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The B�
c → Bu;d;sV, Bu;d;sP decays are investigated with the QCD factorization approach, where V and P

denote the ground SUð3Þ vector and pseudoscalar mesons, respectively. The B�
c → Bu;d;s transition form

factors are calculated with the Wirbel-Stech-Bauer model. It is found that branching ratios for the color-
favored and Cabibbo-favored B�

c → Bsρ, Bsπ decays can reach up toOð10−7Þ, which might be measurable
in the future LHC experiments.
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I. INTRODUCTION

The vector B�
c meson, a spin-triplet ground state, consists

of two heavy quarks with different flavor numbers
B ¼ C ¼ �1, i.e., b̄c for B�þ

c meson and bc̄ for B�−
c

meson. With nonzero bottom and charm numbers, the
bottom and charm quarks of the B�

c meson cannot anni-
hilate into gluons and photons via the strong and electro-
magnetic interactions, respectively, unlike the decay modes
of the unflavored J=ψð1SÞ and ϒð1SÞ mesons. The B�

c
meson serves as a unique object in studying the heavy
quark dynamics, which is inaccessible through both char-
monium and bottomonium.
The B�

c meson lies below the BqDq (q ¼ u, d, s) meson
pair threshold. And the mass splitting mB�

c
−mBc

≈
50 MeV [1] is less than the pion mass. Hence, the B�

c
meson decays via the strong interaction are strictly for-
bidden. The electromagnetic transition process, B�

c → Bcγ,
dominates the B�

c meson decays, but suffers seriously from
a compact phase space suppression, which results in a
lifetime of τB�

c
∼Oð10−17 sÞ [2]. Besides, the B�

c meson
decays via the weak interaction, although with very small
decay rates, are allowable within the standard model.
The B�

c meson has a relatively large mass. In addition,
both constituent quarks b and c of the B�

c meson can decay
individually. Therefore, the B�

c meson has rich weak decay
channels. The B�

c meson weak decays, similar to the
pseudoscalar Bc meson weak decays [3–9], can be divided
into three classes: (1) the c quark decay with the spectator b
quark, (2) the b quark decay with the c quark as a spectator,
and (3) the b and c quarks annihilation into a virtual W�
boson. This property makes the B�

c meson another poten-
tially fruitful laboratory for studying the weak decay
mechanism of heavy flavor hadrons.
The study of B�

c weak decays might be interesting, but
has not really started yet. One of the major reasons is the
extraordinary difficulty of producing the B�

c meson. The

production cross section for the B�
c meson in hadronic

collisions via the dominant process of gþ g → B�
c þ bþ c̄

[9–14] is at least at the order of α4s . The nature of QCD’s
asymptotic freedom implies a much small possibility of
creating two heavy quark pairs (bb̄ and cc̄) from the
vacuum at the ultrahigh energy. Fortunately, the high
luminosities of the running LHC and the future Super
proton proton Collider (SppC, which is still under dis-
cussion today) will promisingly improve this situation. It is
expected that a huge amount of the B�

c data samples would
be accumulated, and offer a valuable opportunity to
investigate the B�

c weak decays.
As is well known, there exist some hierarchical struc-

tures among the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. The CKM coupling strength for the
bottom quark weak decay is proportional to jVcbj ∼
Oðλ2Þ or jVubj ∼Oðλ3Þ, while the CKM coupling strength
for the charm quark weak decay is proportional to jVcsj ∼
Oð1Þ or jVcdj ∼OðλÞ, with the Wolfenstein parameter λ ≈
0.2 [15]. The Bq (q ¼ u, d, s) weak decays are induced
dominantly by the bottom quark decay with the phenom-
enological spectator scheme. The B�

c → BqV, BqP decays
are actually induced by the charm quark weak decay, where
V and P denote respectively the lightest 9-pelts SUð3Þ
vector and pseudoscalar mesons. With respect to the Bq

weak decays, the B�
c → BqV, BqP decays are favored by

the CKM matrix elements. In this paper, we will study the
B�
c → Bu;d;sV, Bu;d;sP weak decays with the QCD factori-

zation (QCDF) approach [16–24], in order to provide an
available reference for the future experimental investiga-
tion. There is a more than 2.0σ discrepancy between the
value for CKM matrix element jVcsj obtained from semi-
leptonic D decays and that from leptonic Ds decays

1 [15].

The Bð�Þ
c → BsV, BsP decays, together with semileptonic

D decays and leptonic Ds decays, will provide jVcsj with
more stringent constraints. In addition, some of the Bc
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1The value for CKM matrix element jVcsj is jVcsj ¼ 0.953�
0.008� 0.024 from semileptonic D decays, and jVcsj ¼ 1.008�
0.021 from leptonic Ds decays [15].
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weak decays, for example, the Bc → Bsπ decay [25], have
been measured now. One possible background might come
from theB�

c decays, due to a slightly larger production cross
section σðB�

cÞ than σðBcÞ in hadronic collisions [11–14],
and the nearly equal mass mB�

c
≃mBc

[1]. Hence, the study
of the B�

c → Bu;d;sV, Bu;d;sP decays will be helpful to the
experimental analysis on the Bc → Bu;d;sV, Bu;d;sP decays.
This paper is organized as follows. The theoretical

framework and decay amplitudes will be presented in
Sec. II. Section III is the numerical results and discussion.
The last section is a summary.

II. THEORETICAL FRAMEWORK

A. The effective Hamiltonian

Using the operator product expansion and the renorm-
alization group (RG) method, the low-energy effective
weak Hamiltonian describing the B�

c → Bu;d;sV, Bu;d;sP
decays has the following general structure [26],

Heff ¼
GFffiffiffi
2

p
X

q;q0¼s;d

V�
cqVuq0 fC1ðμÞQ1ðμÞ þ C2ðμÞQ1ðμÞg

þ H:c:; ð1Þ

where the Fermi coupling constant GF ≃ 1.166 ×
10−5 GeV−2 [15]; V�

cqVuq0 is a product of the CKM matrix
elements. Using the Wolfenstein parametrization, there
are [15]

V�
csVud ¼ 1 − λ2 −

1

2
A2λ4 þ 1

2
A2λ6f1 − ρ2 − η2

− 2ðρ − iηÞg þOðλ8Þ; ð2Þ

V�
csVus ¼ λ −

λ3

2
−
λ5

8
−
λ7

16
−
1

2
A2λ5

þ 1

2
A2λ7

�
1

2
− ρ2 − η2 − 2ðρ − iηÞ

�

þOðλ8Þ; ð3Þ

V�
cdVud ¼ −V�

csVus − A2λ5ðρ − iηÞ þOðλ8Þ; ð4Þ

V�
cdVus ¼ −λ2 þ 1

2
A2λ6f1 − 2ðρ − iηÞg þOðλ8Þ; ð5Þ

where the values for these Wolfenstein parameters A, λ, ρ,
and η are given in Table III.
The renormalization scale μ separates the physical

contributions into two parts. The hard contributions above
the scale μ are summarized into the Wilson coefficients
CiðμÞ. With the RG equation for CiðμÞ, the Wilson
coefficients at an appropriate scale μc ∼OðmcÞ for the
charm quark decay are given by [26]

