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We extend a known multiquark three-flavor Lagrangian of the Nambu-Jona-Lasinio type, which includes a
set of effective interactions proportional to the current quark masses, to include the multiquark interactions of
vector and axial-vector types. It is shown that the mass spectrum of the four low-lying meson nonets are in
agreement with current phenomenological expectations. The role of the new interactions is analyzed in detail.
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I. INTRODUCTION

Since the formulation of the Nambu-Jona-Lasinio (NJL)
model, the study of the nonperturbative QCD vacuum and
low-energy phenomena on the basis of chiral symmetry and
its dynamical breaking modeled through effective multi-
fermion interactions has seen considerable development.
The NJL model was originally formulated in terms of a
single effective four-fermion vertex of nucleon fields [1,2].
The rise of the quark model and, later, of QCD, has led to
its reinterpretation in terms of colored quark fields and to its
extension to three flavors, which in turn led to the inclusion
of the six-quark UAð1Þ breaking ’t Hooft determinant term
[3–6]. Chiral eight-quark interactions have been included in
later studies [7–9], completing the set of effective vertices
in the chiral Lagrangian which are relevant to the dynami-
cal breaking of chiral symmetry in four dimensions [10]. It
has been argued in [9,11], using arguments pertaining toNc
counting (including, in particular, effective potential sta-
bility conditions), that the six- and eight-quark vertices
constitute next-to-leading order terms in a hierarchy of
multiquark interactions, as opposed to the four-quark term
which is the leading order contribution.
Chiral symmetry is only an approximate symmetry of

strong interactions, being explicitly broken in QCD due to
finite current quark masses. The explicit chiral-symmetry
breaking is usually included in the NJL-type models through
a canonical mass term of theDirac fermion field. It is known,
however, that themass of the s quark is too large for SUð3Þ ×
SUð3Þ symmetry to be very reliable at lowest order in
chiral-symmetry breaking. Thus, one should consider the
next-to-leading order (in quark masses) contributions.
Fortunately, the 1=Nc hierarchy of chiral symmetric multi-
quark effective vertices implies that the hierarchy of explicit

symmetry-breaking terms may also exist [12,13] (the QCD
origin of the set of explicit symmetry breaking multiquark
interactions has been traced back recently in [14]). The
higher-order effects contribute to the effective quark masses
and lead to the chiral symmetry-breakingmeson interactions.
This extension has been shown to improve the accuracy of
estimates within the NJL type effective approach in describ-
ing the scalar and pseudoscalar meson spectra, as well as in
yielding reasonable results for some strong and radiative
meson decays [12,13]. This extended version of the model
has been also employed in the thermodynamic study of the
chiral transition and of quark matter in [15]. It has been
further developed in order to account for isospin breaking
effects in [16].
Any description of strong interactions would be incom-

plete without an extension of the above mentioned ideas to
spin-1 states, most notably vector and axial-vector mesons.
This generalization, as it will be shown in the text, covers
two aspects of the effectivemultiquark interactions. First, we
include all possible chiral-symmetricmultiquark interactions
of spin-0 and spin-1 types up to and including the eight-quark
local couplings. As a result, the Lagrangian contains not only
conventional scalar- and vector-type four-quark interactions
but includes also their mixture: the eight-quark interactions
made from spin-0 and spin-1 chiral symmetric combinations.
Second, we classify and include all explicit symmetry-
breaking multiquark interactions in the approximation con-
sidered. Such a description may be regarded as an effective
Lagrangian approach at the level of multiquark vertices.
Despite the generality of this approach, the model has a large
number of coupling constants which must be fixed from
phenomenology. While this fact may be seen as a drawback
of the approach, it should be noted that these parameters
are less than arbitrary, obeying strict symmetry constraints
which bind them together invery specificways such that their
sheer number is not an a priori guarantee that the relevant
observables may be accurately fitted. At zero temperature
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and density, themodel has a limited predictive power due to a
degeneracy between certain parameter sets. Nevertheless,
this degeneracy is lifted as we introduce finite temperature
and density, leading to its exceptional relevance in the study
of thermodynamic properties of strongly interacting quark
matter at finite density, temperature, or in a strong magnetic
background, supplying us with a more detailed picture of
quark dynamics.
Let us give just a few motivations. It has been shown

recently [17] that the presence of vector modes has an
important impact on the equation of state, making it stiffer.
Indeed, in [15], the model’s equation of state with only spin-0
modes has been shown to be too soft for describing recently
observed compact stellar objects, whereas in [18,19] the
presence of effective interactions involving vector modes has
been shown to be instrumental in this description. In these
works, the strengths of the vector related interactions are
kept as free parameters. This provides a motivation for the
consistent inclusion of spin-1 states. Another interesting
prospect of the inclusion of spin-1 states is motivated by
the phenomenologically successful ideas of vector-meson
dominance (VMD) and universal coupling of mesons to
conserved currents [20] (it is well-known that the NJL model
supports both ideas [21]). We have a unique opportunity to
study the role of the full set of effectivemultiquark terms in the
description of strong and radiative decays of vector mesons
both in the unsymmetric Nambu-Goldstone phase and in the
symmericWigner-Weyl phase, including the important details
of the explicit symmetry-breaking phenomenon. This com-
parison may supply us with useful information about the
possible signals of chiral symmetry restoration in hot and
dense matter (where the role of eight-quark interactions is
more profound [15,22–26]), giving us insights into the
structure of the QCD phase diagram. There are also indica-
tions that the location of the critical endpoint is affected by
the special role of the vector-channel interaction in the
medium [17,27].
There are several different approaches aimed at including

spin-1 mesons in the effective chiral Lagrangian [28–35].
These contain the “nonlinear realization” [28–30], “massive
Yang-Mills” [31–33], “hidden-gauge” [33,34], and “antisym-
metric tensor-field” [35] formalisms. Despite the rather
different forms of their Lagrangians, all of these approaches
are in principal equivalent [36–38]. Each corresponds to a
different choice of spin-1 fields and their transformations.
This is illustrated ratherwell inNJL-typemodels, where there
is considerable freedom in the choice of auxiliary fields in the
vector and axial-vector channels [39–41]. In the present work
thephysical spin-1 fields belong to the linear representation of
the chiral group. This scheme leads to the most economical
structure of the effective Lagrangian. A further simplification
is relatedwith thewaywe remove theπa1mixing term.Wedo
this by a linearized shift in the definition of the axial-vector
field. This transformation does not lead to chiral symmetry
violations [42], although it changes the chiral transformation
properties of the axial-vector and vector fields in the broken

vacuum. Such diagonalization generates a minimum number
of vertices in the effective Lagrangian.
Another kind of approach which treats the low-lying axial

vector nonet as dynamically generated meson-meson reso-
nances is also employed in chiral effectivemodels. Examples
may be found in [43] and [44–46], with the latter works
interpreting scalar mesons as being also dynamically gen-
erated resonances. These approaches are in contrast with
otherworks such as [47,48], where the four spin-0 and spin-1
nonets are included in the large Nc ground state of QCD.
Combined information from lattice data, dispersion relations
and sum rules is being used [49,50] to address the question of
whether the axial vector a1ð1260Þ meson achieves degen-
eracy with the ρð780Þ meson in the context of chiral
symmetry restoration in relativistic heavy ion collisions.
This might help to clarify the dispute regarding the nature of
opposite parity states as being chiral partners or not.
The main goal of this paper is to generalize the result of

previous works [12,13,15] and include the spin-1 degrees
of freedom in the effective meson Lagrangian together with
corresponding important accompanying effects due to
explicit chiral symmetry breaking. To fix the parameters
of the model we calculate the masses of spin-0 and spin-1
low-lying meson states. The applications of the obtained
model will be considered elsewhere.
The present paper is organized as follows. In Sec. II we

briefly present the construction of the effective multiquark
vertices of the model, which had already been thoroughly
discussed in [12,13] for the spin-0 case. We then proceed to
bosonize the effective Lagrangian in Sec. III using a func-
tional integral approach by introducing the physical boson
fields aswell as a set of auxiliary fields corresponding toquark
bilinear structures. The auxiliary part of the functional
integration is carried out in a stationary phase approximation
(SPA) in subsection III A, and the Gaussian quark integration
is performed using a heat kernel technique in subsection III B.
After the bosonization procedure, we focus on the quadratic
part of the bosonizedLagrangian in Sec. IV,wherewe address
themixing between spin 0 and spin 1 boson fields and explain
the necessary steps to get themeson kinetic andmass terms in
standard form. Also in Sec. IV, the weak decay constants of
the pseudoscalar mesons are computed from the quadratic
part of the bosonizedLagrangian using the PCAChypothesis.
Finally, in Sec. V we discuss the fitting of the model’s
parameters, with a particular focus on the possibility of
reproducing the whole low-lying spin-0 and spin-1 meson
spectra.

II. EFFECTIVE MULTIQUARK INTERACTIONS

Here we provide a brief review of the assumptions and
procedure behind the construction of the effective meson
Lagrangian. We refer to [12,13] for a detailed description.
Then, we extend these ideas to the case with vector and
axial-vector mesons.
The dynamical breaking of chiral symmetry in the light

quark sector (u, d and s flavors) is proven to be a crucial
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mechanism for understanding the nonperturbative regime
of QCD. An effective description of such regime à la
Wilson requires a characteristic cutoff scale Λ to be of the
order of the spontaneous chiral symmetry breaking scale
ΛχSB ∼ 1 GeV, and presents itself as a natural expansion
parameter for a chiral Lagrangian based on effective multi-
quark vertices. The leading order effective Lagrangian
includes local four-fermion couplings normalized to the
Λ cutoff scale. The higher-dimension multiquark operators
are responsible for next to leading order corrections in the
description of the low-energy physics and correspondingly
normalized to higher powers of Λ.
Furthermore, the explicit breaking of chiral symmetry

due to finite current quark masses is extraneous to the
strong interaction itself and may be realized by allowing the
quarks to interact with an external source χ; this approach
facilitates the inclusion of the most general set of explicit
symmetry breaking terms which are relevant at the order in
Λ and Nc to which chirally symmetric terms are included.
Following the standard procedure, we define the quark

bilinears (currents)

sa ¼ q̄λaq; pa ¼ q̄iγ5λaq;

vμa ¼ q̄γμλaq; aμa ¼ q̄γμγ5λaq; ð1Þ
where q is the quark field; γμ and γ5 are Dirac matrices; the
index a takes on the values 0; 1;…; 8; λa are standard Uð3Þ
matrices, where λ0 ¼

ffiffi
2
3

q
× 1 and the rest are the conven-

tional SUð3Þ Gell-Mann matrices, which obey the trace
orthonormality condition trðλaλbÞ ¼ 2δab.
Using Eq. (1) and completeness relationsP
8
a¼0ðλaÞijðλaÞmn ¼ 2δinδjm, one may obtain the flavor

components of the quark bilinears

Σij ¼
1

2

X8
a¼0

ðsa þ ipaÞðλaÞij ¼ 2q̄RjqLi; ð2Þ

Σ†
ij ¼

1

2

X8
a¼0

ðsa − ipaÞðλaÞij ¼ 2q̄LjqRi; ð3Þ

Rμ
ij ¼

1

2

X8
a¼0

ðvμa þ aμaÞðλaÞij ¼ 2q̄RjγμqRi; ð4Þ

Lμ
ij ¼

1

2

X8
a¼0

ðvμa − aμaÞðλaÞij ¼ 2q̄LjγμqLi: ð5Þ

Here qR ¼ PRq, qL ¼ PLq, q̄R ¼ q̄PL, q̄L ¼ q̄PR, where
PR;L ¼ 1

2
ð1� γ5Þ are the right and left chiral projection

operators. The action of theUð3ÞR ×Uð3ÞL group on quark
fields is described by the unitary matrices VR and VL:
q0ðxÞ ¼ ðVRPR þ VLPLÞqðxÞ ¼ VRqR þ VLqL. As a
result, we find

Σ0 ¼ VLΣV
†
R; Σ0† ¼ VRΣ†V†

L;

