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We study the production of polarized A hyperon in semi-inclusive deep inelastic scattering off an
unpolarized target. We include the cases in which the A hyperon is longitudinally polarized or transversely
polarized, and in which the lepton beam is unpolarized or longitudinally polarized. Within the framework
of the transverse momentum dependent factorization, we take into account the complete decomposition of
the parton correlator for fragmentation up to twist-3. We present the cross-section of the process to order
1/Q. The expressions of the polarized structure functions, which may give rise to various spin

asymmetries, are also given.
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I. INTRODUCTION

Understanding the spin structure of the A hyperon is one
of the most challenging problems in spin physics. The
study of the A polarization dates from the 1970s when
Fermilab [1] conducted the pioneer measurement in had-
ronic collision at 300 GeV. The measurement of polariza-
tion phenomena of A hyperon production in semi-inclusive
deep inelastic scattering (SIDIS) can provide further
information about the spin structure of the A hyperon
and the spin-dependent dynamics of fragmentation region,
such as the mechanism of spin transfer from outgoing
struck quark to a A hyperon [2—6]. The polarization of the
A hyperon can be measured by looking at the angle
distribution of decay A — px, since the decayed products
(proton and pion) will preserve the polarization information
of A hyperon.

The longitudinal polarization of the A hyperon can be
generated in SIDIS by a longitudinally polarized beam off
an unpolarized target. The angular momentum conservation
indicates that the outgoing quark has the same spin
orientation as the lepton beam and the polarized quark
could fragment into a A hyperon and transfer its polari-
zation in process. The longitudinal spin transfer has been
measured by the HERMES collaboration [7-12] and the
COMPASS collaboration [13-15]. The production of
transversely polarized A hyperon in lepton-nucleon scatter-
ing has also been proposed as a useful tool to study its spin
structure [16-18]. Although the transversely polarized A
hyperon production has been measured in hadron collisions
[19-22] with different beams, very little experimental
information about A polarization is available from lepto-
production [23-26]. In SIDIS, polarized A production is
related to quark polarization inside the nucleons as well as
the hadronization process in final state.
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In this work, we study the semi-inclusive leptoproduc-
tion of longitudinally or transversely polarized A hyperon:
¢+ N — ¢ + A+ X, in which a lepton beam (unpolarized
or longitudinal polarized) scatters off an unpolarized
nucleon target. To this end, we consider the decomposition
of the quark correlation function to the transverse momen-
tum dependent (TMD) parton distribution functions (PDFs)
and fragmentation functions (FFs), up to the subleading
order of the 1/Q expansion. Within the TMD factorization
framework, we compute the parton-model results of the
cross-section which is differential to the transverse momen-
tum of the A hyperon. Particularly, we pay more attention
to the T-odd PDFs and FFs, since they play important role
on various azimuthal or spin asymmetries in SIDIS. As
shown in Refs. [27-29], the presence of the direction of the
Wilson line in the decomposition of the parton correlation
function will introduce several twist-3 T-odd functions that
have not been considered in previous studies [30,31]. We
will also include these functions to compute the A-spin
dependent structure functions.

The paper is organized as follows. In Sec. I, we review
the decomposition of the parton correlation functions up to
twist-3 level. We then perform the calculation of the
hadronic tensor for A hyperon production in SIDIS with
an unpolarized target. In Sec. III we decompose the cross
section into a complete set of structure functions of the
process and provide the spin-dependent structure functions.
Finally, we summarize our results and give conclusions
in Sec. IV.

II. FORMALISM OF THE CALCULATION

In this section, we adopt the approach in Ref. [32] to set
up the formalism for the calculation of the A hyperon
production in SIDIS

)+ N(P) = ' (') + A(Py) + X, (1)
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where we use [, I/, P and P, to denote the momenta of the
incoming lepton beam, the outgoing lepton, the nucleon
target NV and the A hyperon, respectively. The momentum
of the exchanged virtual photon is defined as ¢ = [ — I’ and
Q% = —g?. We also define the masses of the nucleon and
the A hyperon as M and M ,. To express the cross-section,
we introduce the invariant variables

