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The N-jettiness observable TN provides a way of describing the leading singular behavior of the N-jet
cross section in the τ ¼ TN=Q → 0 limit, where Q is a hard interaction scale. We consider subleading-
power corrections in the τ ≪ 1 expansion, and employ soft-collinear effective theory to obtain analytic
results for the dominant αsτ ln τ and α2sτln3τ subleading terms for thrust in eþe− collisions and 0-jettiness
for qq̄-initiated Drell-Yan–like processes at hadron colliders. These results can be used to significantly
improve the numerical accuracy and stability of the N-jettiness subtraction technique for performing fixed-
order calculations at next-to-leading order and next-to-next-to-leading order. They reduce the size of
missing power corrections in the subtractions by an order of magnitude. We also point out that the precise
definition ofN-jettiness has an important impact on the size of the power corrections and thus the numerical
accuracy of the subtractions. The sometimes employed definition of N-jettiness in the hadronic center-of-
mass frame suffers from power corrections that grow exponentially with rapidity, causing the power
expansion to deteriorate away from central rapidity. This degradation does not occur for the original
N-jettiness definition, which explicitly accounts for the boost of the Born process relative to the frame of
the hadronic collision, and has a well-behaved power expansion throughout the entire phase space.
Integrated over rapidity, using this N-jettiness definition in the subtractions yields another order of
magnitude improvement compared to employing the hadronic-frame definition.
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I. INTRODUCTION

Precision QCD calculations play an essential role at the
Large Hadron Collider (LHC), both for interpreting the
measurement of Standard Model parameters and in
searches for new physics. In many cases, calculations at
next-to-next-to-leading order (NNLO) in perturbative QCD
are required for an accurate description of kinematic
distributions and to be competitive with the ever increasing
experimental precision.
Higher-order calculations in perturbative QCD involve

infrared (IR) singularities arising from both real and
virtual radiation, which cancel in the final result for any
infrared and collinear safe quantity. Practical calculations
require some method to isolate and cancel these IR
singularities. At next-to-leading order (NLO), this is
very well understood and the standard method is to use
Frixione-Kunszt-Signer [1,2] or Catani-Seymour [3–5]
subtractions, which construct local subtraction terms that
approximate the real-emission amplitude in the IR limit
point by point and whose integral can be carried out
analytically and is added to the virtual contributions, such
that the real and virtual contributions are separately rendered
finite. Significant work has been focused on extending these
subtraction techniques to NNLO, where the singularity
structure is more complicated [6–39], resulting in several
approaches which have been successfully applied to

NNLO calculations with colored particles in the final state
[19,30,32,36].
An alternative to fully local point-by-point subtractions

is to use a physical jet-resolution variable to control the IR
behavior and construct suitable subtraction terms. This idea
was originally applied to color-singlet production using
the transverse momentum of the leptonic final state as a
resolutionvariable [40], and has also been used for top quark
decays [41] using inclusive jet mass, and for eþe− → tt̄
using radiation energy [42]. Since all IR singular contribu-
tions are projected onto a single variable or dimension, such
physical subtractions are intrinsically nonlocal, which may
result in slower numerical convergence. Their key advantage
is that by using a physical observable the subtraction terms
are equivalent to the singular limits of a physical cross
section whose IR-singular structure is typically much easier
to understand. Another benefit is that they allow one to
directly reuse the existing NLO calculations for the corre-
sponding Bornþ1-jet process. They are also conceptually
straightforward to extend to even higher orders.
Recently a general subtraction framework based on

the resolution variable N-jettiness TN [43] was proposed
[44–46]. It is applicable for an arbitrary number of jets
in the final state. As explained in detail in Ref. [46],
N-jettiness subtractions can be implemented either as
differential subtractions in TN or as global subtractions,
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which amounts to a phase-space slicing. The differential
subtractions are effectively thebasis of theGENEVAmethod to
match resummed NNLO calculation with parton showers
[47,48]. Implemented as a global subtraction, they have been
applied to calculate W=Z=H þ jet at NNLO [44,45,49,50],
and have been implemented in MCFM for color-singlet
production [51–53]. They have also been applied to single-
inclusive jet production in ep collisions [54].
N-jettiness subtractions are based on parametrizing

the phase space by the N-jettiness resolution variable,
which is designed to vanish for an N-jet Born configura-
tion. Explicitly, a generic N-jet cross section σðXÞ, defined
with Born level measurements and cuts X can be written in
terms of the integral of the corresponding differential cross
section dσðXÞ=dTN as

σðX; TcutÞ≡
Z

Tcut
dTN

dσðXÞ
dTN

;

σðXÞ ¼ σðX; TcutÞ þ
Z
Tcut

dTN
dσðXÞ
dTN

: ð1Þ

From here on we will suppress the dependence on X. We
can now add and subtract a subtraction term dσsub=dTN to
obtain

σ ¼ ½σðTcutÞ − σsubðTcutÞ� þ σsubðT offÞ

þ
Z
Tcut

dTN

�
dσ
dTN

−
dσsub

dTN
θðT < T offÞ

�

¼ σsubðTcutÞ þ
Z
Tcut

dTN
dσ
dTN

þ ½σðTcutÞ − σsubðTcutÞ�

≡ σsubðTcutÞ þ
Z
Tcut

dTN
dσ
dTN

þ ΔσðTcutÞ; ð2Þ

where in the last line we define ΔσðTcutÞ. The value of Toff
is arbitrary and determines the range over which the
subtraction acts differentially in TN . In the last two lines
we have set T off ¼ Tcut. This reduces the subtraction to a
global phase-space slicing, which is our focus here.
For TN > Tcut an additional emission off of the N-jet

Born configuration must be present and the calculation
reduces to an (N þ 1)-jet perturbative calculation at one
lower perturbative order. For NNLO calculations, the
integral over TN > Tcut can thus be obtained from an
existing NLO calculation. On the other hand, for TN <
Tcut the cross section is dominated by singular emissions
from the Born configuration and can be approximated by
σsubðXÞ, which by construction reproduces its singular
behavior for TN → 0. Hence, for sufficiently small Tcut the
differenceΔσ ¼ σðTcutÞ − σsubðTcutÞ in Eq. (2) scales as Tcut
and can be neglected.
In the limit of small TN , the cross section can be

expanded in powers of τN ¼ TN=Q, where Q is a typical
hard scale inserted to make τN dimensionless, as

dσ
dτN

¼ dσð0Þ

dτN
þ dσð2Þ

dτN
þ dσð4Þ

dτN
þ � � � ;

σðτcutÞ ¼ σð0ÞðτcutÞ þ σð2ÞðτcutÞ þ σð4ÞðτcutÞ þ � � � : ð3Þ

Here, dσð0Þ=dτN and σð0ÞðτcutÞ contain the leading-power
(singular) terms which have the scaling

dσð0Þ

dτN
∼ δðτNÞ þ

�
Oð1Þ
τN

�
þ
;

σð0ÞðτcutÞ ∼Oð1Þ: ð4Þ

The Oð1Þ factors include powers of ln τN and ln τcut
respectively. As indicated, the singular terms in the spec-
trum are divergent for τN → 0 and are written in terms of
distributions, which encode the cancellation of real and
virtual IR divergences. The subtraction terms in Eq. (2)
must be equivalent to these leading-power terms, up to
possible power-suppressed terms,

σsubðTcutÞ ¼ σð0Þðτcut ¼ Tcut=QÞ½1þOðτcutÞ�: ð5Þ

The dσð2kÞ=dτN and σð2kÞðτcutÞ terms with k ≥ 1 are
referred to as power corrections and contain the contribu-
tions that are suppressed by powers of τN relative to the
leading-power terms,

τN
dσð2kÞ

dτN
∼OðτkNÞ; σð2kÞðτcutÞ ∼OðτkcutÞ: ð6Þ

The terms with k ¼ 1 are the next-to-leading-power
(NLP) contributions. Note that the counting used here
follows the standard power counting in soft-collinear
effective theory (SCET), where the power counting param-
eter is λ ∼ ffiffiffiffiffi

