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Masses of the lowest spin-0 and spin-1 meson nonets: Explicit symmetry
breaking effects
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We extend a known multiquark three-flavor Lagrangian of the Nambu-Jona-Lasinio type, which includes a
set of effective interactions proportional to the current quark masses, to include the multiquark interactions of
vector and axial-vector types. It is shown that the mass spectrum of the four low-lying meson nonets are in
agreement with current phenomenological expectations. The role of the new interactions is analyzed in detail.
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I. INTRODUCTION

Since the formulation of the Nambu-Jona-Lasinio (NJL)
model, the study of the nonperturbative QCD vacuum and
low-energy phenomena on the basis of chiral symmetry and
its dynamical breaking modeled through effective multi-
fermion interactions has seen considerable development.
The NJL model was originally formulated in terms of a
single effective four-fermion vertex of nucleon fields [1,2].
The rise of the quark model and, later, of QCD, has led to
its reinterpretation in terms of colored quark fields and to its
extension to three flavors, which in turn led to the inclusion
of the six-quark U4 (1) breaking ’t Hooft determinant term
[3-6]. Chiral eight-quark interactions have been included in
later studies [7-9], completing the set of effective vertices
in the chiral Lagrangian which are relevant to the dynami-
cal breaking of chiral symmetry in four dimensions [10]. It
has been argued in [9,11], using arguments pertaining to N,
counting (including, in particular, effective potential sta-
bility conditions), that the six- and eight-quark vertices
constitute next-to-leading order terms in a hierarchy of
multiquark interactions, as opposed to the four-quark term
which is the leading order contribution.

Chiral symmetry is only an approximate symmetry of
strong interactions, being explicitly broken in QCD due to
finite current quark masses. The explicit chiral-symmetry
breaking is usually included in the NJL-type models through
a canonical mass term of the Dirac fermion field. It is known,
however, that the mass of the s quark is too large for SU(3) x
SU(3) symmetry to be very reliable at lowest order in
chiral-symmetry breaking. Thus, one should consider the
next-to-leading order (in quark masses) contributions.
Fortunately, the 1/N, hierarchy of chiral symmetric multi-
quark effective vertices implies that the hierarchy of explicit

fjorge.m.r.morais@ gmail.com
_l_brigitte@ teor.fis.uc.pt
*osipov @nu.jinr.ru

2470-0010/2017/95(7)/074033(22)

074033-1

symmetry-breaking terms may also exist [12,13] (the QCD
origin of the set of explicit symmetry breaking multiquark
interactions has been traced back recently in [14]). The
higher-order effects contribute to the effective quark masses
and lead to the chiral symmetry-breaking meson interactions.
This extension has been shown to improve the accuracy of
estimates within the NJL type effective approach in describ-
ing the scalar and pseudoscalar meson spectra, as well as in
yielding reasonable results for some strong and radiative
meson decays [12,13]. This extended version of the model
has been also employed in the thermodynamic study of the
chiral transition and of quark matter in [15]. It has been
further developed in order to account for isospin breaking
effects in [16].

Any description of strong interactions would be incom-
plete without an extension of the above mentioned ideas to
spin-1 states, most notably vector and axial-vector mesons.
This generalization, as it will be shown in the text, covers
two aspects of the effective multiquark interactions. First, we
include all possible chiral-symmetric multiquark interactions
of spin-0 and spin-1 types up to and including the eight-quark
local couplings. As aresult, the Lagrangian contains not only
conventional scalar- and vector-type four-quark interactions
but includes also their mixture: the eight-quark interactions
made from spin-0 and spin-1 chiral symmetric combinations.
Second, we classify and include all explicit symmetry-
breaking multiquark interactions in the approximation con-
sidered. Such a description may be regarded as an effective
Lagrangian approach at the level of multiquark vertices.
Despite the generality of this approach, the model has a large
number of coupling constants which must be fixed from
phenomenology. While this fact may be seen as a drawback
of the approach, it should be noted that these parameters
are less than arbitrary, obeying strict symmetry constraints
which bind them together in very specific ways such that their
sheer number is not an a priori guarantee that the relevant
observables may be accurately fitted. At zero temperature
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and density, the model has a limited predictive power due to a
degeneracy between certain parameter sets. Nevertheless,
this degeneracy is lifted as we introduce finite temperature
and density, leading to its exceptional relevance in the study
of thermodynamic properties of strongly interacting quark
matter at finite density, temperature, or in a strong magnetic
background, supplying us with a more detailed picture of
quark dynamics.

Let us give just a few motivations. It has been shown
recently [17] that the presence of vector modes has an
important impact on the equation of state, making it stiffer.
Indeed, in [15], the model’s equation of state with only spin-0
modes has been shown to be too soft for describing recently
observed compact stellar objects, whereas in [18,19] the
presence of effective interactions involving vector modes has
been shown to be instrumental in this description. In these
works, the strengths of the vector related interactions are
kept as free parameters. This provides a motivation for the
consistent inclusion of spin-1 states. Another interesting
prospect of the inclusion of spin-1 states is motivated by
the phenomenologically successful ideas of vector-meson
dominance (VMD) and universal coupling of mesons to
conserved currents [20] (it is well-known that the NJL model
supports both ideas [21]). We have a unique opportunity to
study the role of the full set of effective multiquark terms in the
description of strong and radiative decays of vector mesons
both in the unsymmetric Nambu-Goldstone phase and in the
symmeric Wigner-Weyl phase, including the important details
of the explicit symmetry-breaking phenomenon. This com-
parison may supply us with useful information about the
possible signals of chiral symmetry restoration in hot and
dense matter (where the role of eight-quark interactions is
more profound [15,22-26]), giving us insights into the
structure of the QCD phase diagram. There are also indica-
tions that the location of the critical endpoint is affected by
the special role of the vector-channel interaction in the
medium [17,27].

There are several different approaches aimed at including
spin-1 mesons in the effective chiral Lagrangian [28-35].
These contain the “nonlinear realization” [28-30], “massive
Yang-Mills” [31-33], “hidden-gauge” [33,34], and “antisym-
metric tensor-field” [35] formalisms. Despite the rather
different forms of their Lagrangians, all of these approaches
are in principal equivalent [36-38]. Each corresponds to a
different choice of spin-1 fields and their transformations.
This is illustrated rather well in NJL-type models, where there
is considerable freedom in the choice of auxiliary fields in the
vector and axial-vector channels [39—41]. In the present work
the physical spin-1 fields belong to the linear representation of
the chiral group. This scheme leads to the most economical
structure of the effective Lagrangian. A further simplification
is related with the way we remove the 7a; mixing term. We do
this by a linearized shift in the definition of the axial-vector
field. This transformation does not lead to chiral symmetry
violations [42], although it changes the chiral transformation
properties of the axial-vector and vector fields in the broken
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vacuum. Such diagonalization generates a minimum number
of vertices in the effective Lagrangian.

Another kind of approach which treats the low-lying axial
vector nonet as dynamically generated meson-meson reso-
nances is also employed in chiral effective models. Examples
may be found in [43] and [44-46], with the latter works
interpreting scalar mesons as being also dynamically gen-
erated resonances. These approaches are in contrast with
other works such as [47,48], where the four spin-0 and spin-1
nonets are included in the large N, ground state of QCD.
Combined information from lattice data, dispersion relations
and sum rules is being used [49,50] to address the question of
whether the axial vector a;(1260) meson achieves degen-
eracy with the p(780) meson in the context of chiral
symmetry restoration in relativistic heavy ion collisions.
This might help to clarify the dispute regarding the nature of
opposite parity states as being chiral partners or not.

The main goal of this paper is to generalize the result of
previous works [12,13,15] and include the spin-1 degrees
of freedom in the effective meson Lagrangian together with
corresponding important accompanying effects due to
explicit chiral symmetry breaking. To fix the parameters
of the model we calculate the masses of spin-0 and spin-1
low-lying meson states. The applications of the obtained
model will be considered elsewhere.

The present paper is organized as follows. In Sec. I we
briefly present the construction of the effective multiquark
vertices of the model, which had already been thoroughly
discussed in [12,13] for the spin-0 case. We then proceed to
bosonize the effective Lagrangian in Sec. III using a func-
tional integral approach by introducing the physical boson
fields as well as a set of auxiliary fields corresponding to quark
bilinear structures. The auxiliary part of the functional
integration is carried out in a stationary phase approximation
(SPA) in subsection III A, and the Gaussian quark integration
is performed using a heat kernel technique in subsection I1I B.
After the bosonization procedure, we focus on the quadratic
part of the bosonized Lagrangian in Sec. IV, where we address
the mixing between spin 0 and spin 1 boson fields and explain
the necessary steps to get the meson kinetic and mass terms in
standard form. Also in Sec. IV, the weak decay constants of
the pseudoscalar mesons are computed from the quadratic
part of the bosonized Lagrangian using the PCAC hypothesis.
Finally, in Sec. V we discuss the fitting of the model’s
parameters, with a particular focus on the possibility of
reproducing the whole low-lying spin-0 and spin-1 meson
spectra.

II. EFFECTIVE MULTIQUARK INTERACTIONS

Here we provide a brief review of the assumptions and
procedure behind the construction of the effective meson
Lagrangian. We refer to [12,13] for a detailed description.
Then, we extend these ideas to the case with vector and
axial-vector mesons.

The dynamical breaking of chiral symmetry in the light
quark sector (u, d and s flavors) is proven to be a crucial
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mechanism for understanding the nonperturbative regime
of QCD. An effective description of such regime a la
Wilson requires a characteristic cutoff scale A to be of the
order of the spontaneous chiral symmetry breaking scale
Aysp ~ 1 GeV, and presents itself as a natural expansion
parameter for a chiral Lagrangian based on effective multi-
quark vertices. The leading order effective Lagrangian
includes local four-fermion couplings normalized to the
A cutoff scale. The higher-dimension multiquark operators
are responsible for next to leading order corrections in the
description of the low-energy physics and correspondingly
normalized to higher powers of A.