2P-q’° A

PP,
2P-q’ 0

Following the “Trento Convention™ [33], we apply the
coordinate system in Fig. 1 to define the azimuthal angles
¢, of the detected A hyperon between transverse momen-
tum part and lepton plane as

L,Png
ut AvY 1
VEPLL VEPLL

where ¢/ =¢/¢, and P}, = ¢P,,. We introduce
perpendicular projection tensors

lﬂPAuelj_ (3)

cospp = — singpp, = —

JY =g+ -, (4)
ey = —e"1 2, (5)
w1th nonzero components ¢i' = ¢ = -1 and €!> =
—e3l = 1. It is convenient to expand the leptonic and

hadronic tensor with respect to the virtual photon direction.
The two normalized vectors 7 and % are

A xPt  g*

m="y L w-_L_ 6

0 0 Q ©)

We decompose the covariant spin vector S, of the A
hyperon as

P —¢"M3/(Py - q)
Mov T+ QzMi/ (Pr-q)*

The azimuthal angle ¢g, relevant for specifying the
polarization of A hyperon is obtained from Eq. (3) by
the replacement: P, — S,. In our study, the target nucleon
is unpolarized and the detected A hyperon is transversely or
longitudinally polarized.

The cross-section of SIDIS can be expressed as the
contraction of the hadronic tensor and the leptonic
tensor:

Ho_
S\ = Sa

+ S ()

do a’y
dxdydzdp\dydPX | 8Q4

L,2MW*,  (8)
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where the angle y is the azimuthal angle of the outgoing
lepton #’ around beam axis with respect to an arbitrary
fixed direction, and we can choose it to be the trans-
verse polarization direction of the A hyperon. The
expression of the cross-section can be simplified with
¢s, instead of y. In deep inelastic kinematics, one has
dy ~ depg, [34,35].

In the y*N collinear frame [30], the lepton momentum
can be expanded into 7, 2 and the perpendicular compo-
nents. Thus, we have the leptonic tensor (neglecting the
lepton mass):

LW—Q2 21—yl ¢+ 41—y
=7 Y3y gl 41 =)
+4(1—y)<x”x”+ g‘i) +2(2 = y)\/1 — yitezst
— idy(y = 2)é" = 2idyy/1 - z[ﬂe’ﬂ’“p}, (9)

where % =1 /|l is a unit vector in perpendicular
direction. The Iepton helicity is denoted by 4. The notations
{} and [] indicate symmetrization and antisymmetrization
of Lorentz indices, respectively.

The hadronic tensor in SIDIS is defined as:

Y(g+P—Px—Py)

5 & PX

2MWH = 32/ 2P0
X <P|J”( JIPASA: Px){PaSA; Px|J*(0)|P),

(10)

where J#(£) is the electromagnetic current. It is understood
that the sum ), is also over the polarization of undetected
hadrons in final state.

In the factorization framework [36-39], the cross-
section of SIDIS can be written as the convolution of
the lepton-quark scattering process (the hard part) and
nonperturbative TMDs (the soft part) [40-44]. At the
tree level, the hadronic tensor can be factorized in terms
of various TMD PDFs and FFs up to subleading twist
in the sense of 1/Q expansion. Therefore, the hadronic
tensor can be obtained from the diagrams shown in
Fig. 2. Here, Fig. 2(a) only involves quark-quark matrix
elements, and Fig. 2(b) and Fig. 2(c) involve quark-
gluon-quark matrix elements. The “H.c.” represents
the diagrams Hermitian conjugate to Fig. 2(b) and
Fig. 2(c), with gluon attaching to the other side of
the final state cut. Up to O(1/Q), the corresponding
contributions of the hadronic tensor can be expressed as
[28,30,45]
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2MWH = 263 / Iprdkr& (pr —kr + qT)Tr{CD“(x, pr)r*AY(z. kr)y”

Hy
i P4, (x, pr)rt Az, ky) —

" ova’

In Eq. (11), the terms with n, and n_ arise from fermion
propagators in the quark-lepton scattering part with cor-
rections of order 1/Q. [45,46].