R0μ ¼ VRRμV†
R; L0μ ¼ VLLμV†

L: ð6Þ
The terms of the effective multiquark Lagrangian are built

from the quark bilinears Σ, Σ†, Rμ, Lμ, the scale Λ, and the
external source χ (the field χ is assumed to transform asΣ and
finally will be used to introduce explicit symmetry breaking
effects), in a way which respects hermiticity, Lorentz and
chiral invariance, aswell as discrete symmetries such as parity
and charge conjugation. Dimensional analysis together with
the restriction to terms which contribute to the effective
potential at Λ → ∞ are employed in the selection of the
effective terms which are considered relevant. These include
the well-known four-, six- and eight-quark terms

Lint ¼
Ḡ
Λ2

trðΣ†ΣÞ þ κ̄

Λ5
ðdetΣþ detΣ†Þ

þ ḡ1
Λ8

ðtrΣ†ΣÞ2 þ ḡ2
Λ8

trðΣ†ΣΣ†ΣÞ; ð7Þ

among which the UAð1Þ breaking ’t Hooft determinant
(proportional to κ̄) is included. Additionally, the 11 explicit
symmetry breaking spin-0 terms are considered in [12,13]

L0 ¼ −trðΣ†χ þ χ†ΣÞ;
L1 ¼ −

κ̄1
Λ
ϵijkϵmnlΣimχjnχkl þ H:c:;

L2 ¼
κ̄2
Λ3

ϵijkϵmnlΣimΣjnχkl þ H:c:;

L3 ¼
ḡ3
Λ6

trðΣ†ΣΣ†χÞ þ H:c:;

L4 ¼
ḡ4
Λ6

trðΣ†ΣÞtrðΣ†χÞ þ H:c:;

L5 ¼
ḡ5
Λ4

trðΣ†χΣ†χÞ þ H:c:;

L6 ¼
ḡ6
Λ4

trðΣ†Σχ†χÞ þ H:c:;

L7 ¼
ḡ7
Λ4

ðtrΣ†χ þ H:c:Þ2;

L8 ¼
ḡ8
Λ4

ðtrΣ†χ − H:c:Þ2;

L9 ¼
ḡ9
Λ2

trðΣ†χχ†χÞ þ H:c:;

L10 ¼
ḡ10
Λ2

trðΣ†χÞtrðχ†χÞ þ H:c: ð8Þ

In these expressions, the barred G, g’s and κ’s are
dimensionless effective couplings; the traces and determi-
nants refer to flavor space only, and ϵijk is the Levi-Civita
symbol in flavor space. Both Lint and the various Li terms
have already been discussed in [12,13], where it has been
argued that they form a (spin-0) complete set in an expansion
in Nc, with the term proportional to Ḡ and L0 being the
leading order contributions (OðN1

cÞ) and the other terms
being the higher order in 1=Nc expansion. This classification
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of multiquark effective terms within an Nc expansion has
been shown to be consistent with the expansion in 1=Λ, i.e.
the full Lagrangian thus considered consists of all the terms
which yield a contribution to the effective potential up to the
orderOðΛ0Þ. The Nc counting assignments for the effective
couplings which follow thereof have been pointed out as
G; κ1; g9; g10 ∼ N−1

c , κ2;g5;g6;g7;g8∼N−2
c , κ; g3; g4 ∼ N−3

c ,
and g1; g2 ∼ N−4

c , with Λ ∼ N0
c. Furthermore, it has been

pointed out that the terms proportional to κ; κ1; κ2;
g1; g4; g7; g8; g10 trace Okubo-Zweig-Iizuka (OZI) rule vio-
lating affects, while those proportional to g2, g3, g5, g6, g9
express an admixture of four-quark components q̄qq̄q to the
q̄q one. As a final remark, it has been noted that the terms
proportional to κ1, g9, g10, which are bilinear in quark fields,
may be related to the known Kaplan-Manohar ambiguity
[51] in the definition of current quark masses, so that these
couplings may be set to 0 without loss of generality.
In this work, we do not consider multiquark effective

terms with derivatives. In a local multiquark Lagrangian,
derivative interactions contribute only (through bosoniza-
tion) to radial excitations of the meson fields [52,53]. For
modeling the low-lying states, these contributions are then
dispensable. Derivative terms would further allow for
nonhomogeneous quark condensates, a feature which is
also beyond the scope of the present work.
To extend the above ideas to spin-1 states we follow here

the same logic. As a result, we were able to identify 13 new
terms which include Rμ and Lμ quark bilinears:

L0
1 ¼

w̄1

Λ2
trðRμRμ þ LμLμÞ;

L0
2 ¼

w̄2

Λ8
½trðRμRμ þ LμLμÞ�2;

L0
3 ¼

w̄3

Λ8
½trðRμRμ − LμLμÞ�2;

L0
4 ¼

w̄4

Λ8
trðRμRνRμRν þ LμLνLμLνÞ;

L0
5 ¼

w̄5

Λ8
trðRμRμRνRν þ LμLμLνLνÞ;

L0
6 ¼

w̄6

Λ8
trðRμRμ þ LμLμÞtrðΣ†ΣÞ;

L0
7 ¼

w̄7

Λ8
trðΣ†LμΣRμÞ;

L0
8 ¼

w̄8

Λ8
trðΣ†ΣRμRμ þ ΣΣ†LμLμÞ;

L0
9 ¼

w̄9

Λ6
trðRμRμ þ LμLμÞtrðΣ†χ þ Σχ†Þ;

L0
10 ¼

w̄10

Λ6
trðχ†LμΣRμ þ Σ†LμχRμÞ;

L0
11 ¼

w̄11

Λ6
tr½ðΣ†χ þ χ†ΣÞRμRμ þ ðΣχ† þ χΣ†ÞLμLμ�;

L0
12 ¼

w̄12

Λ4
trðχ†LμχRμÞ;

L0
13 ¼

w̄13

Λ4
trðχ†χRμRμ þ χχ†LμLμÞ: ð9Þ

Also here, the w̄’s are dimensionless effective couplings.L0
1

is the only four-quark term and it is the spin-1 analogue of
the term proportional to GV in the usual NJL-type model.
Terms L0

2 to L0
5 are purely spin-1 eight-quark terms, while

L0
6 to L0

8 represent mixed eight-quark terms involving both
spin-0 and spin-1 components. Finally, the five terms L0

9 to
L0
13 complete the set of explicit symmetry breaking terms

which are relevant at next-to-leading order. The terms
proportional to w2, w3, w6, w9 express OZI rule violating
effects, while those proportional to w4; w5; w7; w8; w10;
w11; w12; w13 are related with an admixture of four-quark
q̄qq̄q components to the q̄q one.

III. FUNCTIONAL BOSONIZATION

In order to have an effective model in terms of hadronic
degrees of freedom, we proceed to bosonize the multiquark
Lagrangian. The starting point is the functional integral

Z ¼
Z

DqDq̄ei
R

d4xLðxÞ; ð10Þ

where the Lagrangian density LðxÞ is given by

L ¼ iq̄γμ∂μqþ Lint þ
X10
i¼0

Li þ
X15
i¼1

L0
i: ð11Þ

Next, we use the functional representation of unity [6]

1¼
Z

DsaDpaDvμaDaμaδðsa− q̄λaqÞδðpa− iq̄λaγ5qÞ

×δðvμa− q̄λaγμqÞδðaμa− q̄λaγμγ5qÞ

¼
Z

DσaDϕaDVaμDAaμ

Z
DsaDpaDvμaDaμa

×ei
R
d4x½σaðsa−q̄λaqÞþϕaðpa−iq̄λaγ5qÞþVaμðvμa−q̄λaγμqÞþAaμðaμa−q̄λaγμγ5qÞ�

ð12Þ

as a tool to introduce into (10) the auxiliary bosonic fields
σ ¼ σaλa, ϕ ¼ ϕaλa, Vμ ¼ Vμ

aλa and Aμ ¼ Aμ
aλa. The

resulting functional integral reads

Z ¼
Z

DσaDϕaDVaμDAaμ

Z
DsaDpaDvμaDaμae

i
R

d4xLaux

×
Z

DqDq̄ei
R

d4xq̄ðiγμ∂μ−σ−iγ5ϕ−γμVμ−γμγ5AμÞq; ð13Þ

where we have defined the Lagrangian density

Lauxðs; p; v; aÞ ¼ Lint þ
X8
i¼2

Li þ
X13
i¼1

L0
i þ saðσa −maÞ

þ paϕa þ vμaVaμ þ aμaAaμ ð14Þ
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with the previously defined quark bilinears rewritten as
functions of the auxiliary boson fields sa; pa; v

μ
a; a

μ
a

(κ1 ¼ g9 ¼ g10 ¼ 0), and with the substitution χ ¼ m=2,
m being the current quarks mass matrix. These expressions
read

Lint ¼
Ḡ
2Λ2

ðs2a þ p2
aÞ þ

κ̄

4Λ5
Aabcsaðsbsc − 3pbpcÞ

þ ḡ1
4Λ8

ðs2a þ p2
aÞ2

þ ḡ2
8Λ8

½dabedcdeðsasb þ papbÞðscsd þ pcpdÞ
þ 4fabefcdesascpbpd�; ð15Þ

and

L2¼
3κ̄2
2Λ3

Aabcmaðsbsc−pbpcÞ;

L3¼
ḡ3
4Λ6

ma½dabedcdesbðscsdþpcpdÞ−2fabefcdepbpcsd�;

L4¼
ḡ4
2Λ6

ðs2aþp2
aÞsbmb;

L5¼
ḡ5
4Λ4

ðdabedcde−fabefcdeÞmbmdðsasc−papcÞ;

L6¼
ḡ6
4Λ4

dabedcdemambðscsd−pcpdÞ;

L7¼
ḡ7
Λ4

ðsamaÞ2;

L8¼
ḡ8
Λ4

ðpamaÞ2; ð16Þ

and correspondingly for spin-1 fields

L0
1 ¼

w̄1

Λ2
ðvμavaμ þ aμaaaμÞ;

L0
2 ¼

w̄2

Λ8
ðvμavaμ þ aμaaaμÞ2;

L0
3 ¼

4w̄3

Λ8
ðvμaaaμÞ2;

L0
4 ¼

w̄4

4Λ8
ðdacedbde − facefbdeÞ½ðvμavbμ þ aμaabμÞðvνcvdν þ aνcadνÞþðvμaabμ þ aμavbμÞðvνcadν þ aνcvdνÞ�;

L0
5 ¼

w̄5

4Λ8
dabedcde½ðvμavbμ þ aμaabμÞðvνcvdν þ aνcadνÞ þ ðvμaabμ þ aμavbμÞðvνcadν þ aνcvdνÞ�;

L0
6 ¼

w̄6

2Λ8
ðvμavaμ þ aμaaaμÞðs2b þ p2

bÞ;

L0
7 ¼

w̄7

8Λ8
½ðdacedbde − facefbdeÞðsasb þ papbÞðvμcvdμ − aμcadμÞþðfacedbde þ dacefbdeÞðsapb − pasbÞðaμcvdμ − vμcadμÞ�;

L0
8 ¼

w̄8

4Λ8
dcde½dabeðsasb þ papbÞðvμcvdμ þ aμcadμÞþfabeðpasb − sapbÞðvμcadμ þ aμcvdμÞ�;

L0
9 ¼

w̄9

Λ6
ðvμavaμ þ aμaaaμÞsbmb;

L0
10 ¼

w̄10

8Λ6
½ðdacedbde − facefbdeÞðsamb þ sbmaÞðvμcvdμ − aμcadμÞþðfacedbde þ dacefbdeÞðpamb − pbmaÞðvμcadμ − aμcvdμÞ�;

L0
11 ¼

w̄11

2Λ6
ma½dabesbðvμcvdμ þ aμcadμÞ − fabepbðvμcadμ þ aμcvdμÞ�dcde;

L0
12 ¼

w̄12

8Λ4
ðdacedbde − facefbdeÞmambðvμcvdμ − aμcadμÞ;

L0
13 ¼

w̄13

4Λ4
dabedcdemambðvμcvdμ þ aμcadμÞ: ð17Þ

In these expressions, fabc are the antisymmetric structure
constants of a Lie algebra (½λa; λb� ¼ 2ifabcλc) related to
the Uð3Þ flavor group, while dabc are the corresponding
symmetric constants (fλa; λbg ¼ 2dabcλc), and

Aabc ¼
1

3!
ϵijkϵmnlðλaÞimðλbÞjnðλcÞkl ð18Þ

is a totally symmetric tensor in flavor linear space.

