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The presence of terms that violate quark-hadron duality in the expansion of QCD Green’s functions is a
generally accepted fact. Recently, a new approach was proposed for the study of duality violations (DVs),
which exploits the existence of a rigorous lower bound on the functional distance, measured in a certain
norm, between a “true” correlator and its approximant calculated theoretically along a contour in the
complex energy plane. In the present paper, we pursue the investigation of functional-analysis-based tests
towards their application to real spectral function data. We derive a closed analytic expression for the
minimal functional distance based on the general weighted L2 norm and discuss its relation with the
distance measured in the L∞ norm. Using fake data sets obtained from a realistic toy model in which we
allow for covariances inspired from the publicly available ALEPH spectral functions, we obtain, by
Monte Carlo simulations, the statistical distribution of the strength parameter that measures the magnitude
of the DV term added to the usual operator product expansion. The results show that, if the region with
large errors near the end point of the spectrum in τ decays is excluded, the functional-analysis-based tests
using either L2 or L∞ norms are able to detect, in a statistically significant way, the presence of DVs in
realistic spectral function pseudodata.
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I. INTRODUCTION

The presence of additional terms in the QCD Green’s
functions, beyond those generated by OPE (understood as
perturbation theory and power corrections), is a generally
accepted fact, with support both from theory and phenom-
enology. According to the standard terminology [1–3],
these terms are said to violate quark-hadron duality. We
recall that, in its conventional sense, quark-hadron duality
assumes that the description in terms of the OPE, valid on
the Euclidian axis and at complex energies, can be
analytically continued to match with the description in
terms of hadrons, which live on the Minkowski axis.
Duality violations (DVs) are supposed to arise from

contributions of internal lines with soft momenta in the
Feynman diagrams, which are not included in the OPE.
Their calculation from first principles is, at least at present,
impossible. Quantitative understanding must be based on
realistic models, whose main features have been tested
against experimental data. Two types of specific mechanisms
have been suggested, one considering quarks in an instanton
field [1–3], the other based on narrow-resonance saturation

in the large-Nc limit [3–7]. Both mechanisms are material-
ized in exponentially suppressed terms on the spacelike axis,
which exhibit oscillations when analytically continued to the
timelike axis. More formal arguments in favor of the
existence of DVs are provided by ideas of resurgence and
the associated trans-series [8]. The assumption that the OPE,
expected to be a divergent expansion with increasing large-
order coefficients, is actually an asymptotic series also
naturally leads to the presence of additional exponentially
suppressed contributions [9]. However, beyond these some-
what general arguments, no detailed dynamical calculation
of the additional contributions present in the theoretical
expression of the Green’s functions is available.
The phenomenological extraction ofDVs is far from trivial

because one must detect terms exponentially suppressed as a
function of energy, while an infinity of terms logarithmically
and power suppressed, i.e. larger in principle, are neglected in
the standard truncated expansions of the Green functions.
Since these expansions are actually divergent, the magnitude
of the neglected terms can be quite substantial. Moreover, as
mentioned above, the confrontation between theory and
experiments implies an analytic continuation in the complex
energy plane, with its known instabilities and pitfalls.
Analyticity is usually exploited by means of a Cauchy
integral relation along a contour in the complex plane for
the QCD polarization amplitude of interest multiplied by a
suitableweight. This allows one to build sum rules that relate
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the integrated theoretical predictions on the contour to
weighted integrals over the spectral function data on the
positive Minkowski axis. The weight is chosen such as to
enhance or to suppress the contribution of various terms in
the theoretical expression of the amplitude. The impact of
DVs for practical calculations is therefore sensitive to the
weights that are employed and vary depending on the
quantity of interest. When extracting QCD parameters, for
example, different weight functions have been advocated. In
someworks, DVs are explicitly taken into account by means
of realistic parametrizations [10–15], which allows for a
quantitative control of their contribution, while, in others,
DVs are ignored on the basis of their suppression by the
weight functions employed [16–18]. The reliability of the
different approaches is still being questioned [18,19]; there-
fore, a better understanding of DVs would certainly con-
tribute to the precision with which QCD parameters can be
extracted. This is particularly true for the determination of the
coupling αs from the τ-hadronic spectral functions.
In the recent paper [20], a method based on functional

analysis was proposed in order to test the presence of DVs
in QCD. The method starts from the obvious remark that
the “true” polarization amplitude and its approximate
theoretical expression are entirely different functions, with
different analytic properties, which cannot coincide in the
complex energy plane. Moreover, by defining a functional
distance, measured in a certain norm, between these two
functions along a contour in the complex plane, a rigorous
nonzero lower bound on this distance can be shown to exist.
In particular, for the functional distances defined in L∞ and
in L2 norms, the lower bound can be calculated by an
explicit algorithm involving the QCD approximant in the
complex plane and an infinity of Fourier coefficients
obtained from the spectral function (“moments”) measured
experimentally on part of the timelike axis.
As argued in Ref. [20], the minimal distance between the

true function and its approximant can be used as a tool for
detecting the presence of DVs. In particular, from the
variation of the minimal distance with respect to a param-
eter μ that measures the strength of the duality violating
contribution, one can infer the optimal value of this
parameter. Formulated in this way, the problem becomes
analogous to the search for new physics beyond the
standard model (SM) in experiments at very high energies,
where one tests for the presence of new physics through a
“strength parameter” μ of the signal while treating the SM
as a background. In our case, the “new physics” is
represented by DV terms, while OPE is the background
representing the “known physics.”
The application of these ideas to a toy model proposed in

Ref. [6] indicated that the new approach might be useful for
detecting the presence of DVs in QCD. The asymptotic
expansion of the exact model contains, besides a purely
perturbative term and an expansion identified with higher-
dimension terms in the OPE, an additional term that can be

interpreted as a DV contribution. The minimal functional
distance defined in Ref. [20], calculated with the spectral
function of the model and a truncated OPE to mimic the
physical cases, displayed a sharp minimum at the true value
of the strength μ of the DV term. In particular, the functional
distance measured in the L∞ norm proved to be more
sensitive to the variation of the parameter μ than the distance
measured in the L2 norm. However, the effect of the
experimental uncertainties inherent in the spectral function
used as inputwas only barely touched inRef. [20]. A detailed
investigation of this aspect is crucial for assessing the
usefulness of the method to detect DVs from real data. In
the present paper, we address precisely this problem.
We consider the same toy model proposed in Ref. [6],

assuming now that the spectral function is measured only in a
finite number of bins with uncertainties and correlations
similar to those reported in real experiments on hadronic τ
decays. It turns out that a statistical interpretation of the
minimal distances defined by functional analysis is difficult to
assess theoretically. Therefore, we perform an empirical study
based on pseudodata, where fake data on the spectral function
aregenerated in a number of bins,with amultivariateGaussian
distribution with covariances inferred from the ALEPH
covariance matrix for the vector (V) channel [16]. The
statistical distribution of the parameter μ that measures the
magnitude of the DV term added to the usual OPE is then
derivedbyMonteCarlo simulations, allowing the extractionof
a mean and a standard deviation. The aim is to establish if the
method is able to detect, in a statistically significant way, the
presence of DVs from error-affected experimental measure-
ments. We also compare the procedures based on L∞ and L2

norms and establish which is the most efficient tool when the
uncertainties in the spectral function are taken into account. In
the process, we give closed analytical expressions for the
functional distances in a generalized weighted L2 norm that
interpolates almost exactly between L2 and L∞.
The plan of the paper is as follows. We start, in Sec. II,

with a brief review of the approach proposed in Ref. [20],
defining the minimal functional distances in L∞ and L2

norms and presenting the algorithms for their calculation.
Section III contains two new mathematical developments
that are important for applications: In Sec. III B, we prove
that the minimal distance based on the general weighted L2

norm can be written down in a closed analytic form, and in
Sec. III B, we derive a suitable approximation of the
minimal distance based on the L∞ norm by a class of
weighted L2 norms. In Sec. IV, we briefly review the toy
model and describe the data generation with ALEPH-based
covariances. Section V contains our main results, and
Sec. VI is devoted to our conclusions.

