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Noncentral collision of heavy ions can generate a large magnetic field in their neighborhood.
We describe a method to calculate the effect of this field on the dilepton emission rate from the colliding
region, when it reaches thermal equilibrium. It is calculated in the real time method of the thermal field
theory. We find that the rate is affected significantly only for lower momenta of dileptons.
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I. INTRODUCTION

An important probe into the dynamics of heavy ion
collisions is the detection of dilepton production in the
process. Accordingly, this topic has been investigated in
detail [1–6]. Here we study the change in the production
rate due to the magnetic field, which is produced in
noncentral collision of individual events [7–15].
According to the present understanding, the two nuclei

colliding at ultrarelativistic energies appear as two sheets of
color glass condensate [16]. Very shortly after collision a
strongly interacting quark gluon system, called glasma,
is formed, which is out of thermal equilibrium [17–20].
After thermalization, it gives rise to the quark gluon
plasma (QGP) phase. Finally, it evolves into a hadron
gas. Dileptons are produced in all these phases. In this
work, we address this production in the QGP phase.
The effect of magnetic field in different processes arises

through the altered propagation of particles in this field. A
nonperturbative, gauge covariant expression for the Dirac
propagator in an external electromagnetic field was derived
long ago by Schwinger in an elegant way, using a proper-
time parameter [21]. It has since been rederived and applied
to many processes [22–29]. In the present work, we expand
the exact propagator in powers of the magnetic field.
The dilepton production rate is given in terms of the

(imaginary part of the) thermal two-point current correla-
tion function. The latter involves the thermal propagator for
quarks in the magnetic field. In contrast to the often-used
imaginary time formulation of thermal field theory [30–33],
we shall use the real time formulation [34–36]. The
advantage is that we do not have frequency sums for the
propagators, but this is at the cost of dealing with 2 × 2
matrices for them in the intermediate stage of calculation.
The matrices admit spectral representations, just like the
vacuum propagators, which we shall use in calculating the
thermal correlation function.
In Sec. II, we write the dilepton rate formula and

describe our method to evaluate it. In Sec. III, we outline

Schwinger’s construction of the spinor propagator in
magnetic field, leading to its spectral representation. In
Sec. IV, we then calculate the thermal two-point correlation
function of currents, present in the rate formula. Finally,
Sec. V contains the numerical results and discussion.

II. FORMULATION

The transition amplitude (Fig. 1) from an initial state I,
composed of quarks and gluons to a final state F of similar
composition, along with the emission of a dilepton lðp; σÞ
and l̄ðp0; σ0Þ of momenta p and p0 and the z component of
spin σ and σ0 is

hF; lðp; σÞ; l̄ðp0; σ0ÞjSjIi: ð2:1Þ
Here the scattering matrix operator S is given by the
interaction Lagrangian,

Lint ¼ −eðjμðxÞ þ JμðxÞÞAμðxÞ; ð2:2Þ

of lepton and quark currents,

jμðxÞ ¼ ψ̄ðxÞγμψðxÞ;

JμðxÞ ¼ 2

3
ūðxÞγμuðxÞ − 1

3
d̄ðxÞγμdðxÞ; ð2:3Þ

coupled to the electromagnetic field AμðxÞ. We assume the
initial state to be thermal and look for inclusive probability.
Then if N is the dilepton emission rate per unit volume, we
get, after some calculation [36],

d4N
d4q

¼ α2

6π3q2
e−βq0ð−gμνMþ

μνÞ; ð2:4Þ

where q ¼ pþ p0 is the dilepton momentum andMþ
μνðqÞ is

a thermal two-point function of the quark current,

Mþ
μνðqÞ ¼

Z
d4xeiq·xhJμðxÞJνð0Þi: ð2:5Þ

Here the symbol hOi stands for the ensemble average of the
operator O at temperature 1=β,
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hOi ¼ Trðe−βHOÞ=Tre−βH: ð2:6Þ