τN
p

. The power corrections have at most
integrable divergences for τN → 0, i.e., they do not depend
on purely virtual corrections to the Born process and can
thus be computed from the corresponding (N þ 1)-jet
process. (This is also why they do not necessarily have
to be included in the subtractions.)
By using a physical observable like TN , the leading

singular terms dσð0Þ=dτN can be computed using a factori-
zation theorem for the cross section [43,55] derived in
SCET [56–60], in terms of universal jet, soft, and beam
functions describing the soft and collinear limits of QCD.
This provides explicit analytic control over the infrared
divergent contributions. The required ingredients to obtain
σð0ÞðτcutÞ to NNLO are the NNLO jet [61,62] and beam
[63,64] functions, which are fully known, as well as the soft
function which is fully known to NNLO for two external
partons [65–68]. The soft function for an arbitrary N is
currently known to NLO [69]. The soft function for three
external partons, as relevant for color singlet plus jet
production at the LHC, was computed numerically at
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NNLO in Ref. [70] and for a massive third parton
in Ref. [71].
When employing the subtraction method, the size of the

neglected contributions below Tcut determine the error one
makes in the calculated cross section, which is given by

ΔσðτcutÞ ¼ σðτcutÞ − σsubðτcutÞ ¼ σð2ÞðτcutÞ þ � � � ; ð7Þ

and is thus controlled by the NLP corrections σð2ÞðτcutÞ∼
OðτcutÞ. As discussed in detail in Ref. [46], the expected
error can thus be estimated based on the perturbative
structure of the neglected NLP corrections. Writing the
perturbative expansion in αs as

dσðkÞ

dτN
¼

X
n¼0

dσðk;nÞ

dτN

�
αs
4π

�
n
; ð8Þ

the perturbative structure of the dominant power correc-
tions is given by

τN
dσð2;nÞ

dτN
¼ τN

X2n−1
m¼0

Cð2;nÞ
m lnmτN;

σð2;nÞðτcutÞ ¼ τcut
X2n−1
m¼0

Að2;nÞ
m lnmτcut; ð9Þ

where the Að2;nÞ
m coefficients are straightforwardly related to

the Cð2;nÞ
m0 coefficients by integration.

Hence, the dominant behavior of the power correction is
αsτcut ln τcut at NLO and α2sτcutln3τcut at NNLO, and so
forth. While these corrections vanish in the limit τcut → 0,
they do so slower and slower at higher orders due to the
strong logarithmic enhancement, requiring very small
values of τcut to be used in the subtractions. In Fig. 1

we show an estimate of the error due to missing power
corrections ΔσðτcutÞ as a function of τcut, based on the form
of their leading-logarithmic term relative to the leading-
power αns coefficient σð0;nÞ (on the left) and relative to the
LO cross section (on the right, assuming a 10% correction
at each order in αs). The bands show a variation of the
estimate by a factor of 3. We see that for a fixed value of
the cutoff, the size of the missing terms grows rapidly with
the loop order. On the other hand, in practice reducing τcut
comes at the price of a reduced numerical stability in the
NLO (N þ 1)-jet calculation and quickly increasing com-
putational time required to obtain small statistical uncer-
tainties in the Monte Carlo integration. The typical values
used in current implementations are in the τcut ≃ 10−3 to
10−4 range.
A possibility to greatly improve the numerical stability

of the subtraction, which was already put forth in Ref. [46],
is to explicitly compute the dominant power corrections
and include them in the subtractions. The dashed lines in
Fig. 1 show an estimate of the error ΔðσcutÞ when including
the leading-logarithmic power correction, Cð2;kÞ

2k−1, in the
subtractions σsubðτcutÞ. Based on this simple estimate, for
small values of τcut, this can reduce the error by about an
order of magnitude, or equivalently for fixed error allow
one to raise τcut by an order of magnitude. This trend
continues with each logarithm that is added to the sub-
traction. Therefore, both the numerical stability and accu-
racy of the subtraction can be significantly improved by
computing the power corrections. Note that the power
corrections would give anOð1Þ error to the next-to-next-to-
next-to-leading-order coefficient even for very small values
of τcut, and therefore to make the application feasible at this
order it will be absolutely essential to include the leading-
power corrections in the subtractions.

FIG. 1. Estimate of the missing power corrections ΔσðτcutÞ below τcut for the NLO (green), NNLO (blue), and N3LO (orange)
contributions without including (solid lines) and including (dashed lines) the leading-power correction in the subtractions. On the left,
the estimate is relative to the full NnLO contribution itself, on the right relative to the LO cross section. The bands show a factor of 3
variation in the estimate around the solid lines. A similar variation should be considered to apply to the dashed lines, but for simplicity is
not shown.
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The goal of this paper is to analytically calculate the

leading-logarithmic (LL) terms Cð2;1Þ
1 and Cð2;2Þ

3 at NLO
and NNLO for 0-jettiness, which is equivalent to beam
thrust [55,72], for qq̄-initiated Drell-Yan–like processes.
Like at leading power, this is made feasible by virtue of the
fact that TN is a physical observable. Our calculation will be
performed in SCET, which features a systematic power
expansion. To ensure that we have identified all sources for
the power corrections we exploit the recently determined
complete basis of hard scattering operators for eþe− →
dijets and Drell-Yan from qq̄ annihilation [73]. We will
emphasize more generally how SCET can be used to
analytically compute power corrections for physical reso-
lution variables. By calculating the LL terms exactly, we
will also be able to numerically extract the next-to-leading-
logarithmic (NLL) contributions from the full fixed-order
results. We study in detail their effect on improving
N-jettiness subtractions. Our numerical results also confirm
the naive scaling estimates shown in Fig. 1.
We will also highlight an important point regarding the

precise definition used for TN, which can strongly impact
the size of the power corrections as a function of the
Born phase space. We show that the definition of TN in the
hadronic (lab) frame utilized in some applications of
N-jettiness subtractions, suffers from exponentially
enhanced power corrections at large rapidities, leading to
a deterioration of the power expansion and thus the utility
of the N-jettiness subtractions there. This is avoided by
employing the original and more natural definition of
N-jettiness that incorporates the boost of the Born system
relative to the frame of the hadronic collisions. Compared
to the hadronic definition, this alone leads to a reduction
of the power corrections by an order of magnitude, as well
as stable behavior throughout the entire phase space.
In this work we focus on the main ideas, results, and

analysis, leaving a detailed exposition of the SCET based
organization and calculational techniques to a future
publication. The remainder of this paper is organized as
follows. In Sec. II, we present our calculation. We derive
general consistency relations for the cancellation of infrared
poles at subleading power, which can be used both as a
check on the calculation and as a simplification. We then
calculate the terms

Cð2;1Þ
1

αs
4π

τ ln τ; Cð2;2Þ
3

�
αs
4π

�
2

τln3τ; ð10Þ

for both thrust in eþe− and 0-jettiness in pp collisions.
We present numerical results at NLO and NNLO and
perform a detailed comparison with the numerical fixed-
order results for a Z þ 1 jet from MCFM [53,74–76].
In Sec. III, we discuss the dependence of the power
corrections on the N-jettiness definition, and discuss the
implications of our calculations for future use of the
N-jettiness subtractions. We conclude in Sec. IV.

II. CALCULATION

In this section, we present our calculation of the Cð2;1Þ
1

and Cð2;2Þ
3 coefficients for 0-jettiness. We begin in Sec. II A

by deriving general consistency constraints on our
calculation arising from the cancellation of 1=ϵ poles.

In Sec. II B we calculate the coefficients Cð2;1Þ
1 and Cð2;2Þ

3

for thrust in eþe− → dijets, which removes any compli-
cations related to the parton distribution functions (PDFs).
Finally, in Sec. II C we cross our results from thrust to the
case of 0-jettiness, and present numerical results.
We organize our calculation using SCET [56–60], which

is an effective field theory of QCD describing the inter-
actions of collinear and soft particles in the presence of a
hard interaction. It is formulated as an expansion about the
soft and collinear limits in a power counting parameter λ,
which in our case corresponds to λ2 ∼ τN . SCET is
explicitly constructed to maintain manifest power counting
at all stages of a calculation. In particular, all fields and
Lagrangians are assigned a definite power counting [58].
The effective theory provides a natural organization of the
different sources of power corrections. It also allows for the
use of symmetries, such as reparametrization invariance
[77,78], to relate certain power-suppressed contributions to
leading-power results. It has been used to study factoriza-
tion theorems at subleading power for B decays [79–86], to
study subleading soft limits at the amplitude level [87], and
subleading factorization and resummation of the event
shape thrust in eþe− [88,89].
Power corrections arise from three sources in the

effective theory: universal subleading Lagrangian inser-
tions, which correct the dynamics of the soft and collinear
fields, subleading-power hard scattering operators, which
describe local corrections to the hard scattering vertex, and
subleading terms in the expansion of the measurement
functions and phase space. Power-suppressed Lagrangians
have been studied in the literature [77–79,90–92], and the
SCET Lagrangian is known to Oðλ2Þ [92]. For the
processes we consider here, eþe− → dijets and Drell-
Yan from qq̄ annhilation, a complete basis of SCET hard
scattering operators was presented in Ref. [73]. The
subleading-power expansion for the measurement function
for thrust has also been derived, originally in Ref. [88] with
a different formalism than the one employed here, and also
in Ref. [73].
Our calculation is carried out by using SCET as a means

to organize the fixed-order calculation for the perturbative
power corrections, and identify the most singular terms. For
the observables discussed here this involves considering
real-emission diagrams involving soft and/or collinear
particles, as well as virtual corrections from soft and
collinear loops, plus short-distance hard loops. The hard,
collinear, or soft loops or emissions each only involve a
single scale. For this purpose, we do not need to make use
of factorization theorems for these power corrections.
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A. General constraints from consistency