Furthermore, the explicit breaking of chiral symmetry
due to finite current quark masses is extraneous to the
strong interaction itself and may be realized by allowing the
quarks to interact with an external source y; this approach
facilitates the inclusion of the most general set of explicit
symmetry breaking terms which are relevant at the order in
A and N, to which chirally symmetric terms are included.

Following the standard procedure, we define the quark
bilinears (currents)

Pa = qinAaqv
da = qr'Yshaq. (1)

Sq = qﬂaqv
1)5 = qy”ﬂaq’

where ¢ is the quark field; y# and y5 are Dirac matrices; the
index a takes on the values 0, 1, ..., 8; 1, are standard U(3)

matrices, where g = \/% x 1 and the rest are the conven-

tional SU(3) Gell-Mann matrices, which obey the trace
orthonormality condition tr(4,4;) = 28,.

Using Eq. (1) and completeness relations
> 8 —0(2a)ij(Aa)mn = 26146),,, One may obtain the flavor
components of the quark bilinears

1< . _
L= 5; (Sa +iPa)(Aa)ij = 2qr;qLis (2)
13
Z:-rj = EZ (Sa - ipa)(ﬂa)ij = 2QLjCIRi’ <3)
a=0
138
R, = EZ (va + aa)(Aa)ij = 2qri7" qri> 4)
a=0
13
L= EZ (v — da)(Aa)i; = 217" quLi- (5)

a=0

Here g = Prq, 91 = Prq, gr = P1. G = qPg, where
Pry =3(1=£ys) are the right and left chiral projection
operators. The action of the U(3), x U(3), group on quark
fields is described by the unitary matrices Vz and V;:
q'(x) = (VePr+ ViPL)q(x) = Vrgr + Viqr. As a
result, we find
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Y =V, IV}, Y= VRzivi,
R* =VgR'VE, L=V L'V, (6)

The terms of the effective multiquark Lagrangian are built
from the quark bilinears X, =, R#, L#, the scale A, and the
external source y (the field y is assumed to transform as X and
finally will be used to introduce explicit symmetry breaking
effects), in a way which respects hermiticity, Lorentz and
chiral invariance, as well as discrete symmetries such as parity
and charge conjugation. Dimensional analysis together with
the restriction to terms which contribute to the effective
potential at A — oo are employed in the selection of the
effective terms which are considered relevant. These include
the well-known four-, six- and eight-quark terms

Lin = %tr(ZTZ) + % (detX + det ")

91 9
+ AT (r=x)? + Ftr(Z:Tz‘.ZTZ‘.), (7)
among which the U, (1) breaking 't Hooft determinant
(proportional to k) is included. Additionally, the 11 explicit
symmetry breaking spin-0 terms are considered in [12,13]

Ly =—tr(ZTy +4'%),

Ky
‘cl = _Xeijkemnlzim)(jn)(kl + H'C"

2
['2 = _eijkemnlzimz‘jn)(kl +H.c.,
Ly = 9&(2*22* )+ H.c
3 G X -C.,

g
L, = A—ttr(ETE)tr(ET)() +Hec.,
L —ﬁtr(zT fy) +He

5 _A4 X=X d]

Lo = %n(z"‘zﬂ;{) tHec.,

L; = % (r=fy + H.c.)?,
Ly = % (r=ty — He.)?,
9o

Lo = Ptr(ZT)(;(U() +Hec.,

Lo = %u(zmu(xu) +He. (8)

In these expressions, the barred G, ¢’s and «’s are
dimensionless effective couplings; the traces and determi-
nants refer to flavor space only, and ¢, is the Levi-Civita
symbol in flavor space. Both £;,; and the various £; terms
have already been discussed in [12,13], where it has been
argued that they form a (spin-0) complete set in an expansion
in N, with the term proportional to G and L, being the
leading order contributions (O(N')) and the other terms
being the higher order in 1 /N . expansion. This classification
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of multiquark effective terms within an N, expansion has
been shown to be consistent with the expansion in 1/A, i.e.
the full Lagrangian thus considered consists of all the terms
which yield a contribution to the effective potential up to the
order O(A®). The N, counting assignments for the effective
couplings which follow thereof have been pointed out as
G, k1, 9os 910~ NZ', k2,95, 9697, 98 ~ N2, K, g3, 94 ~ N2,
and ¢y, g, ~ N-*, with A ~ NO. Furthermore, it has been
pointed out that the terms proportional to «k,ky,k,,
g1 94> 97+ 93, g0 trace Okubo-Zweig-lizuka (OZI) rule vio-
lating affects, while those proportional to g», g3, g5, s, 9o
express an admixture of four-quark components ggggq to the
gq one. As a final remark, it has been noted that the terms
proportional to xy, gg, 919, Which are bilinear in quark fields,
may be related to the known Kaplan-Manohar ambiguity
[51] in the definition of current quark masses, so that these
couplings may be set to 0 without loss of generality.

In this work, we do not consider multiquark effective
terms with derivatives. In a local multiquark Lagrangian,
derivative interactions contribute only (through bosoniza-
tion) to radial excitations of the meson fields [52,53]. For
modeling the low-lying states, these contributions are then
dispensable. Derivative terms would further allow for
nonhomogeneous quark condensates, a feature which is
also beyond the scope of the present work.

To extend the above ideas to spin-1 states we follow here
the same logic. As a result, we were able to identify 13 new
terms which include R* and L* quark bilinears:

wi
Ly = ptr(R”RM +L*L,),
W)
L= A5 tr(R“R, + L*L,))%,
w3
£y = S [w(R'R, — L'L, )P
Wy
Ly =g u(R'R'RR, + L'L'L,L,).
Ws
£y = Su(R'RRR, + L'L,L'L,).
£ ="Cw(ReR, + L'L,)r(S1E)
6 A8 U Iz ’
L= &tr(ZTL”ZR )
7T A8 uls
Wy .
Ly = -Ju(Z'ERR, + EEILAL,).
L= %tr(R"Rﬂ + LML) (Zhy + ),

Wig

Lhy = 6 — tw(y'LFER, + ZTL*YR,),

Wiy
1= ul(ETy + X DRR, + (S +4=N)LIL),

A6
ﬁ/l2 = Ftr(;(TL”)(Rﬂ),
! —w”tr(;ﬁ R‘R, + yx LML 9
13 = 3 U ARR, + oy ) 9)
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Also here, the w’s are dimensionless effective couplings. £/
is the only four-quark term and it is the spin-1 analogue of
the term proportional to Gy in the usual NJL-type model.
Terms £}, to L5 are purely spin-1 eight-quark terms, while
Ly to L represent mixed eight-quark terms involving both
spin-0 and spin-1 components. Finally, the five terms £ to
L, complete the set of explicit symmetry breaking terms
which are relevant at next-to-leading order. The terms
proportional to w,, wsz, wg, Wy express OZI rule violating
effects, while those proportional to wy, ws, wy, wg, Wyg,
W11, Wia, W3 are related with an admixture of four-quark
4qgq components to the gg one.

III. FUNCTIONAL BOSONIZATION

In order to have an effective model in terms of hadronic
degrees of freedom, we proceed to bosonize the multiquark
Lagrangian. The starting point is the functional integral

Z= / DygDge' [ ¥+ (10)

where the Lagrangian density £(x) is given by
1 15
L=igr0,q+ L+ Y Li+> Li  (11)
Next, we use the functional representation of unity [6]
1= /Dsa,DpaDU’;Dazé(sa - ‘_])*aq)5<pa - ZZ]A()]’SQ)

GAqr*q)d(dl

/Da quaDVaﬂDA,m/DsaDpaDvﬁDaﬁ

x 8(vly — —qA"75q)

X elfd x[”a Sa_qluq>+(/)a(pa_iqiuysq)'«’vap(vﬁ_ql(xyﬂq)+Auy (uﬁ_qiaYMYSq)]
(12)

as a tool to introduce into (10) the auxiliary bosonic fields
6 =044 ¢=,A,, V¥ =VHl, and A¥ = A41,. The
resulting functional integral reads

/Da DqﬁaDVWDAW/DS Dp,DviDdhe i [ dixL,
X /Dq/quifd xq i?’"a;«_"_iVSZI’—Y"V,,—]/”}'SA#)q (13)
where we have defined the Lagrangian density

8 13
) = Eint+2£i+2£; +Su(6a _ma)

+ Putpa + VaV 4y + diAy, (14)

Eaux(sv p,v,a
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with the previously defined quark bilinears rewritten as
functions of the auxiliary boson fields s,, p,. V%, ds
(k1 = g9 = g10 = 0), and with the substitution y = m/2,
m being the current quarks mass matrix. These expressions
read

L = 3o (5 P2) s A5 = 3o
+ 4% (sa + pa)?
SAg [dapedeae(SaSp + PaPp)(ScSa + PePa)
+4fapef caeSaScPoPals (15)
and

wy
A
L) = 2 (Vavyy, + daay,),

)
Lh = 5 (Vavg, + a’éaaﬂ)z,
4w,
[’{i = F (U/éaau)2’
E:; = 4A8 (dacedbde facefbde)[(vﬁvby + aﬁaby)(”?”du + agadu)_l_(vﬁabu + al:lvbﬂ)(vzadu + agvdu)]?
Ws
['/5 = 4A8 dabe cde[(vtlvbu + aaabﬂ)(” Vay +a adl/) + (U,(;abﬂ + agvby)(”zady + Cl?”@)],
Weg
‘Clﬁ = 2A8 (/Ullvaﬂ =+ aaaaﬂ)(sb + pb)
£/7 = 8/\8 [(dacedbde facefbde)(sasb + papb)(UlclUdﬂ - agadﬂ)—i-(faeedbde + dacefbde)(sapb — pasb)(a}clvdﬂ — Ugady)],
Wg
[’g = 4A8 dcde [dabe(sasb + papb)(ylgvdﬂ + agadﬂ)"’fﬂbe(pasb - sapb)(ylz‘adﬂ + alz‘vdﬂ)]’
Ly= A6 (vavaﬂ + daag,)s,my,
Wig
o= SAS (dacedpde = Facef bae) (Samy + $pma) (Vevgy = @eagy) +(facedbae + dace bae) (Paty = Poma)(Veag, — acvg,)],
Wiy
/11 = mma [dabesb(vlcl'vdy + alcl'ady) - fabepb(vl:‘adﬂ + agvdﬂ)]dcde’
r W12 d . d M M
12 = 8/\4 ( ace%bde — facefhde)mamh(vc‘vdﬂ - acady)’
W3
/13 4/1\4 dabedcdem mb<vc Vdu +ac ady) (17)

In these expressions, f,,. are the antisymmetric structure
constants of a Lie algebra ([A,, 4] = 2if ,pcA.) related to
the U(3) flavor group, while d,;,. are the corresponding
symmetric constants ({4,,4,} = 2d,s.4.), and

1
Agpe = §€ijk€mn1(ﬁa)im (flb)jn(/lc)kz (18)

is a totally symmetric tensor in flavor linear space.