Note that here we decompose the spin and momentum
vectors using two light-like vectors n, and n_ in the
light-cone coordinate, in which the transverse direction is
defined in the AN collinear frame (T-vectors). Particularly,
P and P, have no transverse momentum part, and they can
be decomposed as

M? M?
Pt =Pttt +—n", P = Pint + A, (12)
+ 2P+ A A 2PA +

where n, and n_ can be expressed in terms of 7, 7 and the
transverse component g7,

1. 1/ q’%)
n=—+2), n=——|tr-2#-222). (13
=+ ) ﬁ( 1) ()

Thus the relation between the two bases of the transverse
vectors can be obtained from the following expression [30,45]:

FIG. 1. Definition of azimuthal angles for SIDIS in the y*N
collinear frame [33], the lepton plane is determined by LI'. Py |
and S, are transverse parts of P, and S, with respect to the
photon momentum.

Bl v ) = e . (1)
[
g =g - Srqvad + S 1y

The decomposition of the spin vector S, has the form

(Pa-n)nt — (Py-n_)ny
M

S\ = SaL + Sir- (15)

To construct the hadronic tensor, we start from the
general structure of the correlation functions [47] shown
in Eq. (11), which are @ for the quark distributions, A for
the quark fragmentation, and the quark-gluon-quark corre-
lators &)A and AA.

The quark-quark distribution correlation function for
unpolarized nucleon in SIDIS is defined as

A& d2E;
(. py) = / fz—ﬂf

x e (P (00U 4 U (5 o W (E)IP) e —o-

(16)
In this correlator, the Wilson lines are given as
- — 71yT n_
u(+00 ) Z/{ (cor,Epitoot )U(Jroo_,f‘;fT)’ (17)
u?(;,+oo) =U| f_' “+oo~ OT)U(OT.ooTﬁoo*)’ (18)

where the superscript n_ of U indicates a Wilson line
running along the minus direction in SIDIS. Detailed
definitions of the Wilson lines for TMDs can be found
in Refs. [48,49]. Particularly, the definitions of Wilson lines
for the correlation functions can differ in different processes
[50-53]. For instance, all occurrences of co™ in Wilson line
in SIDIS should be replaced by —oco™ in Drell-Yan process.

The quark-quark correlator for an unpolarized nucleon
can be decomposed as [28,29]

+ h.c.

FIG. 2. Diagrams contributing to semi-inclusive DIS up to O(1/Q), the “H.c.” stands for the Hermitian conjugation of (b) and (c).
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1 o M
D(x, pr) _E{fln/+ —l—ihll [PZMJJ} +2P+ {e—l-fl%

er’y,p [, ]
1 T /pFTo . s A
— +ih 1
gs M l > }, (19)

where we limit the expression to the leading and subleading
terms in 1/Q expansion.
The fragmentation correlator A is defined as [45,54-56]

d&r d 15 e
Az, kr) = Z/ et (O (g 2w (8)[Pr. Sz X)
x <PA»SA;X|V/( UG+ 00) |0 - =o- (20)
with k= = 22, where the momentum fraction z in fragmen-

tation funct10ns coincide with the variable defined in
Eq. (2). An similar remark holds for the Bjorken variable
x in the definition of distribution functions.

Up to twist-3 level, a complete parameterization of the
fragmentation correlator A complying with hermiticity and
parity constraints can be given as [47]

1 k) Saro
A(z,ky) _E{Dlrr_ + DL LT L G s

My
Snr i kr.om_ ) kr.w_
+H1T[ A7 Hﬁ[T ]YS_HHIL[T ]
2 2MA 2M 5
A E El#
+2P { —1 s}/5+ MA

k e’y k
T o T /p™To
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where the FFs on the r.h.s. depend on z and k% = —k7.
We use the shorthand notation [30] for the function
Gls:

kr-S
15 = SaLGi —— Al

Gir (22)

and so forth for the other functions. It is easy to find
that the decomposition of A is obtained from that of @
by the replacements:

n, < n_, er = —er, Pt - Py, M— M,,

x—1/z, (23)

and the PDFs are replaced by the corresponding
FFs (e.g. with f| replaced by D; and all other letters
are capitalized).