We first discuss general constraints arising from the
cancellation of 1=ϵ poles on the subleading-power cross
section. In SCET these poles are ultraviolet in origin and
arise from scale separation in the hard, collinear, and soft
regions. (From a full theory point of view these poles are
tracking infrared scales, and hence cancel because the
subleading-power cross section is free of nontrivial infrared
divergences.) Here we consider a generic dimensionless
SCETI observable τ, which we will later take to be thrust or
0-jettiness in our explicit calculations. The consistency
relations are, however, generic. If we compute the cross
section using bare contributions from both the hard Wilson
coefficients and collinear and soft phase space and loop
integrals, then the OðτÞ correction to the cross section has
the following general expression,

dσð2;nÞ

dτ
¼

X
κ

X2n−1
i¼0

cκ;i
ϵi

�
μ2n

Q2nτmðκÞ

�
ϵ

þ
X
γ

X2n−2
i¼0

dγ;i
ϵi

�
μ2ðn−1Þ

Q2ðn−1ÞτmðγÞ

�ϵ

þ � � � : ð11Þ

Here κ and γ label the scalings obtained from the contrib-
uting particles, i.e., hard, collinear, or soft, and mðκÞ ≥ 1 is
an integer. For example, at one loop (n ¼ 1) there is a
single additional particle, which is either

soft∶ κ ¼ s; mðκÞ ¼ 2;

collinear∶ κ ¼ c; mðκÞ ¼ 1; ð12Þ

while at two loops (n ¼ 2), the possible contributions are

hard collinear∶ κ ¼ hc; mðκÞ ¼ 1;

hard soft∶ κ ¼ hs; mðκÞ ¼ 2;

collinear collinear∶ κ ¼ cc; mðκÞ ¼ 2;

collinear soft∶ κ ¼ cs; mðκÞ ¼ 3;

soft soft∶ κ ¼ ss; mðκÞ ¼ 4: ð13Þ

In general the number of terms in κ indicates the loop order.
The extension to determine scalings at higher loops should
be obvious. In the first line of Eq. (11) the cκ;i are the
coefficients of the poles for each different contribution.
Starting from the second line the contribution from UV
renormalization, and collinear PDF renormalization in the
case of hadronic collisions, is taken into account. Here γ is
similar to κ but with one less h, c, or s in it at each order in
αs. For example, for 0-jettiness at a hadron collider,
schematically we have

dγ;2 ¼ −β0cγ;1 þ
X
f

ðPð0Þ ⊗ cγ;1Þf; γ ¼ s; c; ð14Þ

where β0 is the one-loop beta function coefficient, and Pð0Þ
is the LO splitting function with appropriate partonic
flavor, and the

P
f denotes summation over different flavor

combinations and incoming legs. We should point out that
the dγ;i coefficients, as well as higher-order terms shown by
the ellipses in Eq. (11) are completely fixed by the known
beta function, splitting functions, and lower-order terms.
At subleading power there are no purely hard correc-

tions, which means mðκÞ ≥ 1. Demanding that the pole
terms cancel in Eq. (11) gives rise to a number of
constraints on the coefficients cκ;i, which can be exploited
to drastically simplify the calculation, as well as to provide
cross-checks on the result.
At one loop, where there is either a single soft or

collinear emission in SCET, the cancellation of the pole
terms in Eq. (11) yields the simple constraint

cs;1 ¼ −cc;1: ð15Þ

At two loops we find the following nontrivial constraints on
the coefficients:

chc;3 ¼
ccs;3
3

¼ −css;3 ¼ −
1

3
ðchs;3 þ ccc;3Þ;

ccs;2 ¼ chc;2 − 2css;2 þ dc;2;

chs;2 þ ccc;2 ¼ −2chc;2 þ css;2 − dc;2;

chs;1 þ ccc;1 ¼ −ðccs;1 þ chc;1 þ css;1 þ dc;1 þ ds;1Þ; ð16Þ

which apply separately in each color channel. Note that we
have applied the relation ds;2 ¼ −dc;2 which is a conse-
quence of Eqs. (14) and (15).
These consistency relations allow us to reduce the

number of unknown coefficients at two loops. We can
express the two-loop result for the subleading-power
correction as

dσð2;2Þ

dτ
¼ chc;3ln3τ þ ðchc;2 þ css;2 þ dc;2Þln2τ
þ ð−ccs;1 þ chc;1 − 2css;1 þ dc;1Þ ln τ

þ dc;2 ln
Q2

μ2
ln τ þ const: ð17Þ

Here we have chosen to write the result in terms of hard-
collinear terms whenever possible, as these terms have the
simplest phase-space integrals. For other applications, other
organizations may prove more convenient. Interestingly,
for the ln3 τ term, on which we focus here, the consistency
relations imply that we only need to calculate a single
two-loop coefficient, chc;3 (alternatively css;3 or ccs;3). By
calculating more coefficients the constraints of Eq. (16) can
then provide a powerful check on our calculation.
Although the focus of this paper is on the leading-

logarithmic term, ln3 τ, the consistency relations also
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significantly reduce the number of unknown coefficients
for the ln2 τ and ln τ terms. Scale dependence first appears
in the coefficient of ln τ, as expected. In the future, we hope
to exploit these relations to analytically compute the lower-
order terms. We also believe that these relations may prove
useful in the extension of our current calculation to the case
of processes involving jets in the final state. In particular,
the coefficient of the ln3 τ term is determined entirely by the
hard-collinear contribution. Understanding the universality
of the subleading collinear limits may therefore allow for
calculations at subleading power to be extended straight-
forwardly to final states involving additional jets.

B. 2-jettiness in e + e− → jets (thrust)

We begin by computing 2-jettiness in eþe− to jets. For
massless partons this is equivalent to thrust [93], for which
the exact one-loop result is known, and will provide a
cross-check on our results. The thrust measurement func-
tion is defined by

τ ¼ 1 −maxt̂

P
ijt̂ · ~pijP
ij~pij

: ð18Þ

We focus on the leading-logarithmic terms in σð2;nÞ at
one and two loops, which scale as αs ln τ and α2s ln3τ,
respectively. We will discuss in some detail the structure of
the calculation at NLO, focusing on the different types of
power corrections, and the cancellation of 1=ϵ poles. We
then use the result of Eq. (17) to extend this calculation
to NNLO.

1. Power corrections at NLO

By studying contributions from the complete basis of
SCET operators and possible Lagrangian insertions, we
determine that there are four contributions to the leading
logarithm at NLO that must be computed. These can be
grouped into two categories that separately exhibit the
cancellation of 1=ϵ poles.

(i) Category 1: A gluon becomes collinear with a quark,
or becomes soft.

(ii) Category 2: Two quarks becomes collinear, or a
quark becomes soft.

Category 1 is of course familiar from the leading-power
case, while category 2 first appears at subleading power and
will give rise to a CA color factor in the leading logarithm.
In the effective field theory organization, there are two
classes of diagrams which contribute to each of these
categories at NLO, corresponding to a soft or collinear
emission as enumerated in Eq. (12). We discuss the
contributions from the two categories in turn. We carry
out our calculations in Feynman gauge, and note that the
contributions from the categories and classes are individu-
ally gauge invariant.