PHYSICAL REVIEW D 95, 074033 (2017)

3]('2
£2 Aabc’na(sbsc_pbpc)7

2A3
g
'63 _413 [dabedcdesb(s sd+pcpd) 2fabefcdepbpcsd]’
g
£4 2/‘\‘6 (sa+pa)sbmb»
'CS 4A4 (dabedcde fabefcde)mbmd(sasc - papc)ﬂ
£6 g6 dabedcdemamb(s Sd— P ‘pd)v
4N* ¢ ‘
97
£7 —F(Sama)zv
Js
L= (puma. (16)

and correspondingly for spin-1 fields

In the Nambu-Goldstone realization of chiral symmetry,
the scalar field o develops a finite vacuum expectation
value (6) = M. In order to properly describe excitations
around the true unsymmetric vacuum we make a shift
o — o+ M in (13). M may be interpreted as a constituent
quark mass matrix. Defining A =M —m, we may

rewrite (13) as
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Z= /DG D¢,DV DA, /DS Dp,DvDd,e i [ L
h / DyDge' | 4320 d=M=o=irst=1"V,=1'rsA)q
= /DG ngaDV DA fdAX(‘CSPAJﬂCHK)' (19)

Here the auxiliary Lagrangian density L, is given now by

8 13
Eaux = Eint + Z‘Cl + Zﬁi + sa(aa - Aa)
+ Patba + ViV + diAy,. (20)

The full bosonized Lagrangian appearing in the last line of
(19) comprises contributions from the integration over
auxiliary fields,

o [ eLsen _ / Ds,Dp,Di*Date’ | “m (1)
and from the quark Gaussian integral

eifd4XLHK _ / 'Dq'Dc—Ieifd4x‘?(i7”8u—M—5—i}’5¢—}’"Vy‘V”YS/“y)11_
(22)

The former is performed using a stationary phase approxi-
mation (SPA), while the latter is computed with a modified
heat kernel technique.

A. Stationary phase approximation

As was done in [12,13], the functional integration in (21)
is performed by means of a SPA; the auxiliary fields
S4s Pa» Vi, @ have no kinetic terms and yield the simple
classical equations of motion

aEaux - aEaux
asa Sa:szl a apa pazpfzf
a‘caux a‘C'aux
= = =0. (23
61)/:1 Lﬂ:vi«lﬂ (9a’:z a‘;:a‘;‘” ( )

We seek solutions in the form of a series in powers of
boson fields o, ¢, V4, AL

sy =h, + hill)ab + h<1) 0y0c + hizfl)c'd)bqﬁc

abc

abc abc
@5, + haquﬁbo + Hﬁlh{v“A T
MSf — H((zb)vﬂ +H( )vaﬂ —i—H( ) ¢bAfC‘_|_

abc abc

o VE+HD g A (24)

abc

M”—H()Aﬂ—f—H

abc

PHYSICAL REVIEW D 95, 074033 (2017)

By equating the coefficient of each monomial combination
of fields in (23) to zero, we are able to express the several
coefficients 4 and H appearing in (24) recursively in terms
of the model parameters. The first such expression stems

from the O(1) term in 89’6 ax and yields an implicit cubic

expression for the £,,. It turns out that 1, = O fora # 0, 3, 8
(i.e. only the diagonal components of h = h,4, are non-
zero). We may choose to transform the index a into a
fundamental flavor basis i =u, d, s with h, = e,h;
(a=0, 3, 8) and

W) | V2 V2 V2

ey = ;”—ﬁ V3 =V/3 0 |. a=0,3,8.
1 1 =2

(25)

Then the system of three equations to find 4; is

h;
A +— (4G +2g,h* + 2g,mh) +

K
+ Z tijkhjhk + Kztl'jkhjmk

+ % 3g3h? + gah* 4 2(gs + ge)m;h; + 4g;mh] = 0.

(26)

Here we use the definitions h> = hj + h% + h? and mh =
myh, + mghy; + mghg. The h; are in direct connection with
the quark condensates (g;q;) which play the role of order
parameters in the transition between Wigner-Weyl and
Nambu-Goldstone realizations of chiral symmetry. The
conditions (26) had already been found in [12,13], a fact
which indicates that the inclusion of vector modes in the
model has no direct impact in the SPA conditions for the

quark condensates.

Expressions for the two-index A, and H ,, coefficients
may be computed from linear monomials in (23). The
result is

=217 = (2G + g + gumh)5,, + Agihghy
+ 3A e (KD + 2Kym,)
+ 92(dapedede + 2dacedpae)heha
+ 93(dapedede + dacedpde + dadedpee) hema
+ 2g4(hgmy + hym,)
+ 95(ducedpde = FaceS bae)memy
+ 96dapedcaememy + 4gymymy, (27)
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20h1 = (2G + g1+ gamh)S 4y — 3Ape (Khe +2k3m,)
+ 92 (dapedcae +2f acef vae) heha
+93(dapedcae + faceS bde + Fadef bee) e
= 95(ducepae = facef bae) MMy
+ 96dapedeaememag —4ggm my, (28)
|

PHYSICAL REVIEW D 95, 074033 (2017)

where again the inclusion of vector modes has no direct
consequence on the above formulas, which have been
previously obtained.

On the opposite, two other coefficients Hglb) and Hf,’)
associated with vector and axial-vector terms are new. They
are given by the following expressions

_2{H§11b)}_1 = (4W1 + W6h2 + 2W9mh)5ab + & (dacedbde - facefbde)hchd

+ WSdahedcdehchd + WIO(ducedhde - facefhde)hcmd + zwlldabedcdehcmd

W12

+ T (dacedbde - facefbde)mcmd =+ WISdabedcdemcmd’ (29)

_2[H<<12b>]_1 = (4W1 + W6h2 + 2W9mh)5ab - % (dacedbde - facefbde)hchd

+ W8dabedcdehchd - WIO(ducedhde - facefbde)hcmd + 2W11dabedcdehcmd

Wi
2

The striking similarity between the two expressions (29) and
(30), where the only difference is in the signs of those terms
proportional to w4, wqo and wy,, is a noteworthy aspect with
important consequences regarding the fitting of the model’s
parameters. Another interesting feature of these expressions
is the apparent decoupling between spin-0 and spin-1 related
parameters; the new w’s enter only in the new coefficients
H ,,, with none of the old parameters entering alongside.
The three-index coefficients 4. and H ;. are determined
from quadratic (or bilinear) monomials appearing in (23),
|

(dacedbde - facefbde)mcmd + WISdabedcdemcmd' (30)

[
whichwe collectforfuturereferencein Appendix A. Weremark
that the apparent disconnection between spin-0 and spin-1
related parameters is again manifest in these expressions.
This procedure can be extended to obtain the higher
index coefficients. As a result the coefficients 4, (and
couplings of multi-quark interactions) fully determine all of
them. Finally, all these recursion relations may be used to
find the contribution to the bosonized Lagrangian density
resulting from the SPA functional integration; it reads (up
to cubic terms in the fields)

1
Lspa(0,¢. Vs Ay) = heoy + 5 (h(;b)aaab + hfb)dracbb + Hgllb)VZVbﬂ + Hfb)AZAbM)

2

1
0 (3 M0+ Wt 4 HLVIV e+ HAAL ) 4 HOL ViAo G

Equation (31) sheds light onto the physical role played by
the various % and H coefficients. The &, are related with the
amplitude of the tadpole o, terms, i.e. with the vacuum
expectation value of the o, field. The two-index coeffi-
cients express SPA-contributions to the masses of the boson
fields, while the three-index coefficients yield contributions
to the couplings of effective three-field interaction vertices.