II. THEORETICAL FRAMEWORK

We begin with a short presentation of the work per-
formed in Ref. [20]. The main idea is to quantify the
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difference, along a contour in the complex s plane, between
the QCD description ΠQCDðsÞ of a correlator of light quark
currents and its true value ΠðsÞ. By QCD description, one
understands the perturbative part, the contribution from
OPE condensates, and possible duality violations:

ΠQCDðsÞ ¼ ΠOPEðsÞ þ ΠDVðsÞ; ð1Þ

where ΠOPE encompasses both the purely perturbative
contribution (or dimension D ¼ 0 contribution) and the
power corrections.
For definiteness, the contour was taken as the circle

jsj ¼ s0 shown in Fig. 1, where s0 is sufficiently large such
that the QCD approximant is valid. Measuring the distance
by the L∞ norm [21], we consider the quantity

δ ¼ sup
θ∈ð0;2πÞ

jΠðs0eiθÞ − ΠQCDðs0eiθÞj; ð2Þ

where ΠðsÞ is the “true,” physical function, known to be an
analytic function in the s-plane cut along the real axis for
s ≥ 4m2

π, which satisfies the Schwarz reflection condition
Πðs�Þ ¼ Π�ðsÞ. In addition, its discontinuity

ImΠðsþ iεÞ ¼ σðsÞ ð3Þ

is known experimentally on a limited energy range,
4m2

π ≤ s ≤ s0.
The exact value δexact of δ cannot be computed in QCD

for lack of the true ΠðsÞ: The properties stated above do not
uniquely specify the function, but they define a whole class
of admissible functions to which the physical one must
belong. If we define

δ0 ¼ min
fΠg

sup
θ∈ð0;2πÞ

jΠðs0eiθÞ − ΠQCDðs0eiθÞj; ð4Þ

where the minimization is with respect to all functions Π in
this admissible class, then it follows that

δexact ≥ δ0: ð5Þ

As shown in Ref. [20], the quantity δ0 can be calculated
by applying a duality theorem in functional optimization
[21]. For completeness, we present below the main steps of
the proof. We first make the simple change of variable,

z≡ ~zðsÞ ¼ s
s0
; ð6Þ

which maps the domain shown in Fig. 1 onto the unit disk
jzj ≤ 1 cut along a segment of the real axis. Various classes
of analytic functions have been defined in the canonical

domain jzj ≤ 1. In particular, adopting the functional
distance (4), we are naturally led to the class H∞ of
functions FðzÞ that are analytic inside the disk and bounded
on the circle jzj ¼ 1, with the L∞ norm defined as the
supremum of the modulus along the boundary jzj ¼ 1:

∥F∥L∞ ≡ sup
θ∈ð0;2πÞ

jFðeiθÞj: ð7Þ

We also consider the class H2 of functions that are analytic
inside the disk and of finite L2 norm on the frontier jzj ¼ 1,
where

∥F∥L2 ≡
�
1

2π

Z
2π

0

jFðeiθÞj2dθ
�
1=2

; ð8Þ

and the more general classH2
w of analytic functions of finite

L2
w norm, where L2

w is the more general norm defined as

∥F∥L2
w
≡

�
1

2π

Z
2π

0

jwðeiθÞFðeiθÞj2dθ
�
1=2

; ð9Þ

in terms of a weight wðζÞ given on the boundary ζ ¼ eiθ of
the unit circle.
As shown in Ref. [20], the problem (4) can be written in

the equivalent form

δ0 ¼ min
g∈H∞

∥g − h∥L∞ : ð10Þ

Here, the minimization is performed with respect to all the
functions gðzÞ analytic in the disk jzj < 1 and bounded on
the frontier, and h is a known complex function defined on
the boundary ζ ¼ expðiθÞ of the unit circle by

hðζÞ ¼ −
ζ

π

Z
1þη

xπ

dx
σðs0xÞ

xðx − ζ − iεÞ þ ΠQCDðs0ζÞ; ð11Þ

where η > 0 is an arbitrary parameter introduced for
technical reasons, which does not appear in the final result
(see [20] for more explanations).

-4 -2 0 2 4
-4

-2

0

2

4

s0
-s0

s-plane

FIG. 1. The contour in the complex s plane.
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The solution of problem (10) has been obtained in
Ref. [20] by means of a duality theorem in functional
optimization [21]. This theorem reads

min
g∈H∞

∥g − h∥L∞ ¼ sup
w;f∈S2

���� 1

2π

I
jζj¼1

wðζÞfðζÞhðζÞdζ
����; ð12Þ

where the functions wðzÞ and fðzÞ belong to the unit
sphere S2 of H2, i.e. are analytic in jzj < 1 and satisfy the
conditions

∥w∥L2 ≤ 1; ∥f∥L2 ≤ 1; ð13Þ

where the norm is defined in Eq. (8).
We recall that all the functions considered here are

real analytic, i.e. satisfy the reflection property written as
fðz�Þ ¼ f�ðzÞ. Therefore, if one writes the Taylor
expansions

wðzÞ ¼
X∞
n¼0

wnzn; fðzÞ ¼
X∞
m¼0

fmzm; ð14Þ

coefficients will be real and, due to (13), will satisfy the
conditions

X∞
n¼0

w2
n ≤ 1;

X∞
m¼0

f2m ≤ 1: ð15Þ

The supremum in the right-hand side of Eq. (12) can be
calculated by means of a rather simple numerical algorithm,
as shown in Ref. [20]. Namely, let H be the Hankel matrix
defined as

Hnm ¼ cnþm−1; n; m ≥ 1; ð16Þ

in terms of the real coefficients

cn ¼
1

π

Z
1

0

dxxn−1σðs0xÞ þ
1

2π

Z
2π

0

dθeinθΠQCDðs0eiθÞ;

n ≥ 1: ð17Þ

The coefficients cn defined in Eq. (17) are actually the
negative-frequency Fourier coefficients which measure the
“nonanalytic” part in jzj < 1 of the complex function hðζÞ
defined in Eq. (11). One may recognize in them the
moments used in traditional finite-energy sum rules based
on a Cauchy integral relation for Π multiplied with a power
of s along the contour of Fig. 1. Then, δ0 is obtained as the
spectral norm

δ0 ¼ ∥H∥L2 ¼ ∥H∥; ð18Þ

i.e. the square root of the greatest eigenvalue of the positive-
semidefinite matrix H†H.

In the numerical calculations, the matrix H†H is trun-
cated at a finite order m ¼ n ¼ N, using the fact that for
large N the successive approximants tend toward the exact
result (for a formal proof of convergence, see Appendix E
of Ref. [22], and for numerical tests, see Ref. [23]). By the
duality theorem, the initial functional minimization prob-
lem (4) is thus reduced to a rather simple numerical
computation.
One can also define the minimal functional distance δ2

based on the L2 norm,

δ2 ¼ min
fΠg

�
1

2π

Z
2π

0

dθjΠðs0eiθÞ − ΠQCDðs0eiθÞj2
�
1=2

; ð19Þ

which can be written in the z variable as

δ2 ¼ min
g∈H2

∥g − h∥L2 ; ð20Þ

for the same function h defined in Eq. (11). The solution of
this minimization problem has the simple form [20]

δ2 ¼
�X∞
n¼1

c2n

�
1=2

; ð21Þ

in terms of the same coefficients cn defined in Eq. (17).
More generally, we consider the functional distance

based on the more general norm L2
w defined in Eq. (9),

when instead of (20), we must solve the problem

δ2;w ¼ min
g∈H2

∥wðg − hÞ∥L2 ; ð22Þ

where w is a suitable weight. It can be shown, without loss
of generality, that w can be taken as the boundary value of
an outer function [21], i.e. a function wðzÞ that is analytic
and without zeros in jzj < 1. It is easy to show then that the
solution of the problem (22) is

δ2;w ¼
�X∞
n¼1

d2n

�
1=2

; ð23Þ

where the real numbers dn are the weighted moments

dn ¼
1

π

Z
1

0

xn−1wðxÞσðs0xÞdx

þ 1

2π

Z
2π

0

einθwðeiθÞΠQCDðs0eiθÞdθ; ð24Þ

depending on the function wðzÞ. The quantity δ2 defined in
the standard L2 norm is obtained from these relations
for wðzÞ≡ 1.
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In practice, as in the calculation of δ0 by means of
Eq. (18), the infinite sums in Eqs. (21) and (23) are
truncated after a finite number of terms, and the conver-
gence towards the values δ2 and δ2;w is tested numerically.
Actually, as we will show in the next section, the infinite
summation in the general case (23) can be performed
exactly, and the minimal distance δ2;w can be written in a
closed analytic form.