First consider category 1. The nonzero subleading-power
corrections in the case that a gluon becomes soft are
reproduced by a SCET Lagrangian insertion correcting
the collinear quark propagator (which is equivalent to the
Low-Burnett-Kroll theorem [94,95] interfered with an
eikonal emission, see Ref. [87]), while the subleading-
power corrections to the collinear limit are reproduced by a
power-suppressed hard scattering operator. These both
correspond to corrections to the amplitudes, and are
illustrated in Fig. 2, where the power suppression of the
hard scattering operators and Lagrangian insertions are
indicated. The power suppression of a diagram is given by
the sum of the power suppression of the Lagrangian
insertions and the hard scattering operators. Collinear
particles are shown in light blue, while soft particles are
shown in orange. Since both these limits exist at leading
power, there are also potentially subleading-power correc-
tions from the expansion of the thrust measurement
function and the phase space. The subleading-power
expansion of the thrust measurement function was given
in Refs. [73,88], and does not contribute a leading-
logarithmic divergence. On the other hand, corrections to
the phase space do give rise to a leading-logarithmic
divergence. In the effective field theory, we are free to
choose the routing of residual momenta. Considering as an
example the graph with a single soft gluon in Fig. 2(a), and
let the momentum of the collinear particles be in the n and n̄
directions, where n denotes a lightlike vector, and n̄ its
spatial conjugate. We can then route the n component of the
soft gluon’s momentum through the n collinear quark, the n̄
component through the n̄ collinear quark, and the perp
component through the incoming off-shell propagator. This
then trivially corrects the phase-space integrals for the two
collinear particles.
At NLO, we find for category 1

1

σ0

dσð2;1ÞCat.1

dτ
¼ 8CF

��
1

ϵ
þ ln

μ2

Q2τ

�
−
�
1

ϵ
þ ln

μ2

Q2τ2

��

¼ 8CF ln τ; ð19Þ

FIG. 2. Representative NLO diagrams where a gluon becomes
either (a) soft or (b) collinear with a quark. Collinear particles are
shown in light blue, soft particles in orange. The cross represents
a Lagrangian correction to the propagator, and the power
suppression of the hard scattering operators and Lagrangian
insertions is explicitly indicated.
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where in the first equality we have separated the contri-
butions from soft and collinear graphs. This result can also
be obtained by expanding the appropriate QCD amplitudes
in the limit that the gluon becomes collinear or soft.
Note that the 1=ϵ poles cancel amongst the diagrams in
this category, in agreement with the constraint of Eq. (15).
We also see the appearance of the characteristic soft scale
Q2τ2 and collinear scale Q2τ in the result in Eq. (19).
The analysis of the two classes of diagrams in category 2

is a bit simpler, since in this case there are no corrections to
the phase space. In the effective theory, the soft quark limit is
reproduced by a subleading-power Lagrangian insertion,
while the limit of two collinear quarks is reproduced by a
hard scattering operator. Representative diagrams are shown
in Fig. 3, and indicate the source of power suppression.
The result for the category 2 contributions is given by

1

σ0

dσð2;1ÞCat.2

dτ
¼ 4CF

�
−
�
1

ϵ
þ ln

μ2

Q2τ

�
þ
�
1

ϵ
þ ln

μ2

Q2τ2

��

¼ −4CF ln τ: ð20Þ

We again see the cancellation of 1=ϵ poles. Also in this
case, the result can be obtained by expanding the relevant
QCD diagram in the limit of a quark going soft, or two
quarks becoming collinear.
Adding the contributions from the two categories, we

find that the soft and collinear coefficients are

cs;1 ¼ −4CF ¼ −cc;1; ð21Þ

and the final result for this term in the cross section is

1

σ0

dσð2;1Þ

dτ
¼ 4CF ln τ; ð22Þ

which agrees with the well-known exact one-loop result for
thrust [96]. This result was also reproduced in a somewhat
different SCET framework in Ref. [88], where the organi-
zation is different and there are more distinct contributions
(17 terms) that add up to this leading-logarithm result.

2. Power corrections at NNLO

Having understood the structure at NLO, we can now
extend our calculation to NNLO. The leading-logarithmic
divergence at NNLO, α2s ln3 τ, can be obtained by dressing
the NLO diagrams with a single leading-power correction
that is either hard, collinear, or soft and could be virtual or
real. From the consistency relations, summarized in
Eq. (17), it suffices to calculate only the hard corrections
to the collinear diagrams. This is shown schematically in
Fig. 4. The loop corrections for eþe− → 3 partons are
known analytically at both one [97] and two loops [98],
which we use to derive our result. We find

1

σ0

dσð2;2Þ

dτ
¼ ½−32C2

F þ 8CFðCF þ CAÞ�ln3τ

¼ 8CFðCA − 3CFÞln3τ: ð23Þ

In the first line we have separated the result into the
contributions from category 1, which have a C2

F color
structure, as is the case for the leading logarithm at leading
power, and the contribution from category 2, which has a
CFðCF þ CAÞ color structure, which is not present at
leading power. The appearance of this genuinely new color
structure at subleading power is not surprising, due to the
contribution from the limit where the two quarks become
collinear, effectively giving rise to aCA-like cusp, as seen in
Fig. 4. It would be interesting to understand how this result
can be derived from renormalization group evolution.
We have performed an explicit calculation of the double

soft coefficient css;3 and the collinear-soft coefficient ccs;3,
and confirmed that the consistency relation in Eq. (16)
indeed holds, providing a highly nontrivial check of our
calculation. Knowing the double collinear coefficient ccc;3
explicitly would further check the consistency relation,
which we leave for future work.

C. 0-jettiness in qq̄ → color-singlet production
(beam thrust)

We now turn to computing the dominant subleading
terms for 0-jettiness or beam thrust. We define qμ,Q, and Y

FIG. 3. Representative NLO diagrams when either (a) a quark
becomes either soft or (b) two quarks become collinear. The
power suppression of the hard scattering operators and Lagran-
gian insertions is explicitly indicated.

FIG. 4. Representative diagrams of the two-loop hard collinear
contributions which contribute at subleading power. Here the
gray circle represents a one-loop hard virtual correction. There
are contributions when either (a) a gluon becomes collinear with a
quark or (b) two quarks become collinear. The power suppression
of the contributing operators is indicated.
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as the total momentum, invariant mass, and rapidity of the
color-singlet system,

Q ¼
ffiffiffiffiffi
q2

p
; Y ¼ 1

2
ln

q−

qþ : ð24Þ

The incoming partonic momenta are

pa ¼ xaEcm
n
2
; xaEcm ¼ QeY;

pb ¼ xbEcm
n̄
2
; xbEcm ¼ Qe−Y; ð25Þ

where nμ ¼ ð1; ẑÞ, n̄μ ¼ ð1;−ẑÞ, and ẑ is the beam axis.
It is important to distinguish between different defini-

tions of 0-jettiness, which we refer to as leptonic and
hadronic. The dimensionful and dimensionless versions are
defined as

T x
0 ¼

X
k

minfλxpþ
k ; λ

−1
x p−

k g; τx ≡ T x
0

Q
; ð26Þ

where the sum runs over all particles in the final state
excluding the hard color-singlet system. The momenta pk
are defined in the hadronic center-of-mass frame and the
measures are then defined as

leptonic∶ λ ¼
ffiffiffiffiffiffi
q−

qþ

r
¼ eY;

hadronic∶ λhad cm ¼ 1: ð27Þ

For simplicity we will not include a superscript on our
default variable T 0 ≡ T lept

0 , which employs λ ¼ eY . The eY

factor in the leptonic definition is explicitly included to take
into account the boost of the leptonic center-of-mass frame.
It effectively defines T 0 in the leptonic center-of-mass
frame where p̂�

k ¼ e�Yp�
k and so T 0 ¼

P
k minfp̂þ

k ; p̂
−
k g.

This is the more natural definition, as was discussed in
detail already in Refs. [43,55,72], and it is the definition
used in GENEVA [48] and the numerical results in Ref. [46].
The hadronic definition, which effectively defines

T had cm
0 in the hadronic center-of-mass frame, was dis-

cussed in Refs. [43,55,99] (called T cm there) for the
purpose of experimental measurements where the total
rapidity Y is not known, e.g. due to the neutrinos in W
production or H → WW. It is the definition currently used
in MCFM8 [53].
In the context of N-jettiness subtractions, taking into

account the boost Y of the Born system is essential for
ensuring that the power corrections are independent of Y.
We therefore focus on the leptonic definition in this section.
In Sec. III we also discuss and compare this to the hadronic
definition, showing that it induces power corrections that
are exponentially enhanced at large Y.