B. Quark determinant

The calculation of the quark determinant contribution to
the bosonized Lagrangian is performed with a generalized
heat kernel technique [54-56] which accommodates the
possibility of a nondegenerate mass matrix M. The method
consists of a suitable resummation of the heat kernel series
which ensures that, to each order in the modified series
expansion, the resulting contribution to the bosonized
Lagrangian remains consistent with the predetermined

chiral symmetry requirements. The Gaussian functional
integral (up to an overall unessential constant) may be
rewritten in an Euclidean metric as

/DqDZ] exp <—/d4xEc"1DEq) =detDg, (32)
with the Dirac operator

DE = i}’(la(l - M — 0 — l]/5¢ + yava + yaySA{l‘ (33)

The contribution of the chiral determinant to the real part
of the effective action can be found in accord with the
following formal manipulations

det Dy — det|Dy| = det\/DLDy

— plndet\/DyDy _ e%trlnD*EDE’ (34)
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by which the modified heat kernel expansion results in a
series of the form

1 + d4xE -
EtrlnDEDE = - anzoln_ltr(bn). (35)

Here
1
I, =— J, (M? 36
n 3 l:uzds ﬂ( 1 ) ( )
and
2 © dt 2\ —rM?
Jn(Mi> = 0 Tz_np(TA )e ! (37)

are the Schwinger’s proper-time integrals in which a
regulating kernel p(zA?) is specified as a Pauli-Villars
type regulator with double subtractions [57,58]
p(TA2) = 1 — (1 +7A2)e™™N, (38)

The generalized Seeley-DeWitt coefficients b,, for the
spin-0 version of the model have been obtained in [12,13].
These can be translated into the appropriate form for the

model under study through the procedure described in [59].
The first three coefficients read

by =1 (39)
by=-Y (40)

Y2 Ap Az + Ay F(zz/}
L Ruy ABTOny Td (g
b, 2+2/13+ 3 A3 127()

where A;; = M} — M7 and with the following definitions:
Y =06>+ {6, M} + ¢* — iys[p, 6 + M|

. . 1
+ lyav:z (6 + 17/5¢) - Z [7/(1’ y/i}raﬂv (42)
|

2y 1,q 2 1
Lo = 5 (hig)ou0n + hG dupy + Hy)

NI Lo ,
e |(04a)(0,0) + (0°)(0,0) = 5 (Pl LY + Py FL)

167>

1672

N_ 1
+— ltrF {[‘P’M]Z —{o,M}* - (Aud% +T

—[Ve, MV, M] +{A", M}{A,,

NI ,
+ 8”; tr(i[V¥, M]d,0 — {A*, M}8,).
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Vio=0,0—-{A,, ¢} —i[Vy4 0+ M| (43)
Vo = 04 + {Ag.0 + M} = i[V,. @], (44)
Veap =0,V — 05V, — i[Vy, V/;] - i[Aa,A/;] (45)
Ay = 0,Ap — 0pA, — i[V{,,A/;] —i[A,, Vﬂ], (46)
Cop = Vop + 75A45- (47)

Just as in the spin-0 version of the model, both b, and b,
provide contributions to the spin-0 boson masses and to the
gap equations. The latter arise from the requirement that the
o tadpole term of the overall bosonized Lagrangian Ly, =
Lspa + Lyk should vanish. To order n =2 in the heat
kernel expansion the gap equations are

N
h,’ +6—C2M1[310 - (3M12 - MZ)IJ — 0,
JT

(48)
with M? = M2 + M2 + M?. Their form is unaltered by the
presence of spin-1 modes in the model.

IV. MASS DIAGONALIZATION AND WEAK
DECAY CONSTANTS

Let us consider now the free part of the Lagrangian
density, which comprises the kinetic and mass terms for the
boson fields. By requiring that the kinetic terms have the
standard form (i.e. yielding propagators with a residue of 1
at the pole), we may determine appropriate renormalization
constants for the fields. From the mass terms we are able to
extract the relations between the boson masses and the
model’s parameters which are essential for fitting the
model. The computation of axial currents is also dependent
on the field renormalization constants, and may in turn be
used to find expressions for the weak decay constants of the
pseudoscalar mesons by applying the PCAC hypothesis.
The decay constants may also be employed in the model’s
fitting. With this in mind, we gather the quadratic terms of
the full bosonized Lagrangian density and write them out as

2
VAV, + Hip AlAy,)

A)

A A
us + ds /18> (02 +¢2)

M}] + Aé"[” try (6% 4 ¢?)

7[2

(49)
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Here, Fl) =8,V,—0,V,
associated with the vector field, and similarly for F ,(fl‘,).
The traces try are to be taken in flavor space. From Lgp, in
(31) we get the four mass terms appearing in the first line of
(49). Further contributions to the spin-0 mass terms stem
from both the b, (the term proportional to I, in the fourth
line) and b, terms in the heat kernel series in exactly the
same form as in the spin-0 version of the model. From the
b, term we additionally get all the kinetic terms (shown in
the second line), as well as mass terms for the vectors and
terms mixing spin-0 and spin-1 fields in the combinations
VFO,0 and A*0,¢ [last line of (49)]. This mixing is a
known feature arising due to spontaneous chiral symmetry
breaking (for axial-vector modes) and explicit symmetry
breaking (for vector modes) (see e.g. [39,60]).

In order to be able to interpret elementary excitations of
the boson fields as mass eigenstates, we need an adequate
redefinition of the fields which eliminate the aforementioned
quadratic mixing terms. There are several possibilities here.
One may use the covariant approach [60] which conserved the
chiral transformation laws of spin-1 fields, or a conventional
approach [40,61-63]. The latter changes the transformation
laws of spin-1 states but is simple with minimal impact on the
structure of the Lagrangian and without violation of chiral
symmetry. In our case, however, a shift V,, - V, + kX, and
similarly for A, - A, + k'Y, where X, = —i[M,0,6],Y
{M.,0,¢}, is not enough to achieve diagonalization. The
reason is that with the inclusion of the complete set of next-to-
leading order multiquark terms, after a shift of the V, and A,
fields, each combination of field components V’Z,aﬂab (and
A%0,¢,) willin principle need a different condition in order to
be eliminated due to the complex structure of the H,,
coefficients. This leads us to introduce shifts of the form

is the field strength tensor

Va;t - V + k Xa;u Atl/l - Aaﬂ + kizya;u (50)

Xau = ZfabCMbaﬂG(," Yaﬂ = 2dabchaﬂ¢c’ (51)
where the index a in k,, and k/, is a free index. This means that
each component of the fields V4 and A% is independently
shifted by a constant times a combination of mass and field
components. Such shifts do not change the field strengths
ng‘,fl)/ - FE,‘;Z), and FE:;‘,B, — Fﬁ,f,l

Following the steps described in Appendix B, we obtain for
the coefficients k, related with the Vo-mixing the conditions

1 42HY 42 H)
a— M —M)? = 2 M. — M2
P NI, + (M, d) NI, + (M, )
| 422HY) 4n*H Y
— = M,-M — 3 L (M, -M
kis N, + = NI, + o
I 4n’Hy 4n*HYy)
. M, - M2 =——"TT + (M, —M)?>.
ks N, + (Mg 5) NI, + (M, 5)

(52)
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In these expressions, we have made explicit the fact that
H,(,1a> = H,(fb) for the pairs of indices (a,b) = (1,2), (4,5),
(6,7), which in turn results in the equalities k; = k,, kg = ks,
and k¢ = k. These equalities connect pairs of components
which contribute to the same U(3) matrix entries and are, in
light of that pattern, unsurprising. The constants k), k3, kg [or
alternatively k,, k;, k, in the flavor (u, d, s) basis] remain
unconstrained by the diagonalization requirements, since
mixing terms of field components associated with them are
already zero due to the well-known properties of the anti-
symmetric constants f,.. Therefore, we may choose k, = 0,
a=0,3,8.

To avoid the A¢-mixing we come to the following
conditions:

%2 - % + (M, + M) = 47;;5%22) + (M, + M)
k;j:‘“]ig? + (M, +M,)? ‘%HMﬁM‘Y)Z
N 85(1) A )

As in the previous case, we recognize equalities k| = &,
kj = k%, and kg = k’,, which rely on equivalent equalities

among HY components. Furthermore, we have defined

the constants k’. in the flavor basis i=u, d, s as
K, =2 ke, and H;; =, ,Huegep;. It should be
noted that 2H ,, ;; = H1,, in the isospin limit, whereas
2H; =H,, for all i € {u,d,s}, a#0, 3, 8 in the full
degenerate case (m, = my = my).

Besides dealing with the mixing terms in the quadratic part
of the bosonized Lagrangian, the shifts (50) contribute to the
kinetic terms of the spin-0 fields which are expressed in (B1).
With the use of conditions (B3), as well as (52) and (53), the
full kinetic terms of these fields may be simplified to

NI1

ﬁ(kin)

o =

o+ Gaa Gb( ap + 4kefacefbdeMch)

k,
2.5

a#0,3.8

H Ell; #6,0,0,

167:

kin) Nl
L((/) ) = 871'21 aﬂqsaa;tgbb (5ab - 4k/edacedbdeMch)

i=u,d.s

Ka 11 (2) o
Z ?Htwa ¢aau¢a-

a#0,3.8

K
= Y SHY G+
i=u.d,s

(54)

These expressions lead us to define the necessary field
rescalings for obtaining kinetic terms in their standard forms.
These are

074033-9



J. MORAIS, B. HILLER, and A. A. OSIPOV

0i =\ 7.0 =0 (i=u,d,s),
ctl
1
6,— PO 1—1—5 o, (a#0,3,8),
L o145 (i=ud
¢i_) Zk;Hl(lz)qsl_Q +?¢t (l_u’ ,S),
! = 1 ff 0,3,8
¢a_) k' Eﬂ)‘ﬁd*@ +?¢a (a;é s )’

with ¢*> = 47?/(NI,) and

(55)
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Zaa a+ Z@”o

l u,d,s

+% ZS { <2h”)—£1—> 4M2}

i=u,d

M M
‘71"‘52 <92+ ¢ )( 511)

64+65 <02+

‘76""77 <92+

a;e03s

226,0]92}1 L

i#

hu—hy
M,—M,

) (-
)(g;

60)

=0
i)