III. NEW MATHEMATICAL DEVELOPMENTS

A. Closed analytic form of δ2;w
A compact analytic form for the quantity δ2;w can be

obtained easily by performing the summation upon n in the
expression (23). For convenience, we write the real
coefficients dn defined in Eq. (24) as

dn ¼ dn;σ þ dn;QCD; ð25Þ

where the significance of the terms is obvious. Then we
obtain from (23)

δ22;w ¼
X∞
n¼1

d2n;σ þ 2
X∞
n¼1

dn;σdn;QCD þ
X∞
n¼1

d2n;QCD: ð26Þ

Using the expression of dn;σ from (24), the first sum in
Eq. (26) can be written immediately as

X∞
n¼1

d2n;σ ¼
1

π2

Z
1

0

dx
Z

1

0

dy
wðxÞwðyÞσðs0xÞσðs0yÞ

1 − xy
: ð27Þ

The second sum in Eq. (26) is written in a convenient form
by using, for the coefficients dn;QCD, the expression

dn;QCD ¼ 1

4π

Z
2π

0

½einθwðeiθÞΠQCDðs0eiθÞ

þ e−inθw�ðeiθÞΠ�
QCDðs0eiθÞ�dθ; ð28Þ

which is explicitly real. Using further the reality property
of the functions w and ΠQCD, i.e. the relation
wðz�ÞΠQCDðs�Þ ¼ w�ðzÞΠ�

QCDðsÞ, the integration interval
can be reduced to ð0; πÞ. Thus, we obtain, after a straight-
forward calculation,

2
X∞
n¼1

dn;σdn;QCD ¼ 2

π2

Z
1

0

dxwðxÞσðs0xÞ
Z

π

0

dθ
Re½wðeiθÞΠQCDðs0eiθÞ�ðcos θ − xÞ − Im½wðeiθÞΠQCDðs0eiθÞ� sin θ

1 − 2x cos θ þ x2
: ð29Þ

We note that the end singularities at x ¼ y ¼ 1 in the integrand of (27) and at x ¼ 1, θ ¼ 0 in the integrand of (29) are
logarithmically integrable.
The last sum in Eq. (26) can be written as

X∞
n¼1

d2n;QCD ¼ 1

4π

Z
2π

0

dθjwðeiθÞΠQCDðs0eiθÞj2 −
P
8π2

Z
2π

0

dθ
Z

2π

0

dθ0jwðeiθÞΠQCDðs0eiθÞwðeiθ0 ÞΠQCDðs0eiθ0 Þj

×
sin½ΦðθÞ −Φðθ0Þ þ θ−θ0

2
�

sin θ−θ0
2

; ð30Þ

where P denotes the principal part and

ΦðθÞ ¼ arg½wðeiθÞΠQCDðs0eiθÞ� ð31Þ

is the phase of the complex function wðzÞΠQCDðsÞ on the circle jsj ¼ s0, i.e. on jzj ¼ 1.
For the numerical evaluation, it is more convenient to write the second term in the r.h.s. of Eq. (30) in the equivalent form:

−
P
8π2

Z
2π

0

dθ
Z

2π

0

dθ0
�
Re½wðeiθÞΠQCDðs0eiθÞw�ðeiθ0 ÞΠ�

QCDðs0eiθ
0 Þ�

þ Im½wðeiθÞΠQCDðs0eiθÞw�ðeiθ0 ÞΠ�
QCDðs0eiθ

0 Þ� cot θ − θ0

2

�
: ð32Þ

By collecting the terms in Eqs. (27), (29), (30), and (32), we obtain the final expression of the square of δ2;w:
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δ22;w ¼ 1

π2

Z
1

0

dx
Z

1

0

dy
wðxÞwðyÞσðs0xÞσðs0yÞ

1 − xy
þ 2

π2

Z
1

0

dxwðxÞσðs0xÞ

×
Z

π

0

dθ
Re½wðeiθÞΠQCDðs0eiθÞ�ðcos θ − xÞ − Im½wðeiθÞΠQCDðs0eiθÞ� sin θ

1 − 2x cos θ þ x2

þ 1

4π

Z
2π

0

dθjwðeiθÞΠQCDðs0eiθÞj2 −
P
8π2

Z
2π

0

dθ
Z

2π

0

dθ0
�
Re½wðeiθÞΠQCDðs0eiθÞw�ðeiθ0 ÞΠ�

QCDðs0eiθ
0 Þ�

þ Im½wðeiθÞΠQCDðs0eiθÞw�ðeiθ0 ÞΠ�
QCDðs0eiθ

0 Þ� cot θ − θ0

2

�
: ð33Þ

All the integration intervals can be further reduced to
ð0; πÞ by taking into account, as explained above, the
reality property of the functions, which implies that the real
(imaginary) parts are even (odd) functions of θ.

B. Approximation of the L∞ norm by
a suitable class of L2

w norms

We show now that it is possible to approximate the
minimal distance δ0 measured by the L∞ norm by a class of
minimal distances δ2;w defined by the weighted L2

w norms.
We follow an argument put forward for the first time in
Refs. [24,25], which is based on the duality theorem
Eq. (12) applied for solving the original minimization
problem (10).
We note that the r.h.s. of Eq. (12) requires the calculation

of the supremum upon two sets of functions, wðzÞ and fðzÞ,
which are analytic in the unit disk jzj < 1 and of L2 norm
bounded by 1. The idea is to first calculate the supremum
upon one class of functions, say f, keeping the other one
fixed. We note that the r.h.s. of Eq. (12) can be written as

���� 1

2π

I
jζj¼1

wðζÞfðζÞhðζÞdζ
���� ¼

����
X∞
n¼1

dnfn−1

����; ð34Þ

where fn are the Taylor coefficients defined in Eq. (14) and
dn are negative-frequency Fourier coefficients of the
product wðζÞhðζÞ, given by the weighted moments (24).
Then, Eq. (12) becomes

δ0 ¼ sup
fwg

sup
ffng

����
X∞
n¼1

dnfn−1

����: ð35Þ

The supremum upon the coefficients fn subject to the
second condition (15) can be evaluated immediately by
Cauchy-Schwarz inequality, leading to

δ0 ¼ sup
fwg

�X∞
n¼1

d2n

�
1=2

; ð36Þ

where the dependence of the coefficients dn on the weight
w is given in Eq. (24). Finally, by using (23), we write this
relation as

δ0 ¼ sup
fwg

δ2;w: ð37Þ

We emphasize that this is an exact relation, which states
that the minimal distance δ0 in the L∞ norm is the largest
value from the class of distances δ2;w in the weighted L2

w

norm, for all the weight w subject to the first condition (13).
Of course, the problem is not yet solved; we still have to

calculate the supremum in (37). The procedure makes sense
if one can find a suitable, simple parametrization of the
functions w, such that the maximization upon this limited
class approximates well the exact δ0. It turns out that such a
choice exists [24,25]: The main observation is that one can
approximately obtain the maximum modulus of a function
on a certain interval by computing the normalized integral
of its modulus squared in a variable that dilates the region
where the modulus of the function reaches its maximum.
Therefore, one can approximate the L∞ norm (7) of an
arbitrary function by an L2 norm (8) defined on the
integration range distorted by a suitable change of variable.
In order to obtain it, we consider the conformal mapping of
the unit disc jzj ≤ 1 onto itself, achieved by the so-called
Blaschke transformation [21]

z0 ¼ z − a
1 − a�z

; ð38Þ

where a is an arbitrary parameter with jaj < 1. Since we
consider real analytic functions, one can restrict a to real
values. The transformation (38) maps, in particular, the unit
circle jzj ¼ 1 onto itself. This change of variable in the L2

norm (8) introduces the Jacobian jdz0=dzj, which corre-
sponds to a weight function wðzÞ in the weighted L2

w norm
(9), of the form

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p

1 − az
; ð39Þ

where a is a real parameter in the range ð−1; 1Þ. It is easy to
check that this function satisfies the first condition (13).
By the above remark, the functional supremum in