We briefly review how Mþ
μνðqÞ may be obtained in the

real time thermal field theory [36]. We start with the time
contour of Fig. 2 and define the time-ordered two-point
function Mμνðx; x0Þ as

Mμνðx; x0Þ ¼ Θcðτ − τ0ÞihJμðxÞJνðx0Þi
þ Θcðτ0 − τÞihJνðx0ÞJμðxÞi; ð2:7Þ

where x ¼ ðτ; ~xÞ; x0 ¼ ðτ0; ~x0Þ with the “times” τ and τ0 on
the contour shown in Fig 2. The subscript c on the Θ
functions refers to contour ordering. Beginning with the
spatial Fourier transform, one can show that the vertical
segments of the time contour does not contribute. Then the
two-point function may be put in the form of a 2 × 2
matrix, which can be diagonalized with essentially one
diagonal element,

M̄μνðqÞ ¼
Z þ∞

−∞

dq00
2π

ρμνðq00; ~qÞ
q00 − q0 − iηϵðq0Þ

; ð2:8Þ

where ρμνðqÞ is the spectral function,

ρμνðqÞ ¼
Z

d4xeiq·xh½JμðxÞ; Jνð0Þ�i≡MþðqÞ −M−ðqÞ;

ð2:9Þ

and Eq. (2.8) gives us

ρμνðqÞ ¼ 2ImM̄μνðqÞ: ð2:10Þ

From the cyclicity of the thermal trace, we get the
Kubo-Martin-Schwinger relation:

MþðqÞ ¼ eβq0M−ðqÞ ð2:11Þ

From Eqs. (2.9)–(2.11), we get

MþðqÞ ¼ 2eβq0

eβq0 − 1
ImM̄μνðqÞ; ð2:12Þ

giving the dilepton rate (2.4) as

d4N
d4q

¼ α2

3π3q2
W

eβq0 − 1
; W ¼ −gμνImM̄μν: ð2:13Þ

Using the matrix which diagonalizes the 2 × 2 correlation
matrix, we can relate the imaginary part of any one
component, say the 11, of the correlation function to that
of its diagonal element,

ImM̄μν ¼ ϵðq0Þ tanhðβq0ÞImðMμνÞ11: ð2:14Þ

So far we utilize general properties of two-point func-
tions to relate the problem to ðMμνÞ11. Taking τ and τ0 on
the real axis, the contour form (2.7) gives it as

Mμνðx; x0Þ11 ¼ ihTJμð~x; tÞJνð~x0; t0Þi; ð2:15Þ

where T, as usual, time orders the operators. It is this
quantity which we have to calculate. To leading order in
strong interactions, it involves only the thermal quark
propagator. The magnetic field enters the problem through
this propagator, which we find in the next section.

III. DIRAC PROPAGATOR IN MAGNETIC FIELD

In deriving the quark propagator, we assume both u and
d quarks to have the same absolute electric charge as that of
the lepton. (The necessary correction will be included in
our formulas at the end of Sec. IV). The Dirac Lagrangian
in an external electromagnetic field,

L ¼ ψ̄ ½iγμð∂μ þ ieAμÞ −m�ψ ; ð3:1Þ

gives the equation of motion:

FIG. 1. Dilepton production amplitude in QGP phase. The
states I and F consist of quarks and gluons, while ll̄ is a dilepton.
The weavy line corresponds to a photon.

