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Parametrizations of the pp scattering data at the LHC collision energies indicate a hollow in the
inelasticity profile of the pp interaction, with less absorption for head-on collisions than at a nonzero impact
parameter. We show that some qualitatively unnoticed features may be unveiled by a judicious application
of the inverse scattering problem in the eikonal approximation and interpretation within an optical potential
model. The hollowness effect is magnified in a 3D picture of the optical potential, and will presumably be
enhanced at yet higher energies. Moreover, in 3D it sets in at much smaller energies than at the LHC. We
argue that hollowness in the impact parameter is a quantum effect, relying on the build-up of the real part of
the eikonal scattering phase and its possible passage through π=2. We also show that it precludes models of
inelastic collisions where inelasticity is obtained by naive folding of partonic densities.
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I. INTRODUCTION

The main purpose of scattering experiments is to unveil
the underlying structure of the colliding particles. However,
there is always a limiting resolution of the relative de
Broglie wavelength Δr ¼ 1=pCM ∼ 2=

ffiffiffi
s

p
, which effec-

tively coarse-grains both the interaction between colliding
particles and their structure as seen in the collision process.
Of course, as the energy increases, new production chan-
nels open and inelasticities become important, but this does
not change the overall picture even if the elastic scattering
is regarded as the diffractive shadow of the particle
production. Besides the early cosmic rays investigations
in the mid 1950s [1] reporting a surprisingly too large cross
section compared to accelerator extrapolations [2], the
accumulation of more precise scattering data since the
early 1960s until the CERN Intersecting Storage Rings
(ISR) experiments in the 1970s (see, e.g., [3] for a
compilation), has been modifying our picture of the
nucleon along the years [4–8] with the deceiving result
that the asymptotic regime may still be further away than
hitherto assumed. The shortest wavelengths ever available
in a terrestrial laboratory are achieved in the current and
upcoming proton-proton (pp) scattering at the CERN Large
Hadron Collider, with

ffiffiffi
s

p ¼ 7–14 TeV corresponding to
Δr ∼ 0.001 fm ¼ 1 am, a tiny length compared to the
conventional proton size. From the point of view of the
relative distance, the maximum momentum transfer t ¼
−q⃗2⊥ samples the smallest impact parameter Δb ¼ 1=q⊥.

The succinct summary of the whole development is that,
historically, protons become larger, edgier and blacker as
the energy of the collision is being increased.
In a recent communication [9], we have analyzed the

TOTEM data [10] for the pp collisions at
ffiffiffi
s

p ¼ 7 TeV in
terms of the so-called on-shell optical potential. A striking
result is that there appears to be more inelasticity when the
two protons are at about half a fermi traverse separation
than for head-on collisions: a hollow is developed in the pp
inelasticity profile. This counterintuitive finding has also
been noticed by several other authors [11–15]. As we will
show, it actually precludes a probabilistic geometric
explanation of the pp inelasticity profile based on folding
of one-body partonic densities. We note that microscopic
realization of the hollowness effect has been offered within
a hot spot Glauber model [16] for the elastic pp amplitude.
In the present paper we largely extend the findings of

Ref. [9]. We analyze the problem from an inverse-scattering
point of view, utilizing the standard optical potential in the
eikonal approximation (not to be confused with the on-shell
one, see below). The eikonal method is justified for
sufficiently small impact parameters, b < 3 fm, and for
the CM energies of the system

ffiffiffi
s

p
> 20 GeV. The 3D hole

in the optical potential emerges already at
ffiffiffi
s

p
∼ 1 TeV,

well below the present LHC energies. We note that the
hollowness effect becomes less visible in the 2D inelasticity
profile in the impact parameter space, where geometrically
the 3D hole is covered up by the accumulated longitudinal
opacity of two colliding protons.
We take no position on the particular underlying dynam-

ics of the system. Instead, we rely on accepted and
working parametrizations of the NN scattering amplitude.
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For definiteness, we apply the modified Barger-Phillips
amplitude 2 (MBP2) used in the comprehensive analysis
of Fagundes et al. [17], where the implemented properties
at low- and high values of t are indeed supported by
reasonable χ2 values and visual inspection vs data. It is thus
fair to assume that these fits capture the essence of the
scattering amplitude at any fixed energy and up to a certain
tmax. Correspondingly, the present experimental range
covers impact parameters larger than bmin ∼ 0.1 fm, which
is the fiducial domain of the present study.
We use the well-established inverse scattering methods

to determine the optical potential. This has the advantage of
being free of dynamical assumptions, in particular, naive
folding features assumed quite naturally by model calcu-
lations but which turn out to be hard to reconcile with the
hollowness effect.
Finally, let us note that we will not make any separation

other than single elastic channel from inelastic channels
(being all the rest). Therefore the verification of the con-
jecture that the calculated elastic cross section includes
diffraction, whereas the inelastic cross section only includes
uncorrelated processes, as put forward in Refs. [18–20], will
not be addressed in the present study.