In the Nambu-Goldstone realization of chiral symmetry,
the scalar field σ develops a finite vacuum expectation
value hσi ¼ M. In order to properly describe excitations
around the true unsymmetric vacuum we make a shift
σ → σ þM in (13). M may be interpreted as a constituent
quark mass matrix. Defining Δ ¼ M −m, we may
rewrite (13) as
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Z ¼
Z

DσaDϕaDVaμDAaμ

Z
DsaDpaDvμaDaμae

i
R

d4xLaux

×
Z

DqDq̄ei
R

d4xq̄ðiγμ∂μ−M−σ−iγ5ϕ−γμVμ−γμγ5AμÞq

¼
Z

DσaDϕaDVaμDAaμe
i
R

d4xðLSPAþLHKÞ: ð19Þ

Here the auxiliary Lagrangian density Laux is given now by

Laux ¼ Lint þ
X8
i¼2

Li þ
X13
i¼1

L0
i þ saðσa − ΔaÞ

þ paϕa þ vμaVaμ þ aμaAaμ: ð20Þ
The full bosonized Lagrangian appearing in the last line of
(19) comprises contributions from the integration over
auxiliary fields,

ei
R

d4xLSPA ¼
Z

DsaDpaDvμaDaμae
i
R

d4xLaux ; ð21Þ

and from the quark Gaussian integral

ei
R

d4xLHK ¼
Z

DqDq̄ei
R

d4xq̄ðiγμ∂μ−M−σ−iγ5ϕ−γμVμ−γμγ5AμÞq:

ð22Þ

The former is performed using a stationary phase approxi-
mation (SPA), while the latter is computed with a modified
heat kernel technique.

A. Stationary phase approximation

As was done in [12,13], the functional integration in (21)
is performed by means of a SPA; the auxiliary fields
sa; pa; v

μ
a; a

μ
a have no kinetic terms and yield the simple

classical equations of motion

∂Laux

∂sa
����
sa¼ssta

¼ ∂Laux

∂pa

����
pa¼pst

a

¼ ∂Laux

∂vμa
����
vμa¼vμsta

¼ ∂Laux

∂aμa
����
aμa¼aμsta

¼ 0: ð23Þ

We seek solutions in the form of a series in powers of
boson fields σ;ϕ; Vμ

a; A
μ
a

ssta ¼ ha þ hð1Þab σb þ hð1Þabcσbσc þ hð2Þabcϕbϕc

þHð1Þ
abcV

μ
bVcμ þHð2Þ

abcA
μ
bAcμ þ � � �

pst
a ¼ hð2Þabϕb þ hð3Þabcϕbσc þHð3Þ

abcV
μ
bAcμ þ � � �

vμsta ¼ Hð1Þ
ab V

μ
b þHð4Þ

abcσbV
μ
c þHð5Þ

abcϕbA
μ
c þ � � �

aμsta ¼ Hð2Þ
ab A

μ
b þHð6Þ

abcϕbV
μ
c þHð7Þ

abcσbA
μ
c þ � � � ð24Þ

By equating the coefficient of each monomial combination
of fields in (23) to zero, we are able to express the several
coefficients h and H appearing in (24) recursively in terms
of the model parameters. The first such expression stems

from the Oð1Þ term in ∂Laux∂sa and yields an implicit cubic

expression for the ha. It turns out that ha ¼ 0 for a ≠ 0, 3, 8
(i.e. only the diagonal components of h ¼ haλa are non-
zero). We may choose to transform the index a into a
fundamental flavor basis i ¼ u, d, s with ha ¼ eaihi
(a ¼ 0, 3, 8) and

eai ¼
ðλaÞii
2

¼ 1

2
ffiffiffi
3

p

0
BB@

ffiffiffi
2

p ffiffiffi
2

p ffiffiffi
2

p
ffiffiffi
3

p
−

ffiffiffi
3

p
0

1 1 −2

1
CCA; a ¼ 0; 3; 8:

ð25Þ

Then the system of three equations to find hi is

Δi þ
hi
4
ð4Gþ 2g1h2 þ 2g4mhÞ þ g2

2
h3i

þ κ

4
tijkhjhk þ κ2tijkhjmk

þmi

4
½3g3h2i þ g4h2 þ 2ðg5 þ g6Þmihi þ 4g7mh� ¼ 0:

ð26Þ

Here we use the definitions h2 ¼ h2u þ h2d þ h2s and mh ¼
muhu þmdhd þmshs. The hi are in direct connection with
the quark condensates hq̄iqii which play the role of order
parameters in the transition between Wigner-Weyl and
Nambu-Goldstone realizations of chiral symmetry. The
conditions (26) had already been found in [12,13], a fact
which indicates that the inclusion of vector modes in the
model has no direct impact in the SPA conditions for the
quark condensates.
Expressions for the two-index hab and Hab coefficients

may be computed from linear monomials in (23). The
result is

−2½hð1Þab �−1 ¼ ð2Gþ g1h2 þ g4mhÞδab þ 4g1hahb

þ 3Aabcðκhc þ 2κ2mcÞ
þ g2ðdabedcde þ 2dacedbdeÞhchd
þ g3ðdabedcde þ dacedbde þ dadedbceÞhcmd

þ 2g4ðhamb þ hbmaÞ
þ g5ðdacedbde − facefbdeÞmcmd

þ g6dabedcdemcmd þ 4g7mamb; ð27Þ
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−2½hð2Þab �−1 ¼ð2Gþg1h2þg4mhÞδab−3Aabcðκhcþ2κ2mcÞ
þg2ðdabedcdeþ2facefbdeÞhchd
þg3ðdabedcdeþfacefbdeþfadefbceÞhcmd

−g5ðdacedbde−facefbdeÞmcmd

þg6dabedcdemcmd−4g8mamb; ð28Þ

where again the inclusion of vector modes has no direct
consequence on the above formulas, which have been
previously obtained.
On the opposite, two other coefficients Hð1Þ

ab and Hð2Þ
ab

associated with vector and axial-vector terms are new. They
are given by the following expressions

−2½Hð1Þ
ab �−1 ¼ ð4w1 þ w6h2 þ 2w9mhÞδab þ

w7

2
ðdacedbde − facefbdeÞhchd

þ w8dabedcdehchd þ w10ðdacedbde − facefbdeÞhcmd þ 2w11dabedcdehcmd

þ w12

2
ðdacedbde − facefbdeÞmcmd þ w13dabedcdemcmd; ð29Þ

−2½Hð2Þ
ab �−1 ¼ ð4w1 þ w6h2 þ 2w9mhÞδab −

w7

2
ðdacedbde − facefbdeÞhchd

þ w8dabedcdehchd − w10ðdacedbde − facefbdeÞhcmd þ 2w11dabedcdehcmd

−
w12

2
ðdacedbde − facefbdeÞmcmd þ w13dabedcdemcmd: ð30Þ

The striking similarity between the two expressions (29) and
(30), where the only difference is in the signs of those terms
proportional to w7, w10 and w12, is a noteworthy aspect with
important consequences regarding the fitting of the model’s
parameters. Another interesting feature of these expressions
is the apparent decoupling between spin-0 and spin-1 related
parameters; the new w’s enter only in the new coefficients
Hab, with none of the old parameters entering alongside.
The three-index coefficients habc andHabc are determined

from quadratic (or bilinear) monomials appearing in (23),

whichwecollectforfuturereferenceinAppendixA.Weremark
that the apparent disconnection between spin-0 and spin-1
related parameters is again manifest in these expressions.
This procedure can be extended to obtain the higher

index coefficients. As a result the coefficients ha (and
couplings of multi-quark interactions) fully determine all of
them. Finally, all these recursion relations may be used to
find the contribution to the bosonized Lagrangian density
resulting from the SPA functional integration; it reads (up
to cubic terms in the fields)

LSPAðσ;ϕ; Vμ; AμÞ ¼ haσa þ
1

2
ðhð1Þab σaσb þ hð2Þabϕaϕb þHð1Þ

ab V
μ
aVbμ þHð2Þ

ab A
μ
aAbμÞ

þ σa

�
1

3
hð1Þabcσbσc þ hð2Þabcϕbϕc þHð1Þ

abcV
μ
bVcμ þHð2Þ

abcA
μ
bAcμ

�
þHð3Þ

abcϕaV
μ
bAcμ þ � � � ð31Þ

Equation (31) sheds light onto the physical role played by
the various h andH coefficients. The ha are related with the
amplitude of the tadpole σa terms, i.e. with the vacuum
expectation value of the σa field. The two-index coeffi-
cients express SPA-contributions to the masses of the boson
fields, while the three-index coefficients yield contributions
to the couplings of effective three-field interaction vertices.

B. Quark determinant

The calculation of the quark determinant contribution to
the bosonized Lagrangian is performed with a generalized
heat kernel technique [54–56] which accommodates the
possibility of a nondegenerate mass matrixM. The method
consists of a suitable resummation of the heat kernel series
which ensures that, to each order in the modified series
expansion, the resulting contribution to the bosonized
Lagrangian remains consistent with the predetermined

chiral symmetry requirements. The Gaussian functional
integral (up to an overall unessential constant) may be
rewritten in an Euclidean metric asZ

DqDq̄ exp

�
−
Z

d4xEq̄DEq

�
¼ detDE; ð32Þ

with the Dirac operator

DE ¼ iγα∂α −M − σ − iγ5ϕþ γαVα þ γαγ5Aα: ð33Þ
The contribution of the chiral determinant to the real part

of the effective action can be found in accord with the
following formal manipulations

detDE → det jDEj ¼ det
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D†

EDE

q
¼ eln det

ffiffiffiffiffiffiffiffiffi
D†

EDE

p
¼ e

1
2
tr lnD†

EDE; ð34Þ
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by which the modified heat kernel expansion results in a
series of the form

1

2
tr lnD†

EDE ¼ −
Z

d4xE
32π2

X∞
n¼0

In−1trðbnÞ: ð35Þ

Here

In ¼
1

3

X
i¼u;d;s

JnðM2
i Þ ð36Þ

and

JnðM2
i Þ ¼

Z
∞

0

dτ
τ2−n

ρðτΛ2Þe−τM2
i ð37Þ

are the Schwinger’s proper-time integrals in which a
regulating kernel ρðτΛ2Þ is specified as a Pauli-Villars
type regulator with double subtractions [57,58]

ρðτΛ2Þ ¼ 1 − ð1þ τΛ2Þe−τΛ2

: ð38Þ

The generalized Seeley-DeWitt coefficients bn for the
spin-0 version of the model have been obtained in [12,13].
These can be translated into the appropriate form for the
model under study through the procedure described in [59].
The first three coefficients read

b0 ¼ 1 ð39Þ

b1 ¼ − Y ð40Þ

b2 ¼
Y2

2
þ Δ12

2
λ3Y þ Δ13 þ Δ23

2
ffiffiffi
3

p λ8Y −
Γ2
αβ

12
; ð41Þ

where Δij ¼ M2
i −M2

j and with the following definitions:

Y ¼ σ2 þ fσ;Mg þ ϕ2 − iγ5½ϕ; σ þM�

þ iγα∇0
αðσ þ iγ5ϕÞ −

i
4
½γα; γβ�Γαβ; ð42Þ

∇0
ασ ¼ ∂ασ − fAα;ϕg − i½Vα; σ þM� ð43Þ

∇0
αϕ ¼ ∂αϕþ fAα; σ þMg − i½Vα;ϕ�; ð44Þ

Vαβ ¼ ∂αVβ − ∂βVα − i½Vα; Vβ� − i½Aα; Aβ� ð45Þ

Aαβ ¼ ∂αAβ − ∂βAα − i½Vα; Aβ� − i½Aα; Vβ�; ð46Þ

Γαβ ¼ Vαβ þ γ5Aαβ: ð47Þ

Just as in the spin-0 version of the model, both b1 and b2
provide contributions to the spin-0 boson masses and to the
gap equations. The latter arise from the requirement that the
σ tadpole term of the overall bosonized Lagrangian Lbos ¼
LSPA þ LHK should vanish. To order n ¼ 2 in the heat
kernel expansion the gap equations are

hi þ
Nc

6π2
Mi½3I0 − ð3M2

i −M2ÞI1� ¼ 0; ð48Þ

withM2 ¼ M2
u þM2

d þM2
s . Their form is unaltered by the

presence of spin-1 modes in the model.