FIG. 2. The time contour in the complex τ plane with t̄ → ∞.
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½iγμð∂μ þ ieAμÞ −m�ψ ¼ 0: ð3:2Þ

Then the propagator,

Sðx; x0Þ ¼ ih0jTψðxÞψ̄ðx0Þj0i; ð3:3Þ

satisfies

½iγμð∂μ þ ieAμÞ −m�Sðx; x0Þ ¼ −δ4ðx − x0Þ: ð3:4Þ

Here j0i is the vacuum state of the Dirac field (in presence
of Aμ). Defining states labeled by the spacetime coordinate
(suppressing spinor indices), we regard Sðx; x0Þ as the
matrix element of an operator S:

Sðx; x0Þ ¼ hxjSjx0i: ð3:5Þ

Then Eq. (3.4) can be written as

ðγμπμ −mÞS ¼ −1; πμ ¼ pμ − eAμ; pμ ¼ i∂μ;

ð3:6Þ

which has the formal solution,1

S ¼ 1

−π þm
¼ ðπ þmÞ 1

−π2 þm2
: ð3:7Þ

Schwinger relates these quantities to the dynamical proper-
ties of a “particle” with coordinate xμ and canonical and
kinematical momenta pμ and πμ, respectively. Using their
commutation relations, we get π2 ¼ π2 − e

2
σF. Defining

H ¼ −π2 þm2 þ e
2
σF, we can write Eq. (3.7) as

S ¼ ðπ þmÞi
Z

∞

0

dsUðsÞ; U ¼ e−iHs: ð3:8Þ

As the notation suggests, UðsÞ may be regarded as the
evolution operator of the particle with Hamiltonian H in
time s.
We now go to the Heisenberg representation, where the

operators xμ and πμ as well as the base ket become time
dependent,

xμðsÞ ¼ U†ðsÞxμUðsÞ; πμðsÞ ¼ U†ðsÞπμUðsÞ;
jx0; si ¼ U†ðsÞjx0; 0i ð3:9Þ

Then the construction of the propagator reduces to the
evaluation of

hx00jUðsÞjx0i ¼ hx00; sjx0; 0i; ð3:10Þ

which is the transformation function for a state in which the
operator xμðs ¼ 0Þ has the value of x0μ to a state in which
xμðsÞ has the value x00μ.
The equation of motion for xμðsÞ and πμðsÞ following

from Eq. (3.9) can be solved to get

πðsÞ ¼ −
1

2
eFe−eFssinh−1ðeFsÞðxðsÞ − xð0ÞÞ; ð3:11Þ

which may also be put in the reverse order on using the
antisymmetry of Fμν. The matrix element hx00; sjπ2ðsÞjx0; 0i
can now be obtained by using the commutator ½xμðsÞ;xνð0Þ�
to reorder the operators xμð0Þ and xνðsÞ. We then get

hx00; sjHðxðsÞ; πðsÞÞjx0; 0i ¼ fðx00; x0; sÞhx00; sjx0; 0i;
ð3:12Þ

where

f ¼ ðx00 − x0ÞKðx00 − x0Þ− i
2
tr½eF cothðeFsÞ�−m2 −

e
2
σF;

K ¼ ðeFÞ2
4

sinh−2ðeFsÞ: ð3:13Þ

We are now in a position to find the transformation
function, which from Eq. (3.10) is found to satisfy

i
d
ds

hx00; sjx0; 0i ¼ hx00; sjHjx0; si: ð3:14Þ

It can be solved as

hx00; sjx0; 0i ¼ ϕðx00; x0Þ: i
ð4πÞ2s2 e

−LðsÞ

× exp

�
−
i
4
ðx00 − x0ÞeF cothðeFsÞðx00 − x0Þ

�

× exp

�
−i
�
m2 þ 1

2
eσF

��
; ð3:15Þ

where

LðsÞ ¼ 1

2
tr ln ½ðeFsÞ−1 sinhðeFsÞ�: ð3:16Þ

Here ϕðx00; x0Þ is a phase factor involving an integral over
the potential Aμ on a straight line connecting x0 and x00. It
will cancel out in our calculation. The spinor propagator is
now given by

Sðx00; x0Þ ¼ i
Z

∞

0

dshx00jðπ þmÞUðsÞjx0i

¼ i
Z

∞

0

ds½γμhx00; sjπμðsÞjx0; 0i þmhx00; sjx0; 0i�

ð3:17Þ
with πμðsÞ and hx00; sjx0; 0i given by Eqs. (3.11) and (3.15).