II. MASS SQUARED APPROACH WITH
CENTRAL OPTICAL POTENTIAL

The NN elastic scattering amplitude has 5 complex
Wolfenstein components, as it corresponds to scattering
of identical spin 1=2 particles [21]. Besides, at high
energies,

ffiffiffi
s

p
≫ 2MN , both relativistic effects and inelas-

ticities must be taken into account. In principle, a field
theoretic description of particle production would require
solving a multichannel Bethe-Salpeter (BS) equation.
Taking into account that most of the produced particles
are pions, the maximum number of coupled channels
involving just direct pion production pp → ppþ nπ
necessary to preserve the (coupled channel) unitarity would
involve at least nmax ∼ ð ffiffiffi

s
p

− 2MNÞ=mπ channels. For ISR
energies it corresponds to nmax

ISR ∼ 150–450, whereas for the
LHC energies nmax

LHC ∼ 5 × 105. Such a huge number of
channels prevents from the outset a direct coupled channel
calculation.1 Another added difficulty is the incorporation
of spin at these high energies, mainly because the exper-
imental information is insufficient. Thus, as it is usually
assumed in most calculations, at these high energies spin
effects are fully neglected and a purely central type of
interaction is taken.

An advantageous way to take into account inelasticities
is to recourse to an optical potential where all inelastic
channels are in principle integrated out. Even if all the
particle production processes were known, an explicit
construction for the huge number of channels has never
been carried out, hence our approach is phenomenological,
with the idea to deduce the optical potential directly from
the data via an inverse scattering method. Because such a
framework is currently not commonly used in high-energy
physics, it is appropriate to review it here, providing in
passing a justification on why we choose it.
The optical potential was first introduced to describe the

inelastic neutron-nucleus scattering above the compound
nucleus regime [24] (typically in the 10–500 MeV range).
There, the concept of the black disk limit was first tested,
along with the Fraunhofer diffraction pattern appearing as a
shadow scattering effect. This work inspired Glauber’s
seminal studies [25] on the eikonal approximation, which is
currently successfully applied to model the early stages of
the ultrarelativistic heavy-ion collisions (see e.g. [26]).
Serber [27–29] provided an extension of the optical eikonal
formalism to high energy particle physics. As it was shown
by Omnes [30], the simple assumption of a double spectral
representation of the Mandelstam representation of the
scattering amplitude suffices to justify the use of an optical
potential. Cornwall and Ruderman [31] delineated a more
precise definition of the optical potential, directly based in
field theory and tracing its analytic properties from the
causality requirement. Some further field theoretic discus-
sions using the multichannel BS equation can be found in
[32,33], and were early reviewed by Islam [34].
The simplest way of retaining relativity without solving a

BS equation with a phenomenological optical potential is
by using the so-called mass squared method, discussed by
Allen, Payne, and Polyzou in an insightful paper [35].2

The idea is to postulate the total squared mass operator for
the pp system as

M2 ¼ PμPμ ¼CM 4ðp2 þM2
NÞ þ V; ð1Þ

where Pμ is the total four-momentum, CM indicates the
center-of-mass frame, p is the CM momentum of each
nucleon, MN is the nucleon mass, and V represents the
invariant (momentum-independent) interaction, whose
form can be determined in the CM frame by matching
to the nonrelativistic limit with a non-relativistic potential
Vðx⃗Þ. This allows one, after quantization, to write down the
relativistic wave equation M̂2Ψ ¼ sΨ, in the form of an
equivalent nonrelativistic Schrödinger equation [35]

ð−∇2 þ UÞΨ ¼ ðs=4 −M2
NÞΨ; ð2Þ1Of course, the average number of produced particles is

estimated to be much smaller, N ¼ hnð ffiffiffi
s

p Þi ∼ 0.88þ
0.44 logðs=s0Þ þ 0.118log2ðs=s0Þ ( ffiffiffiffiffi

s0
p ¼ 1 GeV) [22,23], which

becomes ∼8–12 for ISR and ∼50 for the LHC, but one does not
know how to pick the relevant “averaged” combinations of coupled
channels to apply the BS method.