C⃗ðμcÞ ¼ U4ðμc; mbÞU5ðmb;mWÞC⃗ðmWÞ; ð6Þ

where mW , mb, and mc are the mass of the W boson, b
quark, and c quark, respectively. Here Ufðm2; m1Þ denotes
the RG evolution matrix for f active flavors. The initial
values for the Wilson coefficients C⃗ðmWÞ at scale μW ¼ mW
to a desired order in αs can be calculated with perturbation
theory. The expressions for the RG evolution matrix
Ufðm2; m1Þ and Wilson coefficients C⃗ðmWÞ, including both
leading order (LO) and next-to-leading order (NLO) cor-
rections, have been presented in Ref. [26]. The contributions
below the scale μ are included in the hadronic matrix
elements (HME) where the local four-quark operators Qi
are sandwiched between the initial and final states.
The expressions for the four-quark operators in question are

Q1 ¼ ½q̄αγμð1 − γ5Þcα�½ūβγμð1 − γ5Þq0β�; ð7Þ

Q2 ¼ ½q̄αγμð1 − γ5Þcβ�½ūβγμð1 − γ5Þq0α�; ð8Þ

where the subscripts α and β are color indices. It should be
pointed out that (1) because the contributions from the
penguin operators and annihilation topologies are propor-
tional to the CKM factor V�

cbVub ∼Oðλ5Þ and therefore
negligible in the actual calculation of branching ratio [7],
only the contributions of tree operators are considered here.
(2) The participation of the strong interaction, especially, the
nonperturbative QCD effects, makes the theoretical treat-
ment of HME very complicated. The main problem at this
stage is how to effectively factorize HME into hard and soft
parts, and how to evaluate HME properly.

B. Hadronic matrix elements

Hadronic matrix elements might be the most intricate part
in the calculation of heavy flavor weak decay, due to the
entanglement of perturbative and nonperturbative contribu-
tions. Phenomenologically, one has to turn to some approxi-
mation and assumption, which bring uncertainties andmodel
dependence to theoretical predictions. A simple approxima-
tion is the naive factorization ansatz (NF) according to
Bjorken’s color transparency argument, which says that the
colorless energetic hadron has flown away from the weak
interaction point during the formation time of the emission
hadron [27]. With the NF approach, HME is parametrized as
a product of decay constants and hadron transition form
factors [28–31]. A major flaw of the NF approach is the
disappearance of scale dependence and strong phases from
HME, which results directly in a scale-sensitive nonphysical
prediction and none of CP violation for nonleptonic meson
weak decays. In order to overcome these shortcomings of the
NF approach, nonfactorizable contributions to HME should
be carefully considered, as commonly recognized. Some
QCD-inspired models, such as, the QCDF approach [16–
24], the soft and collinear effective theory [32–39], the
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perturbative QCD approach [40–42], and so on, have been
developed recently, based on the Lepage-Brodsky treatment
on exclusive processes [43] and some power counting rules
in the expansion in αs and ΛQCD=mQ, where αs is the strong
coupling, ΛQCD is the QCD characteristic scale, and mQ is
the mass of a heavy quark. In these QCD-inspired models,
HME is generally written as a convolution integral of
hadron’s distribution amplitudes (DAs) and hard rescattering
kernels. A virtue of the QCDF approach is that the NF’s
result can be reproduced, if both the nonfactorizable con-
tributions and the power suppressed contributions are
neglected [16–21].
For the B�

c → BqV, BqP decays (q ¼ u, d, s), the
spectator quark is a heavy quark—the bottom quark. It
is generally assumed that the bottom quark in both the B�

c
and Bq mesons is nearly on shell, and that the gluon
exchanged between the heavy spectator quark and other
quarks is soft. The virtuality of emission gluon from the
spectator quark is of order Λ2

QCD. The contributions of
spectator scattering are power suppressed relative to the
leading order contributions [17]. In addition, it is supposed
that the recoiled Bq meson should move slowly in the rest
frame of the B�

c meson. There should be a large overlap
between the B�

c and Bq mesons. The recoiled Bq meson
cannot be clearly factorized from the B�

cBq system due to
the soft and nonperturbative contributions. The B�

cBq

system should be parametrized by some physical from
factors. Hence, with the QCDF approach, up to leading
power corrections of order ΛQCD=mQ, hadronic matrix
elements have the following structure [17],

hBqMjQijB�
ci ¼ fM

X
j

F
B�
c→Bq

j

Z
dxHijðxÞϕðxÞ

¼ fM
X
j

F
B�
c→Bq

j f1þ αsrj þ � � �g; ð9Þ

where fM is the decay constant for the light finalM (≡V and

P) meson; F
B�
c→Bq

j is a transition form factor; HijðxÞ is a
hard rescattering kernel; ϕðxÞ is a DA of parton momentum
fraction x. For the light pseudoscalar P and longitudinally
polarized vector V mesons, the leading twist DAs are
expanded in terms of the Gegenbauer polynomials [44,45]

ϕPðxÞ ¼ 6xx̄

�
1þ

X
n¼1

aPnC
3=2
n ðx − x̄Þ

�
; ð10Þ

ϕVðxÞ ¼ 6xx̄

�
1þ

X
n¼1

aVnC
3=2
n ðx − x̄Þ

�
; ð11Þ

where x̄ ¼ 1 − x; aP;Vn is a nonperturbative parameter, also
called the Gegenbauer moment. The expressions for the
Gegenbauer polynomials C3=2

n ðzÞ are

C3=2
1 ðzÞ ¼ 3z; C3=2

2 ðzÞ ¼ 3

2
ð5z2 − 1Þ; � � � ð12Þ

C. Decay amplitudes

The typical Feynman diagrams for the B�
c → Bsπ decay

within the QCDF framework are shown in Fig. 1, where no
hard gluons are exchanged between the spectator quark and
other partons. There is no gluon exchange in factorizable
topology of Fig. 1(a), so the emitted hadronmatrix element is
entirely separated from that of the B�

cBs system. In this
approximation, the hard rescattering kernel Hij ¼ 1 and the
integral in Eq. (9) reduces to the normalization condition for
distribution amplitude. According to the QCDF power
counting rules, the leading order contributions come from
the factorizable topology of Fig. 1(a), and recover the NF’s
results at the order ofα0s . For the radiative correction diagrams
in Fig. 1(b–e), hard gluons are exchanged between the
emission meson and the B�

cBs system. The hard rescattering
kernel Hij and x-integral in Eq. (9) are nontrivial.
It has alreadybeen shown [17–21] that althoughbothcollinear
and soft divergences exist for each of diagrams in Fig. 1(b–e),
infrared divergences cancel after summing up the vertex
corrections. The strong phases could then come from HME.
The renormalization scale μ dependence of HME is recuper-
ated from the nonfactorizable contributions, which will
reduce partly the μ-dependence of Wilson coefficients.
After a straightforward calculation using the QCDF

master formula Eq. (9), the amplitudes for the B�
c → BqM

decays (q ¼ u, d, s) are written as

(a) (b) (c) (d) (e)