1Another equivalent form follows by writing (π þm) on the
right in Eq. (3.7) [21], but we shall not use it.
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We now specialize the external electromagnetic field to magnetic field B in the z direction, F12 ¼ −F21 ¼ B. It is
convenient to diagonalize the antisymmetric 2 × 2 matrix Fij with eigenvalues�iB. Going over to the spatial metric, we get2

SðxÞ ¼ i
ð4πÞ2

Z
ds
s

eB
sinðeBsÞ exp

�
i
4
x2⊥eB cotðeBsÞ − i

4s2
x2∥ − i

�
m2 þ 1

2
eσF

�
s

�

×

��
1

2s
ðx · γÞ∥ þm

�
ðcosðeBsÞ − γ1γ2 sinðeBsÞÞ − eB

2 sinðeBsÞ ðx · γÞ⊥
�
; ð3:18Þ

which can be Fourier transformed to

SðpÞ ¼ i
Z

∞

0

dseisðp2−m2þiϵÞe−isp2⊥ð
tanðeBsÞ
eBs −1Þ

× ½ðp∥ þmÞð1 − γ1γ2 tanðeBsÞÞ − p⊥ð1þ tan2ðeBsÞÞ�: ð3:19Þ

Expanding the exponential and tangent functions, we immediately get SðpÞ as a series in powers of eB. To order ðeBÞ2, it is

SðpÞ ¼ −ðpþmÞ
p2 −m2 þ iη

þ eB
iðp∥ þmÞγ1γ2
ðp2 −m2Þ2 − ðeBÞ2

�
2p⊥

ðp2 −m2Þ3 −
2p2⊥ðpþmÞ
ðp2 −m2Þ4

�
: ð3:20Þ

To put the propagator (3.20) in the form of a spectral
representation, we introduce a variable mass m1 to replace
1=ðp2 −m2Þ by 1=ðp2 −m2

1Þ, keeping the physical massm
unaltered at other places. The higher powers of the scalar
propagator can then be expressed as derivatives of the
propagator with respect to m2

1. We, thus, get

SðpÞ ¼ −Fðp;m;m1Þ
1

p2 −m2
1

����
m1¼m

; ð3:21Þ

where

F ¼ ðpþmÞ þ aiðp∥ þmÞγ1γ2 þ bp⊥ þ cp2⊥ðpþmÞ;
ð3:22Þ

with coefficients a, b, and c carrying the derivative
operators,

a ¼ −eB
∂

∂m2
1

; b ¼ ðeBÞ2 ∂2

∂ðm2
1Þ2

;

c ¼ −
1

3
ðeBÞ2 ∂3

∂ðm2
1Þ3

: ð3:23Þ

From Eq. (3.21), the spectral function for SðpÞ will be
recognized as3

σðpÞ ¼ Fðp;m;m1Þρðp;m1Þjm1¼m; ð3:24Þ

with ρ being the spectral function for the scalar propagator
of mass m1:

ρðp;m1Þ ¼ 2πϵðp0Þδðp2 −m2
1Þ: ð3:25Þ

The desired spectral representation for the spinor propa-
gator in vacuum (in presence of magnetic field) can be
written in the form

SðpÞ ¼
Z þ∞

−∞

dp0
0

2π

σðp0
0; ~pÞ

p0
0 − p0 − iηϵðp0Þ

; ð3:26Þ

as can be readily verified by doing the p0
0 integral.