The hadronic cross section can be written as

dσ ¼
X
ij

Z
dξadξbfiðξaÞfjðξbÞdσ̂ijðξa; ξbÞ; ð28Þ

where fi are the PDFs, and dσ̂ijðξa; ξbÞ are the partonic
cross sections. We write the leading-order partonic cross
section as

dσ̂ð0;0Þqq̄ ðξa; ξb;XÞ
dQ2dYdτ

¼ σq0ðQ;XÞδaδbδðτÞ; ð29Þ

where we abbreviated

δa ≡ δðξa − xaÞ; δb ≡ δðξb − xbÞ: ð30Þ

In Eq. (29), σq0ðQ;XÞ is the Born cross section for the
relevant qq̄ → color-singlet process mediated by the qq̄
vector current we consider. It encodes the process depend-
ence as well as all additional measurements and/or
kinematic cuts X applied to the color-singlet final state.
We note that for the NLP leading logarithms, the

renormalization of the PDFs does not play a role, as they
contain at most a single logarithm of τ. This differs from the
case of threshold resummation, where PDF renormalization
contributes already to the leading logarithms.
A new feature at subleading power is that the PDF

arguments develop sensitivity to the small momentum
components in the form

fi

�
ξ

�
1þ k

Q

��
¼ fiðξÞ þ

k
Q
ξf0iðξÞ þ � � � ; ð31Þ

where k=Q ∼ τ. These are analogous to the phase-space
corrections for thrust discussed above, but arise due to the
routing of a small momentum component through the
incoming collinear lines. The PDF must thus be Taylor
expanded to achieve a homogeneous expansion in τ. The
first term corresponds to the leading-power contribution,
while the second term contributes at next-to-leading power.
It yields a Oð1Þ correction to the NLP coefficients even for
small values of ξ, since ξf0iðξÞ ∼ fiðξÞ.

1. Results

Wewrite the partonic cross section at subleadingOðτÞ as

dσ̂ð2;nÞij ðξa; ξb;XÞ
dQ2dYdτ

¼ σq0ðQ;XÞ
X2n−1
m¼0

Cð2;nÞ
ij;m ðξa; ξbÞlnmτ;

ð32Þ

where σq0ðQ;XÞ is the Born cross section for the quark-
initiated process, defined via Eq. (29). For the coefficients
we are interested in, there are in total six different partonic
channels, σ̂qq̄, σ̂q̄q, σ̂qg, σ̂gq, σ̂q̄g, σ̂gq̄. They are all trivially
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related to the two basic channels σ̂qq̄ and σ̂qg, on which we
will focus.
To compute the leading-logarithmic coefficients Cð2;1Þ

ij;1

and Cð2;2Þ
ij;3 , we cross our results for thrust computed in

Sec. II B. Taking into account the modified definition of the
measurement function as well as the corrections from
PDFs, we find for the NLO coefficients

Cð2;1Þ
qq̄;1 ðξa; ξbÞ ¼ 8CF

�
δaδb þ

δ0aδb
2

þ δaδ
0
b

2

�
; ð33Þ

Cð2;1Þ
qg;1 ðξa; ξbÞ ¼ −2TFδaδb; ð34Þ

where TF ¼ 1=2. The qg channel has a different color
factor due to differences in the averages over initial state
colors. The derivatives of the delta functions are defined as

δ0a ≡ xaδ0ðξa − xaÞ; δ0b ≡ xbδ0ðξb − xbÞ; ð35Þ

which translate into the above-mentioned PDF derivatives
in the hadronic cross section. They only appear in the qq̄
coefficients, because the qg coefficient has no analog at
leading power that is sufficiently singular.
Repeating the analysis at NNLO, we obtain for the

leading-logarithmic coefficients

Cð2;2Þ
qq̄;3 ðξa; ξbÞ ¼ −32C2

F

�
δaδb þ

δ0aδb
2

þ δaδ
0
b

2

�
; ð36Þ

Cð2;2Þ
qg;3 ðξa; ξbÞ ¼ 4TFðCF þ CAÞδaδb; ð37Þ

which are one of the main results of this paper. The result
for the qq̄ channel has a C2

F color structure, which is
analogous to the leading logarithm at leading power. On the
other hand, the qg channel has a TFðCF þ CAÞ color
structure. This arises from the one-loop corrections to
the diagrams in Fig. 5, where a soft or collinear quark
crosses the cut.
We have also analytically calculated the α2s ln3ð1 − zÞ

corrections to Drell-Yan production in the threshold limit
for both the qq̄ and qg channels, for which we find
agreement with the known NNLO results [100] for all
color structures in both channels. This provides a highly
nontrivial cross-check of our approach. While subleading-

power corrections in the threshold limit have been well
studied for the qq̄ channel [101–105], we are not aware of
studies for the qg channel.
Further details of the SCET-based NNLO analysis

discussed here for both 0-jettiness and the threshold limit
will be provided in a future dedicated publication.

2. Numerical results

We now present a comparison of our results with
numerical fixed-order results. On the one hand, this serves
as a numerical cross-check on our calculated coefficients for
the leading logarithm at subleading power. On the other
hand, using our exact results for the calculated coefficients
allows us to numerically extract the NLL corrections of
OðαsτÞ and Oðα2sτln2τÞ, and to study the numerical rel-
evance of both the LL and NLL terms at subleading power.
For our numerical analysis we consider the process pp →

Z=γ� at Ecm ¼ 13 TeV. We always use the MMHT2014
NNLO PDFs [106], fixed scales μr ¼ μf ¼ mZ, and
αsðmZÞ ¼ 0.118. We work at fixed Q ¼ mZ in the nar-
row-width approximation, which avoids the numerical
phase-space integral overQ. We integrate over the full range
of rapidity lnðmZ=EcmÞ ≤ Y ≤ − lnðmZ=EcmÞ and are fully
inclusive over the vector-boson decay. (We include the
branching ratio to leptons in σq0, but this only affects
the overall cross section and is irrelevant for our studies.)
The leading-order cross section following from Eq. (29) is
then given by

σLO ¼ πΓZmZ

X
q

σq0ðmZÞ
Z

dYfqðmZeYÞfq̄ðmZe−YÞ;

ð38Þ
where the sum over q runs over all quark flavors q ¼
fd; u; s; c; b; d̄; ū; s̄; c̄; b̄g.
We normalize all our results to σLO, which removes a

large part of the dependence on the explicit process that is
mediated by the underlying qq̄ vector current. The only
leftover dependence is related to the PDFs and comes from
the effective x range in the PDFs probed by the rapidity
integration, which is determined by the value of Q ¼ mZ,
as well as the included quark flavors. These PDF effects
primarily determine the size of the qq̄ and qg channels
relative to each other, but only to a small extent the size of
the corrections within a channel. (The PDF derivative
contributions in the qq̄ channel are slightly different for
valence and sea quarks.)
We also note that for discussing the size of the power

corrections in this context the LO cross section actually
provides a better reference value than the full NLO or
NNLO corrections. The reason is that the size of the latter
relative to the LO cross section can itself strongly depend
on the process. Furthermore, at the typical τcut values of
interest the logarithms are so large that they essentially
compensate for any αs suppression in the power

FIG. 5. Diagrams contributing to σqg, where either (a) a soft
quark crosses the cut or (b) a collinear quark crosses the cut. The
one-loop corrections to these diagrams give rise to the TFðCF þ
CAÞln3ðτÞ correction to beam thrust.
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corrections. Finally, this allows us to directly compare the
numerical size of the corrections for different orders and
channels, and also makes it simple to add the channels.
We calculate the full T 0 spectrum at OðαsÞ and

Oðα2sÞ using the (Z þ 1)-jet (N)LO calculation from
MCFM8 [53,74–76], which allows one to generate points
down to very small values of T 0 ≃ 10−3 GeV. We then
subtract the known singular (leading-power) terms in the
T 0 spectrum [55,99,107] to obtain the complete non-
singular (subleading-power) contributions,

1

σLO

dσnons

d ln T 0

¼ 1

σLO

dσ
d ln T 0

−
1

σLO

dσð0Þ

d ln T 0

: ð39Þ

This is done separately for theαs (NLO) andpureα2s (NNLO)
contributions and separately for the qq̄ and qg channels.1

The qq̄ channel includes the sum over all flavors, as in σLO.
The qg channel includes the sum of the qg and gq
contributions with q summed over all quarks and antiquarks.
By construction the nonsingular cross section starts

at subleading power and contains terms of all orders in
the power expansion. By considering dσ=d ln T 0 ¼
T 0dσ=dT 0 the leading nonsingular contribution scales ∼
T 0 and must therefore go to zero for a small T 0. These are
the dominant terms we want to study. Note that computing
σnons also provides an easy cross-check that all leading-
power singular terms are correctly calculated and exactly
cancel in Eq. (39), since any miscancellation would spoil
this scaling behavior and would be immediately visible in
the nonsingular data.
Due to the huge numerical cancellations between the full

and singular results at small T 0, the full result has to be
generated with extremely high statistical precision in order
to obtain the nonsingular result with sufficiently high
precision to allow for precise checks and fits of the
subleading contributions.
We perform a standard χ2 fit to the nonsingular NLO and