As shown in Eq. (21), there are three extra twist-3 T-odd
FFs, denoted by EF, D7 and G, which have not been
presented in Refs. [30,46]. These functions, analogous to
the TMD PDFs e, f7 and g*, arise due to the presence of
the direction of the Wilson line n, in the unintegrated
correlator (21). Among them, D% is introduced to maintain
the symmetry with other functions and simplify the
expression of the results [29]. As we have few experimental
information on T-odd fragmentation functions, model
calculation is an important way to acquire knowledge of
these quantities, such as the spectator models [57-59]. In
SIDIS, the contributions of the functions g* and G* have to
be taken into account, and they could provide useful

kr e""yk explanation for the diff f the A, and Ay, asym-
y Ly KT Gy, CT K16 planation for the difference of the A;;; and Ay asy
+OTysSar TG s M A+G M, metries [28]. Finally, E5, D7 are polarized fragmentation
W 8k W functions appearing in polarized A hyperon production
+Hs[ 2+] _|_HL[ A2TMT]75_|_1-H[ ; +]}’ in SIDIS. )
A At last, we examine the quark-gluon-quark correlator @4
(21) and &f{ appearing in the last line of Eq. (11)
|
T df_dng ip- - & —q -
Bitxpr) = [ G [P0 [ U o U U O (20)
dé*d’g " n
AA(Z kr) = i / (27)? T/e’k§<0| dn Ioon)
< gF U oy ()P SAs X)(PA S XIF (00U g o) [0)| - (25)

nr=ér

Compared to @ and A, ®¢ and A% contain an additional gluon leg [45,46,60]. ®% can be decomposed as

~ P, ap
q’A(X pr) = gl)ﬁp]( !

-

where we consider the target nucleon to be unpolarized.

gr —iefys) +

7 ~\ . ap ap n/
(h+ie)irg +---(g ’+zeT‘ys>} 5 (26)
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After performing the replacements in Eq. (23), we can also decompose the quark-gluon-quark correlator AX
as follows

M kr ~ .~ o
ek = 520 = 1641 224 B+ G,y + (B + 165 2T (g i)

A
- - .. - - €k, SATs n_
— (Hy +iE)r§r> + {(H +iE) - (Hy - iE%)%ﬂAT] irg + - } > (27)
A
It is convenient to parametrize the following combinations as
=~ € krSars - >
2MA Tr[Ap,0%7] = H + iE — TT (Hf —iE7), (28)
2MA Tr[AAalGa_yS] = Hs + iEw (29)
Z X . _ 7~ L ~ L
MTT[AAP(Q? - 16%’5)7 | = M_TA (DL - lGL) + S?pSATp(DT +iGr)
G?kap <SR

+TA(Ds +iGy). (30)

where the indices a, p and o are restricted to be transverse, and we have used the combinations

3 N K2 -

Dz k3) = D'y (2. k3) — 5 1&2 D7 (z, k%), (31)
A

3 . K2

GT(Z’k%) = GIT(Z»k%) 2]‘;2 G ( kz) (32)

Using the parametrizations of correlators in Eq. (11) and the above identities, we can calculate the hadronic tensor in the
process in which a lepton scatters off an unpolarized target producing a polarized A hyperon. We obtain the complete results
for the symmetric and antisymmetric part of the hadronic tensor:

2MW/§D = 2MW[SMT]W +22 / dszdsz52(PT —kr +4qr)

hi H,

% (Pﬂlej_}ps/up + S%ﬁi}ppg) hLH (pjflelj_}pklp + k{”€i}”mp)
2M 2MM ,

1 k) [2xm At Ty
— (=g (ki -pL)+ kﬂ' )—hL + {x—h l] +A[_A_hl]

MM, 0 | M, Q M z
t{ﬂ }pS k J_
€LQ Alp |:_pJ_M lzhL_+MAf1——2xMhH1T:|
t{”é’u}pklp Di‘ Z(SAJ_ kj_) (S P ) Hy
e "k, hp DL _ 201 K1) ___2 hHE + L2}H—T
Q |: AL fl M/\ f ls M ! 4
Huehtr
_|_€Qpi/’[ 2ﬁhi——2xg Gls}}, (33)

and
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QMW" = 2MwIMT 4 o, / d*prd*k;8* (pr + qr —kr)

[;4kV] GJ_
i

{

l.t[ﬂelipSAJ_/) |:pi . kL
o My

(SAL : PL)

t[”pJ_

2xgtDiy +———

{Z—EhJ— + 2ng-D1}

piki

i 2hL—+MA2f1 ]

f[ﬂeli]pky (Sar-p1) ., Er
+i > |- 2xgt D ——21&—}
0 [ L 'z
e Vp [ SauMy | E
+i €lQ Pl [—2 - Ahf—‘y]}, (34)

where 2MWMTH  4enotes to the hadronic tensor for

$/A
unpolarized A production. We find that 2M Wg‘g]” Y agree

exactly with the results in Ref. [30]. The rest part is our new
results for polarized A production. We would like to point
out that our results also satisfy the electromagnetic gauge
invariance (g, W* = 0).