Eq. (37) was reduced to a maximization with respect to
a single real parameter a. The minimal distance δ0 can thus
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be calculated approximately by a relatively simple algo-
rithm: First, one calculates the minimal distance δ2;w given
in (23), with the particular choice (39) of the weight. Then,
the parameter a is varied in the range ð−1; 1Þ, and the
largest value of δ2;w is retained. This problem is numeri-
cally quite simple, especially since, as shown in the
previous subsection, δ2;w for an arbitrary weight w can
be written in an analytic compact form.
Some hints on the optimal value of the parameter a are

obtained from the specific properties of the input. Thus, we
note that for values of a close to 1, the functionwðzÞ is large
near z ¼ 1, i.e. near s ¼ s0, both on the circle and on the
real axis. Therefore, in this case, the weighted norm (22) is
dominated by the region of the circle near the timelike axis.
One can expect that such values of a would be useful in
order to detect DVs that are large only near the timelike
axis. We test these expectations in the numerical studies
reported in Sec. V.

IV. TOY DATA GENERATION

The main goal of the formal developments presented in
the previous sections is to provide tools for the validation of
DV models using information from the spectral function
data. It is therefore instrumental to test the procedure with
toy data sets generated from a realistic model for which the
DVs are known exactly. Part of the work described here is
an extension of analytical results of Ref. [20] to a more
realistic situation, where the spectral function comes in the
form of a binned data set subjected to statistical fluctua-
tions. With the application to ALEPH data in mind, we
consider data sets that are obtained from a realistic
covariance matrix. In this section, we discuss the central
model used for the exercises performed in this work, as well
as how we construct our covariance matrix. With these two
ingredients, we have full control over the problem and can
perform simulations in order to understand how the
procedure can be applied to real data.
We start with a brief review of the model that we employ

for this exercise.1 The model was introduced in Ref. [6],
based on previous ideas from Refs. [2–4]. To be concrete,
here we focus on the vector spectral function. The descrip-
tion is based on a “Regge tower” of resonances, and upon
including the ρmeson pole in the tower, the correlator ΠðsÞ
assumes the following exact form:

ΠmodelðsÞ ¼ −
1

ζ

2F2

Λ2
ψ

�
vþm2

0

Λ2

�
; ð40Þ

where we defined

v ¼ Λ2

�
−s − iε
Λ2

�
ζ

; ð41Þ

and ψðvÞ ¼ Γ0ðvÞ=ΓðvÞ is the Euler digamma function. We
employ the following set of parameters:

ζ ¼ 0.95; F ¼ 133.8 MeV;

Λ ¼ 1.189 GeV; m0 ¼ 0.75 GeV; ð42Þ

which provides, for our purposes, a realistic description of
the experimentally observed vector spectral function of the
QCD correlator.
The asymptotic expansion of the digamma function can

be used in order to obtain an OPE-type description of the
correlator ΠmodelðsÞ. Truncating the expansion at an order
NOPE, it reads

ΠOPEðsÞ ¼ −
2F2

Λ2
C0 log

�
−s
Λ2

�
þ

XNOPE

k¼1

C2k

vk
: ð43Þ

The first term corresponds to the “purely perturbative” part,
and the other terms are power corrections, akin to the
condensate contributions of QCD. The explicit expression
of the coefficients that appear in ΠOPE are

C0 ¼ 1; C2k ¼
2

ζ
ð−1Þk 1

k
Λ2k−2F2Bk

�
m2

0

Λ2

�
; k ≥ 1;

ð44Þ

with BkðxÞ representing Bernoulli polynomials.
The asymptotic expansion of Eq. (43) is not accurate

near the timelike axis, as in the case for the OPE in QCD.
For large enough jsj and ReðsÞ > 0, the description can be
improved by taking into account the DVs. In practice, the
DV term can be obtained from the reflection property of the
digamma function [6,20]. The following modified approx-
imant is thus obtained:

ΠmodelðsÞ ≈ ΠOPEðsÞ þ ΠDVðsÞ; ð45Þ

valid for large enough jsj and for ReðsÞ > 0. The DV
contribution is given in the first quadrant [ImðsÞ > 0 and
ReðsÞ > 0] by

ΠDVðsÞ ¼
2πF2

Λ2ζ

�
−iþ cot

�
π

�
−s
Λ2

�
ζ

þ π
m2

0

Λ2

��
; ð46Þ

and can be defined in the lower half-plane using Schwarz
reflection as ΠDVðs�Þ ¼ Π�

DVðsÞ. For ReðsÞ ≤ 0, this cor-
rection is assumed to vanish.
Comparing the modulus of the exact function, Eq. (40),

along the upper semicircle s ¼ s0eiθ, θ ∈ ð0; πÞ, with its
approximants, Eqs. (43) and (45), one learns that the
truncated OPE-type expansion of Eq. (43) provides an

1An extended discussion of the model in the present context
can be found in Ref. [20].
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accurate description, except close to the timelike axis
(θ ¼ 0), as expected in QCD. The addition of the DV
term fixes this deficiency, and the approximated description
of Eq. (45) also becomes excellent in the vicinity of the
timelike axis. (We refer to Ref. [20] for a visual account of
this comparison.)
For the numerical exercises described in this work, we

use the model of Eq. (40) as our central description. Hence,
the OPE for the model and the DV contribution are exactly
known and are given by Eqs. (43) and (46), respectively.
The values of the vector spectral function for toy data
generation are thus obtained from

σmodelðsÞ ¼ ImΠmodelðsþ iϵÞ; s ∈ ½0; m2
τ �: ð47Þ

In order to mimic the experimental situation, the interval
½0∶m2

τ � is split in Nb bins, and the central value of each bin
is obtained from a statistical distribution that fluctuates
around the values of Eq. (47) calculated at the center of
each bin. We turn now to the issue of the covariance matrix
that governs these fluctuations.
Our toy data generation is performed having in mind the

application to the ALEPH spectral functions [16]. It is
therefore desirable that the covariances used reflect those of
ALEPH data sets. One could simply adopt the ALEPH
covariances as such, since they are publicly available [26],
and generate toy data sets following a statistical distribution
given by this matrix, together with the central values of
Eq. (47). The price to pay is that one would have to use the
ALEPH binning of the interval ½0∶m2

τ �. In the most recent
version of the data sets, due to an improved unfolding
procedure, an adaptive binning was used which results in
bins with different widths, notably with larger bins towards
the edge of the spectrum. Here, we prefer to adopt a fixed
bin width, for simplicity, and we choose Nb such as to have
more bins than ALEPH towards the end point of the
spectrum. This allows us to have a finer description at
higher energies. The accompanying realistic covariances
are obtained from a numerical interpolation of the ALEPH
covariance matrix for the vector channel. In this way, we
preserve a fixed binning together with a covariance matrix
that has all the main properties of ALEPH’s, namely, strong
correlations between neighboring bins, larger uncertainties
towards the end point of the spectrum and, of course,
uncertainties that are of the same order as those of
ALEPH’s data.
In the present work, we adopt Nb ¼ 80 (which is in line

with what is used in the experimental analyses [16,27,28]),
the central values of Eq. (47), and the covariance matrix
obtained from a numerical interpolation of the ALEPH
covariances obtained from [26], as described above. Toy
data sets can then be generated from a multivariate
Gaussian distribution. An example of a data set generated
in this way is displayed in Fig. 2. We also show the central
values of Eq. (47) for comparison. In this figure, the strong

correlations are clearly visible, mainly towards the end
point of the spectrum, where the uncertainties are also
larger.
When using data sets for the calculation of the functional

distances δ discussed in Secs. II and III, weighted integrals
over the spectral function such as those entering Eq. (17)
must be discretized. We are going to adopt integration by
rectangles, as is usual when dealing with this type of
integral of the spectral functions [15,16]. However, weight
functions wn with high powers of the energy variable
appearing, for example, in Eq. (17), vary strongly within a
bin. It is therefore necessary to average over the weight
function inside a bin to improve the numerical result.2 The
numerical counterpart of a typical integral then reads