FIG. 1. Feynman diagrams for B�
c → Bsπ decay within the QCDF framework, where (a) denotes the factorizable contributions, and (b,

c,d,e) correspond to the nonfactorizable vertex corrections at the order of αs.
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AðB�
c →BqMÞ ¼ hBqMjHeff jB�

ci

¼ GFffiffiffi
2

p V�
cqVuq0aihMjjμj0ihBqjjμjB�

ci: ð13Þ

With the naive dimensional regularization scheme, the
effective coefficients are [17–21]

a1 ¼ CNLO
1 þ 1

Nc
CNLO
2 þ αs

4π

CF

Nc
CLO
2 V; ð14Þ

a2 ¼ CNLO
2 þ 1

Nc
CNLO
1 þ αs

4π

CF

Nc
CLO
1 V; ð15Þ

V ¼ 6 log

�
m2

c

μ2

�
− 18 −

�
1

2
þ i3π

�

þ
�
11

2
− i3π

�
aM1 −

21

20
aM2 þ � � � ; ð16Þ

where Nc ¼ 3 and CF ¼ 4=3; CNLO;LO
1;2 are Wilson coef-

ficients containing NLO or LO contributions; aMi is a
Gegenbauer moment. For the transversely polarized vector
meson, the vertex factor V ¼ 0 beyond the leading twist
DAs. For convenience, the numerical values for a1;2 of the
B�
c → Bqπ decay are listed in Table I.
There are some comments on the coefficients a1;2.

(1) The first two terms on the right-hand side of
Eq. (14) and Eq. (15) correspond to the leading order
contributions. The third terms correspond to nonfactoriz-
able contributions. The NF scenario follows when one
neglects the nonfactorizable contributions, i.e., V ¼ 0.
(2) Nonfactorizable vertex corrections to HME are of order
αs. They include the dependence on the renormalization
scale. It is shown [21] that with the RG equations for the
Wilson coefficients at leading order logarithm approxima-
tion, one can obtain μ d

dμ a1;2 ¼ 0. In principle, the residual
scale dependence could be compensated by higher order
corrections to HME. (3) Compared with the LO contribu-
tions, nonfactorizable contributions are generally sup-
pressed by αs and the factor 1=Nc [see Eq. (14) and
Eq. (15)]. Because the LO contributions of a2 are color-
suppressed, vertex corrections multiplied by the large
Wilson coefficient CLO

1 could be sizable to branching rates
of the a2-dominated heavy flavor decays. The coefficients
a1;2 contain strong phases via the imaginary parts of vertex

corrections. Correspondingly, strong scattering phase of a1
(a2) is small (large). This argument is also confirmed by the
numerical results for a1;2 in Table I. (4) With the QCDF
approach, nonfactorizable radiative corrections to HME
occur first at order αs as well as the leading strong phases at
order αs. In addition, it should be pointed out that non-
factorizable power corrections beyond leading order are
neglected here. For the charm quark decay, power
ΛQCD=mc is comparable to αs. The strong phases due to
soft (hard) interactions are of order ΛQCD=mc (αs). One
should not expect these phases to have great precision, as
stated in Ref. [17]. (5) With the QCDF approach, the values
for a1;2 are close to those for the charm quark decay [46–
50], ja1;2j ≈ jC1;2j, and basically consistent with those of
the large-Nc approach [46].
The hadronic matrix elements of diquark current oper-

ators are defined as [30]:

hVðϵ; pÞjq̄1γμð1 − γ5Þq2j0i ¼ fVmVϵ
�μ; ð17Þ

hPðpÞjq̄1γμð1 − γ5Þq2j0i ¼ −ifPpμ; ð18Þ

hBqðp2Þjq̄γμð1− γ5ÞcjB�
cðp1;ϵÞi

¼−εμναβϵνqαðp1þp2Þβ
Vðq2Þ

mB�
c
þmBq

− i2mB�
c

ϵ ·q
q2

qμA0ðq2Þ

− iϵμðmB�
c
þmBq

ÞA1ðq2Þ− i
ϵ ·q

mB�
c
þmBq

ðp1þp2ÞμA2ðq2Þ

þ i2mB�
c

ϵ ·q
q2

qμA3ðq2Þ; ð19Þ

where fV and fP are the decay constants of vector V
and pseudoscalar Pmesons, respectively; q ¼ p1 − p2; ϵ is
the polarization vector of vector mesons; Vðq2Þ and
A0;1;2;3ðq2Þ are the B�

c → Bq transition form factors. To
eliminate singularities at the pole of q2 ¼ 0, a relation,
A0ð0Þ ¼ A3ð0Þ, is required, with A3ðq2Þ given by [30]:

2mB�
c
A3ðq2Þ ¼ ðmB�

c
þmBq

ÞA1ðq2Þ
þ ðmB�

c
−mBq

ÞA2ðq2Þ: ð20Þ

In the bottom conservation transition B�
c → Bq, both the

initial and final mesons contain a heavy bottom quark.
After a sudden kick, the Bq meson would move slowly,

TABLE I. The numerical values for the Wilson coefficients and a1;2 for the B�
c → Bqπ decay.

Scale LO NLO NF QCDF

μ C1 C2 C1 C2 a1 a2 a1 a2

0.8mc 1.310 −0.553 1.253 −0.473 1.096 −0.055 1.235þ i0.081 −0.384 − i0.192
mc 1.259 −0.479 1.209 −0.404 1.074 −0.001 1.193þ i0.060 −0.313 − i0.157
1.2mc 1.227 −0.430 1.180 −0.358 1.061 0.035 1.167þ i0.048 −0.269 − i0.137
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even remain nearly intact, with respect to the B�
c meson.

