϕ4

�
: ðC3Þ

Below two different kinematic regimes are considered.

1. Asymmetric kinematics: k1 =Q2;k22 = 0

In this case the integral reads

IfnðM2; Q2; 0Þ ¼
Z

1

−1
dκ

Z
1

0

ds1

Z
1

0

ds2

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn exp
�
−
Q2ϕ11

2vϕ
þM2ϕ1

4vϕ
þ κ

ϕ2

2vϕ
ðM2 þQ2Þ

�

×

��
1 − s1
1þ s1

��
1 − s2
1þ s2

��
1 − s3
1þ s3

��
m2

f=4v 1

ð1 − s21Þð1 − s22Þð1 − s23Þ

×
1

ϕ2

�
1

2

F1

ϕ2
þ 1

4
ðκ2 − 1Þ

�
F2

ϕ2
þm2

f
F3

ϕ
þM2

F4

ϕ3
þQ2

F5

ϕ3

�
þ 1

16
ðκ2 − 1Þ2ðM2 þQ2Þ2 F7

ϕ4

�
: ðC4Þ

For studying the largeQ2 limit, it is convenient to separate dependence on s2 and define polynomials χi which depend on
other integration variables,

χ1 ¼ s1 þ tvþ s1s3tv; χ2 ¼ s1s3 þ ðs1 þ s3Þtv;
χ3 ¼ 2s1s3ð1þ s2κÞ þ tvðs1 − s2 þ s3 − s1s2s3 þ 2s2κðs1 þ s3ÞÞ;

so that the expression in the exponent takes the form:
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−
Q2ϕ11

2vϕ
þM2ϕ1

4vϕ
þ κ

ϕ2

2vϕ
ðM2 þQ2Þ

¼ −
s2ðχ1 − κχ2Þ

2vϕ
Q2 þ χ3

4vϕ
M2:

One can see from the argument of the exponent in (C4) that
the asymptotic behavior of the integral at large Q2 is
determined by the vicinity of s2 ¼ 0, which corresponds to
the ultraviolet (short distance) regime in the translation
invariant part quark propagator (15) between two photons;
see Fig. 3. The leading short distance form of Hf is not
modified by the background field, it simply corresponds to

the standard free Euclidean quark propagator. However the
translation noninvariant phase in full propagator (14) may
mix up the short and large distance regimes in diagram 3 as
a whole, thus leading to a modification of the asymptotic
behavior of the form factor at large momenta.
Keeping only the lowest-order terms in the expansion of

the integrand at s2 ¼ 0 one arrives at the asymptotics of the
integral,

Ifnð−M2; Q2; 0Þ ∼ Ifn
γ�γ=Q

2;

with Q-independent coefficient

Ifn
γ�γ ¼

Z
1

0

ds1

Z
1

0

ds3

Z
1

−1
dκ

Z
1

0

dttn
∂n

∂tn
��

1 − s1
1þ s1

��
1 − s3
1þ s3

��m2
f

4v 1

ð1 − s21Þð1 − s23Þ
exp

�
M2

χ3
4vϕ

�

×
2v

ðχ1 − κχ2Þϕ
�
1

2

F1

ϕ2
þ 1

4
ðκ2 − 1Þ

�
F2

ϕ2
þ 2v
ðχ1 − κχ2Þϕ2

∂F5

∂s2
�
þ 1

16
ðκ2 − 1Þ2 4v2

ðχ1 − κχ2Þ2ϕ2

∂2F7

∂s22
�				

s2¼0

: ðC5Þ

The variable κ can be integrated out analytically:Z
1

−1
dκ

1

χ1 − κχ2
¼ 1

χ2
ln
χ1 þ χ2
χ1 − χ2

;

Z
1

−1
dκ

κ2 − 1

χ1 − κχ2
¼ −2

χ1
χ22

þ χ21
χ32

ln
χ1 þ χ2
χ1 − χ2

−
1

χ2
ln
χ1 þ χ2
χ1 − χ2

;

Z
1

−1
dκ

κ2 − 1

ðχ1 − κχ2Þ2
¼ 4

χ22
− 2

χ1
χ32

ln
χ1 þ χ2
χ1 − χ2

;

Z
1

−1
dκ

ðκ2 − 1Þ2
ðχ1 − κχ2Þ3

¼ −12
χ1
χ42

þ 6
χ21
χ52

ln
χ1 þ χ2
χ1 − χ2

−
2

χ32
ln
χ1 þ χ2
χ1 − χ2

;

χ1 þ χ2
χ1 − χ2

¼ 1þ s3
1 − s3

s1 þ tvþ s1tv
s1 þ tv − s1tv

:

After substitution of this result to Eq. (C3), the rest of the integrals can be calculated numerically. The result contributes to
coefficient ϰγ�γ ¼ 1.23 in Eq. (2).
If we now neglect the main effect of the background field by eliminating the term κχ2 in Eq. (C5), then numerical

calculation of the asymptotics gives the value ϰγ�γ ¼ 1.014 which agrees with the factorization limit very well.