NNLO data in both channels using the functional forms

FNLOðτÞ ¼
d

d ln τ
fτ½ða1 þ b1τ þ c1τ2Þ ln τ

þ a0 þ b0τ þ c0τ2�g;

FNNLOðτÞ ¼
d

d ln τ
fτ½ða3 þ b3τÞln3τ þ ða2 þ b2τÞln2τ

þ a1 ln τ þ a0�g; ð40Þ
with τ≡ T 0=mZ. The coefficients at the same order in τ
tend to be highly correlated, since the different powers of

ln τ have very similar shapes. To obtain reliable fit results it
is thus crucial to ensure that the fit is unbiased. An
important consideration is the choice of fit range in T 0

and the number of fit coefficients.
Regarding the fitted coefficients, we are ultimately

interested in the leading coefficients a1 and a0 at NLO
and a3 and a2 at NNLO. When fitting the leading
coefficients, neglecting higher-power corrections in the
fit (which are of course present in the data) corresponds
to a theoretical uncertainty in the fit model. We take this
uncertainty into account, with the correct correlations
among the bins, by including the higher-power bi and ci
coefficients as additional nuisance parameters in the fit.
With the very precise data needed to get a precise
determination of the ai coefficients, it is essential to do
so, because even in a region in τ where the higher-power
contributions might naively seem negligible, they can have
a nontrivial influence on the fit as soon as their nominal
contribution becomes comparable with the statistical uncer-
tainties in the data. (In other words, the correlated theory
uncertainties must be taken into account as soon as they
become of similar size to the statistical uncertainties.) At
NLO, the data is precise enough to require (or allow)
including both bi and ci coefficients. At NNLO, we include
b3 and b2 since we are interested in unbiased results for a3
and a2. (The NNLO data are not precise enough to require
or allow including corresponding b1 and b0 terms.)
Regarding the fit range, in principle the best sensitivity

comes from the smallest possible τ values so we always fit
down to the lowest available τ values. However, the data are
much less precise toward smaller τ values due to the larger
numerical cancellations, and much more precise toward
larger τ values. The precision in the fit results thus benefits
significantly as the fit range is extended toward large τ, but
at the same time is in danger of becoming biased. To
achieve a precise but still unbiased fit, we increase the fit
range until including an additional data point would reduce
the standard p value of the fit. Beyond this point, thep value
rapidly deteriorates giving a clear indication that the fit
becomes biased and the fit model is not able to describe the
data any longer. As a cross-check, we also check that
including an additional coefficient for the selected fit range
does not increase thep value of the fit (while it does sowhen
including the next data point). As further cross-checks on the
fit results, we divide the data into two independent subsets
and perform separate fits for each subset. We also perform

TABLE I. Comparison of fitted and calculated values for the LL
coefficients.

Order and channel Fitted Calculated

NLO qq̄ a1 þ0.25366� 0.00131 þ0.25509
NLO qg a1 −0.27697� 0.00113 −0.27720
NNLO qq̄ a3 −0.01112� 0.00150 −0.01277
NNLO qg a3 þ0.02373� 0.00247 þ0.02256

1At NLO this distinction is unique, since these are the only two
combinations of incoming partons. At NNLO, the qq̄ channel is
defined to include all contributions that do not have incoming
gluons, while the qg channel also includes all gg contributions.
The LL coefficient at subleading power does not depend on this
choice of grouping since it is absent for the gg channel.
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several additional fits with both fewer and more coefficients,
using the same procedure to select the fit range in each case,
and check that we find compatible fit results.
As a check of our calculation we first fit the LL

coefficients (a1 at NLO and a3 at NNLO). The results
from our default fit for both qq̄ and qg channels are given in
Table I along with the predicted values from our calcu-
lation. In all cases we find excellent agreement. To extract
the NLL coefficients (a0 at NLO and a2 at NNLO), we then
repeat the fit with the LL coefficients fixed to their
predicted values, which allows for a precise determination
of a0 and a2, respectively. The results are shown in Table II.

If we approximate the ξa and ξb dependence of the NLL
coefficients in the partonic cross section by the correspond-
ing dependence at LL, we can translate the fitted values for
a0 and a2 into the approximate results,

Cð2;1Þ
qq̄;0 ðξa; ξbÞ ≈ 16.4

�
δaδb þ

δ0aδb
2

þ δaδ
0
b

2

�
;

Cð2;1Þ
qg;0 ðξa; ξbÞ ≈ −2.45δaδb;

Cð2;2Þ
qq̄;2 ðξa; ξbÞ ≈ ð378� 8Þ

�
δaδb þ

δ0aδb
2

þ δaδ
0
b

2

�
;

Cð2;2Þ
qg;2 ðξa; ξbÞ ≈ ð42.3� 0.9Þδaδb; ð41Þ

where the uncertainties for the NNLO coefficients arise
from the fit uncertainties in the a2.
In Figs. 6 and 7 we show the nominal fit results for both

channels at NLO and NNLO, respectively. The black points
show the nonsingular data. The statistical uncertainties are
(much) smaller than the size of the data points, except for
the lowest points in the NNLO data, where the error bars

TABLE II. Fit results for the NLL coefficients using the
calculated LL coefficients in Table I as input.

Order and channel Fitted

NLO qq̄ a0 þ0.13738� 0.00057
NLO qg a0 −0.40062� 0.00052
NNLO qq̄ a2 −0.04662� 0.00180
NNLO qg a2 þ0.04234� 0.00242

FIG. 6. Illustration of the fit to the OðαsÞ nonsingular in (top row) the qq̄ channel and (bottom row) the qg channel. The plots on the
right are equivalent to those on the left and show the absolute value on a logarithmic scale. A detailed explanation of the fit function, as
well as the plotted curves, is given in the text.
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become visible. (This means that while in all cases the fit
quality is good, this fact cannot be judged by the eye, so
these plots should just be taken as illustrations.) The plots
on the left are on a linear scale to show the shape and
relative signs of the contributions, while the plots on the
right show the same results but take the absolute value and
use a logarithmic scale to highlight the behavior at small
values of T 0. The solid orange line shows the final fit and
represents the full nonsingular piece σnons. The short-
dashed extensions show the extrapolation of the fit result
beyond the fit range. To illustrate the contribution from
each logarithmic order, the dashed green lines show the LL
contributions. The dashed blue lines show the sum of the
LL and NLL contributions. In the NLO fits these make up
the complete result atOðτÞ, while at NNLO they lack terms
scaling as τ ln τ and τ. In the NNLO fits, the dotted red line
shows the full OðτÞ contribution including all fitted ai
coefficients (at their central values for illustration only). In
both cases, the difference to the full result is due to the
higher-power contributions. As expected, the LL and NLL
results approach the full nonsingular result toward small
values of T 0.

In Figs. 8 and 9 we show the corresponding results for
the missing power corrections ΔσðτcutÞ for τcut ¼ Tcut=mZ
at NLO and NNLO respectively, again on a linear scale on
the left and logarithmic scale on the right. In terms of the
dimensionless quantity τcut, the results are essentially
independent of the precise value of Q (apart from the
indirect dependence due to the PDF x range mentioned
above and the lnQ scaling-violation term). The solid
orange, blue dashed, and green dotted lines have the same
meaning as in Figs. 6 and 7, showing the full nonsingular
result together with its NLL and LL approximation,
respectively. The solid green lines show the difference
between the full nonsingular and its LL approximation,
which corresponds to the newmissing contributionΔσ when
the LL subleading contribution is included in the subtrac-
tions. Similarly, the blue solid line shows the difference
between the full nonsingular and its NLL approximation,
where the light-blue band shows the effect of the fit
uncertainty on the NLL coefficient. This represents the
missing power correction Δσ when the two leading coef-
ficients are included in the subtractions.

FIG. 7. Illustration of the fit to the Oðα2sÞ nonsingular in (top row) the qq̄ channel and (bottom row) the qg channel. The plots on the
right are equivalent to those on the left and show the absolute value on a logarithmic scale. A detailed explanation of the fit function, as
well as the plotted curves, is given in the text.
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At NLO, shown in Fig. 8, we see an improvement by
almost an order of magnitude from including each loga-
rithmic order, as expected from our scaling arguments
illustrated in Fig. 1. At NNLO, shown in Fig. 9, for the qg
channel we see the expected hierarchy between LL and
NLL terms. For the qq̄ channel, the LL and NLL terms
happen to largely cancel numerically, such that the full
nonsingular correction is accidentally small, and including
only the LL subleading contribution actually increases the
size of the missing power corrections, while including both
terms leads to an improvement (except where the full
corrections happens to cross through zero). Since the
contributions in both channels have the opposite sign,
when adding the two channels they partially cancel, and
they do more so for the higher-logarithmic pieces. As a
result, in the total we see a clear hierarchy: Including the LL
coefficient yields a substantial improvement by an order of
magnitude. Including the NLL contributions leads to some
further improvement, although due to the cancellations
between the channels the relative uncertainties from the fit
are noticeably larger. This motivates an analytic calculation
of the NLL term at subleading power.