2These authors proposed a practical way to promote non-
relativistic fits of NN scattering to a relativistic formulation
without a necessity of refitting parameters.

ENRIQUE RUIZ ARRIOLA and WOJCIECH BRONIOWSKI PHYSICAL REVIEW D 95, 074030 (2017)

074030-2



with the reduced potential U ¼ MNV. In essence, the
invoked prescription corresponds to a simple rule where
one may effectively implement relativity by just promoting
the nonrelativistic CM momentum to the relativistic CM
momentum.
As remarked by Omnes [30], “one can always find an

optical potential that fits any amplitude satisfying the
Mandelstam analyticity assumptions”, and we apply a
definite prescription to accomplish this goal. To account
for inelasticity, we assume an energy-dependent and local
phenomenological optical potential, Uðr⃗; sÞ ¼ ReUðr⃗; sÞþ
iImUðr⃗; sÞ, which can be obtained by fitting the scattering
data. Due to causality, the optical potential in the s channel
satisfies a fixed-r dispersion relation. TogetherwithEq. (2), it
provides the necessary physical ingredients present in any
field theoretic approach: relativity and inelasticity, consistent
with analyticity. The potential U appearing in Eq. (2) will
be determined in the following via inverse scattering in
the eikonal approximation for any value of s. To ease the
notation, the s-dependence is suppressed below.

III. ON-SHELL OPTICAL POTENTIAL AND
THE EIKONAL APPROXIMATION

Besides the “standard”potentialU, the objectwe aregoing
to use is the on-shell optical potentialW, defined by a Low-
type integral equation discussed, e.g., in [9,31,36,37]. From
Eq. (2) we get for the probability flux

I
r¼R

d⃗S · J⃗ ¼
Z
r≤R

d3xImUðx⃗ÞjΨðx⃗Þj2; ð3Þ

with J⃗ ¼ Ψ�ð∇⃗ΨÞ − ð∇⃗Ψ�ÞΨ denoting the probability cur-
rent. The asymptotic behavior of the wave function is
Ψðx⃗Þ → eip⃗·x⃗ þ fðx̂Þeipr=r. It follows from the definition
of the inelastic cross section that

σT − σel ≡ σin ¼ −
1

p

Z
d3xImUðx⃗ÞjΨðx⃗Þj2; ð4Þ

which shows that the density of inelasticity is proportional to
the absorptive part of the optical potential times the square of
the modulus of the wave function. One can now identify the
on-shell optical potential3 as

ImWðx⃗Þ ¼ ImUðx⃗ÞjΨðx⃗Þj2: ð5Þ

In the eikonal approximation one has

Ψðx⃗Þ ¼ exp

�
ipz −

i
2p

Z
z

−∞
Uðb⃗; z0Þdz0

�
; ð6Þ

thus

ImWðx⃗Þ ¼ p
d
dz

exp

�
1

p

Z
z

−∞
ImUðb⃗; z0Þdz0

�
: ð7Þ

Upon z integration,

−
1

p

Z
∞

−∞
dzImWðb⃗; zÞ ¼ 1 − e−2ImχðbÞ ≡ ninðbÞ; ð8Þ

where

χðbÞ ¼ −
1

2p

Z
∞

−∞
Uð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
Þdz ¼ −

1

p

Z
∞

b

rUðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p

ð9Þ

is the (complex) eikonal phase [25]. Equation (7) is the
standard result for the inelasticity profileninðbÞ in the eikonal
approximation.4 Note that it links the imaginary part of the
eikonal phase with the absorptive part of the on-shell optical
potential W, hence the significance of this object in the
present study.
The inverse scattering problem has been solved in [39]

and in the eikonal approximation in [30] (for a review see,
e.g., [40]). In our case the inversion is based on the fact that
Eq. (9) is of a type of the Abel integral equation, hence
the solution for the optical potential U takes the simple
form [25]

UðrÞ ¼ MNVðrÞ ¼
2p
π

Z
∞

r
db

χ0ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − r2

p ; ð10Þ

which may be straightforwardly checked via direct sub-
stitution.5 Similarly, from Eq. (8) one obtains

ImWðrÞ ¼ p
π

Z
∞

r
db

n0inðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − r2

p : ð11Þ

As the (complex) scattering phase may be obtained from
the data parametrizations (see the following section),
Eqs. (10) and (11) provide a simple way to obtain the
corresponding optical potentials. An investigation of their
behavior with the increasing collision energy is our
principal goal.
Before going to the details of the next sections, let us

comment on a simple geometric interpretation of for-
mula (8). Suppose we have a spherically symmetric

3An interesting observation of Cornwall and Ruderman [31]
was that the on-shell optical potential does not involve the wave
function itself.