= MumMa oy (M M)
1 =% = 1 , 1 =6 = > )
H, HyY
(Mu_MY)Z 1 (Mlt+MY)2
===t H=g=t = ¢;0, P 0ytha
N > ng) N > Hé(é) l ;s Za;ﬁ()ZKS !
(Md_Ms')z 1 (Md+Mv)2 2 (2) hi
g=g=—=_ 0, dod=lT + ¢; 2hi; — T
2 ii )
Hé()) H66) 4, u.ds u Mi
2M? 2 2
& = 56 2MEN (2, 2M7N )
ey (56) 4= Zqﬁ i, (@+75 ) e o h;
z#/ ii Ji
One should keep in mind the relations between H;; and H,,,, n 1 P+ (o (M, +M,)? B _ hy,+hy
as stated after Eq. (53). b2 H§21> M, 4+M,
In exactly the same way, one may extract the kinetic 5
terms of spin-1 fields in (B1), gy (@ Mut M) (o) by
2\t s @ “ UM, M,
(kin) _ By w (V) 1 ) 5 2 (Md—i-MS)Z (2) hd+hs
[’V - 4871’2 trF(F(V)F/W )’ +§(¢6+¢7) 0"+ (626) h66 Md+Ms ’
kin h v (A
L3 =~ e tre(FU L), (57) (61)
and rescale them as
@__1 v v v
3 Ly’ =-2 ZFﬂ(V)Fl#U__ZFﬂ Faw
| EQVZ’ i=ud,s 0,3,8
3 1
+23 v, 0%HY
3 > ViVaeH;
Al — | [Sedt, (58) 4 s
3 [ NI
+ a (ViVi, 4+ VEVa,)0? H(111) 4C 21 (M, - Md)2:|
in order to obtain standard kinetic terms for spin-1 fields. L T
Finally, we apply the rescalings defined in (55) and (58) 3, " 1 , NIy )
to the remaining terms in (B1) so that we may rewrite the T2 + 7 (ViVa +VsVs,)e* | Hy ) (M, ~M,)
quadratic part of the bosonized Lagrangian density as 3 0N
cll
"’Z(ngéﬂ +ViVa)e HY + 17 (My— Ms)z]
2) 2 2 2 2
£l =P 4P L+ (59) ()

with

and
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1

@ N
+ Z A”Alﬂg ( 11)+ 2 21M2>

l u,d,s

3 I N.I, ]
+Z(A’1‘A1,,+A’2‘A2,,)Qz HY 42 = (M, +M,)

3 NI 1
5 Wiy, +A545,)¢° H&J T (M, M,)?

3 N.I, 7
+Z(AQA6,,+A’7‘A7M) Hgg = (M g+ M)

(63)

We have used the gap equations (48) to simplify the scalar
(60) and pseudoscalar (61) field quadratic terms. The terms
proportional to 4;; in both (60) and (61) express the well-
known mixings occurring between the flavor components
forming the neutral scalar and pseudoscalar mesons.
Moreover, these expressions reveal the impact of the
new parameters w; in the spin-O sector masses through
the H,, coefficients. These modifications are a direct
consequence of Vo- and A¢-mixing in the bosonized
Lagrangian in (49), and they enter all mass terms except
those of the neutral scalar sector.

We collect the nine (a =0, 1,...,8) scalar (o,), pseu-
doscalar (¢,), vector (V%) and axial-vector (A%) fields in
the Hermitian matrices

GLL ¢M
% ag k" ) v zt KT
o - %4 0 - a 0
_— a, K s _— T 4= K R
YER v e
K K \/\i K- KO \/_%
(64)
v, * A, + +
\/% p/j‘L K"Jr A \/g 1y Klﬂ
14 1% A
no_ - Y «0 K = L 0
N Pi 5 K| N a5 K
— 10 Vi — 7 A.w
K~ K, —; Klﬂ K?” 7
(65)

Here the flavor basis boson fields may be represented as a
linear combinations of a = 0, 3, 8 states

0, = 03 +\/.60+68 =03+ [
0= =03 + % — gyt f, (66)

o, = \/_(70—2(78 _ \/’fs
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¢u:¢3+%:¢3+’7m‘

pa=—3 + 20— iy, (67)
s = \/Z/)%Z(/)g = \/Ens

R R

V= Vi Y e (68)
v — \/’v\“fzv” NP

Aﬁ - Aﬂ \/—A\/j_A == +f1n5

A= — A NT = A4, (69)

A — \/'AO 244 \/—

In relations (66)—(69), we have decomposed the diagonal
components of the fields in the (0,3,8) basis, as well as in
the (3, ns, s) basis, which consists of the neutral isotriplet
component and the nonstrange and strange isosinglet
components, respectively. These three components still
appear in bilinear mixed terms in (60) and (61) due to
the term proportional to /;;.

The physical (mass eigenstates) neutral mesons arise as
suitable combinations of said components which may be
parametrized by three mixing angles constrained by three
diagonalization conditions imposed by the requirement that
all mixing terms are eliminated. In the isospin limit, the
neutral isotriplet component uncouples from the isosinglet
ones, and only one mixing angle is needed for diagonal-
ization. We may then identify immediately o3 = ag,
¢3 =7°, V3, =pj and A3, =a},. In the pseudoscalar
sector the mixing angle is commonly introduced as

cosf, —sind,
()= (oo, e )()
n sinf,  cosd, ¢bo
in the (0,8) basis or as
nY\ _ [coswy  —sinyy\ (1, (71
7 ~ \sin Wy o COSYy, N

in the (ns, s) basis. In the scalar sector, the mixing scheme
is analogous to that of the pseudoscalar sector,

cos@, —sind,
()= (oo o)) 0
o sinf, cos6, 0y

or
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cos —sin s
(fo):< oS %)(f‘;)' (73)
o siny,  COSy, fs
In both cases, the 8 and y angles are related to each other

through y = 0 + arctan /2. The resulting scalar and pseu-
doscalar mass Lagrangians are listed in Appendix C,
together with the vector and axial vector ones (which
involve no mixing between the neutral mesons). We may
then summarize the mass expressions. For scalar mesons
we have

h
2 _ 2 u
e =g -

My=M)\ [ hy—h,
M2 — 2 ( u s u s_h()
= (e Bemt) s )

u N

1 h
M2 = — | —2nl) —2n) ) + 4m2
= (3~ o) o

1 2 ( s (1) 2
— 2hg; 4Msz |,
Ry cot’y, [Q <MS M

hﬁ’) +4M2,

1 h
M2 = ———— | —2nl) —2h) ) + 402
1 —coty, M, “
1 hs 1

The masses of the pseudoscalars are given by

AM2N [ h
2 _ (2 u\ (w42
o= () (7))

M, + M,)? h,+h
MQk:(QZ+< ut s>>< u T _hEZ))’

HY) M, + M

m=—! @+ 220 (B0 o0
1 —tantyy, H2 ) \M, " ud
1 2M3\ [ h, 5
2 - — - 2h§Y> )
s cot’y, (Q " H@) (Ms ‘
[ — @+ M) (h_ e o0
A cot?y, H2)\M, t ud

1 , 2MA\ (hy
e () i) 0

58

In the chiral limit (m; — 0), we get M, = M, =M, h, =
h, = hand h2) = h®, as well as h = Mh?). This makes it
easy to verify in (75) that both M, and Mg go to zero in this
limit. Also, in the chiral limit we get 4y = h{” and b} =
WY (i # j), with 2(hY = BY') = h®. Using this and the
fact that y, = arctan v/2 in this limit (this may be checked
resorting to the conditions (C3) and is equivalent to 6, = 0,
i.e. no mixing between flavor SU(3) singlet 0 and octet 8
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components), it can be shown that M, also goes to zero,
while the #' retains a finite mass, due to the Adler-Bell-
Jackiw anomaly, given by

2M2> 2 (76)

2 2
My = (Q T HD ) 26+ Ggih + goh + 0
A detailed discussion of the anomaly within the 8¢-
extended version of the model without the explicit sym-
metry breaking interactions and the vector terms is given
in [11].

For the masses of the vector and axial-vector mesons
we obtain

3 1
M% =M = EQZH(n)v

3 1
M. =S H + (M, ~ M,)?)

1
M3 =30°H\), (77)

3 2
M‘%l = M%] = EQZH(II) + 6M5,

3
My, =3 PHE + (M, +M,)?)

M2, =3Q°HY) + 6M?. (78)

Axial transformations of the meson fields may be used
[64] to define axial vector currents A%, which are conserved
in the chiral limit (m; =0,i = u, d, s). The linear (in
powers of meson fields) part of these currents may be
obtained from (59). The general formula is

9L ¥y OL_20,3C) )

u
A 50,0 9(0,6,)

“ 7 0(0,4)

where 6L is the variation of the Lagrangian due to the local
axial transformations parametrized by f3,(x). The sum in C
is over all 6, ¢, V, and A, field components, and 6C is the
infinitesimal chiral transformation of the field C. Having
this current one may wish to calculate the matrix element
(0| Alds(p)) = —if app,» Where the f,, are constants
associated with the weak decays of pseudoscalar states. For
the pion weak decay constant f, we find

1 . .
(o 75(“41/4 + 1A2M)|”]F(P)> =—ifzPu (80)
where f, (in the isospin limit considered) is given by

M M
frmMu My (81)
2
Q2 +4M,, Ir
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This is nothing else than the quark analog of the celebrated
Goldberger-Treiman relation, which is M, = f,g,, where
g, 18 the renormalization constant of the pion field.

In full analogy with calculations of f,, the weak decay
constant of the kaons can be shown to have the form

M, + M;

2 2_|_(Mu+M.v)2
Ve T ug

This expression again follows the general framework of the
Goldberger-Treiman result for this quantity, (M, + M) =
2fxgx, where g is the renormalization constant of the
kaon field defined through (55).

M, + M,

f p—
K 29k

(82)

V. PARAMETER FITTING AND DISCUSSION

The problem of fitting the model’s parameters has been
thoroughly discussed in [12,13] in the isospin limit, where
only spin-0 modes had been considered. There, the number
of conditions and empirical inputs was just right for the
fitting to be accomplished. The inclusion of spin-1 modes
adds 13 new parameters to the model while also altering the
formulas for the spin-0 meson masses and weak decay
constants. From the 13 new parameters, only 9 appear in
the quadratic part of the bosonized Lagrangian through

Hilb’z), as can be seen in expressions (29) and (30). (The
other parameters may contribute at finite densities, at which
(V) #0.) Even so, in the isospin limit, the only new
available empirical inputs are the 6 independent vector and
axial-vector meson masses, which are still not enough for
an unambiguous fitting. If we cannot definitely pinpoint all
the new parameters using only the quadratic part of the
Lagrangian, we then choose to address a slightly different
problem: can we find a parameter set which reproduces the
full spin-0 and spin-1 meson spectra?