Therefore, the zero-recoil configuration (q2 ¼ 0) would be
a good approximation. Simultaneously, the emission meson
would take up most of the energy available and fly rapidly
away from the interaction point. This fact not only
reproduces the NF scenario [Fig. 1(a)] but also requires
the exchanged gluon in vertex corrections [Fig. 1(b–e)] to
be hard. Due to the large virtuality of gluon exchanged
between the emitted light meson and the B�

cBq system,
perturbative calculation of nonfactorizable vertex correc-
tions with the QCDF approach should be applicable and
reliable.
With the form factors given above, the decay amplitudes

are expressed as

AðB�
c→BqVÞ¼−i

GFffiffiffi
2

p mVfVV�
cqVuq0 fa1δBq;Bd;s

þa2δBq;Bu
g

×

�
ðϵB�

c
·ϵ�VÞðmB�

c
þmBq

ÞA1

þðϵB�
c
·pVÞðpB�

c
·ϵ�VÞ

2A2

mB�
c
þmBq

þ iϵμναβϵ
μ
B�
c
ϵ�νV pα

B�
c
pβ
V

2V
mB�

c
þmBq

�
; ð21Þ

AðB�
c → BqPÞ ¼

ffiffiffi
2

p
GFmB�

c
ðϵB�

c
· pBq

ÞfPA0V�
cqVuq0

× fa1δBq;Bd;s
þ a2δBq;Bu

g: ð22Þ

The B�
c → BqV decay amplitude is a sum of S-, P-,

D-wave amplitudes [51,52], i.e.,

AðB�
c →BqVÞ ¼ aðϵB�

c
· ϵ�VÞþ

b
mB�

c
mV

ðϵB�
c
·pVÞðpB�

c
· ϵ�VÞ

þ ic
mB�

c
mV

ϵμναβϵ
μ
B�
c
ϵ�νV pα

B�
c
pβ
V; ð23Þ

with a, b, c, the S-, D-, and P-wave amplitudes respec-
tively, in the notation of [52],

a ¼ F ðmB�
c
þmBq

ÞA1; ð24Þ

b ¼ F
2mB�

c
mV

mB�
c
þmBq

A2; ð25Þ

c ¼ F
2mB�

c
mV

mB�
c
þmBq

V; ð26Þ

F ¼ −i
GFffiffiffi
2

p mVfVV�
cqVuq0 fa1δBq;Bd;s

þ a2δBq;Bu
g: ð27Þ

From the above expressions, one can find that the
P- and D-wave amplitudes are suppressed by a factor of

2mB�cmV

ðmB�cþmBq Þ2
relative to the S-wave amplitude. The relations

among the helicity amplitudes and the S-, P-, D-wave
amplitudes are [52]

H� ¼ a� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
; ð28Þ

H0 ¼ −ay − bðy2 − 1Þ; ð29Þ

y ¼ pB�
c
· pV

mB�
c
mV

¼
m2

B�
c
−m2

Bq
þm2

V

2mB�
c
mV

; ð30Þ

pcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

B�
c
− ðmBq

þmVÞ2�½m2
B�
c
− ðmBq

−mVÞ2�
q

2mB�
c

;

ð31Þ

p2
cm ¼ m2

Vðy2 − 1Þ; ð32Þ

where pcm is the common momentum of final states in the
rest frame of the B�

c meson.
We assume that the vector mesons are ideally mixed in

the singlet-octet basis, i.e., ϕ ¼ ss̄ and ω¼ðuūþdd̄Þ= ffiffiffi
2

p
.

As for the pseudoscalar η and η0 mesons, they are usually
written as a linear superposition of states in either flavor
basis or the singlet-octet basis. Here, we adopt the quark
flavor basis description proposed in Ref. [53], i.e.,

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
; ð33Þ

where ηq ¼ ðuūþ dd̄Þ= ffiffiffi
2

p
and ηs ¼ ss̄; the mixing angle

ϕ ≈ ð39.3� 1.0Þ° [53]. Due to the symmetric flavor con-
figurations of both ηq and ηs states, we assume that DAs for
ηq and ηs states are similar to DAs for pion. It should be
pointed out that the contributions from possible cc̄ and
gluonium compositions are not considered in our calcu-
lation for the moment, because (1) the final states with Bq

meson and cc̄ or gluonium states lie above the B�
c meson

mass; (2) the fraction of gluonium components in η and η0 is
rather tiny [54]. Thus, the amplitudes for the B�

c → Buη,
Buη

0 decays are written as

AðB�
c → BuηÞ ¼ cosϕAðB�

c → BuηqÞ
− sinϕAðB�

c → BuηsÞ; ð34Þ

AðB�
c → Buη

0Þ ¼ sinϕAðB�
c → BuηqÞ

þ cosϕAðB�
c → BuηsÞ: ð35Þ

D. Form factors

The hadron transition form factors are the basic
input parameters for decay amplitudes [see Eq. (21)
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and Eq. (22)]. It is assumed [17] that form factors come
mainly from soft contributions, and form factors are
generally regarded as nonperturbative parameters in the
QCDF master formula of Eq. (9). Fortunately, form factors
are universal. Form factors determined by other means or
extracted from data can be employed here to make
predictions. Phenomenologically, form factors are written
as overlap integrals of wave functions.
Here, we will employ the Wirbel-Stech-Bauer model

[30] for evaluating the form factors. With a factorization of
spin and spatial motion, wave function is written as

ϕðj;jzÞðk⃗⊥; xÞ ¼ ϕðk⃗⊥; xÞjs; sz; s1; s2i; ð36Þ

where k⃗⊥ and x are the transverse momentum and longi-
tudinal momentum fraction, respectively; j (s) is the total
angular momentum (spin); jz (sz) is the magnetic quantum
number; s1 and s2 are spins of valence quarks. j ¼ s ¼ 1
for the ground vector B�

c meson, and 0 for the ground
pseudoscalar Bu;d;s meson. The spatial wave function
of a relativistic scalar harmonic oscillator potential is given
by [30]

ϕðk⃗⊥; xÞ ¼ Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
exp

�
−

k⃗2⊥
2ω2

�

× exp

�
−

m2

2ω2

�
x −

1

2
−
m2

q1 −m2
q2

2m2

�
2
�
; ð37Þ

where parameter ω determines the average transverse
momentum of partons, i.e., hk⃗2⊥i ¼ ω2; m is the mass of
the concerned meson; mq1 (mq2) is the constituent mass of
the decaying (spectator) quark carrying a gluon cloud; Nm
is a normalization factor determined by

Z
d2k⊥

Z
1

0

dxjϕðk⃗⊥; xÞj2 ¼ 1: ð38Þ

The form factors at zero momentum transfer are given
by [30]