2. Symmetric kinematics: k22 = k
2
1 =Q

2

The integral takes the form

IfnðM2; Q2; Q2Þ ¼
Z

1

−1
dκ

Z
1

0

ds1

Z
1

0

ds2

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn
× exp

�
−
ϕ11 þ ϕ12

2vϕ
Q2 þ ϕ1

4vϕ
M2 þ κ

ϕ2

2vϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 þ 4M2Q2

p �

×
��

1 − s1
1þ s1

��
1 − s2
1þ s2

��
1 − s3
1þ s3

��
m2

f=4v 1

ð1 − s21Þð1 − s22Þð1 − s23Þ

×
1

ϕ2

�
1

2

F1

ϕ2
þ 1

4
ðκ2 − 1Þ

�
F2

ϕ2
þm2

f
F3

ϕ
þM2

F4

ϕ3
þQ2

F5 þ F6

ϕ3

�
þ 1

16
ðκ2 − 1Þ2ðM4 þ 4M2Q2ÞF7

ϕ4

�
:

ðC6Þ
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ForQ2 ≫ M2 the second term in the exponent in Eq. (C6) is subleading with respect to ϕ1 [see (C7)] as it is linear in jQj. In
other words, term (19) does not contribute to the asymptotic behavior of the form factor in symmetric kinematics, that is the
crucial difference between asymmetric and symmetric kinematic regimes.

Ifn
γ�γ� ¼ 2v

Z
1

0

ds1

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn
��

1 − s1
1þ s1

��
1 − s3
1þ s3

��m2
f

4v 1

ð1 − s21Þð1 − s23Þ

×
1

ϕ4

�
F1 −

1

3
F2

�
exp

�
M2

ϕ1

4vϕ

�				
s2¼0

:

Taking into account the explicit form of the polynomials F1, F2, ϕ, and ϕ1 at s2 ¼ 0 one arrives at

Ifn
γ�γ� ¼ 8v

Z
1

0

ds1

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn
��

1 − s1
1þ s1

��
1 − s3
1þ s3

��m2
f

4v 1

ð1 − s21Þð1 − s23Þ

×
ð1þ s1s3Þ½ð1 − s1s3Þðs1 þ s3Þ þ 2vtð1 − s21Þð1 − s23Þ�

ðs1 þ s3 þ 2vtð1þ s1s3ÞÞ3
× exp

�
M2

2s1s3 þ vtðs1 þ s3Þ
4vðs1 þ s3 þ 2vtð1þ s1s3ÞÞ

�
: ðC7Þ

Substituting this expression into (17), one obtains for the form factor of the ath component of the flavor pseudoscalar
multiplet with radial excitation number n

Q2FPanγ
�γ�ðQ2Þ ∼ Λ

haP0n
16π2

X
n0;f;v

1

v
Oab

nn0M
b
ffq

2
fmfI

fn0
γ�γ� : ðC8Þ

In particular, for the π-meson which corresponds to a ¼ 3 and n ¼ 0 one arrives at

Q2Fπγ�γ� ðQ2Þ ∼
ffiffiffi
2

p

3
fπ ðC9Þ

with the constant

fπ ¼ m
hπ
4π2

X
n;v

O33
0n

Z
1

0

ds1

Z
1

0

ds3

Z
1

0

dttn
∂n

∂tn
��

1 − s1
1þ s1

��
1 − s3
1þ s3

�� m2

4vΛ2 1

ð1 − s21Þð1 − s23Þ

×
ð1þ s1s3Þ½ð1 − s1s3Þðs1 þ s3Þ þ 2vtð1 − s21Þð1 − s23Þ�

ðs1 þ s3 þ 2vtð1þ s1s3ÞÞ3
× exp

�
M2

4vΛ2

2s1s3 þ vtðs1 þ s3Þ
ðs1 þ s3 þ 2vtð1þ s1s3ÞÞ

�
; ðC10Þ

where we have restored dimension of the light quark and π-meson masses, m and M, respectively. Constant fπ defined by
Eq. (C10) exactly coincides with the contribution of the diagram (a) in Fig. 9 to the charged pion weak decay constant, as it
can be seen from Eq. (27) in paper [37]. The contribution of the second diagram (b) typical for all nonlocal approaches to the
quark-meson vertices does not appear in the large Q2 limit of the pion transition form factor.

APPENDIX D: DIAGRAMS INCLUDING NONLOCAL MESON-PHOTON VERTICES

This appendix is devoted to the calculation of diagrams C and D shown in Fig. 3. The nonlocal vertex describing meson-
photon interaction (see [37] for details) is defined as

VaJln
AμðkÞðxÞ ¼

Z
1

0

dτ
1

τ

∂
∂kμ fefV

aJlnðD
↔
ðxÞ þ ikτξÞ − ef0VaJlnðD

↔
ðxÞ − ikτξ0Þg; ðD1Þ

where k is the momentum of the photon, and VaJlnðD
↔
ðxÞÞ is given by Eq. (13). In particular, the vertex for neutral

pseudoscalar unflavored mesons and pseudoscalar quarkonia is

VaP0n
AμðkÞðxÞ ¼ iγ5C0n

X
f

Ma
ffef

Z
1

0

dτ
τ

� ∂
∂kμ Fn0

��
D
↔
ðxÞ þ i

2
kτ
�

2
�
þ ðk → −kÞ

�
;

where dimensionless notation is used. The contribution of diagram C in Fig. 3 in momentum representation is given by