4Alternative eikonal unitarization schemes to the standard one
have been suggested long ago [38], but they do not fulfill the
above relation.

5We use a slightly different form than the original Glauber
formulation [25], more suitable for numerical work, since care
must be exercised with the handling of derivatives at the endpoint
singularity at b ¼ r. Our form was used in the NN analysis of
Ref. [41].
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three-dimensional function with a lower density in the
middle than in outer layers, as depicted in Fig. 1(a). If the
hollow is not too deep, the projection of the function on two
dimensions, as presented in Eq. (8), covers it up by the
inclusion of the outer layers. In the example of Fig. 1(b) the
central region is flat. Therefore the flatness of the inelas-
ticity profile ninðbÞ corresponds to a hollow in the imagi-
nary part of the on-shell optical potential ImWðrÞ. In other
words, the three-dimensional objects as ImWðrÞ or UðrÞ
are more sensitive to exhibit a hollow than their corre-
sponding 2D projections, i.e., the inelasticity profile or the
eikonal phase.

IV. AMPLITUDES AND PARAMETRIZATION

The pp elastic scattering differential cross section is
given by

dσel
dt

¼ π

p2

dσel
dΩ

¼ π

p2
jfðs; tÞj2; ð12Þ

with the spinless partial wave expansion of the scattering
amplitude

fðs;tÞ¼
X∞
l¼0

ð2lþ1ÞflðpÞPlðcosθÞ

¼p2

π

Z
d2bhðb⃗;sÞeiq⃗·b⃗¼ 2p2

Z
∞

0

bdbJ0ðbqÞhðb;sÞ;

ð13Þ
where t ¼ −q⃗2 and q ¼ 2p sinðθ=2Þ denotes the momen-
tum transfer. The Coulomb effects can be neglected for

jtj > 8πα=σT (α≃ 1=137.04 is the fine structure constant)
[4]. In the eikonal limit, justified for pa ≫ 1 with a
standing for the range of the interaction, one has
bp ¼ lþ 1=2þOðs−1Þ, hence the amplitude in the
impact-parameter representation becomes

hðb; sÞ ¼ i
2p

½1 − eiχðbÞ� ¼ flðpÞ þOðs−1Þ; ð14Þ

whereas Plðcos θÞ → J0ðqbÞ. Explicitly,

2phðs; bÞ ¼ 1

p

Z
∞

0

qdqJ0ðbqÞfðs;−q2Þ: ð15Þ

The standard formulas for the total, elastic, and total
inelastic cross sections read [38]

σT ¼ 4π

p
Imfðs; 0Þ ¼ 4p

Z
d2bImhðb⃗; sÞ

¼ 2

Z
d2b½1 − ReeiχðbÞ�; ð16Þ

σel ¼
Z

dΩjfðs; tÞj2 ¼ 4p2

Z
d2bjhðb⃗; sÞj2

¼
Z

d2bj1 − eiχðbÞj2; ð17Þ

σin ≡ σT − σel ¼
Z

d2bninðbÞ

¼
Z

d2b½1 − e−2ImχðbÞ�: ð18Þ

(a) (b)

FIG. 1. Projection of a sample spherically symmetric three-dimensional function (a) on two dimensions (b), as in Eq. (8). A shallow
hollow present in (a) disappears in (b), where it is only reflected with a flatness on the central region.
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The inelasticity profile

ninðbÞ ¼ 4pImhðb; sÞ − 4p2jhðb; sÞj2; ð19Þ

satisfies ninðbÞ ≤ 1, conforming to unitarity and the prob-
abilistic interpretation of absorption.
We use the parametrization of the pp scattering data

provided by Fagundes et al. [17] based in the Barger-
Phillips analysis [42] motivated by the Regge asymptotics:

Aðs; tÞ≡ fðs; tÞ
p

¼
X
n

cnðsÞFnðtÞsαnðtÞ

¼ i
ffiffiffiffi
A

p
e
Bt
2

ð1 − t
t0
Þ4 þ i

ffiffiffiffi
C

p
e
Dt
2
þiϕ; ð20Þ

where the linear Regge trajectories αnðtÞ ¼ αnð0Þ þ α0nð0Þt
are assumed. Specifically, we take the MBP2 parametriza-
tion of [17], with the s-dependent parameters fitted sep-
arately to all known differential pp cross sections forffiffiffi
s

p ¼ 23.4, 30.5, 44.6, 52.8, 62.0, and 7000 GeV with a
reasonable accuracy of χ2=d:o:f: ∼ 1.2–4.7. A typical
quality of the fit can be appreciated from Fig. 2, where
we show the comparison to the data at two sample collision
energies from ISR [3] at

ffiffiffi
s

p ¼ 23.4 GeV, and from the
LHC (the TOTEM Collaboration [10]) at

ffiffiffi
s

p ¼ 7 TeV.
To be consistent with the experimental values of the ρðsÞ

parameter, where

ρðsÞ ¼ ReAðs; 0Þ
ImAðs; 0Þ ; ð21Þ

we modify the amplitude of Eq. (20) be replacing it
with

Aðs; tÞ → iþ ρðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρðsÞ2

p jAðs; tÞj; ð22Þ

which amounts to imposing a t-independent ratio of the real
to imaginary part of the amplitude. Other prescriptions have
been discussed in detail in Ref. [43]. We have checked that
our results are similar if we take the Bailly et al. [44]
parametrization ρðs; tÞ ¼ ρ0ðsÞ=ð1 − t=t0ðsÞÞ, where t0ðsÞ
is the position of the diffractive minimum. Nevertheless, the
results in the impact parameter representation do depend to
some extent on the form of ρðs; tÞ [43] and the issue is
intimately related to the separation of the strong amplitude
from the Coulomb part. As these problems extend beyond
the goals of this paper, we explore here the simplest choice
of Eq. (22).
Prescription (22) preserves the quality of the fits of

Fig. 2, and in addition the experimental values for ρðsÞ
are reproduced. For the explored below values offfiffiffi
s

p ¼ 23.4 GeV, 200 GeV, 7 TeV, and 14 TeV we use,

FIG. 2. The differential elastic cross section in pp collisions
from the MBP2 parametrization of Ref. [17] (lines), compared to
the ISR [3] data at

ffiffiffi
s

p ¼ 23.4 GeV and the TOTEM [10] data
at

ffiffiffi
s

p ¼ 7 TeV.

TABLE I. Scattering observables for different CM energy
values, obtained from the MBP2 parametrization [17] with the
inclusion of the ρ parameter according to Eq. (22), compared to
experimental values (lower rows).
ffiffiffi
s

p
[GeV] σel [mb] σin [mb] σT [mb] B½GeV−2� ρ

23.4 6.6 31.2 37.7 11.6 0.00
[3] 6.7(1) 32.2(1) 38.9(2) 11.8(3) 0.02(5)
200 10.0 40.9 50.9 14.4 0.13
[45,46] 54(4) 16.3(25)
7000 25.3 73.5 98.8 20.5 0.140
[10] 25.4(11) 73.2(13) 98.6(22) 19.9(3) 0.145(100)

FIG. 3. Fourier-Bessel weighted absolute value of the integrand
of the elastic amplitude from Eq. (15), qJ0ðbqÞjfðs;−q2Þj=p,
plotted as a function of q ¼ ffiffiffiffiffi

−t
p

for two sample values of the
impact parameter b. The amplitude fðs;−q2Þ is taken from
the parametrization (20) for

ffiffiffi
s

p ¼ 7 TeV. The arrow indicates the
upper range of the TOTEM [10] data.
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correspondingly, ρ ¼ 0, 0.13, 0.14, and 0.135 (the last value
is obtained via extrapolation). For completeness, we provide
Table I with the numerical results where predictions of
Eq. (22) are compared to the available experimental data.
Finally, we judge the accuracy of the eikonal approxi-

mation by checking that the ratio jhðb; pÞ=flðpÞj ∼ 1 to
better than 0.1% when bp ¼ lþ 1

2
and for

ffiffiffi
s

p
≥ 17 GeV

and b ≤ 3 fm for the MBP2 parametrization. The perfor-
mance of the approximation improves with increasing
collision energy.
Before passing to the results, we also test whether the

range of the data at
ffiffiffi
s

p ¼ 7 TeV is sufficient to draw
accurate conclusions for the quantities in the impact-
parameter representation. It is indeed the case, as can be
inferred from Fig. 3, where we show the integrand of the
Bessel-Fourier transform, qJ0ðbqÞjfðs;−q2Þj=p, plotted as
a function of q ¼ ffiffiffiffiffi

−t
p

for two sample values of the impact
parameter b. As we can see, the range of the TOTEM data
[10] is large enough to carry out the transformation with a
numerical precision sufficient for our study.