III. THE RESULT OF STRUCTURE FUNCTIONS

To find the number of independent structure functions in
the leptoproduction of A hyperon off an unpolarized target
nucleon, we adopt a general analysis used in Refs. [61,62].
The hadronic tensor W, can be decomposed into scalar
structure functions based on the polarization vectors of the
virtual photon (¢/) and A hyperon (e*):

Wf,i;, = 6"€be’ oY

0
W/(w) =€ ebH[(;b)’ abi’ (35)
where W,(,(,),) is the A-spin-independent part and W,(,i) =
Sf\WLSyZ) is the A-spin-dependent part. On the other hand,
the scalar structure functions can be expressed as
= €ache Wﬂl’))

0 L0
Ht(lb) = GZGbW/(w)’ (36)

abc
To simplify the calculation, here we adopt a special
reference frame in which the A hyperon is at rest and the
momentum of the photon ¢ is along the z axis. Thus the
polarization vectors € and ¢* can be chosen as

e =é<q3,o,o,q0>, ~ (1.0,0.0),
¢ = 10.1,00), —(0,1,0,0),
0
& :;(0,0,1,0), = (0,0.1,0),
qﬂ
d=F.  A=0001) (37)

If there is not any restriction, in principle there
are totally 160 real structure functions. From the
restrictions of the Hermiticity, parity invariance,’
current conservation and the constraint P, - S, =0,
one has:

(8) (5)*.
H bac

0) _ gy(0)« _
Hab _Hba ’ abc_H

HY =0, ifa=2and b#2, or b=2 and a #2;

El b)L =0, if it contains an even number of indices 2;
s s s 0 0)
Hojo = Hyy. = Hiy, = Hyy = H = 0.

These limit the structure functions to 18 independent

real ones: five spin-independent ones Hé%), Hﬁ), Hgg),

?)tH(()(i), SH (1(())> and thirteen A-spin-dependent ones H(()f))z,
RHops. SHo, RH) SHipy, RHeh, SHEL RH),
SHS, HS, weS), SHE, HS), with I and %
denoting the imaginary and real parts of the structure
functions.

On the other hand, in the parton model the cross-
section of the process Zp — ¢/AX can be directly
calculated from the contraction of the leptonic tensor
(9) with the hadronic tensor (33) and (34). We find
that up to twist-3, among 13 A-spin-dependent struc-
ture functions, there are twelve nonzero ones that can
be expressed as the convolution of the distribution
functions and fragmentation functions. Here we
present the general expression of the cross-section
(for polarized A production) in the y*N collinear
frame:

'As is well-known, the decay of the A hyperon to px
violates parity invariance. However, in this work we only
consider the case that the measured final state is the A
hyperon and we refrain from the complexity of Lambda
decay.
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do o’ . ;
— S 2 — /1 — 1 F51ﬂ¢/\ 1= in?2 Fsm2¢,\
dxdydzdgdydP%,  xyQ> { A [( VL= ysingaFui + (1= y)sin2gnFuii
1
+ Sa4 [y (1 - 5)’) Fryp +yv/1—ycos ¢AF(205(LﬁA:|
1 . sm (pa—dbs,) . Sin g +¢
+[Sa, | [(1 -y+ 5)’2) sin(gpp — ds, ) Fyyr ~ 4+ (1 =y)sin(pp + ¢s ) Fyyr
sin(3¢pp— ¢5A) . sin s,
+ (1 —y)sin(3¢pp — ¢SA)FUUT +2=y)V1-y Sln(¢SA)FUUT
in(2gp—s, )
\/ ysin(2¢, — ¢S,\) ;]UT " ]
cos (pa—¢ cos ¢
+ |SAL‘/1 {)’<1 ——)’> cos(¢ ¢SA) LUTA o +yv (1 =y) COS<¢SA>FLUTSA