Overall, we can conclude that for the range of τcut values
of relevance for N-jettiness subtractions for color-singlet
production, the inclusion of the analytically computed LL
power correction significantly improves the numerical
behavior both at NLO and NNLO. We observe a reduction
in the error induced due to missing power corrections by
about an order of magnitude by including the LL power
correction in the subtraction. The inclusion of the NLL
contributions, which we are able to extract numerically
with good precision, leads to further improvement.
This clearly demonstrates how the analytic calculation
of subleading-power corrections can be used to signifi-
cantly improve the achievable numerical accuracy and/or
the required computational time for the application of
N-jettiness subtractions.

III. DEPENDENCE OF POWER CORRECTIONS
ON N-JETTINESS DEFINITION

In this section we discuss how the structure of power
corrections depends on the definition of the N-jettiness
observable, both for the specific case of 0-jettiness for

FIG. 8. Power corrections ΔσðτcutÞ for theOðαsÞ contributions in (top row) the qq̄ channel and (bottom row) the qg channel. The plots
on the right are equivalent to those on the left and show the absolute value on a logarithmic scale.
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which we have computed the power corrections analyti-
cally, as well as for N-jettiness subtractions more generally.

A. 0-jettiness

In Sec. II C we considered the leptonic definition of
N-jettiness, which explicitly accounts for the boost of the
Born system due to the eY factor in the measure. As shown

by the results in Eqs. (33) and (36), the power corrections in
this case are independent of the Born kinematics, up to the
dependence on the PDFs, the numerical impact of which
we will study in this section.
It is also interesting to consider the hadronic defini-

tion of beam thrust, T had cm
0 given in Eq. (27), which has

been used in some applications of N-jettiness subtractions.

FIG. 9. Power corrections ΔσðτcutÞ for the Oðα2sÞ contributions in (top row) the qq̄ channel, (middle row) the qg channel, and
(bottom row) the sum of both channels. The plots on the right are equivalent to those on the left and show the absolute value on a
logarithmic scale.
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The calculation proceeds identically to the case of the
leptonic definition, T 0, with only a difference in the
measurement function. For T had cm

0 , we find at NLO

~Cð2;1Þ
qq̄;1 ðξa; ξbÞ ¼ 4CF½eYδaðδb þ δ0bÞ þ e−Yðδa þ δ0aÞδb�;

~Cð2;1Þ
qg;1 ðξa; ξbÞ ¼ −2TFeYδaδb;

~Cð2;1Þ
gq;1 ðξa; ξbÞ ¼ −2TFe−Yδaδb; ð42Þ

and at NNLO

~Cð2;2Þ
qq̄;3 ðξa; ξbÞ ¼ −16C2

F½eYδaðδb þ δ0bÞ þ e−Yðδa þ δ0aÞδb�;
~Cð2;2Þ
qg;3 ðξa; ξbÞ ¼ 4TFðCF þ CAÞeYδaδb;

~Cð2;2Þ
gq;3 ðξa; ξbÞ ¼ 4TFðCF þ CAÞe−Yδaδb: ð43Þ

Here, the Oðτhad cmÞ power corrections grow like e�Y ,
and are thus exponentially enhanced at forward rapidities.
The reason for this can be easily understood as follows. In
SCET, the collinear and soft particles are assigned a scaling
pc ¼ ðp−

c ; pþ
c ; p⊥

c Þ≃ ð1; λ2; λÞ and ps ≃ ðλ2; λ2; λ2Þ, and
the power expansion is in terms of λ2 ≃ pþ

c =p−
c ≃ ps=p−

c .
For the leptonic definition, it is effectively performed in
the frame where the Born system is at rest, and where
the large minus momentum of the colliding partons is
fixed to p̂−

a ¼ p̂þ
b ¼ Q. At the same time, T 0 scales as

T 0 ≃minfp̂þ
c ; p̂−

c g, so the effective expansion parameter
is λ2 ≃ T 0=Q. In contrast for the hadronic definition, the
expansion is effectively performed in the hadronic frame
and is in terms of T had cm

0 =p−
a ¼ eYT had cm

0 =Q or
T had cm

0 =pþ
b ¼ e−YT had cm

0 =Q. This is precisely what leads
to the e�Y factors in Eqs. (42) and (43). This also means
that the power expansion for T had cm

0 actually significantly
deteriorates at forward rapidities, with the nth-order power
corrections scaling as enYðτhad cmÞn. (This deterioration
causes power corrections in T had cm

0 to be much larger than
those for T 0, but does not change the fact that for both
variables in the small τ region the nonsingular corrections
are still much smaller than the leading-power singular
corrections.)
The sensitivity of the power correction to the boost of

the partonic frame can also be understood physically by
considering a soft emission from the incoming collinear
partons. At leading power, this is described by the eikonal
matrix element, which is independent of the large momen-
tum fraction of the collinear parton. At subleading power,
this is no longer true, and the matrix element depends
explicitly on the momentum fraction of the collinear parton.
We have also performed our numerical analyses of the

previous section for T had cm
0 . The much larger size of the

nonsingular corrections are clearly visible in the non-
singular data. However, the fit range cannot be extended
above Tcut ¼ 10−2 GeV, beyond which the power expan-
sion deteriorates. As a result, we are only able to obtain a

qualitative cross-check for the leading coefficients. Fixing
the leading coefficient to the analytic prediction, the fit
provides a good interpolation of the nonsingular data, but
we were not able to extract a meaningful result for the NLL
coefficients.
In Fig. 10, we compare the leptonic (solid curves) and

hadronic (dashed curves) definitions of 0-jettiness, showing
the cumulant σnonsðτcutÞ as a function of τcut ¼ T ðhad cmÞ

0 =Q
for the qq̄ and qg channels at NLO and NNLO. The orange
curves show the full nonsingular result, while the green
curves show the result removing the LL contribution. For
the leptonic definition we also show the result removing the
fitted NLL contributions in blue, i.e., the solid curves are
equivalent to those in Figs. 8 and 9. In all cases the power
corrections are about an order of magnitude larger for
T had cm

0 than for T 0, independently of τcut (except in the
region where the result happens to cross through zero). In
fact, in many cases, the power corrections for T had cm

0 even
after removing the leading-power contribution are larger
than the full nonsingular leptonic result. Thus by switching
from the hadronic definition to the leptonic definition and
including the analytic calculation of the leading-power
correction, one can gain an improvement in the precision of
the N-jettiness subtractions by 2 orders of magnitude.
To illustrate the rapidity dependence, in Fig. 11 we show

the size of the leading-logarithmic power corrections as a
function of the vector-boson rapidity (using a fixed value
τcut ¼ 10−3) on a linear and logarithmic scale. The results
for T 0 are shown in dotted green for the qq̄ channel, dashed
blue for the qg channel, and solid orange for their sum. For
comparison, the corresponding results for T had cm

0 with the
same dashing are shown in gray. As expected, the power
corrections for T 0 are essentially flat in rapidity, except for
the qq̄ channel at the very end point due to the sensitivity of
the contributions involving PDF derivatives to the PDF
end point. In contrast, for T had cm

0 the exponential growth of
the power corrections with rapidity is clearly seen. This
explains the numerical behavior that was observed in
Ref. [53], where the convergence of the N-jettiness sub-
tractions strongly depended on the application of rapidity
cuts. On the other hand, in Ref. [46], where the leptonic
definition was used, the rapidity spectrum was completely
well behaved for any Y.2

2Recently, the pp → ðH þ 1Þ-jet NNLO calculation in
Ref. [108] found a disagreement with the results in Ref. [45]
based on 1-jettiness subtractions, amounting to a ≃30% differ-
ence in the NNLO coefficient. The T cut values used in Ref. [45]
were between 0.05 and 0.1 GeV, which for typical Q≃
150–200 GeV corresponds to τcut ≳ 3 × 10−4. From our scaling
estimates and the fact that Ref. [45] appears to use a hadronic-
frame definition for T 1, for which one can expect the power
corrections to be enhanced, it is possible that this size difference
in the NNLO contribution could be caused by the power
corrections.
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Since the purpose of the N-jettiness subtractions is to
perform NNLO calculations fully differential in the Born
phase space, it is of course quite undesirable to have a
strong dependence of the size of missing power corrections
on the Born phase space as is the case for T had cm

0 . Hence, a
beneficial feature of the leptonic definition is that the
relative size of missing power corrections and thereby the
accuracy of the subtraction method is essentially

independent of the Born phase space and thus also of
additional Born level cuts. In practice this means that the
numerical accuracy does need to be reevaluated on a case-
by-case basis depending on the applied cuts.