In total, there are 29 adjustable parameters: 2 current
quark masses (m, 4, m;); 2 quark condensates (h,, 4, hy); 2
constituent quark masses (M,, 4, M,); 1 cutoff (A); 11 “old”
couplings (G, K, K2, g15 92, 93 Ga» G5+ s 915 Gs); 9 “new”
Couplings (Wl, We, W7, Wg, Wo, Wig, W11, W12, W13); and 2
mixing angles (6,, 6,). On the other hand, there are a
number of conditions and empirical inputs which can be
used to fit the model: 2 gap equations (48); 2 stationary
phase conditions (26); 4 pseudoscalar masses
(My, My, M, M,); 4 scalar masses (M,.M., M, My );
3 vector masses (M, ,Mg-,M,); 3 axial-vector masses
(Mal,MKl,Mf]); 2 pseudoscalar weak decay constants
(fx» fx); and 2 mixing angle conditions. These give a total
of 22 conditions, which is 7 conditions short for a complete
unequivocal fitting of all the parameters.

Three of the missing conditions may be provided by
externally fixing the current quark masses m, and my, as
well as the pseudoscalar mixing angle 6, to be in accord
with known phenomenological expectations.
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We may also note that all w; parameters enter all
expressions related with the quadratic part of the
Lagrangian through H,, coefficients only. In (29) and
(30), we see that wy, wg and wy contribute in exactly the
same way to all coefficients independently of a and b, so
that we may effectively set two of these parameters to zero
and take only one of them to contribute for the three; we
then choose wg = wy = 0. The correct distribution of this
contribution among the three parameters may require
nonzero wg and wy, but this only becomes relevant when
looking at interaction terms, where the H,;,. coefficients
appear, and does not invalidate the idea of setting them to
zero in order to attempt fitting at the quadratic Lagrangian
level only.

From among the other parameters, we choose w3 = 0,
but we must show that this choice is essentially arbitrary. To
that end, we have used this prescription for fitting the
model, and then have independently varied the fixed values
for w; and w5 and repeated the fitting. We have found that
varying either w; or w3 simply resulted in a refitting of the
values of wg and wy;, with no impact on any other
parameter.

The parameters w;, w;y, and wy,, which appear with
opposite signals in (29) and (30), are essential for establish-
ing the mass differences between flavor partner vector and
axial-vector mesons and should therefore not be set to zero.
Regarding this statement, we may actually prove the
following conditions which are valid in the case of an
exact isospin symmetry:

1 1
w-h2 4+ 2wiom b, +wiom2 = 30% [ ———— — ,
7"u 1077y Tty 1210y Q Mg] — 6M3 M,Z)
wh2 + 2womhy + wiom? = 307 (; - L)
s stts s 2 2 BE
M3 —6M2 M,
W7huhs + WIO(muhs + mshu> + Wipm,mg

1 1
:302 - :|.
M%(] _%(Mu +Ms)2 M%{*_%(MM_MS>2

(83)

This means that, if M, M and A are fitted, w;, wg and w,
are automatically determined from the spin-1 meson
masses by these relations. Hence, the values of these three
parameters are tightly constrained by the empirical data and
should be properly fitted.

Similarly to what has been said concerning the assign-
ments wg = wg = 0, a full unambiguous fitting of all the
w’s will always require us to study their impact on the
effective three-meson vertices, but we may still use this
somewhat arbitrary fitting scheme at the quadratic
Lagrangian level to check if the model is able to reproduce
the meson spectra.

A useful systematic approach to the fitting routine may
start by identifying all the conditions which involve only
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the w;, M; and A; these are the 3 vector and the 3 axial
vector masses, and the f, and fx weak decay constants.
With wg = wg = wy3 = 0, and with w; previously fixed,
the remaining w’s (w5, wg, Wig, Wiy, Wia), as well as M,
M, and A, may be fitted using the above mentioned 8
empirical inputs.

The fact that both constituent quark masses and the scale
A are fixed entirely by the spin-1 spectra and the pseudo-
scalar weak decay constants is a detail worthy of note.
Actually, it can be shown using the mass formulas (77)
and (78) and the explicit form of the coefficients H ,, that

2 2
+
My =3 (M, —M)* M —3(M,+M,)>
1 N 1 N 1 N 1
a2 a2 2 2 2 2"
M Mg MG —6M; M7 —6M;

(84)

This means that, in the isospin limit (m, = m,), the model
predicts a relation between M, and M ; depending solely on
the spin-1 meson masses.
Furthermore, the axial-vector meson masses in (78) may

be rewritten as

, oM,

a, — M2 _ 02f2 ’

u T
, _ 3(M M)
B (M, M) -4 f

(85)

i.e. in terms of constituent quark masses, the scale A
(through ¢?) and weak decay constants only. Together with
expression (84), these relations completely determine M,
M, and A.

The result of the partial fitting described above may then
be carried on to the remaining conditions as inputs in order
to fit the rest of the parameters. The &, are already fully
determined by the gap equations at this stage, so we may
then focus on the 4 scalar and 4 pseudoscalar masses, the 2
mixing angle conditions and the 2 stationary phase

TABLE I

PHYSICAL REVIEW D 95, 074033 (2017)

conditions in order to fit the 11 parameters (G, k, k>, g1, g,
93, 94, 95, 9s» 97, g3) as well as the scalar mixing angle 6,.

From the empirical point of view, the pseudoscalar and
the vector low-lying nonets are relatively well established,
the former with the 7, K, # and #'(958) mesons and the
latter with the p(770), K*(892), w(782) and ¢(1020)
mesons. The axial-vector nonet that we will try to fit
consists of a;(1260), K;(1270), f1(1285) and f(1420),
of which a;(1260) exhibits a broader peak leading to a
larger experimental mass uncertainty. Also, some authors
propose f;(1510) as a member of the nonet instead of
f1(1420), and there are suggestions as to f;(1285) and
£1(1420) being actually K* K molecules or tetraquark states
[65]. Meanwhile, the scalar nonet is probably the most
controversial one. Models relying heavily on chiral sym-
metry constraints (as is the case of the model under study)
usually identify the members of the low-lying scalar nonet
as the ¢(500), the x(800), the ay(980) and the f(980),
although different approaches may establish the nonet with
some other states, namely the K{(1430) instead of the
k(800) [65]. As was done in the spin-O version of the
model, we expect that also the spin-1 extended version is
able to fit this nonet. Still concerning the scalars, the exact
physical content of the corresponding measured signals is
disputed, with some authors proposing significant contri-
butions from four-quark states, gluon-balls or meson-
meson molecules [65]. The present model contemplates
the admixture of four-quark components to the usual gq
content of the mesons, which is arguably an advantageous
feature of the approach. Yet, we are also faced with a large
empirical range for the masses of the &(500) (400-
550 MeV) and x(800) (650-850 MeV) mesons [65].

Using the empirical inputs listed in Table I, we obtain the
fitted values for the model’s parameters as is shown in
Table II.

The first noteworthy aspect of the results concerns the
higher value obtained for the cutoff A = 1633 MeV, which
is around two times of the value fitted with the spin-0

The 19 input phenomenological values used in the fitting of the model parameters: the meson masses, the current quark

masses and the weak decay constants (all in MeV), as well as the pseudoscalar mixing angle in degrees.

M” MK 1‘4,7 M”f Mo- MK- Ma” Mfl) Mp MK* M(p Mﬂl MKI Mfl m, mg f,r f[( 9¢
138 496 548 958 500 850 980 980 778 893 1019 1270 1274 1426 4 100 92 111 -15°
TABLE II. The 24 model parameters obtained as the results of the fit. The value of w,; shown here has been externally fixed, with

W6:W9:W13:0.

G K g1 9 K2 g3 94 g5 96 97 98 05
[GeV™2] [GeV~™®] [GeV™®] [GeV~®] [GeV3] [GeV™®] [GeV®] [GeV™™] [GeV™] [GeV™] [GeV*] degrees
2.54 -2.66 15.3 -35.2 0.143 —148 36.1 -21.9 —115 -32.6 -21.8 25.1°
A M, M, wi wq wg Wio wi w2

[MeV] [MeV] [MeV]  [GeV~2] W [GeV~8] [GeV~8] Wo [GeV™®] [GeV™®] [GeV™*] Wis
1633 244 508 -10 0 —1903 2505 0 -2540 1425 —1523 0
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version of the model. If we expect the model to provide
meaningful results for the spin-1 meson masses, which are
generally higher than those of the spin-O ones, a higher
value of this scale is desirable. In fact, the highest mass
employed in the fitting (M, = 1426 MeV) is below the
fitted scale value, which should be expected from an
effective theory point of view. On the other hand, this
value still fulfills the general requirement that A is of order
of chiral symmetry breaking scale A ~ A g ~ 1 GeV.

Constituent quark masses are fitted to lower values than
those of the spin-0 model, with a more significant differ-
ence in M. Nonetheless, these are still within reasonable
values, and the mass difference M, — M, is enhanced.
Together with A, M, and M form a set of three parameters
which may be fixed solely on the basis of the spin-1 spectra
and the pseudoscalar weak decay constants as shown in
expressions (84) and (85). This means that the experimental
uncertainties of the scalar sector do not affect these results,
leaving little room for variation of the values of M, M, and
A within the relatively well-defined experimental ranges of
the spin-1 meson masses and the pion and kaon weak decay
constants. Variations within said ranges consistently yield
similarly larger values for A and smaller values for M, and
M  than those found in the spin-0 version of the model. The
scalar mixing angle fitted value 6, = 25.1° is also well
within the (model dependent) empirical range.