(2pp—¢
T ) cos(2hn — s, FCH >} (38)

where Fupe = Fape(x,z,P3)) denotes the structure functions with different angular modulations. The subscripts

A, B, and C indicate the polarizations of the incoming lepton, the target nucleon and the produced A hyperon,

respectively; and we use U, L, and T to denote unpolarized, longitudinally and transversely polarized particles.
The expressions of the structure functions in Eq. (38) have the following explicit forms

sin(pn—ds, ) h-k
Fypr' N = [ TlellT]v (39)
sin 2¢, 2(il ‘PT)(il kr) —pr - ky
FUULd =1 {_ MM, hf_Hf_L ’ (40)
FSi“ (pa+ds,) T ﬁ ‘Pt 41
UuT el YA (41)

4(h-pr)(h-kr)* = K3 (h-pr) = 2(h - k) (ky - pr)

Foor ™ =TI T i Hi) (42)
FLUL = Z[flGlL]7 (43)
A Lo (44)
FQL%’E = ?I{hMIj\T < fl - XhHllL> hﬂfT < hLHL + x9lG1L> } (45)
ppee) My (ke ki ;;;i 6 (M, DE ) 20 kolheon) b [y B
<AL" hL Ly xgiGlT)] } (46)
F?#TSA = Zgz{ <Aj/‘[/ll\fl %—thh) + ;{;MI;/T\ K%%LHT xlellT> - (%h%%_XQLGIT>:| }, (47)
Fo i = %/II{— (ALA fi % + er1> + % K% hit E; + xng]lT> + (% hi- % - flG1T>] } (48)
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COoS 2M
FLU;"2¢A bs,) _Yr
0 2M2,
_2(h kp)(h - pr)
2MM
h- Pr (My EL
FCLOlngZUI{ i <ﬁh1l7_ flGlL -

i’;'kT
My
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SEURHSU YU SO

—ky-p EF M, E
T TK gLDlLT_i_ hL Z) (ﬁ/\hllf_

rol

M, . G
(B2, S ey ) }. (50

In the expressions of the structure functions we introduce the normalized vector h=pP,, /|Py,. | and the convolution integral

TlofD] =3y ¢ [ &

Here, w(py.ky) is an arbitrary function and the sum-
mation runs over quarks and antiquarks. In the above
results, we have applied the equation of motion relations
[30] among the twist-2 and twist-3 TMD PDFs and FFs.
Thus we can find a feature that PDFs and FFs do not
appear in a symmetric fashion: there are only twist-3
PDFs without tilde and twist-3 FFs with a tilde. The
reason for this asymmetry is that in Eq. (38) the
structure functions are introduced by using an asym-
metric way in the y*N collinear frames rather than the
AN collinear frames.
In the following, we will briefly discuss our results
(1) The contributions of the new polarized FFs DT, ET
have to be taken into account in the calculation of
structure functions. Our calculation shows that D7
appear in the ¢g, -dependent structure functions

F ;%ZT% ¢SA), while ET appears in F, U Mps" and
2 s .
F 2°5<T¢A 52 The twist-3 TMDs g+ gives contribu-

tions to all the twist-3 structure functions except

oS ¢hs
FLUL :

(2) The leading twist structure functions in our results
are corresponding to Table 3 of Ref. [31] and
Eq. (38) in Ref. [34]. The six twist-3 structure
functions in our results show some similarity com-
pared with the expressions in Ref. [32], while the
role of PDFs and FFs have being reversed in the
former.

(3) Our results show that the polarized FFs play im-
portant roles in the quark fragmenting to A hyperon,
ie., the T-odd FF Di; has been studied in
Refs. [16,17] and our results show that it can be
measured in sin(¢, — ¢, ) asymmetry. Because the
TMD FFs are found to be universal in different
process [36,63], the FFs can be also applied to study
the A production in eTe™ annihilation process.