Z
s0

0

dswnðs=s0ÞσðsÞ ≈
X½s0�
i¼1

σðs̄iÞ
Z

s̄iþΔb=2

s̄i−Δb=2
dswnðs=s0Þ;

ð48Þ

where s̄i is the value of s at the center of the ith bin, Δb is
the fixed bin width, and ½s0� represents the index of the last
included bin—here, we always work with s0 values that
correspond to the right edge of a bin. The same was applied
for the calculation of the relevant integrals which appear in
the analytic form of δ2;w derived in Sec. III A. We have
tested that this algorithm provides enough accuracy for the
explorations performed in this work.

V. RESULTS

We now apply the functional-analysis-based tools to test,
in practice, the description of DVs. To illustrate the
potential of the method, a useful approach is to introduce,
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FIG. 2. An example of a toy data set obtained from the central
values of the model given in Eq. (47) with covariances from a
numerical interpolation of ALEPH’s covariance matrix for the
vector channel [26]. The solid line gives the central value of the
model for comparison.

2In the case of ALEPH data, this prescription is sometimes
used because of the large bin widths of the rightmost bins [15].
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in the approximate description (45) of the correlator, a
strength parameter μ that allows one to tune the contribu-
tion of the DVs. Formally, we do this by using, for ΠQCD in
the formalism presented in Secs. II and III A, instead of
Eq. (1), the more general expression

ΠQCDðsÞ ¼ ΠOPEðsÞ þ μΠDVðsÞ; ð49Þ

where the true value of the strength parameter is μ ¼ 1. As
in Ref. [20], to simulate the situation of the light-quark
correlators in QCD, we take ΠOPE as the asymptotic
expansion (43) of the exact model truncated after NOPE ¼
5 terms. For ΠDV we take the prediction (46) of the model.
In Ref. [20], it was shown by means of analytical

computation that δ0 has a sharp minimum at the correct
value μ ¼ 1, when one employs the description of DVs that
follows from the model used for ΠðsÞ. The alternative
quantity δ2 also displayed a minimum at the correct value
of μ, but this minimum was found to be shallower [20]. In
this section, we investigate the impact of the use of spectral
function data with realistic covariances to the above
findings. It will be interesting to make use of the weighted
L2
w norm, since it permits a continuous and almost exact

interpolation between the L2 and the L∞ norms, as well as a
study of other weighted norms, such as “pinched” norms.
The analytical results obtained for δ2;w are also instrumental
in this analysis.

A. Comparison between L∞ and L2
w norms

On the toy model, we first check the approximation of
the minimal distance δ0 based on the L∞ norm by the
distances δ2;w based on the norms L2

w, using the particular
class of weights given in (39). In this discussion we use, as
in Ref. [20], the exact spectral function of the model, with
no errors, and the OPE expansion truncated at NOPE ¼ 5.
From Fig. 3, which shows the modulus of ΠDVðsÞ as a

function of θ on the first quadrant of the circle

s ¼ s0 expðiθÞ, one can see that the DV part of the model
is strongly peaked towards the Minkowskian axis.
Therefore, following the discussion at the end of
Sec. III B, a weight strongly peaked towards s ¼ s0 (i.e.
θ ¼ 0) is expected to give the best approximation of the L∞

norm by weighted L2
w norms for this model. As shown

below, the expectation is confirmed.
In Fig. 4, we show the variation with μ of several

functional distances, calculated with the algorithms based
on Fourier coefficients truncated at N ¼ 100. In this
exercise, we set the radius of the circle in Fig. 1 to
s0 ¼ 2.76 GeV2, but the results are similar for other
choices, including s0 ¼ m2

τ .
As usual, δ0 denotes the minimal distance measured in

the L∞ norm, calculated from the norm (18) of the Hankel
matrix, Eq. (16). For calculating δ2;w, we used the truncated
sum (23), with the expression (24) of dn and a weight w of
the form (39) with a ¼ 0.96. This weight drastically dilates
the region near θ ¼ 0 on the circle, increasing its contri-
bution to the L2

w norm. One can see that, for this choice of
the weight, the distance δ2;w practically coincides with δ0.
Both curves are steeper than the standard distance δ2, which
corresponds to the weight w ¼ 1, as already remarked for
δ0 in Ref. [20]. The figure also shows that the minimal
distance δ2;pd, calculated with a pinched weight of the form

3

wpd ¼
�
1 −

s
s0

�
2

; ð50Þ
0.00
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)|

θ

FIG. 3. Modulus of ΠDVðsÞ as a function of θ on the first
quadrant of the circle s ¼ s0 expðiθÞ with s0 ¼ 2.76 GeV2.
ΠDVðsÞ is zero in the left half of the s complex plane.
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FIG. 4. Variation of the minimal functional distances with μ, for
s0 ¼ 2.76 GeV2. The functional distance δ0 is based on the L∞

norm; δ2;w, which practically coincides with δ0, is obtained with
wðzÞ of the form (39) for a ¼ 0.96; and δ2;pd is obtained with the
pinched weight (50). The calculation of the norms is done with
the exact spectral function σðsÞ of the model, using N ¼ 100
Fourier coefficients.

3One uses the term “pinched” to refer to weight functions that
have a zero for s ¼ s0.
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is much less sensitive to the variation of μ, which is not
surprising since this type of weight suppresses the region
where the DV term is nonzero.
The optimal value of the parameter a was found

empirically, by computing δ2;w for several values of a
close to 1, and keeping the value that leads to the best
approximation of δ0. Of course, the best value achieving the
supremum in (36) also depends on the other ingredients of
the input. Thus, for a different number N of Fourier
coefficients taken into account in the calculation of the
norms, a slightly different value of a might yield the best
approximation. Also, a slightly different optimal value of a
is expected if the input spectral function is slightly changed.
This remark will be useful for understanding the results of
the simulations performed below, which take into account
the uncertainties on the spectral function.

B. Stability and comparison with the summed results

We start the simulations by investigating the computa-
tion of the distance δ2 measured with the L2 norm from the
truncated version of Eq. (21)—which can be viewed as a
special case of Eq. (23) with the appropriate choice of
weightw. For a given data set, one can compute the value of
δ2, or more generically, of δ2;w, after a truncation of the
infinite sums at the Nth term. The value of the norm can
then be minimized numerically with respect to the strength
parameter μ. Due to the statistical fluctuations, each toy
data set that is generated yields a different value of μ. We
repeat this procedure for 5000 different data sets, in a
reproducible way, in order to obtain the statistical distri-
bution of the parameter μ. The final value of μ can be read
off from the distributions. We quote central values given by
the medians and uncertainties defined by 68% confidence
levels, but the distributions are, to a very good approxi-
mation, Gaussian, as illustrated with the histogram shown
in Fig. 5.