IV. MASS DIAGONALIZATION AND WEAK
DECAY CONSTANTS

Let us consider now the free part of the Lagrangian
density, which comprises the kinetic and mass terms for the
boson fields. By requiring that the kinetic terms have the
standard form (i.e. yielding propagators with a residue of 1
at the pole), we may determine appropriate renormalization
constants for the fields. From the mass terms we are able to
extract the relations between the boson masses and the
model’s parameters which are essential for fitting the
model. The computation of axial currents is also dependent
on the field renormalization constants, and may in turn be
used to find expressions for the weak decay constants of the
pseudoscalar mesons by applying the PCAC hypothesis.
The decay constants may also be employed in the model’s
fitting. With this in mind, we gather the quadratic terms of
the full bosonized Lagrangian density and write them out as

Lð2Þ
bos ¼

1

2
ðhð1Þab σaσb þ hð2Þabϕaϕb þHð1Þ

ab V
μ
aVbμ þHð2Þ

ab A
μ
aAbμÞ

þ NcI1
16π2

trF

�
ð∂μσÞð∂μσÞ þ ð∂μϕÞð∂μϕÞ −

1

3
ðFμν

ðVÞF
ðVÞ
μν þ Fμν

ðAÞF
ðAÞ
μν Þ

�

þ NcI1
16π2

trF

�
½ϕ;M�2 − fσ;Mg2 −

�
Δudλ3 þ

Δus þ Δdsffiffiffi
3

p λ8

�
ðσ2 þ ϕ2Þ

−½Vμ;M�½Vμ;M� þ fAμ;MgfAμ;Mg
�
þ NcI0

8π2
trFðσ2 þ ϕ2Þ

þ NcI1
8π2

trFði½Vμ;M�∂μσ − fAμ;Mg∂μϕÞ: ð49Þ
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Here, FðVÞ
μν ¼ ∂μVν − ∂νVμ is the field strength tensor

associated with the vector field, and similarly for FðAÞ
μν .

The traces trF are to be taken in flavor space. From LSPA in
(31) we get the four mass terms appearing in the first line of
(49). Further contributions to the spin-0 mass terms stem
from both the b1 (the term proportional to I0 in the fourth
line) and b2 terms in the heat kernel series in exactly the
same form as in the spin-0 version of the model. From the
b2 term we additionally get all the kinetic terms (shown in
the second line), as well as mass terms for the vectors and
terms mixing spin-0 and spin-1 fields in the combinations
Vμ∂μσ and Aμ∂μϕ [last line of (49)]. This mixing is a
known feature arising due to spontaneous chiral symmetry
breaking (for axial-vector modes) and explicit symmetry
breaking (for vector modes) (see e.g. [39,60]).
In order to be able to interpret elementary excitations of

the boson fields as mass eigenstates, we need an adequate
redefinition of the fields which eliminate the aforementioned
quadratic mixing terms. There are several possibilities here.
Onemayuse the covariant approach [60]which conserved the
chiral transformation laws of spin-1 fields, or a conventional
approach [40,61–63]. The latter changes the transformation
laws of spin-1 states but is simplewith minimal impact on the
structure of the Lagrangian and without violation of chiral
symmetry. In our case, however, a shift Vμ → Vμ þ kXμ and
similarly for Aμ →Aμþk0Yμ, where Xμ ¼−i½M;∂μσ�;Yμ ¼
fM;∂μϕg, is not enough to achieve diagonalization. The
reason is that with the inclusion of the complete set of next-to-
leading order multiquark terms, after a shift of the Vμ and Aμ

fields, each combination of field components Vμ
a∂μσb (and

Aμ
a∂μϕb)will in principle need a different condition in order to

be eliminated due to the complex structure of the Hab
coefficients. This leads us to introduce shifts of the form

Vaμ → Vaμ þ kaXaμ; Aaμ → Aaμ þ k0aYaμ; ð50Þ

Xaμ ¼ 2fabcMb∂μσc; Yaμ ¼ 2dabcMb∂μϕc; ð51Þ

where the index a in ka and k0a is a free index. Thismeans that
each component of the fields Vμ

a and Aμ
a is independently

shifted by a constant times a combination of mass and field
components. Such shifts do not change the field strengths

FðVÞ
aμν → FðVÞ

aμν and FðAÞ
aμν → FðAÞ

aμν.
Following the steps described inAppendixB,weobtain for

the coefficients ka related with the Vσ-mixing the conditions

1

k1;2
¼ 4π2Hð1Þ

11

NcI1
þ ðMu −MdÞ2 ¼

4π2Hð1Þ
22

NcI1
þ ðMu −MdÞ2

1

k4;5
¼ 4π2Hð1Þ

44

NcI1
þ ðMu −MsÞ2 ¼

4π2Hð1Þ
55

NcI1
þ ðMu −MsÞ2

1

k6;7
¼ 4π2Hð1Þ

66

NcI1
þ ðMd −MsÞ2 ¼

4π2Hð1Þ
77

NcI1
þ ðMd −MsÞ2:

ð52Þ

In these expressions, we have made explicit the fact that

Hð1Þ
aa ¼ Hð1Þ

bb for the pairs of indices ða; bÞ ¼ ð1; 2Þ; ð4; 5Þ;
ð6; 7Þ, which in turn results in the equalities k1 ¼ k2, k4 ¼ k5,
and k6 ¼ k7. These equalities connect pairs of components
which contribute to the same Uð3Þ matrix entries and are, in
light of that pattern, unsurprising. The constants k0, k3, k8 [or
alternatively ku, kd, ks in the flavor ðu; d; sÞ basis] remain
unconstrained by the diagonalization requirements, since
mixing terms of field components associated with them are
already zero due to the well-known properties of the anti-
symmetric constants fabc. Therefore, wemay choose ka ¼ 0,
a ¼ 0, 3, 8.
To avoid the Aϕ-mixing we come to the following

conditions:

1

k01;2
¼ 4π2Hð2Þ

11

NcI1
þ ðMu þMdÞ2 ¼

4π2Hð2Þ
22

NcI1
þ ðMu þMdÞ2

1

k04;5
¼ 4π2Hð2Þ

44

NcI1
þ ðMu þMsÞ2 ¼

4π2Hð2Þ
55

NcI1
þ ðMu þMsÞ2

1

k06;7
¼ 4π2Hð2Þ

66

NcI1
þ ðMd þMsÞ2 ¼

4π2Hð2Þ
77

NcI1
þ ðMd þMsÞ2

1

k0u;d;s
¼ 8π2Hð2Þ

uu;dd;ss

NcI1
þ 4M2

u;d;s: ð53Þ

As in the previous case, we recognize equalities k01 ¼ k02,
k04 ¼ k05, and k06 ¼ k07, which rely on equivalent equalities

among Hð2Þ
aa components. Furthermore, we have defined

the constants k0i in the flavor basis i ¼ u, d, s as
k0i ¼ 2

P
ak

0
ae2ai, and Hij ¼

P
a;bHabeaiebj. It should be

noted that 2Huu;dd ¼ H11;22 in the isospin limit, whereas
2Hii ¼ Haa for all i ∈ fu; d; sg, a ≠ 0, 3, 8 in the full
degenerate case (mu ¼ md ¼ ms).
Besides dealingwith themixing terms in the quadratic part

of the bosonized Lagrangian, the shifts (50) contribute to the
kinetic terms of the spin-0 fieldswhich are expressed in (B1).
With the use of conditions (B3), as well as (52) and (53), the
full kinetic terms of these fields may be simplified to

LðkinÞ
σ ¼ NcI1

8π2
∂μσa∂μσbðδab þ 4kefacefbdeMcMdÞ

¼ NcI1
16π2

X
i¼u;d;s

∂μσi∂μσi þ
X

a≠0;3;8

ka
2
Hð1Þ

aa ∂μσa∂μσa

LðkinÞ
ϕ ¼ NcI1

8π2
∂μϕa∂μϕbðδab − 4k0edacedbdeMcMdÞ

¼
X

i¼u;d;s

k0i
2
Hð2Þ

ii ∂μϕi∂μϕi þ
X

a≠0;3;8

k0a
2
Hð2Þ

aa ∂μϕa∂μϕa:

ð54Þ
These expressions lead us to define the necessary field
rescalings for obtaining kinetic terms in their standard forms.
These are
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σi→

ffiffiffiffiffiffiffiffiffiffi
4π2

NcI1

s
σi¼ϱσi ði¼u;d;sÞ;

σa→

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kaH
ð1Þ
aa

s
σa¼ϱ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þξσa

ϱ2

s
σa ða≠0;3;8Þ;

ϕi→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2k0iH
ð2Þ
ii

s
ϕi¼ϱ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þξϕi

ϱ2

s
ϕi ði¼u;d;sÞ;

ϕa→

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k0aH
ð1Þ
aa

s
ϕa¼ϱ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þξϕa

ϱ2

s
ϕa ða≠0;3;8Þ; ð55Þ

with ϱ2 ¼ 4π2=ðNcI1Þ and

ξσ1 ¼ ξσ2 ¼
ðMu −MdÞ2

Hð1Þ
11

; ξϕ1 ¼ ξϕ2 ¼ ðMu þMdÞ2
Hð2Þ

11

;

ξσ4 ¼ ξσ5 ¼
ðMu −MsÞ2

Hð1Þ
44

; ξϕ4 ¼ ξϕ5 ¼ ðMu þMsÞ2
Hð2Þ

44

;

ξσ6 ¼ ξσ7 ¼
ðMd −MsÞ2

Hð1Þ
66

; ξϕ6 ¼ ξϕ7 ¼ ðMd þMsÞ2
Hð2Þ

66

;

ξϕi ¼ 2M2
i

Hð2Þ
ii

: ð56Þ

One should keep in mind the relations betweenHii andHaa
as stated after Eq. (53).
In exactly the same way, one may extract the kinetic

terms of spin-1 fields in (B1),

LðkinÞ
V ¼ −

NcI1
48π2

trFðFμν
ðVÞF

ðVÞ
μν Þ;

LðkinÞ
A ¼ −

NcI1
48π2

trFðFμν
ðAÞF

ðAÞ
μν Þ; ð57Þ

and rescale them as

Vμ
a →

ffiffiffi
3

2

r
ϱVμ

a;

Aμ
a →

ffiffiffi
3

2

r
ϱAμ

a; ð58Þ

in order to obtain standard kinetic terms for spin-1 fields.
Finally, we apply the rescalings defined in (55) and (58)

to the remaining terms in (B1) so that we may rewrite the
quadratic part of the bosonized Lagrangian density as

Lð2Þ
bos ¼ Lð2Þ

σ þ Lð2Þ
ϕ þ Lð2Þ

V þ Lð2Þ
A ; ð59Þ

with

Lð2Þ
σ ¼1

4

X
i¼u;d;s

∂μσi∂μσiþ
1

2

X
a≠0;3;8

∂μσa∂μσa

þ1

4

X
i¼u;d;s

σ2i

�
ϱ2
�
2hð1Þii −

hi
Mi

�
−4M2

i

�
þ1

2

X
i≠j

σiσjϱ
2hð1Þij

þ1

2
ðσ21þσ22Þ

�
ϱ2þðMu−MdÞ2

Hð1Þ
11

��
hð1Þ11 −

hu−hd
Mu−Md

�

þ1

2
ðσ24þσ25Þ

�
ϱ2þðMu−MsÞ2

Hð1Þ
44

��
hð1Þ44 −

hu−hs
Mu−Ms

�

þ1

2
ðσ26þσ27Þ

�
ϱ2þðMd−MsÞ2

Hð1Þ
66

��
hð1Þ66 −

hd−hs
Md−Ms

�
;