(4) If one neglects the quark-gluon-quark functions
(the functions with a tilde) and T-odd distribution

&Pk6% (pr —ky

=Py /2)o(pr.kr)f(x, p%)D“(z,k%). (51)

functions A7, g, h, then five structure functions at
twist-3 have the approximated forms:

sin 2pp—ds,) M 2(i1 'kT)(i2 'PT) —kr-pr
Fyur ~r—1
0 2MM
< FiDir ). (52)
sin ¢ 2M kr-p
FUUTSA zjz{—zLM/T\xlefT ) (53)
cos . 2M m
FLUTSAzjz{ Mfl 2MM flGlT}
(54)
cos (2¢pa—ps, ) 2M 2(il . k7-> k2
Fror “QI{—ZM%lelLT
2(il ‘kr)(il -pr) —kr-pr
- T f1Gir p.
(55)
cosgy _ 2M iz-p h-kym
Fiot “EI{— MTflGlL_ i TMlef_L}
(56)

Thus, these results are similar to the Cahn effect in the
unpolarized SIDIS. They occur when the intrinsic trans-
verse momentum is included in distribution and fragmen-
tation functions.

At last, we perform the integration over the transverse
momentum P, for the structure functions given above,
the nonvanished integrated structure functions are as
follows [31]
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Fryp(x,z) = xz a[1(x)G1(2), (57)

sin ¢ 2M D
Pt (5.2) = x> @ 2t i) 22, (59

co%ubA 2M
Fryr*(x.2) = _xzea

< (20 T retri(a).

(59)
where the functions on the r.h.s are given by
filx) = / d’prfi(x. p7).
Di(z) =2 [ dhyDi(2. ), (60)

and so forth for the other functions. In Eq. (58), there is no
contribution from the distribution /4, since T-odd PDFs
vanish under time reversal:

[ @itz o (61)

The contribution from Dy (z) still remains due to the final
state interaction effects [64] during fragmentation. Thus,

the measurement of the structure function F UU(/TSA (x,2)
provides a unique opportunity to explore the T-odd FF
D}(z). Furthermore, Eq. (59) shows a possible way to
observe the function e(x) in the leptoproduction of trans-
versely polarized A, provided the twist-3 fragmentation
function GT(Z) is negligible. It is also worth pointing out
that the structure function F;;; is associated with the
longitudinal spin transfer from longitudinally polarized
lepton beam to the A hyperon through the convolution
of f1(x) and G,(z) [3,4,30].

Finally, a general remark on A fragmentation functions is
in order. In the entire paper, we do not consider the decay of
the A hyperon to pz. In reality, A fragmentation observ-
ables should be contained in the more general dihadron
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fragmentation observables, because in the end the A
hyperon decays to two hadrons, and this decay acts as a
polarization analyzer. Specifically, the polarization infor-
mation of the A hyperon during fragmentation might be
explored by the correlation (P, A P,) - S, where P, and P,
are the momenta of the decayed proton and pion, and S is
the spin vector of the A hyperon. This is similar to the
correlation (Py A P,) -, associated with the quark diha-
dron fragmentation function ¢ — hh, which was proposed
to access the transversity distribution of the nucleon. Our
calculation may be extended to the case of dihadron
production in SIDIS, and we reserve it as a future study.

IV. CONCLUSION

SIDIS has been recognized as an very useful tool to study
the spin structure of A hyperon. In this work, we have
studied the production of polarized A hyperon by an
unpolarized or longitudinally lepton beam scattered off
an unpolarized nucleon target. Using the complete decom-
position of the parton correlation functions for fragmenta-
tion up to twist three, we have presented the tree-level result
of the cross-section for the process £ + N — ¢/ + A + X at
order 1/Q, based on the TMD framework. We find that,
among a total of twelve nonzero polarized structure
functions, seven of them are at twist-three level and can
be expressed as convolutions of twist-two and twist-three
TMD PDFs and FFs. We give the complete expressions for
these structure functions, each of which there are several
twist-three functions that contribute. In our analysis we also
include the T-odd TMD PDFs ¢+ and FFs E7 and D7,
which were not taken into account in previous studies and
may contribute in spin asymmetries in polarized A pro-
duction. The measurements of Z +N — ¢ + A + X thus
can provide useful observables to understand the fragmen-
tation mechanism and polarization phenomena of the A
hyperon.
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