FIG. 4. The imaginary (upper four curves) and real (lower four
curves) parts of the eikonal amplitude multiplied with twice the
CM momentum, 2phðbÞ, plotted as functions of the impact
parameter b.

(a) (b) (c)

(d) (e) (f)

FIG. 5. (a) Imaginary part of the eikonal phase χðbÞ, plotted as a function of b, for several collision energies. (b) Same as (a) but for the
real part of the eikonal phase. (c) Same as (a) but for the inelasticity profile ninðbÞ. (d) Imaginary part of the optical potential VðrÞ
divided with ImVð0Þ, plotted as a function of the radius r, for collision energies as in (a). (e) Same as (d) but for the real part of the
optical potential. (e) Same as (d) but for the imaginary part of the on-shell optical potentialWðrÞ divided with ImWð0Þ. The plots in the
lower row are obtained, correspondingly, from the plots in the upper row via the transformations of Eqs. (10) or (11).
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V. RESULTS

Our simple calculation consists of the following steps.
First, with a given parametrization for fðs; tÞ we find hðbÞ
via a numerical inverse Fourier-Bessel transform in
Eq. (13). Then from Eq. (14) we obtain the eikonal phase
and the quantities from Eq. (16)–(19), whereas the optical
potentials follow from Eqs. (10), (11). The relevant
quantities are displayed in Figs. 4 and 5. A few character-
istic features should be stressed.
First, we note from Fig. 4 that with an increasing

collision energy from ISR via RHIC to the LHC, the real
part of the eikonal scattering amplitude RehðbÞ, while
remaining small, increases (in our model, simply,
RehðbÞ ¼ ρImhðbÞ). At the LHC energies, it reaches
∼15% percent of the dominant imaginary part.
The eikonal phase is presented in Figs. 5(a) and 5(b). We

can see that its imaginary part develops a dip at the origin at
the LHC energies. Moreover, it achieves a very sizable
positive real part, of the size of the imaginary part at
the LHC.
The inelasticity profile ninðbÞ, Fig. 5(c), flattens near the

origin as the collision energy is being increased, and for the
LHC develops a shallow minimum at b ¼ 0, whereas
the maximum shifts to b > 0. Note that by construction
and in accordance to unitarity ninðbÞ ≤ 1. The dip at b ¼ 0
is a symptom of the 2D hollowness effect, discussed in
greater detail in the next section.
Finally, we observe dips in the imaginary parts of both

the optical potential VðrÞ, Fig. 5(d), and the on-shell optical
potential WðrÞ, Fig. 5(f), appearing prominently with an
increasing s and displaying the hollowness effects in 3D.

VI. THE NATURE OF THE HOLLOW

As the pp collision energy increases, the total inelastic
cross section σinðsÞ grows. Moreover, as shown in the
previous section, the inelasticity profile in the impact
parameter flattens at the origin, or even develops a shallow
minimum at sufficiently large s, as follows from Fig. 6. By
simple geometric arguments, this flattening must corre-
spond to a 3D hollow in the radial density of inelasticity,
here interpreted as the on-shell optical potential ImWðrÞ,
cf. Eq. (8). In fact, for the collision energies above the
lowest ISR case of

ffiffiffi
s

p ¼ 24.3 GeV the function ImWðrÞ
exhibits a depletion at the origin—the hollow.
As depicted in the introductory Fig. 1, the “hollowness”

effect is more pronounced when interpreted in 3D, i.e., via
ImWðrÞ, than in its 2D projection, namely ninðbÞ
[cf. Eq. (8)], since a 3D function is integrated over the
longitudinal direction, which effectively covers up the hole.
Folding ideas have been implemented in microscopic

models based on intuitive geometric interpretation [5,47–50].
Interestingly, the 3D hollowness effect cannot be reproduced
by naive folding of inelasticities of uncorrelated partonic
constituents. If ΨAðx1; x2; x3;…Þ and ΨBðx01; x02; x03;…Þ are

the corresponding partonic wave functions of hadrons A and
B, the single parton distributions are given by