A0ð0Þ ¼ A3ð0Þ

¼
Z

d2k⊥
Z

1

0

dxϕð1;0Þ
B�
c

ðk⃗⊥; xÞσð1Þz ϕBðk⃗⊥; xÞ; ð39Þ

J ¼
ffiffiffi
2

p Z
d2k⊥

Z
1

0

dx
x
ϕð1;−1Þ
B�
c

ðk⃗⊥; xÞiσð1Þy ϕBðk⃗⊥; xÞ; ð40Þ

Vð0Þ ¼ mc −mq

mB�
c
−mBq

J; ð41Þ

A1ð0Þ ¼
mc þmq

mB�
c
þmBq

J; ð42Þ

where σð1Þz;y are Pauli matrixes acting on the spin indices of
the decaying quark q1.
It has been shown [30] that the form factors are sensitive

to the choice of parameter ω. And it is argued [30] that
parameter ω is not expected to be largely different for
various mesons due to the flavor independence of the QCD
interactions. Thus the same ω might be applied to all
mesons with the same spectator quark. The motion of the
spectator (bottom) quark is nearly nonrelativistic in the
B�
c → Bq transition. Thus, nonrelativistic QCD (NRQCD)

effective theory [55–57] could be used to deal with both B�
c

and Bq mesons. According to the NRQCD power counting
rules, the average transverse momentum is the order of
ω ≈mαs. In order to see the parameter ω effects on the
form factors, we explore two scenarios. One is the same
parameter ω for both the B�

c and Bq mesons, and the other is
ω ¼ mαs, i.e., ω ≈ 1.24 GeV for the B�

c meson, 1.10 GeV
for the Bs meson, and 1.09 GeV for the Bu;d mesons. The
numerical results for form factors are shown in Table II.
There are some comments on the form factors. (1) From

the expressions in Eq. (41) and Eq. (42), it is seen that due
to the factor mc−mq

mB�c−mBq
≈ 1 and mcþmq

mB�cþmBq
≪ 1, one can obtain a

relation, A1ð0Þ < Vð0Þ. (2) Compared with the integrand in
Eq. (39), there is a factor 1=x for the integrand in Eq. (40)
with longitudinal momentum fraction 0 < x < 1. Thus, it is
expected to have in general A0;3ð0Þ < Vð0Þ. (3) With the

TABLE II. The numerical values for the form factors in the B�
c → Bq transition, where the uncertainties come from both mc and mb.

Transition ω A0ð0Þ A1ð0Þ A2ð0Þ Vð0Þ
B�
c → Bu 0.4 GeV 0.540þ0.015

−0.015 0.291þ0.002
−0.002 3.286þ0.210

−0.209 1.953þ0.038
−0.040

0.6 GeV 0.784þ0.008
−0.008 0.429þ0.011

−0.011 4.694þ0.219
−0.222 2.877þ0.111

−0.109
mαs 0.944þ0.002

−0.002 0.539þ0.017
−0.017 5.403þ0.208

−0.213 3.613þ0.160
−0.156

B�
c → Bd 0.4 GeV 0.540þ0.015

−0.015 0.291þ0.002
−0.002 3.288þ0.210

−0.209 1.954þ0.038
−0.040

0.6 GeV 0.784þ0.008
−0.008 0.429þ0.011

−0.011 4.696þ0.219
−0.222 2.878þ0.111

−0.109
mαs 0.944þ0.002

−0.002 0.539þ0.017
−0.017 5.405þ0.208

−0.213 3.614þ0.160
−0.156

B�
c → Bs 0.4 GeV 0.609þ0.015

−0.015 0.361þ0.003
−0.003 3.618þ0.234

−0.234 1.867þ0.059
−0.061

0.6 GeV 0.821þ0.007
−0.007 0.494þ0.012

−0.012 4.785þ0.242
−0.247 2.554þ0.122

−0.120
mαs 0.954þ0.002

−0.002 0.598þ0.018
−0.017 5.268þ0.232

−0.238 3.097þ0.163
−0.159
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relation of form factors in Eq. (20), A2ð0Þ is significantly
enhanced by a factor of

2mB�c
mB�c−mBq

(or
mB�cþmBq

mB�c−mBq
) relative to

A3ð0Þ [or A1ð0Þ]. These relations are comprehensively
verified by the numerical results for form factors in Table II.
In addition, from the numbers in Table II, it is seen that

(1) the form factors increase as parameter ω increases, due
to the fact that the overlap between wave functions of B�

c
and Bq mesons increases as parameter ω increases, as
shown in Fig. 2. (2) The flavor symmetry breaking effects
on form factors are small. (3) The values for A2ð0Þ (Vð0Þ)
are about ten (five) times as large as those for A1ð0Þ, as
explained above. The large values for A2 and V would
enhance the contributions from the D- and P-wave ampli-
tudes [see Eq. (25) and Eq. (26)].

III. NUMERICAL RESULTS AND DISCUSSION

In the rest frame of the B�
c meson, branching ratios are

defined as

BrðB�
c → BVÞ ¼ 1

24π

pcm

m2
B�
c
ΓB�

c

fjHþj2 þ jH0j2 þ jH−j2g;

ð43Þ

BrðB�
c → BPÞ ¼ 1

24π

pcm

m2
B�
c
ΓB�

c

jAðB�
c → BPÞj2; ð44Þ

where ΓB�
c
is the full width of the B�

c meson.
Because the electromagnetic radiation process B�

c → Bcγ
dominates the B�

c meson decay, to a good approximation,
ΓB�

c
≃ ΓðB�

c → BcγÞ. However, there is still no experimen-
tal information about the partial width ΓðB�

c → BcγÞ now,
because the photon from the B�

c → Bcγ process is too soft
to be easily identified. The information on ΓðB�

c → BcγÞ
comes mainly from theoretical estimation on the magnetic
dipole (M1) transition, i.e., [2]

ΓðB�
c → BcγÞ ¼

4

3
αemk3γμ2h; ð45Þ

where αem is the fine-structure constant of electromagnetic
interaction; kγ is the photon momentum in the rest frame of
initial state; μh is the M1 moment of B�

c meson. There are
plenty of theoretical predictions on ΓðB�

c → BcγÞ, for
example, the numbers in Tables 3 and 6 in Ref. [2].
However, these estimations still suffer from large uncer-
tainties due to our lack of a precise value for μh. To give a
quantitative evaluation, ΓB�

c
¼ 50 eV will be fixed in our

calculation for the moment. The value of 50 eV seems
reasonable since it is close to the value given by the
potential model (PM) which produces good agreement with
experiment for the measured J=ψ → ηcγ decay rate. The
value for the charm quark magnetic moment μc obtained
from the charmonium M1 decay width can now be used to
predict the B�

c → Bcγ decay width, with a very small b
quark magnetic moment μb ¼ −0.06μN given in Ref. [2].
The numerical values for other input parameters are

listed in Table III. Unless otherwise stated, their central
values will be fixed as the default inputs. Our numerical
results are presented in Table IV. The following are some
comments.
(1) According to the relative sizes of coefficients

a1;2 and CKM factors, the B�
c → BqV, BqP decays

could be classified into six cases (see Table IV).
There is a clear hierarchical relation among
branching ratios, i.e., Brðcase 1-IÞ ∼Oð10−7Þ,
Brðcase 1-IIÞ ∼Oð10−8Þ, Brðcase 1-IIIÞ ∼Oð10−9Þ,
and Brðcase 2-IÞ ∼Oð10−8Þ, Brðcase 2-IIÞ∼
Oð10−9Þ, Brðcase 2-IIIÞ ∼Oð10−10Þ.