In Table I, we show the dependence of the best values of
μ on the number N of included terms in the truncated
version of Eq. (21). In this table, we choose
s0 ¼ 2.76 GeV2, which avoids some of the bins with larger
uncertainties (see Fig. 2). One can conclude from this table
that the convergence of the results seems to be satisfactory;
with a few hundred terms in the sum, the results are already
stable. Furthermore, the exercise indicates that with a
realistic data set, the error in μ is such that we are able
to distinguish the presence of DVs, i.e. μ ¼ 1, from their
absence, μ ¼ 0, in a statistically meaningful way.
We now turn to the dependence of the predictions on the

choice of s0. The fact that the last few bins suffer from a
much larger uncertainty, combined with the decrease of the
DV contribution at higher s, has the consequence that the
choice of larger s0 produces less precise determinations of
μ. In Table II, we compare values of μ obtained from δ0 and
δ2 from the truncated versions of Eqs. (18) and (21),
respectively, for different values of s0 (we use N ¼ 300
terms in the sums). Two main conclusions can be drawn
from this table. First, as expected, the uncertainties are
larger when s0 is chosen to be closer to the edge of the
spectrum. For δ2, the determination loses statistical sig-
nificance rather fast when the last few bins are included,
and at s0 ¼ m2

τ , one can no longer distinguish, in a
meaningful way, the central value μ ¼ 1.0 from the absence
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FIG. 5. Typical μ distribution obtained from Monte Carlo
simulations.

TABLE I. Values of μ from the minimization of δ2 as a function
of the number N of coefficients included in the truncated sum
(21) for s0 ¼ 2.76 GeV2. The numerical integrals needed for the
cn are computed as in Eq. (48). The central μ value is obtained
from the median of the distribution.

N μ

5 1.1� 1.4
15 1.00� 0.21
100 1.00� 0.22
150 1.00� 0.23
300 1.00� 0.23
500 1.00� 0.23

TABLE II. Values of μ from the minimization of δ2 and δ0 for
different values of s0.N ¼ 300 terms are included in the sum (21)
and in the Hankel matrix used in (18). The numerical integrals
needed for the cn are computed as in Eq. (48). The central μ value
is obtained from the median of the distribution.

s0 μ from δ2 μ from δ0

2.76 GeV2 1.00� 0.23 1.00� 0.26
2.84 GeV2 1.00� 0.29 1.01� 0.30
3.00 GeV2 1.01� 0.56 1.01� 0.70
m2

τ 1.0� 1.6 1.0� 3.0
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of DVs. Second, the use of δ0 leads to broader μ
distributions and hence to larger uncertainties. This effect
is small for lower s0 values, and the results are essentially
undistinguishable from those obtained using δ2. At
s0 ¼ m2

τ , however, the uncertainty is the double of the
δ2 counterpart.4 We conclude that the deeper minimum of
δ0 with respect to μ observed in the analytical calculations
of Ref. [20] (and seen also above in Fig. 4) does not
translate into a narrower μ distribution when the errors on
the spectral function are taken into account.
A final validation of the results obtained in Tables I

and II can be obtained using the closed analytical form of
δ2;w derived in Sec. III A. The use of the weighted norm L2

w
is particularly convenient as it allows for an almost exact
interpolation between the L2 and L∞ norms and, at the
same time, is amenable to a fully analytical treatment of the
minimization problem.
Using the decomposition (49) of ΠQCD, we can write

Eq. (33) as a quadratic polynomial of μ of the form

δ22;w ¼ b0 þ
�
b1 þ

2

π2

Z
1

0

wðxÞσðs0xÞFDVðxÞdx
�
μþ b2μ2;

ð51Þ

where

FDVðxÞ ¼
Z

π

0

dθ
Re½wðeiθÞΠDVðs0eiθÞ�ðcos θ − xÞ − Im½wðeiθÞΠDVðs0eiθÞ� sin θ

1 − 2x cos θ þ x2
; ð52Þ

and the calculable coefficients bi can be read off from (33).
In particular, it is easy to see that only b0 depends on the
spectral function, the coefficients b1 and b2 involving only
the values of the theoretical expressions ΠOPEðsÞ and
ΠDVðsÞ on the circle jsj ¼ s0.
The optimal value of μ, which achieves the minimum of

(51), is obtained in a straightforward manner as

μ ¼ −
1

2b2

�
b1 þ

2

π2

Z
1

0

wðxÞσðs0xÞFDVðxÞdx
�
: ð53Þ

This formulation turns out to be very convenient for
numerical simulations, which can be done directly on
the spectral function, avoiding the calculation of many
experimental moments and the issue of truncating infinite
sums. In practice, the coefficients b1 and b2 and the
function FDV are calculated only once, being fixed during
data generation. This amounts to a considerable reduction
of the computational time required by the statistical
simulations.
In Table III, we display the ranges of μ obtained from

simulations using the analytic result (53), for s0 ¼
2.76 GeV2 and s0 ¼ m2

τ and three choices for the weight:
(i) w ¼ 1, which corresponds to the standard norm L2 with

the minimal distance δ2, (ii) the expression (39) with
a ¼ 0.96, expected to approximate well the L∞ norm,
and (iii) the pinched weight (50). We remark the perfect
agreement between the results quoted in Table III for the
weight w ¼ 1 and the values obtained from δ2 in Table II
for the same values of s0. This validates the convergence of
the results based on truncated sums of Fourier coefficients.
We also remark a very good agreement between the results
from δ0 and those from its approximated version in the
second column of Table III. (We discuss these results
further in the next section.)
As seen from Table III, in all cases, the central value of

the parameter μ coincides with the true central value. This
result was expected, having in view the precise theoretical
input used along the circle in our study. The confirmation of
this expectation is a test of the numerical algorithms used in
the calculations. In particular, the integral in (53) had to be
computed using the improved algorithm described in (48);
i.e. the product wðxÞFDVðxÞ was integrated exactly over
each bin. On the other hand, the uncertainties quoted in the
various entries of Table III are quite different. The explan-
ation of these results and their relevance for the application
of the method to real data will be discussed in the next
subsection.

C. Discussion

The twoweights used in the simulations with the analytic
form of δ2;w beside w ¼ 1, are quite extreme: The expres-
sion (39) with a ¼ 0.96 strongly enhances the contribution

TABLE III. Optimal values of μ from the minimization of the
exact analytic expression of δ2;w, for two values of s0. Three
weights w are used: w ¼ 1 corresponding to the standard L2

norm, the weight (39) with a ¼ 0.96, and the pinched weight
(50). The results are obtained with 5000 toy data sets, the
representative μ value being the median of the distributions.

s0 w ¼ 1 w ¼
ffiffiffiffiffiffiffiffi
1−a2

p
1−as=s0

w ¼ ð1 − s
s0
Þ2

2.76 GeV2 1.00� 0.23 1.00� 0.26 1.00� 0.70
m2

τ 1.0� 1.6 1.0� 2.6 1.0� 2.7

4In order to obtain the results of Table II for s0 ¼ m2
τ , it

becomes important to allow for negative central values in the toy
data spectral functions. These are rare but do occur for the last
few bins, where the uncertainties, following the recent ALEPH
reanalysis, are rather large.
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of the region near the point s ¼ s0 on the circle shown in
Fig. 1. Since, as seen from Fig. 3, the magnitude of ΠDV is
strongly peaked near the timelike axis, the corresponding
minimal distance δ2;w will be very sensitive to the variation
of the strength parameter μ, as seen from Fig. 4. The same
figure also shows that, for this weight, the norm L2

w
approximates well the L∞ norm. On the contrary, the
weight (50) suppresses the region near s ¼ s0, which
explains the low sensitivity of the corresponding distance
δ2;pd to the variation of μ, visible in Fig. 4.
The above remarks refer to a fixed spectral function σðsÞ.