ð60Þ

Lð2Þ
ϕ ¼1

4

X
i¼u;d;s

∂μϕi∂μϕiþ
1

2

X
a≠0;3;8

∂μϕa∂μϕa

þ1

4

X
i¼u;d;s

ϕ2
i

�
ϱ2þ2M2

i

Hð2Þ
ii

��
2hð2Þii −

hi
Mi

�

þ1

2

X
i≠j

ϕiϕj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϱ2þ2M2

i

Hð2Þ
ii

��
ϱ2þ2M2

i

Hð2Þ
jj

�vuut hð2Þij

þ1

2
ðϕ2

1þϕ2
2Þ
�
ϱ2þðMuþMdÞ2

Hð2Þ
11

��
hð2Þ11 −

huþhd
MuþMd

�

þ1

2
ðϕ2

4þϕ2
5Þ
�
ϱ2þðMuþMsÞ2

Hð2Þ
44

��
hð2Þ44 −

huþhs
MuþMs

�

þ1

2
ðϕ2

6þϕ2
7Þ
�
ϱ2þðMdþMsÞ2

Hð2Þ
66

��
hð2Þ66 −

hdþhs
MdþMs

�
;

ð61Þ

Lð2Þ
V ¼ −

1

8

X
i¼u;d;s

Fμν
iðVÞF

ðVÞ
iμν −

1

4

X
a≠0;3;8

Fμν
aðVÞF

ðVÞ
aμν

þ 3

4

X
i¼u;d;s

Vμ
i Viμϱ

2Hð1Þ
ii

þ 3

4
ðVμ

1V1μ þ Vμ
2V2μÞϱ2

�
Hð1Þ

11 þNcI1
4π2

ðMu −MdÞ2
�

þ 3

4
ðVμ

4V4μ þ Vμ
5V5μÞϱ2

�
Hð1Þ

44 þNcI1
4π2

ðMu −MsÞ2
�

þ 3

4
ðVμ

6V6μ þ Vμ
7V7μÞϱ2

�
Hð1Þ

66 þNcI1
4π2

ðMd −MsÞ2
�

ð62Þ

and
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Lð2Þ
A ¼−

1

8

X
i¼u;d;s

Fμν
iðAÞF

ðAÞ
iμν −

1

4

X
a≠0;3;8

Fμν
aðAÞF

ðAÞ
aμν

þ3

4

X
i¼u;d;s

Aμ
i Aiμϱ

2

�
Hð2Þ

ii þNcI1
2π2

M2
i

�

þ3

4
ðAμ

1A1μþAμ
2A2μÞϱ2

�
Hð2Þ

11 þ
NcI1
4π2

ðMuþMdÞ2
�

þ3

4
ðAμ

4A4μþAμ
5A5μÞϱ2

�
Hð2Þ

44 þ
NcI1
4π2

ðMuþMsÞ2
�

þ3

4
ðAμ

6A6μþAμ
7A7μÞϱ2

�
Hð2Þ

66 þ
NcI1
4π2

ðMdþMsÞ2
�
:

ð63Þ

We have used the gap equations (48) to simplify the scalar
(60) and pseudoscalar (61) field quadratic terms. The terms
proportional to hij in both (60) and (61) express the well-
known mixings occurring between the flavor components
forming the neutral scalar and pseudoscalar mesons.
Moreover, these expressions reveal the impact of the
new parameters wi in the spin-0 sector masses through
the Haa coefficients. These modifications are a direct
consequence of Vσ- and Aϕ-mixing in the bosonized
Lagrangian in (49), and they enter all mass terms except
those of the neutral scalar sector.
We collect the nine ða ¼ 0; 1;…; 8Þ scalar ðσaÞ, pseu-

doscalar ðϕaÞ, vector ðVμ
aÞ and axial-vector ðAμ

aÞ fields in
the Hermitian matrices

σffiffiffi
2

p ¼

0
BBB@

σuffiffi
2

p aþ0 κþ

a−0
σdffiffi
2

p κ0

κ− κ̄0 σsffiffi
2

p

1
CCCA;

ϕffiffiffi
2

p ¼

0
BBB@

ϕuffiffi
2

p πþ Kþ

π− ϕdffiffi
2

p K0

K− K̄0 ϕsffiffi
2

p

1
CCCA;

ð64Þ

Vμffiffiffi
2

p ¼

0
BBB@

Vuμffiffi
2

p ρþμ K�þ
μ

ρ−μ
Vdμffiffi
2

p K�0
μ

K�−
μ K̄�0

μ
Vsμffiffi
2

p

1
CCCA;

Aμffiffiffi
2

p ¼

0
BBB@

Auμffiffi
2

p aþ1μ Kþ
1μ

a−1μ
Adμffiffi
2

p K0
1μ

K−
1μ K̄0

1μ
Asμffiffi
2

p

1
CCCA:

ð65Þ
Here the flavor basis boson fields may be represented as a
linear combinations of a ¼ 0, 3, 8 states

8>>><
>>>:

σu ¼ σ3 þ
ffiffi
2

p
σ0þσ8ffiffi
3

p ¼ σ3 þ fns

σd ¼ −σ3 þ
ffiffi
2

p
σ0þσ8ffiffi
3

p ¼ −σ3 þ fns

σs ¼
ffiffi
2

p
σ0−2σ8ffiffi

3
p ¼ ffiffiffi

2
p

fs

ð66Þ

8>>><
>>>:

ϕu ¼ ϕ3 þ
ffiffi
2

p
ϕ0þϕ8ffiffi
3

p ¼ ϕ3 þ ηns

ϕd ¼ −ϕ3 þ
ffiffi
2

p
ϕ0þϕ8ffiffi
3

p ¼ −ϕ3 þ ηns

ϕs ¼
ffiffi
2

p
ϕ0−2ϕ8ffiffi

3
p ¼ ffiffiffi

2
p

ηs

ð67Þ

8>>><
>>>:

Vμ
u ¼ Vμ

3 þ
ffiffi
2

p
Vμ
0
þVμ

8ffiffi
3

p ¼ Vμ
3 þ ωμ

ns

Vμ
d ¼ −Vμ

3 þ
ffiffi
2

p
Vμ
0
þVμ

8ffiffi
3

p ¼ −Vμ
3 þ ωμ

ns

Vμ
s ¼

ffiffi
2

p
Vμ
0
−2Vμ

8ffiffi
3

p ¼ ffiffiffi
2

p
ωμ
s

ð68Þ

8>>>>><
>>>>>:

Aμ
u ¼ Aμ

3 þ
ffiffi
2

p
Aμ
0
þAμ

8ffiffi
3

p ¼ Aμ
3 þ fμ1ns

Aμ
d ¼ −Aμ

3 þ
ffiffi
2

p
Aμ
0
þAμ

8ffiffi
3

p ¼ −Aμ
3 þ fμ1ns

Aμ
s ¼

ffiffi
2

p
Aμ
0
−2Aμ

8ffiffi
3

p ¼ ffiffiffi
2

p
fμ1s

: ð69Þ

In relations (66)–(69), we have decomposed the diagonal
components of the fields in the (0,3,8) basis, as well as in
the ð3; ns; sÞ basis, which consists of the neutral isotriplet
component and the nonstrange and strange isosinglet
components, respectively. These three components still
appear in bilinear mixed terms in (60) and (61) due to
the term proportional to hij.
The physical (mass eigenstates) neutral mesons arise as

suitable combinations of said components which may be
parametrized by three mixing angles constrained by three
diagonalization conditions imposed by the requirement that
all mixing terms are eliminated. In the isospin limit, the
neutral isotriplet component uncouples from the isosinglet
ones, and only one mixing angle is needed for diagonal-
ization. We may then identify immediately σ3 ¼ a00,
ϕ3 ¼ π0, V3μ ¼ ρ0μ and A3μ ¼ a01μ. In the pseudoscalar
sector the mixing angle is commonly introduced as

�
η

η0

�
¼

�
cos θϕ − sin θϕ
sin θϕ cos θϕ

��
ϕ8

ϕ0

�
ð70Þ

in the (0,8) basis or as

�
η

η0

�
¼

�
cosψϕ − sinψϕ

sinψϕ cosψϕ

��
ηns

ηs

�
ð71Þ

in the ðns; sÞ basis. In the scalar sector, the mixing scheme
is analogous to that of the pseudoscalar sector,

�
f0
σ

�
¼

�
cos θσ − sin θσ
sin θσ cos θσ

��
σ8

σ0

�
ð72Þ

or
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�
f0
σ

�
¼

�
cosψσ − sinψσ

sinψσ cosψσ

��
fns
fs

�
: ð73Þ

In both cases, the θ and ψ angles are related to each other
through ψ ¼ θ þ arctan

ffiffiffi
2

p
. The resulting scalar and pseu-

doscalar mass Lagrangians are listed in Appendix C,
together with the vector and axial vector ones (which
involve no mixing between the neutral mesons). We may
then summarize the mass expressions. For scalar mesons
we have

M2
a0 ¼ ϱ2

�
hu
Mu

− hð1Þ11

�
þ 4M2

u;

M2
κ ¼

�
ϱ2 þ ðMu −MsÞ2

Hð1Þ
44

��
hu − hs
Mu −Ms

− hð1Þ44

�
;

M2
f0

¼ 1

1 − tan2ψσ

�
ϱ2
�
hu
Mu

− 2hð1Þuu − 2hð1Þud

�
þ 4M2

u

�

þ 1

1 − cot2ψσ

�
ϱ2
�
hs
Ms

− 2hð1Þss

�
þ 4M2

s

�
;

M2
σ ¼

1

1 − cot2ψσ

�
ϱ2
�
hu
Mu

− 2hð1Þuu − 2hð1Þud

�
þ 4M2

u

�

þ 1

1 − tan2ψσ

�
ϱ2
�
hs
Ms

− 2hð1Þss

�
þ 4M2

s

�
: ð74Þ

The masses of the pseudoscalars are given by

M2
π ¼

�
ϱ2 þ 4M2

u

Hð2Þ
11

��
hu
Mu

− hð2Þ11

�
;

M2
K ¼

�
ϱ2 þ ðMu þMsÞ2

Hð2Þ
44

��
hu þ hs
Mu þMs

− hð2Þ44

�
;

M2
η ¼

1

1 − tan2ψϕ

�
ϱ2 þ 2M2

u

Hð2Þ
uu

��
hu
Mu

− 2hð2Þuu − 2hð2Þud

�

þ 1

1 − cot2ψϕ

�
ϱ2 þ 2M2

s

Hð2Þ
ss

��
hs
Ms

− 2hð2Þss

�
;

M2
η0 ¼

1

1 − cot2ψϕ

�
ϱ2 þ 2M2

u

Hð2Þ
uu

��
hu
Mu

− 2hð2Þuu − 2hð2Þud

�

þ 1

1 − tan2ψϕ

�
ϱ2 þ 2M2

s

Hð2Þ
ss

��
hs
Ms

− 2hð2Þss

�
: ð75Þ

In the chiral limit (mi → 0), we get Mu ¼ Ms ¼ M, hu ¼
hs ¼ h and hð2Þaa ¼ hð2Þ, as well as h ¼ Mhð2Þ. This makes it
easy to verify in (75) that bothMπ andMK go to zero in this

limit. Also, in the chiral limit we get hð2Þii ¼ hð2Þ
0

1 and hð2Þij ¼
hð2Þ

0
2 (i ≠ j), with 2ðhð2Þ01 − hð2Þ

0
2 Þ ¼ hð2Þ. Using this and the

fact that ψϕ ¼ arctan
ffiffiffi
2

p
in this limit (this may be checked

resorting to the conditions (C3) and is equivalent to θϕ ¼ 0,
i.e. no mixing between flavor SUð3Þ singlet 0 and octet 8

components), it can be shown that Mη also goes to zero,
while the η0 retains a finite mass, due to the Adler-Bell-
Jackiw anomaly, given by