The w’s (disregarding those which are externally fixed or
set to 0) are fitted to values of the order of O(10?) in their
respective units, yielding significant contributions to the
spin-0 sectors through the Vo- and Ag-mixing mecha-
nisms. This in turn affects the old parameters’ fitted values,
which all turn out considerably smaller (in absolute value)
than they were in the spin-0 version of the model. If we
compare old and new parameters’ values of the same
dimensionality, we identify a consistent proportion of 1
to 2 orders of magnitude between them. Different pre-
scriptions for the external fixing of w; and w3 have little to
no impact in this fact. This may be regarded as a
quantitative statement about relative weights of spin-0
and spin-1 multiquark vertices in the effective description
of the dynamics of strongly interacting particles, in support
of the importance of including spin-1 modes in the model.

The spin-0 spectra is reproduced similarly to what has
been done in [12,13] with the spin-0 version of the model.
The differences arise through the contributions of the spin-
1 w; parameters and the fact that the scalar mixing angle 6,
is fitted together with the effective couplings, yielding a
value consistent with those provided in the literature
[66,67]. This fitted value is, of course, subject to variations
due to the large uncertainties in the empirical masses of the
k(800) and (500) mesons. This dependency is illustrated
in Table III, where the value of the scalar mixing angle is
shown for different combinations of the above mentioned
masses (all other input being as given in Table I). We can
see a very significant variation of 6, with the x(800) mass,
which seems to require this mass to be on the higher side of
its empirical range for 8, to be within reasonable values.

PHYSICAL REVIEW D 95, 074033 (2017)

TABLE III. Values of the scalar mixing angle for different
prescriptions of M, and M, (with all other empirical inputs as in
Table I).

M, 750 800 850
M, 400 500 400 500 400 500
0, 42.9° 44.9° 35.7° 36.9° 25.5° 25.1°

The high number of effective couplings which the model
introduces may be regarded as a shortcoming, based on the
notion that a sufficiently high number of parameters is a
sufficient condition to fit any kind of data, making the
modeling rather arbitrary and devoid of physical meaning.
However, the way the effective couplings are introduced in
the model is not at all arbitrary, lending themselves to strict
symmetry constraints which are provided by the underlying
fundamental physics at work. Furthermore, we should take
a look at the way the w;’s enter the model’s expressions for
the observables considered in this study to realize how
these symmetry constraints strongly bind the parameters’
eventual arbitrariness. From the 13 w;’s which are intro-
duced through the effective multiquark vertices, only 9
appear in the quadratic part of the Lagrangian; from these 9,
not all are really independent, with e.g. wy, we and wy
clustering into a single effective contribution. These some-
what subtle and intricate relations effectively express the
symmetry constraints of the model and, hence, the under-
lying physics. The ability of the model to reproduce the
low-lying meson spectra should not be taken as an a priori
feature of a large number of parameters, but rather as a
successful capturing of relevant physical content.

VI. COUPLING CONSTANTS IN NATURAL UNITS

The above discussion would be incomplete without
giving some qualitative arguments based on naive
dimensional analysis applied to the effective multiquark
Lagrangian. Although these arguments cannot be trusted to
any great numerical accuracy, they provide a qualitative
guide to the presented picture of the family of multiquark
couplings and interactions. Our guiding principle in this
consideration is the idea of naturalness (in the Dirac sense),
according to which after extracting the dimensional scales
from a term of the Lagrangian, the remaining dimension-
less coefficient should be of order of unity. Naively, we did
this in Eqgs. (7)—(9). Here we would like to make our
consideration more detailed.

Indeed, in the problem considered we have several
important scales. First, of course, a dimensionful parameter
A =1.633 GeV which estimates the chiral symmetry
breaking scale and suppresses nonrenormalizable terms
in an effective multiquark Lagrangian. However, we might
also want to consistently count powers of the effective
constituent quark mass M = 244 MeV (we will neglect in
our naive analysis the difference between strange and non
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TABLE IV. The order of model parameters in natural units. We collect the nonzero dimensional couplings c, scaling factors S and the

order of dimensionless coupling constants ¢ = Sc.

c G K 9 9 K> 93 94 gs 97 g8 wi wr wg Wio w1 Wiz

F2A2 FAA N 6 A6 F2N? FAA FAA 2 A2 2 A2 2 A2 2 A2 2 FOAY FONH ) 4 A2 2212
SWW M f1v1_47 M? M? fA A oA fA f WWfA fA M
c 1.0 -0.1 0.05 -0.1 0.01 -1.3 03 -05 -26 -07 =05 -0.1 -0.1 0.1 -0.5 0.3 -0.8

strange quark masses) and the pion weak decay constant
fr =92 MeV. The mass M is a characteristic of chirality
violation at the vertex. For instance, if the Lagrangian
contains the quark bilinears grq; or g; qg, then such vertex
changes chirality by the value |Ay| = 2. Our Lagrangian
includes these transitions through the terms (2) and (3). On
the other hand, the quark bilinears g, y,q;, or ggy,qgr do not
change chirality. Thus, for them |Ay| = 0, and this is true
for the vector combinations (4) and (5).

The pion decay constant f, is a dimensionful parameter
which governs the dynamics of the Goldstone boson fields.
Atlow energy itis small compared to A and naturally appears
when one bosonizes the multiquark interactions. Taking all
these scales into account, we come to the formula

e ) G C G o

where ¢ is the dimensionless constant of order of unity (for
natural units), A is the meson field power, B is the quark field
power, C = |Ay|/2 describes the chirality violation at the
quark part of the vertex, D is the number of derivatives, and £
counts the explicit symmetry breaking effects induced by the
external field y ~ m. Comparing our result with the one of
Manohar and Georgi [68], it should be noted that our
Lagrangian at the quark level does not have derivative
interactions. However, if one would like to analyze the
couplings of the effective meson Lagrangian which results
from bosonization, one should include this term too in
accordance with [68]. On the other hand, they do not consider
explicit symmetry breaking effects and, as a result, they do
not have the term with y, as we have.

The prescription (86) produces a set of coefficients for
the higher-dimension operators which are consistent with
naive dimensional analysis. Indeed, to have a feeling that
this prescription agrees with our naive expectations, we
show the order of the following terms:

2
nqysq — ﬂf_]?’sQ(%) %) <%)f2/\2 = (%) 7qysq.

(87)

_ _ 1 \?/1 _
q7,0"q — gy,0'q (ﬁ) (K)le\z =gy, 0'q.  (88)

gmq — gmq %)2 (%) (%)fz/\z =gmq. (89)

We see that dimensional arguments work well for the
kinetic and mass terms of the quark Lagrangian, and it even
gives a correct estimate for the coupling of the pion to two
quarks, which is g, = M/ f according to a quark analogue
of the Goldberger-Treiman relation.

It follows then that the scaling factor S for the conversion
from dimensionful ¢ to natural ¢ coupling constants is

fA+B-2 ASHC+D-2
¢ = Sc, S = o
M

(90)

Using this result, one can obtain the dimensionless values
of the coupling constants of the Lagrangian (7)—(9). We
collect them in Table IV. It is enough to know the order of
the corresponding values.

Let us discuss the naturalness of these values. The
couplings G. g3, Js. Je. G+ Js» Wig» Wy are of order 1 and
therefore they are natural. The couplings &, g;, g2, Gs,
Wy, Wy, wg, Wy, are one order suppressed. The coupling
K, is two orders less than the main set. They are unnatural.
There are several reasons for them to be small. For
example, k and &, both break explicitly the axial U,(1)
symmetry, violate Zweigs rule, and k, additionally breaks
chiral symmetry explicitly. The eight quark interactions
with couplings g, g,, w7, wg are 1/N_. suppressed com-
pared to four-quark interactions. The couplings g, and wy;
break chiral symmetry explicitly. The relatively small value
of the coupling w; of four-quark vector interactions is a bit
surprising. However, it is known that vector excitations
need more energy to be generated. For instance, in chiral
perturbation theory they appear only at p% order. All these
naturalness considerations follow ’t Hooft’s notion of
naturalness: that a parameter is naturally small if setting
it to zero enhances the symmetry of the theory.

VII. CONCLUSIONS AND OUTLOOK

We studied a generalized three-flavor NJL-type model
with spin-1 mesons included. As a new aspect, we have
considered the explicit symmetry breaking (ESB) effects
induced by the multiquark interactions. The latter are
supposed to appear at low energies as a result of long
scale QCD dynamics. The standard quark mass term gmgq is
considered to be a leading order term in the hierarchy of
possible multiquark interactions. These effects are known
to be important in chiral perturbation theory (due to a large
strange quark mass m; ~ 100 MeV). The effective model
with multiquark interactions naturally incorporates the
vertices with higher powers of current quark masses, in
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terms of which the problem can easily be formulated. We
collected all such effective interactions (without deriva-
tives) and investigated their influence on the mass spectrum
of spin-0 and spin-1 mesons. Our result shows that the next
to leading order current-quark-mass corrections are trac-
table and essentially improve our description of meson
spectra. This is the main result of our work.

One should note that we are still far away from a
satisfactory theory for collective quark states. The approach
considered here adds to the many known attempts in this
direction an interesting new feature—the possibility to
study directly the internal mechanism of the bound states’
formation which includes not only the leading effect of
quark-antiquark pairing but also takes into account the
subleading effects due to the admixture of ggggq compo-
nents and ESB.