ρAðx⃗1Þ ¼
Z

d3x2d3x3…jΨAðx1; x2; x3;…Þj2;

ρBðx⃗ 0
1Þ ¼

Z
d3x02d

3x03…jΨBðx01; x02; x03;…Þj2: ð23Þ

In a folding model, antisymmetry of the wave functions is
neglected and the absorptive part of the potential, ImWðrÞ, is
proportional to the overlap integral

hΨAΨBj
X

i∈A;i0∈B

wðx⃗i − x⃗i0 − r⃗ÞjΨAΨBi

¼
Z

d3yρAðx⃗þ r⃗=2Þwðx⃗ 0 − x⃗ÞρBðx⃗ − r⃗=2Þ; ð24Þ

where wðx⃗ − x⃗ 0Þ denotes the interaction among constituents
belonging to different hadrons (we omit further possible
indices). For identical hadrons, A ¼ B, and at small r we get

ImWðrÞ ∝
Z

d3xd3x0ρðx⃗ 0 þ r⃗=2Þwðx⃗ 0 − x⃗Þρðx⃗ − r⃗=2Þ

¼
Z

d3yd3y0ρðx⃗Þρðx⃗ 0Þwðx⃗ 0 − x⃗Þ

−
1

2

Z
d3xd3x0½r⃗ ·∇ρðy⃗Þ�wðx⃗ − x⃗ 0Þ½r⃗ · ∇0ρðx⃗ 0Þ�

þ… ð25Þ

For a positive wðx⃗ − x⃗ 0Þ both integrals are necessarily
positive as can be seen by going to the Fourier space. This
proves that if ImWðrÞ stems from a folding of densities with
wðx⃗ − x⃗ 0Þ > 0, then it necessarily has a local maximum at

FIG. 6. The curvature of the inelasticity profile ninðbÞ at b ¼ 0
plotted as a function of the collision energy. The minimum
emerges at

ffiffiffi
s

p ≃ 3 TeV.
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r ¼ 0, in contrast to the phenomenological hollowness
result. Folding models usually take wðx⃗ − x⃗ 0Þ ∝ δðx⃗ 0 − x⃗Þ
[5,47–50].
Note that the above conclusion holds for any wave

functions ΨA;B, correlated or not. In particular, one may
think of modeling collisions of objects empty in the middle
(for instance, protons made as triangles of three constitu-
ents). If inelasticity were to be obtained via the above
density folding, even in this case the absorption would be
strongest for head-on collisions.
Likewise, the 2D hollowness cannot be obtained by

folding structures in the impact parameter space, as for
instance used in the models of Ref. [5,47–50].
In our model one may give a simple criterion for nin to

develop a dip at the origin. Introducing the short-hand
notation kðbÞ ¼ 2pImhðbÞ we have immediately from
Eqs. (19) and (22) the equality

ninðbÞ ¼ kðbÞ − ð1þ ρ2ÞkðbÞ2=2: ð26Þ

Differentiating with respect to b2 one immediately finds
that d2ninðbÞ=db2 at the origin is negative when

2pImhð0Þ > 1

1þ ρ2
∼ 1; ð27Þ

where the departure from 1 is at a level of 2% at the LHC
and smaller at lower collision energies.
One can make the following direct connection to the

eikonal phase. From Eq. (14) we get immediately

2pImhðbÞ ¼ 1 − cos ðReχðbÞÞe−ImχðbÞ; ð28Þ

hence 2pImhð0Þ > 1 [thus satisfying criterion (27)] when
Reχð0Þ increases above π=2, whence

cosðReχðbÞÞ < 0: ð29Þ

This is indeed the case in Fig. 5(b).
Recall that in the Glauber model [25] of scattering of

composite objects, the eikonal amplitudes of individual
scatterers are additive, composing the full eikonal ampli-
tude χðbÞ. Thus, in this quantum-mechanical framework,
the monotonic change of χðbÞ with the collision energy
may be caused by the corresponding change of the eikonal
amplitudes of the scatterers, or the increase of the number
of scatterers (as expected from the growing number of
gluons at increasing energies), or both. Thus a quantum
nature of the scattering process is the alleged key to the
understanding of the hollowness effect.
Finally, we show that the 2D flatness of the inelasticity

profile ninðbÞ at the origin implies the 3D hollowness in
ImWðrÞ. If ninðbÞ is constant for 0 < b ≤ b0, then lower

range of the integration in Eq. (11) starts from b0 and the
integral has no singularity for r < b0. Direct inspection
shows that the magnitude of ImWðrÞ grows with r, which
corresponds to 3D hollowness.