M2
η0 →

�
ϱ2 þ 2M2

Hð2Þ
ii

�
2

2Gþ ð3g1hþ g2hþ κÞh : ð76Þ

A detailed discussion of the anomaly within the 8q-
extended version of the model without the explicit sym-
metry breaking interactions and the vector terms is given
in [11].
For the masses of the vector and axial-vector mesons

we obtain

M2
ρ ¼ M2

ω ¼ 3

2
ϱ2Hð1Þ

11 ;

M2
K� ¼ 3

2
½ϱ2Hð1Þ

44 þ ðMu −MsÞ2�;

M2
φ ¼ 3ϱ2Hð1Þ

ss ; ð77Þ

M2
a1 ¼ M2

f1
¼ 3

2
ϱ2Hð2Þ

11 þ 6M2
u;

M2
K1

¼ 3

2
½ϱ2Hð2Þ

44 þ ðMu þMsÞ2�;

M2
f0
1
¼ 3ϱ2Hð2Þ

ss þ 6M2
s : ð78Þ

Axial transformations of the meson fields may be used
[64] to define axial vector currentsAμ

a, which are conserved
in the chiral limit (mi ¼ 0; i ¼ u, d, s). The linear (in
powers of meson fields) part of these currents may be
obtained from (59). The general formula is

Aμ
a ¼ ∂δL

∂ð∂μβaÞ
¼

X
C

∂L
∂ð∂νCÞ

∂ð∂νδCÞ
∂ð∂μβaÞ

; ð79Þ

where δL is the variation of the Lagrangian due to the local
axial transformations parametrized by βaðxÞ. The sum in C
is over all σ, ϕ, Vμ and Aμ field components, and δC is the
infinitesimal chiral transformation of the field C. Having
this current one may wish to calculate the matrix element
h0jAaμjϕbðpÞi ¼ −ifabpμ, where the fab are constants
associated with the weak decays of pseudoscalar states. For
the pion weak decay constant fπ we find

h0j 1ffiffiffi
2

p ðA1μ � iA2μÞjπ∓ðpÞi ¼ − ifπpμ; ð80Þ

where fπ (in the isospin limit considered) is given by

fπ ¼
Muffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ2 þ 4M2
u

Hð2Þ
11

r ≡Mu

gπ
: ð81Þ
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This is nothing else than the quark analog of the celebrated
Goldberger-Treiman relation, which is Mu ¼ fπgπ , where
gπ is the renormalization constant of the pion field.
In full analogy with calculations of fπ , the weak decay

constant of the kaons can be shown to have the form

fK ¼ Mu þMs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2 þ ðMuþMsÞ2

Hð2Þ
44

r ≡Mu þMs

2gK
: ð82Þ

This expression again follows the general framework of the
Goldberger-Treiman result for this quantity, ðMu þMsÞ ¼
2fKgK, where gK is the renormalization constant of the
kaon field defined through (55).

V. PARAMETER FITTING AND DISCUSSION

The problem of fitting the model’s parameters has been
thoroughly discussed in [12,13] in the isospin limit, where
only spin-0 modes had been considered. There, the number
of conditions and empirical inputs was just right for the
fitting to be accomplished. The inclusion of spin-1 modes
adds 13 new parameters to the model while also altering the
formulas for the spin-0 meson masses and weak decay
constants. From the 13 new parameters, only 9 appear in
the quadratic part of the bosonized Lagrangian through

Hð1;2Þ
ab , as can be seen in expressions (29) and (30). (The

other parameters may contribute at finite densities, at which
hV0

i i ≠ 0.) Even so, in the isospin limit, the only new
available empirical inputs are the 6 independent vector and
axial-vector meson masses, which are still not enough for
an unambiguous fitting. If we cannot definitely pinpoint all
the new parameters using only the quadratic part of the
Lagrangian, we then choose to address a slightly different
problem: can we find a parameter set which reproduces the
full spin-0 and spin-1 meson spectra?
In total, there are 29 adjustable parameters: 2 current

quark masses (mu;d, ms); 2 quark condensates (hu;d, hs); 2
constituent quark masses (Mu;d,Ms); 1 cutoff (Λ); 11 “old”
couplings (G, κ, κ2, g1, g2, g3, g4, g5, g6, g7, g8); 9 “new”
couplings (w1, w6, w7, w8, w9, w10, w11, w12, w13); and 2
mixing angles (θσ, θϕ). On the other hand, there are a
number of conditions and empirical inputs which can be
used to fit the model: 2 gap equations (48); 2 stationary
phase conditions (26); 4 pseudoscalar masses
ðMπ;MK;Mη;Mη0 Þ; 4 scalar masses ðMσ:Mκ;Ma0 ;Mf0Þ;
3 vector masses ðMρ;MK� ;MφÞ; 3 axial-vector masses
ðMa1 ;MK1

;Mf1Þ; 2 pseudoscalar weak decay constants
ðfπ; fKÞ; and 2 mixing angle conditions. These give a total
of 22 conditions, which is 7 conditions short for a complete
unequivocal fitting of all the parameters.
Three of the missing conditions may be provided by

externally fixing the current quark masses mu and ms, as
well as the pseudoscalar mixing angle θϕ, to be in accord
with known phenomenological expectations.

We may also note that all wi parameters enter all
expressions related with the quadratic part of the
Lagrangian through Hab coefficients only. In (29) and
(30), we see that w1, w6 and w9 contribute in exactly the
same way to all coefficients independently of a and b, so
that we may effectively set two of these parameters to zero
and take only one of them to contribute for the three; we
then choose w6 ¼ w9 ¼ 0. The correct distribution of this
contribution among the three parameters may require
nonzero w6 and w9, but this only becomes relevant when
looking at interaction terms, where the Habc coefficients
appear, and does not invalidate the idea of setting them to
zero in order to attempt fitting at the quadratic Lagrangian
level only.
From among the other parameters, we choose w13 ¼ 0,

but we must show that this choice is essentially arbitrary. To
that end, we have used this prescription for fitting the
model, and then have independently varied the fixed values
for w1 and w13 and repeated the fitting. We have found that
varying either w1 or w13 simply resulted in a refitting of the
values of w8 and w11, with no impact on any other
parameter.
The parameters w7, w10 and w12, which appear with

opposite signals in (29) and (30), are essential for establish-
ing the mass differences between flavor partner vector and
axial-vector mesons and should therefore not be set to zero.
Regarding this statement, we may actually prove the
following conditions which are valid in the case of an
exact isospin symmetry:

w7h2u þ 2w10muhu þ w12m2
u ¼ 3ϱ2

�
1

M2
a1 − 6M2

u
−

1

M2
ρ

�
;

w7h2s þ 2w10mshs þ w12m2
s ¼ 3ϱ2

�
1

M2
f1
− 6M2

s
−

1

M2
φ

�
;

w7huhs þ w10ðmuhs þmshuÞ þ w12mums

¼ 3ϱ2
�

1

M2
K1

− 3
2
ðMu þMsÞ2

−
1

M2
K� − 3

2
ðMu −MsÞ2

�
:

ð83Þ

This means that, ifMu,Ms andΛ are fitted, w7, w10 and w12

are automatically determined from the spin-1 meson
masses by these relations. Hence, the values of these three
parameters are tightly constrained by the empirical data and
should be properly fitted.
Similarly to what has been said concerning the assign-

ments w6 ¼ w9 ¼ 0, a full unambiguous fitting of all the
w’s will always require us to study their impact on the
effective three-meson vertices, but we may still use this
somewhat arbitrary fitting scheme at the quadratic
Lagrangian level to check if the model is able to reproduce
the meson spectra.
A useful systematic approach to the fitting routine may

start by identifying all the conditions which involve only
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the wi, Mi and Λ; these are the 3 vector and the 3 axial
vector masses, and the fπ and fK weak decay constants.
With w6 ¼ w9 ¼ w13 ¼ 0, and with w1 previously fixed,
the remaining w’s (w7, w8, w10, w11, w12), as well as Mu,
Ms and Λ, may be fitted using the above mentioned 8
empirical inputs.
The fact that both constituent quark masses and the scale

Λ are fixed entirely by the spin-1 spectra and the pseudo-
scalar weak decay constants is a detail worthy of note.
Actually, it can be shown using the mass formulas (77)
and (78) and the explicit form of the coefficients Hab that

2

M2
K� − 3

2
ðMu −MsÞ2

þ 2

M2
K1

− 3
2
ðMu þMsÞ2

¼ 1

M2
ρ
þ 1

M2
φ
þ 1

M2
a1 − 6M2

u
þ 1

M2
f1
− 6M2

s
: ð84Þ

This means that, in the isospin limit (mu ¼ md), the model
predicts a relation betweenMu andMs depending solely on
the spin-1 meson masses.
Furthermore, the axial-vector meson masses in (78) may

be rewritten as

M2
a1 ¼

6M4
u

M2
u − ϱ2f2π

;

M2
K1

¼
3
2
ðMu þMsÞ4

ðMu þMsÞ2 − 4ϱ2f2K
; ð85Þ

i.e. in terms of constituent quark masses, the scale Λ
(through ϱ2) and weak decay constants only. Together with
expression (84), these relations completely determine Mu,
Ms and Λ.
The result of the partial fitting described above may then

be carried on to the remaining conditions as inputs in order
to fit the rest of the parameters. The hi are already fully
determined by the gap equations at this stage, so we may
then focus on the 4 scalar and 4 pseudoscalar masses, the 2
mixing angle conditions and the 2 stationary phase

conditions in order to fit the 11 parameters (G; κ; κ2; g1; g2;
g3; g4; g5; g6; g7; g8) as well as the scalar mixing angle θσ.
From the empirical point of view, the pseudoscalar and

the vector low-lying nonets are relatively well established,
the former with the π, K, η and η0ð958Þ mesons and the
latter with the ρð770Þ, K�ð892Þ, ωð782Þ and φð1020Þ
mesons. The axial-vector nonet that we will try to fit
consists of a1ð1260Þ, K1ð1270Þ, f1ð1285Þ and f1ð1420Þ,
of which a1ð1260Þ exhibits a broader peak leading to a
larger experimental mass uncertainty. Also, some authors
propose f1ð1510Þ as a member of the nonet instead of
f1ð1420Þ, and there are suggestions as to f1ð1285Þ and
f1ð1420Þ being actuallyK�K̄ molecules or tetraquark states
[65]. Meanwhile, the scalar nonet is probably the most
controversial one. Models relying heavily on chiral sym-
metry constraints (as is the case of the model under study)
usually identify the members of the low-lying scalar nonet
as the σð500Þ, the κð800Þ, the a0ð980Þ and the f0ð980Þ,
although different approaches may establish the nonet with
some other states, namely the K�

0ð1430Þ instead of the
κð800Þ [65]. As was done in the spin-0 version of the
model, we expect that also the spin-1 extended version is
able to fit this nonet. Still concerning the scalars, the exact
physical content of the corresponding measured signals is
disputed, with some authors proposing significant contri-
butions from four-quark states, gluon-balls or meson-
meson molecules [65]. The present model contemplates
the admixture of four-quark components to the usual q̄q
content of the mesons, which is arguably an advantageous
feature of the approach. Yet, we are also faced with a large
empirical range for the masses of the σð500Þ (400–
550 MeV) and κð800Þ (650–850 MeV) mesons [65].
Using the empirical inputs listed in Table I, we obtain the

fitted values for the model’s parameters as is shown in
Table II.
The first noteworthy aspect of the results concerns the

higher value obtained for the cutoff Λ ¼ 1633 MeV, which
is around two times of the value fitted with the spin-0

TABLE I. The 19 input phenomenological values used in the fitting of the model parameters: the meson masses, the current quark
masses and the weak decay constants (all in MeV), as well as the pseudoscalar mixing angle in degrees.