B. N-jettiness

The above considerations regarding the size of power
corrections are not limited to the case of qq̄-initiated

FIG. 10. Comparison of the missing power corrections ΔσðτcutÞ for the hadronic (dashed curves) and leptonic (solid curves)
definitions of T 0. The curves are equivalent to those on the right in Figs. 8 and 9, and a detailed explanation is provided in the text.
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color-singlet production and can be applied more generally
to ensure a well-behaved power expansion.
SinceN-jettiness subtractions are applied at the level of a

theoretical calculation, it is always possible to use a
definition of N-jettiness that incorporates the boost of
the Born system relative to the frame of the hadronic
collision, as discussed in Ref. [43],

TN ¼
X
k

min
i

�
2qi · pk

Qi

�
; ð44Þ

where the minimum runs over i ¼ fa; b; 1;…; Ng.
In principle, more general N-jettiness measures diðpkÞ
are possible as well. The above choice diðpkÞ ¼ ð2qi ·
pkÞ=Qi is convenient for theoretical calculations, because
it is linear in the momenta pk [69,109]. The qi are massless
reference momenta corresponding to the momenta of the
hard partons present at Born level,

qμi ¼ Ein
μ
i ; nμi ¼ ð1; ~niÞ; j~nij ¼ 1: ð45Þ

In particular, the reference momenta for the incoming
partons are given by

qμa;b ¼ xa;b
Ecm

2
nμa;b; nμa;b ¼ ð1;�ẑÞ; ð46Þ

where

2Ea ¼ xaEcm ¼ nb · ðq1 þ � � � þ qN þ qLÞ ¼ QeY;

2Eb ¼ xbEcm ¼ na · ðq1 þ � � � þ qN þ qLÞ ¼ Qe−Y;

Q2 ¼ xaxbE2
cm; Y ¼ 1

2
ln
xa
xb

: ð47Þ

Here, qL is the total momentum of any additional color-
singlet particles in the Born process, and Q and Y now
correspond to the total invariant mass and rapidity of the
Born system. A more detailed discussion of the construc-
tion of the qi in the context of fixed-order calculations and
N-jettiness subtractions can be found in Ref. [46].

FIG. 11. Leading-logarithmic power correction in the rapidity spectrum at (top row) OðαsÞ and (bottom row) Oðα2sÞ, using
τcut ¼ 10−3. The colored curves show the default definition of T 0 in the leptonic frame. The gray curves show the definition T had cm

0 in
the hadronic frame, for which the power corrections grow exponentially with rapidity. The plots on the right are equivalent to those on
the left and show the absolute value on a logarithmic scale.
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The measure factors Qi influence the singular behavior
of the TN cross section and therefore also the power
expansion. Several choices have been discussed in
Refs. [69,109]. The invariant-mass measure is given by
choosing a common Qi ¼ Q, and this automatically
incorporates correctly the boost Y of the Born system
via Eq. (47). A class of geometric measures is obtained by
choosing Qi ¼ ρi2Ei, where the ρi’s are dimensionless.
This is convenient in that it makes TN independent of the
energies Ei and only dependent on the directions ni. In this
case, a simple way to correctly incorporate the boost Y is to
choose ρi ≡ 1 in the Born frame, i.e., the frame where the
Born system has Y ¼ 0, such that

TN ¼
X
k

min
i
fn̂i · p̂kg; ð48Þ

where p̂k and n̂i are the final-state momenta and reference
directions in the Born frame. For the beam contributions,
this reduces to the leptonic definition minfp̂þ

k ; p̂
−
k g. In the

hadronic frame this corresponds to choosing ρa;b ¼ e�Y ,
while the ρi≥1 are more complicated.
By the same scaling arguments as for T 0, taking into

account the boost Y in the definition of TN as described
above, one ensures that the power expansion is well
behaved, and that power corrections do not grow exponen-
tially with Y, which would be the case for example if
TN were defined as in Eq. (48), but in the hadronic frame. In
particular, this applies to processes such as pp →
W=Z=Hþ jet, to which N-jettiness subtractions have
already been applied. This definition also applies to
processes involving only jets at Born level, such as pp →
dijets which is an obvious next target for the application of
N-jettiness subtractions. Analytic calculations of the lead-
ing-power corrections can then be used for further
improvements, as they become available. It would also
be interesting to study the definition of the N-jettiness axes
for the final-state jets in more detail, to understand if they
can be chosen in such a manner as to further reduce the
power corrections.

IV. CONCLUSIONS

We have presented an analytic calculation of the αs ln τ
and α2s ln3 τ power corrections for thrust in eþe− collisions
and 0-jettiness (beam thrust) for qq̄ annihilation in pp
collisions. We have showed how subleading-power cor-
rections for event shape observables can be systematically
computed using SCET, and derived general consistency
relations of the subleading coefficients from the cancella-
tion of 1=ϵ poles. We have checked our analytic expres-
sions by comparing with numerical fixed-order results, as
well as analytically, by comparing with the known NNLO
result in the threshold limit, finding excellent agreement in
all cases.

Our calculation clearly shows the advantage of using
SCET for calculating power corrections. Besides a sys-
tematic organization of operators and Lagrangian inser-
tions, the consistency relations in Eq. (11) lead to a
significant simplification and a valuable cross-check of
the calculation. Already at NLO, the SCET calculation
contains divergences in both the collinear and soft matrix
element, whose cancellation leads to the nontrivial
constraint in Eq. (15). In contrast, the full NLO QCD
calculation does not have 1=ϵ poles and a priori does not
provide similar constraints. At higher orders, the impor-
tance of the consistency constraints becomes evident, as
they lead to a significant reduction in the number of matrix
elements that are needed for the leading and subleading
logarithms, as shown in Eq. (17). Furthermore, checking
the relations in Eq. (16) provides an important cross-check
of our calculation.
Our analytic results have a number of interesting

features, including the appearance of a CA color structure
in the coefficient of the α2s ln3τ term in the qg channel. This
color structure arises from a limit in which a quark becomes
soft, or two quarks become collinear, which does not have
an analog at leading power. It would be interesting to
understand this structure also at higher orders in αs, and
how it arises from the renormalization group evolution at
subleading power.
Our computation of the leading-power corrections

allows for the improvement of the N-jettiness subtrac-
tions for Drell-Yan–like color-singlet production.
Including the LL power correction in the subtractions
reduces the error due to missing power corrections by
about an order of magnitude. The analytic calculation of
the LL contributions also have allowed us to numerically
extract the NLL contributions, further reducing the error.
We find that these contributions are desirable to have a
stable reduction in all channels, emphasizing the impor-
tance of computing the NLL coefficient analytically. Our
numerical results also confirm well the naive scaling
estimates for their size. Moreover, the explicit knowledge
of the dominant power corrections allows for an a priori
determination of the error induced by missing power
corrections.
Finally, we have emphasized the importance of the

definition of the N-jettiness variable for ensuring a well-
behaved power expansion, which applies to any N. In
particular, we found that defining N-jettiness in the
hadronic center-of-mass frame artificially induces power
corrections that grow exponentially with rapidity. On
the other hand, this does not happen when taking into
account the boost of the Born system in the definition
of N-jettiness (as was done in the original definitions of
beam thrust and N-jettiness [43,55]). This stability of
the power corrections with rapidity is important for the
applicability of the N-jettiness subtractions for computing
arbitrary differential distributions.
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There are a number of interesting directions that we
plan to address in future work. While we have focused
here on the power corrections for qq̄-initiated Drell-
Yan–like processes, the same approach can be used to
calculate the power corrections for gg-initiated color-
singlet production, as relevant for gluon-fusion Higgs
production. It would also be interesting to extend our
calculation to subleading logarithms, which would be
facilitated by exploiting the consistency relations, and it
would be interesting to derive renormalization group
equations to predict the series of logarithms at subleading
power. Finally, a key feature of the N-jettiness subtrac-
tion method is that it extends to processes involving final-
state jets. It will be important to extend our results to
calculate power corrections for TN with N > 0, allowing
for analytic control over the power corrections for general
NNLO N-jettiness subtractions.
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