When this quantity is varied within errors during the
simulations, the two extreme weights respond in a different
way. The weight (39), which also enhances the region near
s ¼ s0 on the real axis, will be more sensitive to the
variation of the input data since the errors are larger
towards the end of the spectrum. For the lower value
s0 ¼ 2.76 GeV2, when the errors are still moderate, the
effect of the variation of the input data turns out to be
comparable to the opposite effect produced by the larger
sensitivity to the variation of μ. As a consequence, the
spread of the μ distribution for w of the form (39) with
a ¼ 0.96 is comparable to that obtained with w ¼ 1, as
seen from the second and third columns of the first row of
Table III. On the other hand, the pinched weight wpd

ensures a low sensitivity of δ2;pd to the variations of the
spectral function produced by the errors. However, the low
sensitivity of the same quantity to the variation of the
strength parameter μ leads to an overall large spread of the
statistical distribution, which explains the larger error
quoted in the last column of the first row of Table III.
For s0 ¼ m2

τ , the large errors of the input data in the last
bins lead to the large uncertainties on μ quoted in the
second line of Table III. In this case, the detection of DVs in
a significant way from the pseudodata is not possible. For
the weight (39) with a ¼ 0.96, the great sensitivity with
respect to the input data near the upper end of the spectrum
exceeds the opposite large sensitivity to the variation of μ.
The resulting μ has a larger uncertainty than that obtained
with the standard L2 norm. In the case of the pinched
weight wpd, the suppressing effect on the large errors of the
last bins compensates the spread produced by the low
sensitivity to μ variation. The overall effect is that for s0 ¼
m2

τ the spreads on μ obtained with the two extreme weights
are comparable.
A last remark concerns the relation between the weighted

L2
w norms and the L∞ norm. One can see that for s0 ¼

2.76 GeV2 the μ distribution quoted in Table III for the
weight of the form (39) with a ¼ 0.96 coincides with that
obtained from the distance δ0 measured in L∞ norm, given
in Table II. However, for s0 ¼ m2

τ , the standard deviation on
μ quoted in the third column of Table III is somewhat
smaller than that obtained with δ0 in Table II.
To understand this small difference, we recall that the

simulations reported in Table III were performed with a

fixed value, a ¼ 0.96, in the expression (39). But, as
discussed in Sec. III B, the optimal choice of a achieving
the supremum in (36) also depends on the input spectral
function. For s0 ¼ 2.76 GeV2, when the bins with large
errors are excluded, this dependence affects in an almost
unobservable way the simulations. However, for s0 ¼ m2

τ

the variation of the input can be considerable due to the
large errors in the last bins. In this case, the weight (39)
with a ¼ 0.96 is not always the optimal weight leading to
the precise approximation of δ0 according to Eq. (36).
Therefore, the result presented in Table III only illustrates
the use of the norm L2

w for a rather extreme weight, inspired
by the L∞ norm but not exactly reproducing its results.
When the errors are large, the simulations using the L∞

norm must resort to the exact algorithm (18) with the
Hankel matrix (16).

VI. SUMMARY AND CONCLUSIONS

In the present paper we continued the investigation of
the functional-analyses tools proposed in Ref. [20] for
detecting DVs from measurements of the spectral functions
of the QCD correlators. The aim was to evaluate the
potential of the method when the spectral function comes
in the form of binned data with realistic covariances. We
performed the analysis still in the context of the toy model
for the correlator ΠðsÞ considered in [20], in which we
allowed for uncertainties described by the covariances
obtained from the publicly available ALEPH spectral
functions. In this way, we had full control over the problem,
and the outcome of the method could be checked against
the expected results.
The paper also contains some theoretical developments

of the approach proposed in Ref. [20]. In addition to the
functional distances based on L2 and L∞ norms, already
discussed in Ref. [20], we introduced a general class of
weighted norms L2

w, which are instrumental for several
reasons. First, as shown in Sec. III A, we were able to
obtain a closed analytic expression for the minimal func-
tional distance δ2;w measured in this norm, thereby avoiding
truncated sums of Fourier coefficients. Second, these norms
provide an interpolation between two extreme cases: the
pinched weights familiar from phenomenological works,
and the opposite class of weights which, as discussed in
Sec. III B, provide a good approximation of the functional
distance measured in the L∞ norm.
To investigate the potential of the method for the

detection of DVs, we introduced, in the spirit of
Ref. [20], a strength parameter μ that quantifies the DV
contribution to ΠðsÞ according to (49), the true value of this
parameter being μ ¼ 1. As in [20], we define the optimal μ
as the value that achieves the minimum of the lower bounds
on the functional distances δ0, δ2, or δ2;w, measured in the
norms L2, L∞, or L2

w, respectively, between the true
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correlator and its approximant along the circle jsj ¼ s0 in
the complex energy plane.
For want of a theoretical statistical interpretation of the

minimal distances defined by functional analysis, we per-
formed an empirical study where fake data on the spectral
function have been generated in a number of bins. To mimic
the experimental situation, we adopted a multivariate
Gaussian distribution with covariances inferred from the
ALEPH covariance matrix for the vector channel [16]. By
simulations with 5000 different data sets, we obtained the
statistical distributions of the optimal parameter μ, which
were, to a very good approximation, Gaussian.
The main results of these investigations are displayed in

Tables I–III, where we quote the central values given by the
medians and the uncertainties defined by 68% confidence
levels from the corresponding distributions. One can see
that the results based on the truncated computation of the
norms converge relatively fast, which makes their practical
use feasible. This could be confirmed using the analytical
determination of μ given in Eq. (53), which avoids the
necessity of truncating the sums. In this framework, we
investigated three types of weights: (i) w ¼ 1, which
corresponds to the standard L2 norm, (ii) the expression
(39) with a ¼ 0.96, expected to approximate well the L∞

norm, and (iii) the pinched weight (50).
We note that in all cases the true value μ ¼ 1 of the

strength parameter is obtained with high accuracy. Since
the theoretical input we use is quite precise, this result
represents a good test of the numerical algorithms adopted.
In particular, as discussed in Sec. V, the refined integration
rule (48) for calculating either the moments (17) or the
quantity (52) must be used for reaching this level of
accuracy. On the other hand, the standard deviations,
crucial for the extraction of DVs in a significant way,
differ for various tests. For the lower value of s0, the tests
based on the norms L2 and L∞ produce comparable
uncertainties, with a successful and statistically significant
(by 3 standard deviations) detection of DVs. The test based
on pinched weight (50) is, however, unable to detect DVs in
a significant way even at low s0. For s0 ¼ m2

τ , due to the
large uncertainties towards the edge of the spectrum, a
statistically significant determination of μ is not possible.
All the tests have very large uncertainties, although one
may note that the performance of the L2 norm is superior to
those of the L∞ norm and the weighted L2

w norms with the
other two weights considered in Table III.
One might ask what the relation of the present approach

is to the standard χ2-type fits used up to now for the
phenomenological determination of DVs. The coefficients
cn defined in Eq. (17) are actually the moments used in
traditional finite-energy sum rules based on a Cauchy
integral relation for the correlator ΠðsÞ multiplied by a
power of s along the contour of Fig. 1. Replacing the
approximant ΠQCD by the exact Π and using the exact
spectral function σ, we would have cn ¼ 0, by analyticity.

In practice, the coefficients cn are not zero due to the
imperfections of ΠQCDðsÞ and to the statistical fluctuations
of experimental values of σðsÞ.
In the standard analyses, starting from this remark, a few

moments are selected and combined for defining a certain
“fit quality,” usually a χ2, with an assumed statistic
distribution. This allows, by standard techniques of χ2

minimization, the extraction of the parameters of the DV
models and their covariances together with the values of
other parameters of the OPE, in particular, the strong
coupling constant and condensates, for example. The
limitation of this approach is that only a small number
of low-order moments, with known errors and possible
correlations, can be included in the fit, due to the fact that,
in QCD, only a small number of power corrections are
available. The inclusion of high-order moments must be
avoided, as it would introduce unknown high-order con-
densates [19].
In the present approach, the fact that only a finite number

of power corrections are known in the OPE is not essential
because no assumption about the vanishing of specific
moments is made. The method exploits the obvious remark
that the exact correlator and its approximate representation
provided by the QCD calculations available at present are
different functions, with different analytic properties.
Therefore, the functional distance between them, measured
in a certain norm, must exceed a rigorous lower bound. As
seen from the algorithms of calculating this lower bound,
all the moments contribute to it, irrespective of the number
of power corrections available in the OPE. The individual
moments are actually not relevant since the minimal
functional distance measured in the general L2

w norm is
proved to have the analytic expression (33) directly in terms
of the spectral function, which obviates the need for the
computation of the moments that appear in Eq. (17).
Of course, there is a price to pay, and this is the fact,

already mentioned above, that the functional distances lack
a definite statistical interpretation. Therefore, in order to
extract optimal parameters with definite confidence inter-
vals, one must resort to simulations based on fake-data
generation. Related to that point is the fact that the data
covariances enter the procedure solely in the Monte Carlo
error propagation and do not affect the evaluation of the
functional distances (as they would in a χ2 analysis). The
extraction of several free parameters in this framework is
feasible in principle, but may be complicated in practice.
Therefore, in this work, we applied the functional approach
for the extraction of only one parameter, the strength μ of
the DV term, assuming that all the other parameters are
known. The results show that, restricting s0 to values
slightly below m2