Mπ MK Mη Mη0 Mσ Mκ Ma0 Mf0 Mρ MK� Mφ Ma1 MK1
Mf1 mu ms fπ fK θϕ

138 496 548 958 500 850 980 980 778 893 1019 1270 1274 1426 4 100 92 111 −15°

TABLE II. The 24 model parameters obtained as the results of the fit. The value of w1 shown here has been externally fixed, with
w6 ¼ w9 ¼ w13 ¼ 0.

G
[GeV−2]

κ
[GeV−5]

g1
[GeV−8]

g2
[GeV−8]

κ2
[GeV−3]

g3
[GeV−6]

g4
[GeV−6]

g5
[GeV−4]

g6
[GeV−4]

g7
[GeV−4]

g8
[GeV−4]

θσ
degrees

2.54 −2.66 15.3 −35.2 0.143 −148 36.1 −21.9 −115 −32.6 −21.8 25.1°

Λ
[MeV]

Mu
[MeV]

Ms
[MeV]

w1

[GeV−2] w6

w7

[GeV−8]
w8

[GeV−8] w9

w10

[GeV−6]
w11

[GeV−6]
w12

[GeV−4] w13

1633 244 508 −10 0 −1903 2505 0 −2540 1425 −1523 0
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version of the model. If we expect the model to provide
meaningful results for the spin-1 meson masses, which are
generally higher than those of the spin-0 ones, a higher
value of this scale is desirable. In fact, the highest mass
employed in the fitting (Mf1 ¼ 1426 MeV) is below the
fitted scale value, which should be expected from an
effective theory point of view. On the other hand, this
value still fulfills the general requirement that Λ is of order
of chiral symmetry breaking scale Λ ∼ ΛχSB ∼ 1 GeV.
Constituent quark masses are fitted to lower values than

those of the spin-0 model, with a more significant differ-
ence in Mu. Nonetheless, these are still within reasonable
values, and the mass difference Ms −Mu is enhanced.
Together with Λ,Mu andMs form a set of three parameters
which may be fixed solely on the basis of the spin-1 spectra
and the pseudoscalar weak decay constants as shown in
expressions (84) and (85). This means that the experimental
uncertainties of the scalar sector do not affect these results,
leaving little room for variation of the values ofMu,Ms and
Λ within the relatively well-defined experimental ranges of
the spin-1 meson masses and the pion and kaon weak decay
constants. Variations within said ranges consistently yield
similarly larger values for Λ and smaller values forMu and
Ms than those found in the spin-0 version of the model. The
scalar mixing angle fitted value θσ ¼ 25.1° is also well
within the (model dependent) empirical range.
The w’s (disregarding those which are externally fixed or

set to 0) are fitted to values of the order of Oð103Þ in their
respective units, yielding significant contributions to the
spin-0 sectors through the Vσ- and Aϕ-mixing mecha-
nisms. This in turn affects the old parameters’ fitted values,
which all turn out considerably smaller (in absolute value)
than they were in the spin-0 version of the model. If we
compare old and new parameters’ values of the same
dimensionality, we identify a consistent proportion of 1
to 2 orders of magnitude between them. Different pre-
scriptions for the external fixing of w1 and w13 have little to
no impact in this fact. This may be regarded as a
quantitative statement about relative weights of spin-0
and spin-1 multiquark vertices in the effective description
of the dynamics of strongly interacting particles, in support
of the importance of including spin-1 modes in the model.
The spin-0 spectra is reproduced similarly to what has

been done in [12,13] with the spin-0 version of the model.
The differences arise through the contributions of the spin-
1 wi parameters and the fact that the scalar mixing angle θσ
is fitted together with the effective couplings, yielding a
value consistent with those provided in the literature
[66,67]. This fitted value is, of course, subject to variations
due to the large uncertainties in the empirical masses of the
κð800Þ and σð500Þ mesons. This dependency is illustrated
in Table III, where the value of the scalar mixing angle is
shown for different combinations of the above mentioned
masses (all other input being as given in Table I). We can
see a very significant variation of θσ with the κð800Þ mass,
which seems to require this mass to be on the higher side of
its empirical range for θσ to be within reasonable values.

The high number of effective couplings which the model
introduces may be regarded as a shortcoming, based on the
notion that a sufficiently high number of parameters is a
sufficient condition to fit any kind of data, making the
modeling rather arbitrary and devoid of physical meaning.
However, the way the effective couplings are introduced in
the model is not at all arbitrary, lending themselves to strict
symmetry constraints which are provided by the underlying
fundamental physics at work. Furthermore, we should take
a look at the way the wi’s enter the model’s expressions for
the observables considered in this study to realize how
these symmetry constraints strongly bind the parameters’
eventual arbitrariness. From the 13 wi’s which are intro-
duced through the effective multiquark vertices, only 9
appear in the quadratic part of the Lagrangian; from these 9,
not all are really independent, with e.g. w1, w6 and w9

clustering into a single effective contribution. These some-
what subtle and intricate relations effectively express the
symmetry constraints of the model and, hence, the under-
lying physics. The ability of the model to reproduce the
low-lying meson spectra should not be taken as an a priori
feature of a large number of parameters, but rather as a
successful capturing of relevant physical content.

VI. COUPLING CONSTANTS IN NATURAL UNITS

The above discussion would be incomplete without
giving some qualitative arguments based on naive
dimensional analysis applied to the effective multiquark
Lagrangian. Although these arguments cannot be trusted to
any great numerical accuracy, they provide a qualitative
guide to the presented picture of the family of multiquark
couplings and interactions. Our guiding principle in this
consideration is the idea of naturalness (in the Dirac sense),
according to which after extracting the dimensional scales
from a term of the Lagrangian, the remaining dimension-
less coefficient should be of order of unity. Naively, we did
this in Eqs. (7)–(9). Here we would like to make our
consideration more detailed.
Indeed, in the problem considered we have several

important scales. First, of course, a dimensionful parameter
Λ ¼ 1.633 GeV which estimates the chiral symmetry
breaking scale and suppresses nonrenormalizable terms
in an effective multiquark Lagrangian. However, we might
also want to consistently count powers of the effective
constituent quark mass M ¼ 244 MeV (we will neglect in
our naive analysis the difference between strange and non

TABLE III. Values of the scalar mixing angle for different
prescriptions of Mκ and Mσ (with all other empirical inputs as in
Table I).

Mκ 750 800 850

Mσ 400 500 400 500 400 500
θσ 42.9° 44.9° 35.7° 36.9° 25.5° 25.1°
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strange quark masses) and the pion weak decay constant
fπ ¼ 92 MeV. The mass M is a characteristic of chirality
violation at the vertex. For instance, if the Lagrangian
contains the quark bilinears q̄RqL or q̄LqR, then such vertex
changes chirality by the value jΔχj ¼ 2. Our Lagrangian
includes these transitions through the terms (2) and (3). On
the other hand, the quark bilinears q̄LγμqL or q̄RγμqR do not
change chirality. Thus, for them jΔχj ¼ 0, and this is true
for the vector combinations (4) and (5).
The pion decay constant fπ is a dimensionful parameter

which governs the dynamics of the Goldstone boson fields.
At low energy it is small compared toΛ and naturally appears
when one bosonizes the multiquark interactions. Taking all
these scales into account, we come to the formula

L ¼ c̄

�
π

f

�
A
�

q

f
ffiffiffiffi
Λ

p
�

B
�
M
Λ

�
C
�∂
Λ

�
D
�
χ

M

�
E
f2Λ2; ð86Þ

where c̄ is the dimensionless constant of order of unity (for
natural units),A is the meson field power,B is the quark field
power, C ¼ jΔχj=2 describes the chirality violation at the
quark part of thevertex,D is the number of derivatives, andE
counts the explicit symmetry breaking effects induced by the
external field χ ∼m. Comparing our result with the one of
Manohar and Georgi [68], it should be noted that our
Lagrangian at the quark level does not have derivative
interactions. However, if one would like to analyze the
couplings of the effective meson Lagrangian which results
from bosonization, one should include this term too in
accordancewith [68].On the other hand, they do not consider
explicit symmetry breaking effects and, as a result, they do
not have the term with χ, as we have.
The prescription (86) produces a set of coefficients for

the higher-dimension operators which are consistent with
naive dimensional analysis. Indeed, to have a feeling that
this prescription agrees with our naive expectations, we
show the order of the following terms:

πq̄γ5q → πq̄γ5q

�
1

f

��
1

f
ffiffiffiffi
Λ

p
�

2
�
M
Λ

�
f2Λ2 ¼

�
M
f

�
πq̄γ5q:

ð87Þ

q̄γμ∂μq → q̄γμ∂μq

�
1

f
ffiffiffiffi
Λ

p
�

2
�
1

Λ

�
f2Λ2 ¼ q̄γμ∂μq: ð88Þ

q̄mq → q̄mq
�

1

f
ffiffiffiffi
Λ

p
�

2
�
M
Λ

��
1

M

�
f2Λ2 ¼ q̄mq: ð89Þ

We see that dimensional arguments work well for the
kinetic and mass terms of the quark Lagrangian, and it even
gives a correct estimate for the coupling of the pion to two
quarks, which is gπ ¼ M=f according to a quark analogue
of the Goldberger-Treiman relation.
It follows then that the scaling factor S for the conversion

from dimensionful c to natural c̄ coupling constants is

c̄ ¼ Sc; S ¼ fAþB−2ΛB
2
þCþD−2

MC−E : ð90Þ

Using this result, one can obtain the dimensionless values
of the coupling constants of the Lagrangian (7)–(9). We
collect them in Table IV. It is enough to know the order of
the corresponding values.
Let us discuss the naturalness of these values. The

couplings Ḡ; ḡ3; ḡ5; ḡ6; ḡ7; ḡ8; w̄10; w̄12 are of order 1 and
therefore they are natural. The couplings κ̄; ḡ1; ḡ2; ḡ4;
w̄1; w̄7; w̄8; w̄11 are one order suppressed. The coupling
κ̄2 is two orders less than the main set. They are unnatural.
There are several reasons for them to be small. For
example, κ̄ and κ̄2 both break explicitly the axial UAð1Þ
symmetry, violate Zweigs rule, and κ̄2 additionally breaks
chiral symmetry explicitly. The eight quark interactions
with couplings ḡ1; ḡ2; w̄7; w̄8 are 1=Nc suppressed com-
pared to four-quark interactions. The couplings ḡ4 and w̄11

break chiral symmetry explicitly. The relatively small value
of the coupling w̄1 of four-quark vector interactions is a bit
surprising. However, it is known that vector excitations
need more energy to be generated. For instance, in chiral
perturbation theory they appear only at p6 order. All these
naturalness considerations follow ’t Hooft’s notion of
naturalness: that a parameter is naturally small if setting
it to zero enhances the symmetry of the theory.