(2) Branching ratios for the B�
c → BqV decays are

generally larger than those for the B�
c → BqP decays

with the same final Bq meson, where V and P have
the same quark components. There are two reasons
for this. One is the decay constant relation fV > fP,
and the other is three partial wave contributions to
the B�

c → BqV decays rather than only the P-wave
contributions to the B�

c → BqP decays.
It should be pointed out that although the P- and

D-wave amplitudes for the B�
c → BqV decays are

enhanced by large values for the form factors V

Bc
0,x

Bu 0,x

Bs 0,x

0.4 GeV

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

(a)

Bc
0,x

Bu 0,x

Bs 0,x

0.6 GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

(b)

Bc
0,x

Bu 0,x

Bs 0,x

m s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(c)

FIG. 2. The shapes of the normalized wave functions for the B�
c and Bu;s meson, with parameter ω ¼ 0.4 GeV (a), 0.6 GeV (b), and

mαs (c), respectively.
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and A2, they are suppressed by a factor of
2mB�cmV

ðmB�cþmBq Þ2

relative to the S-wave amplitude, as discussed above.
In addition, the P- and D-wave contributions to
helicity amplitudes H� in Eq. (28) and H0 in

Eq. (29) are future suppressed respectively by

factors of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
and ðy2 − 1Þ=y relative to

the S-wave contribution. Take the B�
c → Bsρ

decay for example,
2mB�cmρ

ðmB�cþmBs Þ2
≈ 7%,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p
≈ 0.7

TABLE III. The numerical values for input parameters.

Wolfenstein parameters [15]

λ ¼ 0.22506� 0.00050, A ¼ 0.811� 0.026, ρ̄ ¼ 0.124þ0.019
−0.018 , η̄ ¼ 0.356� 0.011;

Mass of particles and QCD characteristic scale

mB�
c
¼ 6332� 9 MeVa [1], mπþ ¼ 139.57 MeV [15], mπ0 ¼ 134.98 MeV [15],

mBu
¼ 5279.31� 0.15 MeV [15], mKþ ¼ 493.677� 0.016 MeV [15], mK0 ¼ 497.611� 0.013 MeV [15],

mBd
¼ 5279.62� 0.15 MeV [15], mη ¼ 547.862� 0.017 MeV [15], mη0 ¼ 957.78� 0.06 MeV [15],

mBs
¼ 5366.82� 0.22 MeV [15], mK�þ ¼ 891.66� 0.26 MeV [15], mK�0 ¼ 895.81� 0.19 MeV [15],

mρ ¼ 775.26� 0.25 MeV [15], mω ¼ 782.62� 0.12 MeV [15], mϕ ¼ 1019.461� 0.019 MeV [15],
mb ¼ 4.18þ0.04

−0.03 GeV [15], mc ¼ 1.27� 0.03 GeV [15], Λð5Þ
QCD ¼ 210� 14 MeV [15],

ms ¼ 0.51 GeV [58], mu;d ¼ 0.31 GeV [58], Λð4Þ
QCD ¼ 292� 16 MeV [15],

Decay constants
fπ ¼ 130.2� 1.7 MeV [15], fK ¼ 155.6� 0.4 MeV [15], fK� ¼ 220� 5 MeV [45],
fρ ¼ 216� 3 MeV [45], fω ¼ 187� 5 MeV [45], fϕ ¼ 215� 5 MeV [45],
fq ¼ ð1.07� 0.02Þfπ [53], fs ¼ ð1.34� 0.06Þfπ [53],

Gegenbauer moments at the scale of μ ¼ 1 GeV
aπ1 ¼ a

ηq
1 ¼ aηs1 ¼ 0 [44], aK1 ¼ 0.06� 0.03 [44], aρ1 ¼ aω1 ¼ aϕ1 ¼ 0 [45],

aπ2 ¼ a
ηq
2 ¼ aηs2 ¼ 0.25� 0.15 [44], aK2 ¼ 0.25� 0.15 [44], aρ2 ¼ aω2 ¼ 0.15� 0.07 [45],

aK
�

1 ¼ 0.03� 0.02 [45], aK
�

2 ¼ 0.11� 0.09 [45], aϕ2 ¼ 0.18� 0.08 [45].
aOther predictions of the B�

c meson mass with different models can be found in Table II of Ref. [59].

TABLE IV. Branching ratios for the B�
c → BqV, BqP decays calculated with the scale of μ ¼ mc, where the parameters in the “CKM”

(“ai”) column give the CKM factors (coefficients) of the decay amplitude; the uncertainties come from mass mc and mb.