INFLUENCE OF CONFINING GLUON CONFIGURATIONS … PHYSICAL REVIEW D 95, 074038 (2017)

074038-17



Can
μνðp; k1; k2Þ ¼ haP0n

X
n0;f

Oab
nn0C0n0M

a
ffe

2
f

Z
dxeiðp−k1Þx

Z
dye−ik2y

×
Z

dσB

�Z
1

0

dτ
1

τ

∂
∂k2μ Triγ5Fn0

��
D
↔
ðxÞ þ i

2
k2τ

�
2
�
Sfðx; yÞγμSfðy; xÞ þ ðk2 → −k2Þ

�

¼ �ð2πÞ4δð4Þðp − k1 − k2ÞhaP0n
X
n0;f

Oab
nn0C0n0M

a
ffe

2
f

Z
dσB

�Z
1

0

ds1

Z
1

0

ds2

Z
1

0

dτ
Z

1

0

dttn
0 ∂n0

∂tn0

×

�
1 − s1
1þ s1

�mf
4v
�
1 − s2
1þ s2

�mf
4v

exp fifρηk1ρk2ηϕ1 þ ϕ2k21 þ ϕ3k1k2 þ ϕ4k22gðF1δμν þ F2k1μk1ν þ F3k1μk2ν

þ F4k1νk2μ þ F5k2μk2ν þ F6fαμk1αk1ν þ F7fαμk1αk2ν þ F8fανk1αk1μ þ F9fανk1αk2μ þ F10fανk2αk1μ

þ F11fανk2αk2μ þ F12fαμfβνk1αk1β þ F13fαμfβνk1αk2β þ F14fμνÞ þ ðk2 → −k2Þ
�
: ðD2Þ

Here � stays for “þ” in the case of the self-dual field and “−” otherwise, and functions ϕi and Fi are rational functions of
integration variables s1, s2, t, τ. Integration over the background field is given by formulas

hexpðifμνJμνÞi ¼
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � Jμν ~JμνÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðJμνJμν � Jμν ~JμνÞ

q ;

hfαβ expðifμνJμνÞi ¼
1

2i
∂

∂Jαβ hexpðifμνJμνÞi; hfρηfαβ expðifμνJμνÞi ¼
1

ð2iÞ2
∂

∂Jρη
∂

∂Jαβ hexpðifμνJμνÞi;
and averaging over self-dual and anti-self-dual configurations. Here Jμν is an antisymmetric tensor. For (D2) the tensor is

Jμν ¼
1

2
ðk1μk2ν − k1νk2μÞϕ1:

The result of integration of Can
μν over dσB is exactly zero.

To consider diagram D in Fig. 3 one needs the vertex for neutral pseudoscalar unflavored mesons and pseudoscalar
quarkonia with two photons given by

VaP0n
AμðkÞAνðqÞðxÞ ¼ iγ5C0n

X
f

Ma
ffef

Z
1

0

dτ1
τ1

Z
1

0

dτ2
τ2

� ∂
∂kμ

∂
∂qν Fn0

��
D
↔
ðxÞ þ i

2
kτ1 þ

i
2
qτ2

�
2
�

þ ðk → −kÞ þ ðq → −qÞ þ ðk → −k; q → −qÞ
�
:

The contribution of diagram D in momentum representation is given by

Dan
μνðp; k1; k2Þ ¼ haP0n

X
n0;f

Oab
nn0C0n0M

a
ffe

2
f

Z
dxeiðp−k1−k2Þx

Z
1

0

dτ1
τ1

Z
1

0

dτ2
τ2

Z
dσB

×

� ∂
∂k1μ

∂
∂k2ν Triγ5Fn0

��
D
↔
ðxÞ þ i

2
k1τ1 þ

i
2
k2τ2

�
2
�
Sfðx; xÞ

þ ðk1 → −k1Þ þ ðk2 → −k2Þ þ ðk1 → −k1; k2 → −k2Þ
�

¼ �ð2πÞ4δð4Þðp − k1 − k2ÞhaP0n
X
n0;f

Oab
nn0C0n0M

a
ffe

2
f

Z
1

0

dτ1

Z
1

0

dτ2

Z
dσB

�Z
1

0

ds
Z

1

0

dttn
0 ∂n0

∂tn0

×

�
1 − s
1þ s

�mf
4v

F15

� ∂
∂k1μ

∂
∂k2ν expfϕ5k21 þ ϕ6k1k2 þ ϕ7k22g þ ðk1 → −k1Þ

þ ðk2 → −k2Þ þ ðk1 → −k1; k2 → −k2ÞÞ
�
:

Here ϕi; Fi are rational functions in s; t; τ1; τ2. Integration over dσB yields zero.
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