τ, in order to avoid the large errors near
the end point of the spectrum in τ decays, the functional
approach is able to detect, in a statistically significant
way, the presence of DVs in realistic spectral function
pseudodata.
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The present analysis paves the way for the next step—
testing DV models with real data. The first task will be to
detect DVs in the real data, employing the formalism
described here. This can be carried out along the lines of
our study with pseudodata, with the help of a strength
parameter and using values of additional QCD parameters
extracted from other processes. The method can also be
used to compare different models, and although technically
more challenging, it also allows for the extraction of
parameters entering the models. Having in view the
importance of detecting and describing DVs in a reliable
way, this framework, although somewhat limited, is of
interest as a complementary approach to other phenom-
enological studies.

ACKNOWLEDGMENTS

The authors would like to express special thanks to the
Mainz Institute for Theoretical Physics (MITP) for its
hospitality and support during the commencement of this
work. Wewould like to thank Maarten Golterman and Santi
Peris for a careful reading of the manuscript. D. B. thanks
IFAE and the Universitat Autònoma de Barcelona, where
this work was finalized, for kind hospitality. The work of
D. B. was supported by the São Paulo Research Foundation
(FAPESP) Grant No. 2015/20689-9, by CNPq Grant
No. 305431/2015-3, and by the Alexander von
Humboldt Foundation. The work of I. C. was supported
by ANCS, Contract No. PN 16 42 01 01/2016.

[1] M. A. Shifman, Int. J. Mod. Phys. A 11, 3195 (1996).
[2] B. Blok, M. A. Shifman, and D. X. Zhang, Phys. Rev. D 57,

2691 (1998); 59, 019901(E) (1998).
[3] M. A. Shifman, Frontier of Particle Physics (World

Scientific, Singapore, 2001), Vol. 3, pp. 1447–1494.
[4] M. Golterman, S. Peris, B. Phily, and E. De Rafael, J. High

Energy Phys. 01 (2002) 024.
[5] O. Catà, M. Golterman, and S. Peris, J. High Energy Phys.

08 (2005) 076.
[6] O. Catà, M. Golterman, and S. Peris, Phys. Rev. D 77,

093006 (2008).
[7] O. Catà, M. Golterman, and S. Peris, Phys. Rev. D 79,

053002 (2009).
[8] M. Shifman, J. Exp. Theor. Phys. 120, 386 (2015).
[9] S. Peris, D. Boito, M. Golterman, and K. Maltman, Mod.

Phys. Lett. A 31, 1630031 (2016).
[10] M. González-Alonso, A. Pich, and J. Prades, Phys. Rev. D

81, 074007 (2010).
[11] M. González-Alonso, A. Pich, and A. Rodríguez-Sánchez,

Phys. Rev. D 94, 014017 (2016).
[12] D. Boito, A. Francis, M. Golterman, R. Hudspith, R. Lewis,

K. Maltman, and S. Peris, Phys. Rev. D 92, 114501 (2015).
[13] D. Boito, O. Cata, M. Golterman, M. Jamin, K. Maltman,

J. Osborne, and S. Peris, Phys. Rev. D 84, 113006 (2011).
[14] D.Boito,M.Golterman,M. Jamin,A.Mahdavi,K.Maltman,

J. Osborne, and S. Peris, Phys. Rev. D 85, 093015 (2012).

[15] D. Boito, M. Golterman, K. Maltman, J. Osborne, and
S. Peris, Phys. Rev. D 91, 034003 (2015).

[16] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan, and
Z. Zhang, Eur. Phys. J. C 74, 2803 (2014).

[17] C. A. Dominguez, L. A. Hernandez, K. Schilcher, and H.
Spiesberger, J. High Energy Phys. 03 (2015) 053.

[18] A. Pich and A. Rodríguez-Sánchez, Phys. Rev. D 94,
034027 (2016).

[19] D. Boito, M. Golterman, K. Maltman, and S. Peris, Phys.
Rev. D 95, 034024 (2017).

[20] I. Caprini, M. Golterman, and S. Peris, Phys. Rev. D 90,
033008 (2014).

[21] P. Duren, Theory of Hp Spaces (Academic, New York,
1970).

[22] S. Ciulli and G. Nenciu, J. Math. Phys. 14, 1675 (1973).
[23] I. Caprini, M. Săraru, C. Pomponiu, M. Ciulli, S. Ciulli, and

I. Sabba-Stefanescu, Comput. Phys. Commun. 18, 305
(1979).

[24] I. Caprini and P. Dita, J. Phys. A 13, 1265 (1980).
[25] I. Caprini, J. Phys. A 14, 1271 (1981).
[26] The ALEPH data set and covariances can be found at http://

aleph.web.lal.in2p3.fr/tau/specfun13.html.
[27] K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C 7,

571 (1999).
[28] ALEPH Collaboration, Phys. Rep. 421, 191 (2005).

DIOGO BOITO and IRINEL CAPRINI PHYSICAL REVIEW D 95, 074027 (2017)

074027-14

https://doi.org/10.1142/S0217751X9600153X
https://doi.org/10.1103/PhysRevD.57.2691
https://doi.org/10.1103/PhysRevD.57.2691
https://doi.org/10.1103/PhysRevD.59.019901
https://doi.org/10.1088/1126-6708/2002/01/024
https://doi.org/10.1088/1126-6708/2002/01/024
https://doi.org/10.1088/1126-6708/2005/08/076
https://doi.org/10.1088/1126-6708/2005/08/076
https://doi.org/10.1103/PhysRevD.77.093006
https://doi.org/10.1103/PhysRevD.77.093006
https://doi.org/10.1103/PhysRevD.79.053002
https://doi.org/10.1103/PhysRevD.79.053002
https://doi.org/10.1134/S1063776115030115
https://doi.org/10.1142/S0217732316300317
https://doi.org/10.1142/S0217732316300317
https://doi.org/10.1103/PhysRevD.81.074007
https://doi.org/10.1103/PhysRevD.81.074007
https://doi.org/10.1103/PhysRevD.94.014017
https://doi.org/10.1103/PhysRevD.92.114501
https://doi.org/10.1103/PhysRevD.84.113006
https://doi.org/10.1103/PhysRevD.85.093015
https://doi.org/10.1103/PhysRevD.91.034003
https://doi.org/10.1140/epjc/s10052-014-2803-9
https://doi.org/10.1007/JHEP03(2015)053
https://doi.org/10.1103/PhysRevD.94.034027
https://doi.org/10.1103/PhysRevD.94.034027
https://doi.org/10.1103/PhysRevD.95.034024
https://doi.org/10.1103/PhysRevD.95.034024
https://doi.org/10.1103/PhysRevD.90.033008
https://doi.org/10.1103/PhysRevD.90.033008
https://doi.org/10.1063/1.1666242
https://doi.org/10.1016/0010-4655(79)90001-8
https://doi.org/10.1016/0010-4655(79)90001-8
https://doi.org/10.1088/0305-4470/13/4/020
https://doi.org/10.1088/0305-4470/14/6/007
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/http://aleph.web.lal.in2p3.fr/tau/specfun13.html
https://doi.org/10.1007/s100520050430
https://doi.org/10.1007/s100520050430
https://doi.org/10.1016/j.physrep.2005.06.007