Final Parameters Branching ratio

state CKM ai Case ω ¼ 0.4 GeV ω ¼ 0.6 GeV ω ¼ mαs Unit

B0
sρ

þ V�
csVud ∼Oð1Þ a1 1-I 6.29þ0.02

−0.02 11.67þ0.36
−0.35 16.77þ0.72

−0.68 10−7

B0
sπ

þ V�
csVud ∼Oð1Þ a1 1-I 4.00þ0.21

−0.20 7.26þ0.15
−0.15 9.82þ0.06

−0.06 10−7

B0
sK�þ V�

csVus ∼OðλÞ a1 1-II 2.21þ0.02
−0.03 4.12þ0.18

−0.17 6.01þ0.32
−0.30 10−8

B0
sKþ V�

csVus ∼OðλÞ a1 1-II 1.98þ0.10
−0.10 3.60þ0.08

−0.08 4.87þ0.03
−0.03 10−8

B0
dρ

þ V�
cdVud ∼OðλÞ a1 1-II 3.51þ0.05

−0.05 7.51þ0.17
−0.17 11.47þ0.44

−0.41 10−8

B0
dπ

þ V�
cdVud ∼OðλÞ a1 1-II 2.14þ0.13

−0.13 4.50þ0.11
−0.11 6.53þ0.05

−0.05 10−8

B0
dK

�þ V�
cdVus ∼Oðλ2Þ a1 1-III 1.45þ0.01

−0.01 3.13þ0.11
−0.11 4.84þ0.24

−0.23 10−9

B0
dK

þ V�
cdVus ∼Oðλ2Þ a1 1-III 1.15þ0.07

−0.07 2.41þ0.06
−0.06 3.50þ0.02

−0.02 10−9

Bþ
u K̄�0 V�

csVud ∼Oð1Þ a2 2-I 5.59þ0.03
−0.03 12.08þ0.39

−0.36 18.80þ0.85
−0.80 10−8

Bþ
u K̄0 V�

csVud ∼Oð1Þ a2 2-I 3.48þ0.29
−0.27 7.32þ0.34

−0.32 10.60þ0.31
−0.30 10−8

Bþ
u K�0 V�

cdVus ∼Oðλ2Þ a2 2-III 1.59þ0.01
−0.01 3.44þ0.11

−0.10 5.34þ0.24
−0.23 10−10

Bþ
u K0 V�

cdVus ∼Oðλ2Þ a2 2-III 9.82þ0.81
−0.77 20.67þ0.94

−0.90 29.95þ0.85
−0.82 10−11

Bþ
u ρ

0 V�
cdVud ∼OðλÞ a2 2-II 1.84þ0.04

−0.03 3.95þ0.07
−0.07 6.08þ0.20

−0.19 10−9

Bþ
u ω V�

cdVud ∼OðλÞ a2 2-II 1.36þ0.02
−0.02 2.93þ0.06

−0.05 4.51þ0.15
−0.14 10−9

Bþ
u ϕ V�

csVus ∼OðλÞ a2 2-II 1.36þ0.01
−0.01 2.95þ0.13

−0.12 4.64þ0.26
−0.25 10−9

Bþ
u π

0 V�
cdVud ∼OðλÞ a2 2-II 9.24þ0.77

−0.72 19.44þ0.89
−0.85 28.17þ0.81

−0.78 10−10

Bþ
u η V�

cdVud, V�
csVus a2 2-II 2.37þ0.20

−0.19 4.98þ0.23
−0.22 7.22þ0.21

−0.20 10−9

Bþ
u η

0 V�
cdVud, V�

csVus a2 6.62þ0.55
−0.52 13.93þ0.64

−0.61 20.18þ0.58
−0.56 10−11
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and ðy2 − 1Þ=y ≈ 0.4, resulting in the polarization
fractions f0 ≈ 60%, fþ ≈ 30%, and f− ≈ 10% with

f0;þ;− ≡ jH0;þ;−j2
jH0j2þjHþj2þjH−j2.

(3) The branching ratios for the B�
c → Bsρ, Bsπ decays

can reach up to Oð10−7Þ. With the estimated
production cross section of the B�

c meson ∼30nb
at LHC [14], it is expected to have more than 1010 B�

c

mesons per ab−1 data at LHC, corresponding to
more than 103 events of the B�

c → Bsρ, Bsπ decays.
Therefore, even with the identification efficiency, the
B�
c → Bsρ, Bsπ decays might be measurable in the

future.
(4) Branching ratios for the B�

c → BqV, BqP decays
are several orders of magnitude smaller, especially
for the a1 dominant decays, than those for the
Bc → BqP, BqV decays [8]. This fact might imply
that possible background from the B�

c → BV, BP
decays could be safely neglected for an analysis of
the Bc → BqP, BqV decays, but not vice versa, i.e.,
one of main pollution for the B�

c → BqV, BqP
decays would likely come from the Bc decays.

(5) It is seen clearly that the numbers in Table IV are
very sensitive to the choice of the parameter ω. In
addition, with a different value for ΓB�

c
, branching

ratios in Table IV should be multiplied by a factor of
50 eV=ΓB�

c
. Of course, many factors, such as

the choice of scale μ, higher order corrections to
HME, q2-dependence of form factors, final state

interactions, etc., are not carefully considered in
detail here, but have effects on the estimation and
deserve more dedicated study in the future.

IV. SUMMARY

With the running and upgrading of the LHC, there are
certainly huge amounts of the B�

c mesons. This would
provide us with a possibility of searching for the B�

c weak
decays in the future. In this paper, the B�

c → BqV, BqP
decays (q ¼ u, d and s), induced by the charm quark
weak decay, are studied phenomenologically with the
QCDF approach. The form factors for the B�

c → B tran-
sitions are calculated using the Wirbel-Stech-Bauer model.
The nonfactorizable contributions from the vertex radiative
corrections are considered at the order of αs. It is found that
(1) form factors and branching ratios are sensitive to
models of wave functions; (2) the color-favored and
CKM-allowed B�

c → Bsρ, Bsπ decays have large branching
ratios of Oð10−7Þ, and might be accessible in the future
LHC experiments.

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China (Grants No. U1632109,
No. 11547014, and No. 11475055). We thank the referees
for their constructive suggestions, and Ms. Nan Li (HNU)
for polishing this manuscript.

[1] R. J. Dowdall, C. T. H. Davies, T. C. Hammant, and R. R.
Horgan, Phys. Rev. D 86, 094510 (2012).

[2] V. Šimonis, Eur. Phys. J. A 52, 90 (2016), and references
therein.

[3] M. Lusignoli and M. Masetti, Z. Phys. C 51, 549 (1991).
[4] C. Chang and Y. Chen, Phys. Rev. D 49, 3399 (1994).
[5] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. V.

Tkabladze, Phys. Usp. 38, 1 (1995).
[6] J. Sun, G. Xue, Y. Yang, G. Lu, and D. Du, Phys. Rev. D 77,

074013 (2008).
[7] J. Sun, Y. Yang, Q. Chang, and G. Lu, Phys. Rev. D 89,

114019 (2014).
[8] J. Sun et al., Adv. High Energy Phys. 2015, 104378 (2015).
[9] N. Brambilla et al. (Quarkonium Working Group Collabo-

ration), arXiv:hep-ph/0412158.
[10] K. Kolodziej, A. Leike, and R. Rückl, Phys. Lett. B 355, 337

(1995).
[11] C.-H. Chang, Y.-Q. Chen, G.-P. Han, and H.-T. Jiang, Phys.

Lett. B 364, 78 (1995).
[12] C. Chang, Y. Chen, and R. Oakes, Phys. Rev. D 54, 4344

(1996).
[13] C. Chang and X. Wu, Eur. Phys. J. C 38, 267 (2004).

[14] C.-H. Chang, C.-F. Qiao, J.-X. Wang, and X.-G. Wu, Phys.
Rev. D 72, 114009 (2005).

[15] C. Patrignani et al. (Particle Data Group Collaboration),
Chin. Phys. C 40, 100001 (2016).

[16] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999).

[17] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Nucl. Phys. B591, 313 (2000).

[18] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Nucl. Phys. B606, 245 (2001).

[19] D. Du, D. Yang, and G. Zhu, Phys. Lett. B 488, 46 (2000).
[20] D. Du, D. Yang, and G. Zhu, Phys. Lett. B 509, 263 (2001).
[21] D. Du, D. Yang, and G. Zhu, Phys. Rev. D 64, 014036

(2001).
[22] M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys. B774, 64

(2007).
[23] M. Beneke, T. Huber, and X. Li, Nucl. Phys. B832, 109

(2010).
[24] G. Bell, M. Beneke, T. Huber, and X.-Q. Li, Phys. Lett. B

750, 348 (2015).
[25] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 111,

181801 (2013).