VII. THE HOLLOW AND THE EDGE

The edge function, based on defining ηðbÞ ¼ e−ImχðbÞ
and analyzing the combination ηðbÞð1 − ηðbÞÞ, has been
considered in Refs. [50,51] (see, e.g., Ref. [52] for an
interpretation in terms of string breaking). In the limit of a
purely imaginary amplitudes the edge function can be
interpreted as a combination of the unintegrated cross
sections σTðbÞ − 2σelðbÞ≡ σinðbÞ − σelðbÞ (we use
σinðbÞ≡ ninðbÞ). In the general case, with the real part
of the eikonal phase present, it reads

σinðbÞ − σelðbÞ ¼ 2e−ImχðbÞ½cosðReχðbÞÞ − e−ImχðbÞ�: ð30Þ

We show in Fig. 7 the edge functions at various collision
energies resulting from our analysis. As we can see, the
edge function becomes negative at the LHC energies for
b≲ 0.5 fm due to the same quantum mechanical effect as
described in the previous section, leading to condition (29).
Note that in Ref. [50] there is no region in b with a negative
contribution in the edge function because of the folding
nature of the underlying model. Instead, one observes a
2D flatness, which complies, according to our analysis, to
a 3D hollowness.
Therefore the fact that σinðbÞ < σelðbÞ at low b at the

LHC energies provides an equivalent manifestation of the
hollowness effect. In other words, at low impact parameters
there the unintegrated inelastic cross section is smaller from
its elastic counterpart.

FIG. 7. The edge function σTðbÞ − 2σelðbÞ≡ σinðbÞ − σelðbÞ as
a function of the impact parameter for different energies.
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VIII. CONCLUSIONS

Over the past years many analyses have tempted to
regard the largest available energy as close enough to the
asymptotics holy grail, but so far this expectation has been
recurrently frustrated. The new LHC data on pp scattering
may suggest a change in a basic paradigm of high energy
collisions, where the head-on (b ¼ 0) collisions are
expected to create “more damage” to the system compared
to collisions at b > 0.
We have shown that a working parametrization of the pp

scattering data at the LHC energies indicates a hollow in the
inelasticity profile ninðbÞ, i.e. a dip at the origin, confirming
the original ideas by Dremin [12,13]. In other words, there
is less absorption for head-on collisions (b ¼ 0) than at a
nonzero b. The shallow dip found from parametrizing the
present data at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7 TeV is subject to experimental
uncertainties and, to some extent, on assumptions concern-
ing the ratio or the real to imaginary parts of the scattering
amplitudes as functions of the momentum transfer.
Nevertheless, its emergence, if confirmed by future data
analyses at yet higher collision energies, has far-reaching
theoretical consequences. We have shown with a simple
geometric argument that in approaches which model the
inelasticity profile by folding partonic densities of the
colliding protons, the 2D hollowness is impossible.
We have used techniques of the inverse scattering in the

eikonal approximation to show that the optical potential
and the on-shell optical potential display the hollowness
effect in 3D much more vividly than the 2D inelasticity
profile in the impact parameter space. The 2D hollowness
will presumably be more pronounced at higher collision
energies, but in 3D it sets in at much lower energies than the
LHC. Our approach gives a spatial insight into the three

dimensional geometric structure of the inelasticity region.
The found hollowness in 3D, which is a robust effect,
contradicts an interpretation of the absorptive part of the
on-shell optical potential via naive folding of partonic
densities.
A final confirmation of the 2D hollowness requires more

detailed studies both on the experimental as well on the
theoretical side. In contrast, the presence of the 3D hollow-
ness can be established from a flat behavior of the
inelasticity profile in the small b region, which is estimated
to happen at the LHC energies. Our inverse scattering
approach yields, however, that the 3D hollowness transition
takes place already within the ISR energy range.
We have argued that the hollowness effect has a quantum

nature which may be linked to the interference if the
scattering of constituents in the Glauber framework. In 2D
in the eikonal approximation, hollowness occurs when the
real part of the eikonal scattering phase goes above π=2.
Furthermore, we have also pointed out that the 2D

hollowness is intimately linked to the edginess; moreover,
with the used parametrization of the data, the inelastic
profile at low impact parameters is smaller than its elastic
counterpart, causing the edge function to become negative.
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