VII. CONCLUSIONS AND OUTLOOK

We studied a generalized three-flavor NJL-type model
with spin-1 mesons included. As a new aspect, we have
considered the explicit symmetry breaking (ESB) effects
induced by the multiquark interactions. The latter are
supposed to appear at low energies as a result of long
scale QCD dynamics. The standard quark mass term q̄mq is
considered to be a leading order term in the hierarchy of
possible multiquark interactions. These effects are known
to be important in chiral perturbation theory (due to a large
strange quark mass ms ∼ 100 MeV). The effective model
with multiquark interactions naturally incorporates the
vertices with higher powers of current quark masses, in

TABLE IV. The order of model parameters in natural units. We collect the nonzero dimensional couplings c, scaling factors S and the
order of dimensionless coupling constants c̄ ¼ Sc.

c G κ g1 g2 κ2 g3 g4 g5 g6 g7 g8 w1 w7 w8 w10 w11 w12

S f2Λ2

M2

f4Λ4

M3
f6Λ6

M4

f6Λ6

M4

f2Λ2

M
f4Λ4

M2

f4Λ4

M2
f2Λ2 f2Λ2 f2Λ2 f2Λ2 f2 f6Λ4

M2

f6Λ4

M2
f4Λ2 f4Λ2 f2M2

c̄ 1.0 −0.1 0.05 −0.1 0.01 −1.3 0.3 −0.5 −2.6 −0.7 −0.5 −0.1 −0.1 0.1 −0.5 0.3 −0.8
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terms of which the problem can easily be formulated. We
collected all such effective interactions (without deriva-
tives) and investigated their influence on the mass spectrum
of spin-0 and spin-1 mesons. Our result shows that the next
to leading order current-quark-mass corrections are trac-
table and essentially improve our description of meson
spectra. This is the main result of our work.
One should note that we are still far away from a

satisfactory theory for collective quark states. The approach
considered here adds to the many known attempts in this
direction an interesting new feature—the possibility to
study directly the internal mechanism of the bound states’
formation which includes not only the leading effect of
quark-antiquark pairing but also takes into account the
subleading effects due to the admixture of q̄qq̄q compo-
nents and ESB.
Our analysis can be extended in several directions. First,

the large amount of phenomenological results give us the
hope that we may estimate the importance of explicit
symmetry breaking phenomena for some processes. We are
working in this direction. Second, nowadays it is getting
clear that the multiquark interactions can be important for
the description of quark matter in a strong magnetic

background (for instance, in stars). It would be interesting
to understand which set of the effective quark-mass
dependent interactions is of importance here. A further
motivation comes from the hadronic matter studies in a hot
and dense environment. The critical points of the phase
diagram and even the type of phase transitions are sensitive
to the quark masses.
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APPENDIX A: THE EXPRESSIONS FOR
THREE-INDEX COEFFICIENTS habc AND Habc

The stationary phase equations of motion (23) fix all
higher order coefficients of the series (24). Here we show
the result of our calculations of three-index coefficients

hðiÞabc and HðiÞ
abc. Three of them (hð1;2;3Þabc ) have been already

computed. We present them here for completeness:

hð1Þfgh ¼ hð1Þaf h
ð1Þ
bg h

ð1Þ
ch

�
3κ

4
Aabc þ g1ð2δabhc þ δbchaÞ þ

g2
2
ð2dabedcde þ dadedbceÞhd

þ g3
4
ð3dabedcde − fabefcdeÞmd þ

g4
2
ð2δabmc þ δbcmaÞ

�
; ðA1Þ

hð2Þfgh ¼ hð1Þaf h
ð2Þ
bg h

ð2Þ
ch

�
−
3κ

4
Aabc þ g1δbcha þ

g2
2
ðdadedbce − 2fabefcdeÞhd

−
g3
4
ð3fabefcde − dabedcdeÞmd þ

g4
2
δbcma

�
; ðA2Þ

hð3Þfgh ¼ hð2Þaf h
ð2Þ
bg h

ð1Þ
ch

�
−
3κ

2
Aabc þ 2g1δabhc þ g2ðdabedcde þ facefbde þ fadefbceÞhd

þ g3
2
ðdabedcde þ facefbde þ fadefbceÞmd þ g4δabmc

�
: ðA3Þ

The other seven coefficients Hð1–7Þ
abc are new. They are

Hð1Þ
fgh ¼ hð1Þaf H

ð1Þ
bg H

ð1Þ
ch

�
w6δbcha þ

w7

4
ðdacedbde þ facefbdeÞhd þ

w8

2
dadedbcehd

þw9δbcma þ
w10

4
ðdabedcde þ fabefcdeÞmd þ

w11

2
dadedbcemd

�
; ðA4Þ
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Hð2Þ
fgh ¼ hð1Þaf H

ð2Þ
bg H

ð2Þ
ch

�
w6δbcha −

w7

4
ðdacedbde þ facefbdeÞhd þ

w8

2
dadedbcehd

þw9δbcma −
w10

4
ðdabedcde þ fabefcdeÞmd þ

w11

2
dadedbcemd

�
; ðA5Þ

Hð3Þ
fgh ¼ hð2Þaf H

ð1Þ
bg H

ð2Þ
ch

�
w7

2
ðfabedcde − dabefcdeÞhd þ w8fadedbcehd

þw10

2
ðdacefbde − facedbdeÞmd þ w11fadedbcemd

�
; ðA6Þ

Hð4Þ
fgh ¼ Hð1Þ

af h
ð1Þ
bg H

ð1Þ
ch

�
2w6δachb þ

w7

2
ðdabedcde − fabefcdeÞhd þ w8dacedbdehd

þ2w9δacmb þ
w10

2
ðdabedcde − fabefcdeÞmd þ w11dacedbdemd

�
; ðA7Þ

Hð5Þ
fgh ¼ Hð1Þ

af h
ð2Þ
bg H

ð2Þ
ch

�
−
w7

2
ðdabefcde þ fabedcdeÞhd þ w8dacefbdehdδacmb

þw10

2
ðfadedbce − dadefbceÞmd þ w11dacefbdemd

�
; ðA8Þ

Hð6Þ
fgh ¼ Hð2Þ

af h
ð2Þ
bg H

ð1Þ
ch

�
−
w7

2
ðfadedbce − dadefbceÞhd þ w8dacefbdehd

þw10

2
ðfabedcde þ dabefcdeÞmd þ w11dacefbdemd

�
; ðA9Þ

Hð7Þ
fgh ¼ Hð2Þ

af h
ð1Þ
bg H

ð2Þ
ch

�
2w6δachb −

w7

2
ðdabedcde − fabefcdeÞhd þ w8dacedbdehd

þ2w9δacmb −
w10

2
ðdabedcde − fabefcdeÞmd þ w11dacedbdemd

�
: ðA10Þ

APPENDIX B: BASIC STEPS IN DIAGONALIZING Vσ- AND Aϕ-MIXING

For the sake of completeness we describe in this appendix the basic steps made to avoid the Vσ- and Aϕ-mixing from the
meson Lagrangian. As in the main text, we focus only on the quadratic part of the Lagrangian density, where we preform the
following shifts:

Vaμ → Vaμ þ 2kafabcMb∂μσc

Aaμ → Aaμ þ 2k0adabcMb∂μϕc;

as well as FðVÞ
aμν → FðVÞ

aμν and FðAÞ
aμν → FðAÞ

aμν. The quadratic part of the Lagrangian now reads
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Lð2Þ
bos ¼

1

2
ðhð1Þab σaσb þ hð2Þabϕaϕb þHð1Þ

ab V
μ
aVbμ þHð2Þ

ab A
μ
aAbμÞ

þ 2ðHð1Þ
ab V

μ
akbfbcdMc∂μσd þHð2Þ

ab A
μ
ak0bdbcdMc∂μϕd

þHð1Þ
ab facdfbc0d0kakbMcMc0∂μσd∂μσd0 þHð2Þ

ab dacddbc0d0k
0
ak0bMcMc0∂μϕd∂μϕd0 Þ

þ NcI1
16π2

trF

�
ð∂μσÞð∂μσÞ þ ð∂μϕÞð∂μϕÞ −

1

3
ðFμν

ðVÞF
ðVÞ
μν þ Fμν

ðAÞF
ðAÞ
μν Þ þ 2I0

I1
ðσ2 þ ϕ2Þ

− fσ;Mg2 þ ½ϕ;M�2 −
�
Δudλ3 þ

Δus þ Δdsffiffiffi
3

p λ8

�
ðσ2 þ ϕ2Þ

	

þ NcI1
2π2

½facefbdeðVμ
a þ 2kafamnMm∂μσnÞðVbμ þ 2kbfbm0n0Mm0∂μσn0 ÞMcMd

þ dacedbdeðAμ
a þ 2k0adamnMm∂μϕnÞðAbμ þ 2k0bdbm0n0Mm0∂μϕn0 ÞMcMd

þfabcðVμ
a þ 2kafadeMd∂μσeÞ∂μσbMc − dabcðAμ

a þ 2k0adadeMd∂μϕeÞ∂μϕbMc�: ðB1Þ

We may then collect the mixing terms and write them as

Lð2Þ
Vσ ¼ NcI1

2π2
Vμ
a∂μσbMc

�
4kdfcbd

�
π2Hð1Þ

ad

NcI1
þ famefdneMmMn

�
þ fabc

�

Lð2Þ
Aϕ ¼ NcI1

2π2
Aμ
a∂μϕbMc

�
4k0ddcbd

�
π2Hð2Þ

ad

NcI1
þ dameddneMmMn

�
− dabc

�
: ðB2Þ

The diagonalization of the Lagrangian requires the vanishing of the coefficient for each combination of Vσ or Aϕ field
components in (B2). These diagonalization conditions may be written as

Mckdfbcd

�
π2Hð1Þ

ad

NcI1
þ famefdneMmMn

�
¼ 1

4
Mcfabc

Mck0ddbcd

�
π2Hð2Þ

ad

NcI1
þ dameddneMmMn

�
¼ 1

4
Mcdabc; ðB3Þ

which must be obeyed for each combination of a, b indices in the range f0; 1;…; 8g. These relations impose
conditions on the constants ka and k0a, and enable us to get rid of mixing. As a result we come to expressions (52)
and (53) of the main text.

APPENDIX C: MASS LAGRANGIANS

Following the introduction of meson fields and mixing angles in Sec. IV, we may write down the mass terms from the
Lagrangian densities of the spin-0 fields as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
ϱ2 þ 2M2

u

Hð2Þ
uu

��
ϱ2 þ 2M2

s

Hð2Þ
ss

�s
hð2Þus

�

þ πþπ−
�
ϱ2 þ 4M2

u

Hð2Þ
11

��
hð2Þ11 −

hu
Mu

�

þ ðKþK− þ K0K̄0Þ
�
ϱ2 þ ðMu þMsÞ2

Hð2Þ
44

��
hð2Þ44 −

hu þ hs
Mu þMs

�
: ðC2Þ

The only remaining mixing terms in (C1) and (C2) yield diagonalization conditions in terms of the mixing angles. These
can be written in the forms
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tan 2ψσ ¼
4

ffiffiffi
2

p
ϱ2hð1Þush

ϱ2



hu
Mu

− 2hð1Þuu − 2hð1Þud

�
þ 4M2

u

i
−
h
ϱ2



hs
Ms

− 2hð1Þss

�
þ 4M2

s

i

tan 2ψϕ ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2


ϱ2 þ 2M2

u

Hð2Þ
uu

�

ϱ2 þ 2M2

s

Hð2Þ
ss

�r
hð2Þus


ϱ2 þ 2M2
u;d

Hð2Þ
uu

�

hu
Mu

− 2hð2Þuu − 2hð2Þud

�
−


ϱ2 þ 2M2

s

Hð2Þ
ss

�

hs
Ms

− 2hð2Þss

� ðC3Þ

In the spin-1 sectors no mixing occurs between the neutral mesons, and the quadratic Lagrangians are simply written, in
the isospin limit, as

LðmassÞ
V ¼ 1

2
ρ0μρ0μ3ϱ

2Hð1Þ
uu þ 1

2
ωμωμ3ϱ

2Hð1Þ
uu þ 1

2
φμφμ3ϱ

2Hð1Þ
ss þ ρþμρ−μ

3

2
ϱ2Hð1Þ

11

þ ðK�þμK�−
μ þ K0μK̄0

μÞ
3

2
½ϱ2Hð1Þ

44 þ ðMu −MsÞ2�; ðC4Þ

and

LðmassÞ
A ¼ 1

2
a0μ1 a01μ½3ϱ2Hð2Þ

uu þ 6M2
u� þ

1

2
fμ1f1μ½3ϱ2Hð2Þ

uu þ 6M2
u�

þ 1

2
f0μ1 f

0
1μ½3ϱ2Hss

ð2Þ þ 6M2
s � þ aþμ

1 a−1μ

�
3

2
ϱ2Hð2Þ

11 þ 6M2
u

�

þ ðK�þμ
1 K�−

1μ þ K0μ
1 K̄0

1μÞ
3

2
½ϱ2Hð2Þ

44 þ ðMu þMsÞ2�; ðC5Þ

where we have identified ωns ≡ ω, ωs ≡ φ, f1ns ≡ f1 and f1s ≡ f01.
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