POSSIBILITY OF SEARCHING FOR … PHYSICAL REVIEW D 95, 074032 (2017)

074032-9

https://doi.org/10.1103/PhysRevD.86.094510
https://doi.org/10.1140/epja/i2016-16090-5
https://doi.org/10.1007/BF01565579
https://doi.org/10.1103/PhysRevD.49.3399
https://doi.org/10.1070/PU1995v038n01ABEH000063
https://doi.org/10.1103/PhysRevD.77.074013
https://doi.org/10.1103/PhysRevD.77.074013
https://doi.org/10.1103/PhysRevD.89.114019
https://doi.org/10.1103/PhysRevD.89.114019
https://doi.org/10.1155/2015/104378
http://arXiv.org/abs/hep-ph/0412158
https://doi.org/10.1016/0370-2693(95)00710-3
https://doi.org/10.1016/0370-2693(95)00710-3
https://doi.org/10.1016/0370-2693(95)01235-4
https://doi.org/10.1016/0370-2693(95)01235-4
https://doi.org/10.1103/PhysRevD.54.4344
https://doi.org/10.1103/PhysRevD.54.4344
https://doi.org/10.1140/epjc/s2004-02015-0
https://doi.org/10.1103/PhysRevD.72.114009
https://doi.org/10.1103/PhysRevD.72.114009
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1016/S0550-3213(00)00559-9
https://doi.org/10.1016/S0550-3213(01)00251-6
https://doi.org/10.1016/S0370-2693(00)00854-6
https://doi.org/10.1016/S0370-2693(01)00398-7
https://doi.org/10.1103/PhysRevD.64.014036
https://doi.org/10.1103/PhysRevD.64.014036
https://doi.org/10.1016/j.nuclphysb.2007.03.020
https://doi.org/10.1016/j.nuclphysb.2007.03.020
https://doi.org/10.1016/j.nuclphysb.2010.02.002
https://doi.org/10.1016/j.nuclphysb.2010.02.002
https://doi.org/10.1016/j.physletb.2015.09.037
https://doi.org/10.1016/j.physletb.2015.09.037
https://doi.org/10.1103/PhysRevLett.111.181801
https://doi.org/10.1103/PhysRevLett.111.181801


[26] G. Buchalla, A. Buras, and M. Lautenbacher, Rev. Mod.
Phys. 68, 1125 (1996).

[27] J. Bjorken, Nucl. Phys. B 11, 325 (1989).
[28] N. Cabibbo and L. Maiani, Phys. Lett. 73B, 418 (1978).
[29] D. Fakirov and B. Stech, Nucl. Phys. B133, 315 (1978).
[30] M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637

(1985).
[31] M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103

(1987).
[32] C. Bauer, S. Fleming, and M. Luke, Phys. Rev. D 63,

014006 (2000).
[33] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, Phys.

Rev. D 63, 114020 (2001).
[34] C. Bauer and I. Stewart, Phys. Lett. B 516, 134 (2001).
[35] C. Bauer, D. Pirjol, and I. Stewart, Phys. Rev. D 65, 054022

(2002).
[36] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W.

Stewart, Phys. Rev. D 66, 014017 (2002).
[37] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann,

Nucl. Phys. B643, 431 (2002).
[38] M. Beneke and T. Feldmann, Phys. Lett. B 553, 267 (2003).
[39] M. Beneke and T. Feldmann, Nucl. Phys. B685, 249

(2004).
[40] H. Li, Phys. Rev. D 52, 3958 (1995).
[41] C. Chang and H. Li, Phys. Rev. D 55, 5577 (1997).
[42] T. Yeh and H. Li, Phys. Rev. D 56, 1615 (1997).
[43] G. Lepage and S. Brodsky, Phys. Rev. D 22, 2157

(1980).

[44] P. Ball, V. Braun, and A. Lenz, J. High Energy Phys. 05
(2006) 004.

[45] P. Ball and G. Jones, J. High Energy Phys. 03 (2007) 069.
[46] A. Buras, J. Gerard, and R. Rückl, Nucl. Phys. B268, 16

(1986).
[47] R. Verma, A. Kamal, and A. Czarnecki, Phys. Lett. B 252,

690 (1990).
[48] K. Sharma and R. Verma, Int. J. Mod. Phys. A 14, 937

(1999).
[49] Y.-M. Wang, H. Zou, Z.-T. Wei, X.-Q. Li, and C.-D. Lü, Eur.

Phys. J. C 55, 607 (2008).
[50] H. Cheng and C. Chiang, Phys. Rev. D 81, 074021 (2010).
[51] G. Valencia, Phys. Rev. D 39, 3339 (1989).
[52] G. Kramer and W. Palmer, Phys. Rev. D 45, 193 (1992).
[53] T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58,

114006 (1998).
[54] R. Escribano and J. Nadal, J. High Energy Phys. 05 (2007)

006.
[55] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.

Hornbostel, Phys. Rev. D 46, 4052 (1992).
[56] G. Bodwin, E. Braaten, and G. Lepage, Phys. Rev. D 51,

1125 (1995).
[57] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod.

Phys. 77, 1423 (2005).
[58] A. Kamal, Particle Physics (Springer, New York, 2014),

p. 297.
[59] M. Gómez-Rocha, T. Hilger, and A. Krassnigg, Phys. Rev.

D 93, 074010 (2016).

SUN, YANG, WANG, CHANG, and LU PHYSICAL REVIEW D 95, 074032 (2017)

074032-10

https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1016/0920-5632(89)90019-4
https://doi.org/10.1016/0370-2693(78)90754-2
https://doi.org/10.1016/0550-3213(78)90306-1
https://doi.org/10.1007/BF01560299
https://doi.org/10.1007/BF01560299
https://doi.org/10.1007/BF01561122
https://doi.org/10.1007/BF01561122
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.014006
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1103/PhysRevD.63.114020
https://doi.org/10.1016/S0370-2693(01)00902-9
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1103/PhysRevD.65.054022
https://doi.org/10.1103/PhysRevD.66.014017
https://doi.org/10.1016/S0550-3213(02)00687-9
https://doi.org/10.1016/S0370-2693(02)03204-5
https://doi.org/10.1016/j.nuclphysb.2004.02.033
https://doi.org/10.1016/j.nuclphysb.2004.02.033
https://doi.org/10.1103/PhysRevD.52.3958
https://doi.org/10.1103/PhysRevD.55.5577
https://doi.org/10.1103/PhysRevD.56.1615
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2006/05/004
https://doi.org/10.1088/1126-6708/2007/03/069
https://doi.org/10.1016/0550-3213(86)90200-2
https://doi.org/10.1016/0550-3213(86)90200-2
https://doi.org/10.1016/0370-2693(90)90507-3
https://doi.org/10.1016/0370-2693(90)90507-3
https://doi.org/10.1142/S0217751X99000464
https://doi.org/10.1142/S0217751X99000464
https://doi.org/10.1140/epjc/s10052-008-0619-1
https://doi.org/10.1140/epjc/s10052-008-0619-1
https://doi.org/10.1103/PhysRevD.81.074021
https://doi.org/10.1103/PhysRevD.39.3339
https://doi.org/10.1103/PhysRevD.45.193
https://doi.org/10.1103/PhysRevD.58.114006
https://doi.org/10.1103/PhysRevD.58.114006
https://doi.org/10.1088/1126-6708/2007/05/006
https://doi.org/10.1088/1126-6708/2007/05/006
https://doi.org/10.1103/PhysRevD.46.4052
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/PhysRevD.93.074010
https://doi.org/10.1103/PhysRevD.93.074010