Our analysis can be extended in several directions. First,
the large amount of phenomenological results give us the
hope that we may estimate the importance of explicit
symmetry breaking phenomena for some processes. We are
working in this direction. Second, nowadays it is getting
clear that the multiquark interactions can be important for
the description of quark matter in a strong magnetic

B

B _

e

(1-7)

The other seven coefficients H

H;lg)h = h((/lljp)H(l) <) W65bch +

1),(1),(1) 3K
foh — ]’ll(”} hgﬂl)hg}) |:4Aabc + g (25abhc + 5bcha)

PHYSICAL REVIEW D 95, 074033 (2017)

background (for instance, in stars). It would be interesting
to understand which set of the effective quark-mass
dependent interactions is of importance here. A further
motivation comes from the hadronic matter studies in a hot
and dense environment. The critical points of the phase
diagram and even the type of phase transitions are sensitive
to the quark masses.
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APPENDIX A: THE EXPRESSIONS FOR
THREE-INDEX COEFFICIENTS h,,, AND H,;,

The stationary phase equations of motion (23) fix all
higher order coefficients of the series (24). Here we show
the result of our calculations of three-index coefficients

hi,zc and HiZL Three of them (hi,n2 3) ) have been already

computed. We present them here for completeness:

+ % (Zdabedcde + dadedbce)hd

2
g
+ Z?’ (3dabedcde fabefcde)md + (25 b1 + 5bcma):| (Al)
3k
2
fgh — hElf)h570>hEh) |:_4Aabc + glébch + 2 (dadedbce 2fabefcde)hd
(3fabefcde - abe cde)md + 2 5bc a:| ’ (A2)
3k
fgh = hgl? hg])hgli) |:_2Auhc + 2gléabhc + gZ(dubedcde + facefhde + fadefbce)hd
g
+ 73 (dabedcde + facefbde + fadefbce)md + g45abmc:| . (A3)
are new. They are
(dacedbde + facefbde)hd + = s dadedbcehd
4 (dabedcde + fabefcde)md +—= i dadedbcemd (A4)

+wydy.m, +

2

074033-17



J. MORAIS, B. HILLER, and A. A. OSIPOV PHYSICAL REVIEW D 95, 074033 (2017)

w w,
H;zy)h = hEtlf)ngg)HEZh) |:W66bcha - 77 (dacedbde + facefbde)hd + ngadedbcehd

Wio wii
+W95bcma - T (dabedcde + fabefcde)md + 7 dadedbcemd:| s

W
H}?h - ht(l?Hé];ng) |:77 (fabedcde - dabefcde)hd + WSfadedbcehd
Wio
+ 7 (dacefbde - facedbde)md + Wllfadedbcemd:| ’

4 1 w
Hj(fg)h = HEllj?thlg)HEh) |:2W65achb + 77 (dabedcde - fabefcde)hd + WSdacedbdehd

w
+2W96ucmh + % (dubedcde - fahefcde)md + Wllducedhdemd:| ’

5 1), (2) (2 w
H(fq)h = Hgighiﬂ])HEh) |:_ 77 (dabefcde + fabedcde)hd + WSdacefbdehdéacmb

W10

+ T (fadedbce - dadefbce)md + Wlldacefbdemd] s

w
H(f?])h - HEI? h(bz])H(cil) |:_ 77 (fadedbce - dudefbce)hd + WSdacefhdehd

W10

+T (fabedcde + dabefcde)md + Wlldacefbdemdi| s

w:
H?g)h - Ht(l?hgg)Hgl) |:2W65achb - 77 (dabedcde - fabefcde)hd + WSdacedbdehd

w
+2W95acmb - % (dabedcde - fabefcde)md +w ldacedbdemd:| .

APPENDIX B: BASIC STEPS IN DIAGONALIZING Vo- AND A¢-MIXING

(AS)

(A8)

(A10)

For the sake of completeness we describe in this appendix the basic steps made to avoid the Vo- and A¢-mixing from the
meson Lagrangian. As in the main text, we focus only on the quadratic part of the Lagrangian density, where we preform the

following shifts:

Vay - Vau + 2k(lfabCMbaﬂ6C
Aaﬂ - Aau + 2k;dabcMh8ﬂ¢c’

as well as F (a‘;,), - F g‘;ﬂ and F, ,({;)y - F Sf;,), The quadratic part of the Lagrangian now reads
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1
Lok =5 (o040 + ) Puby + Hop ViV, + Hi) AlAy,)

+ 2(H((11b) Vﬁkbfbchcayad + Ht(j?)AZk;ydbchcayqsd

+H£,lb)f acafveakakpM Mo 0"640,64 + H fb)dacddbc’d'k/akZM M0 p0,b4)
NI , , 21
el { (00)0,0) + @0)(0,0) — 3 (P P + P FD) + 2202 4 49

1

_I_

V3
[facefbde(vﬂ + 2kafamnM do )(Vb/l + 2kbfbm’n’Mm’a/40n’)Mch
+ dacedbde (Alﬂll + 2kizdamn]‘/1ma ¢n)(Ab/4 + 2k;7dbm'n’Mm’aﬂ¢n’)Mch
+fabc(VZ + 2kafadeMdaﬂGe)aﬂGch - dabc(Aﬁ + ZkildadeMdanbe)auqﬁch]' (Bl)

(o MY+ [ MP (Am ; Mx) (@ + ¢2>}
N 11

We may then collect the mixing terms and write them as

@ _ Nedi * Ezld)
‘CVJ o A2 V 0 GbM 4kdfcbd N Il +famefdneMmMn +fabc
2 )
NI °H
L) ==L A ¢, M, |4k, d ad | g dgeMuyM, ) = dope | B2
A¢p 27[2 /4¢b c d“%cbd Ncll + ame“dne abc ( )

The diagonalization of the Lagrangian requires the vanishing of the coefficient for each combination of Ve or A¢ field
components in (B2). These diagonalization conditions may be written as

g

nH 1
Mckdfhcd|: N i + famefdneMmMn:| = ZMcfuhc
2 ( ) 1
M k,d ad g dp MM, | ==M.dy.. B3
chq bcd|: Ncll + ame“dne"'m :| 4 c%abc ( )

which must be obeyed for each combination of a, b indices in the range {0,1,...,8}. These relations impose

conditions on the constants k, and kj, and enable us to get rid of mixing. As a result we come to expressions (52)
and (53) of the main text.

APPENDIX C: MASS LAGRANGIANS

Following the introduction of meson fields and mixing angles in Sec. IV, we may write down the mass terms from the
Lagrangian densities of the spin-0 fields as
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mass 1 1 1 hu
L5 =2 (af)? {gz <2h£u) —2hy) — M—) - 4M5}
h

1 1 | " . 1y h
+ Ef(z){coszz/fg {92 <2h,(m) - 2h1(4d) - ﬁ) - 4M§] + sin®y, |:Q2 <2h§3) - ﬁ) - 4M§]

u N

—4+/2 siny,, cos l//o-thz(:v) }

1 . 1 1 hu 1 hs
+ Eaz{smzy/(7 |:Q2 <2hfm) - ZhEH} - E) - 4Mﬁ] + cos?y,, [92 <2h§s) - E) - 4M§]
+4v/2 siny, cosy,0*hY) }
h h
+ foo (sin W, COS w,,{ {QZ <2h§}) —2nll) — v 4M5] - [QZ <2h§§) - M) - 4M§] }

u s

u

M
+ = 020 2 (Mu_Ms)z n _ hu_hs
+ (kT + k% )(Q +7Hﬂ) hyy M, —M) (C1)

u

h
+2v/2(costy, — sinzy/z,)gzh,(,p> +ajay |:Q2 (hgp - ) - 4Mﬁ]

(mass) 71 0\2 2 2M% (2) _ 2 _ ﬂ
£¢ o 2 (7[ ) (Q * H(z) 2 2hud Mu

uu

1 2M? h 2M? hy
) 2 2 u (2) 2 _ M 2 2 5 2 _ N
+ 27] {cos Wy <Q + (2)> <2huu +2h,, ) + sin®y (Q + (2)> <2hm )

uu u s s

, 2M?, 2M2\ o
—4siny, cosy, \/2 <92 + H<2)) (Q2 + H(z‘)) hz(u)]

uu S

Lol (5 2M; @) 4@ P o (2 2M5 @ _ hy
+§;7 [sm l//¢<Q +H(2) 2h + 2h,, W +cosyy, | o +H(2) 2hgs _E

uu,dd u s

. 202 M2 (s
+4siny y cosyy, \/2 <92 + H(2)> (02 + H<2)) h,(u)}

uu ss

2M? h 2M? h
am 2 u 2) @ _ M) _ | 2 s (2) _ s
+ nn [sm W COS z//,/)<<g + (2)> <2h,m +2h,, ’ > <Q + (2)> <2hss Ms))

2M? 2M?
2 w2 2 u 2 s (2)
+2(cos*y,, — sin y/¢)\/2 (g + ng)> (0 + —H§%>> hus }
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The only remaining mixing terms in (C1) and (C2) yield diagonalization conditions in terms of the mixing angles. These
can be written in the forms
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(n
(an 2y, — | | 4v/20% huy |
[ (3 = 20ih) = 28)) + 4m3] = (o2 (i = 20 ) + 03]
2 2
2o ) (@
tan 2y, = ' (C3)

2M3 4\ ( b 2 2 22\ [ by 2
I el - () o)

uu 58

In the spin-1 sectors no mixing occurs between the neutral mesons, and the quadratic Lagrangians are simply written, in

the isospin limit, as

1 1 ! ;
mass) _ _poﬂp23Q2Hl(llu> + Ew”wﬁQQH:(Alu) + zfpﬂ(pﬂ3()2H§l> +pthpy EQZH(lll)

v 2

o\ 3
+ (K*™K;:~ 4+ K%K)) > [*H

and

E;mass) _ 5

+ (M, - M,)?], (C4)

1 2 1 2
St al, (3¢ Hil + 6M3) + 2 f1 1,32 Hiul + 6M3)

2

! 3
+ Ef’lﬂ /m[302[-1“(2) +6M?%] + alﬂlal—ﬂ {—ngﬁ) + 6Mﬁ]

* $— = 3 2
+ (KK + KVRS,) S [0H + (M, + ML) (Cs)

where we have identified w,;, = w, 0, = ¢, f1,, = f1 and fi; = f].
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