IV. THERMAL CURRENT
CORRELATION FUNCTION

Like the thermal correlation function of currents, the
thermal quark propagator can also be analyzed in the same
way. In particular, its 2 × 2 matrix form can be diagonal-
ized, again with essentially a single diagonal element,
which turns out to be the vacuum propagator (in magnetic
field) derived above. But in our calculation below, we need
the 11-element of the original matrix, which is conveniently
written as [36]

S11ðpÞ¼
Z þ∞

−∞

dp0
0

2π
σðp0

0; ~pÞ
�

1− ~fðp0
0Þ

p0
0−p0− iη

þ
~fðp0

0Þ
p0
0−p0þ iη

�
;

~fðp0Þ¼
1

eβp0 þ1
; ð4:1Þ

where the spectral function σ is given by (3.24).

2For any two vectors aμ and bμ, we write ðabÞ∥ ¼ a0b0 − a3b3

and ðabÞ⊥ ¼ a1b1 þ a2b2. Note that the longitudinal and trans-
verse directions are defined with respect to the direction of
the magnetic field, not the collision axis of ions.

3We have three different spectral functions in this problem.
The ρμν introduced in Sec. II is the spectral function of the current
correlation function, while ρ and σ are spectral functions for the
scalar and Dirac propagators.
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The graph of Fig. 3 gives two terms involving the u and d
quark propagators. Assuming these to be equal (which is
true only for eB ¼ 0),4 we combine them to give

ðMμνðqÞÞ11 ¼
5i
3

Z
d4p
ð2πÞ4 tr½S11ðpÞγνS11ðp − qÞγμ�;

ð4:2Þ

where the prefactor includes a factor of 3 for the color of the
quarks. Inserting the propagator (4.1) in it, we want to work
out the p0 integral. For this purpose, we write it as

MμνðqÞ11 ¼
Z

d3p
ð2πÞ3

Z
dp0

0

2π
ρðp0

0; ~pÞ

×
Z

dp00
0

2π
ρðp00

0; ~p − ~qÞKμνðqÞ: ð4:3Þ

where

KμνðqÞ ¼ i
Z þ∞

−∞

dp0

2π
NμνðqÞ

×

�
1 − ~f0

p0
0 − p0 − iη

þ
~f0

p0
0 − p0 þ iη

�

×

�
1 − ~f00

p00
0 − ðp0 − q0Þ − iη

þ
~f00

p00
0 − ðp0 − q0Þ þ iη

�

ð4:4Þ

with ~f0 ¼ ~fðp0
0Þ, ~f00 ¼ ~fðp00

0Þ and

NμνðqÞ ¼
5

3
trfF⃖ðp;m;m1ÞγνF⃖ðp − q;m;m2Þγμg: ð4:5Þ

Here, the masses m1 and m2 are variables on which the
mass derivatives act in the two propagators. The left arrow
on F indicates the derivatives in it to be put farthest to
the left (outside the integrals). As we are interested in the
imaginary part of Kμν, we can put p0 ¼ p0

0, p0 − q0 ¼ p00
0

and bring Nμν outside the p0 integral. Then it is simple to
evaluate Kμν, from which we get its imaginary part.

Extracting a factor cothðβq0Þ, it becomes linear in ~f0

and ~f00,

ImKμνðqÞ ¼ Nμνðp0
0; p

00
0Þπð ~f00 − ~f0Þ

× cothðβq0Þδðp00
0 − p0

0 þ q0Þ: ð4:6Þ

[The hyperbolic function will cancel out in (2.14)]. Next,
the p0

0 and p00
0 integrals in Eq. (4.3) can be removed, using

the delta functions present in the spectral functions, namely
δðp0

0 � ω1Þ and δðp00
0 � ω2Þ with ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

1

p
and

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~p − ~qÞ2 þm2

2

p
. We need only the imaginary part in

the physical region, q0 > ðω1 þ ω2Þ. From (2.14), (4.3),
and (4.6), we then get

W ¼ π

Z
d3p
ð2πÞ3

Nμ
μðω1;−ω2Þ
4ω1ω2

f1 − ~nðω1Þ − ~nðω2Þg

× δðq0 − ω1 − ω2Þ; ð4:7Þ

where we convert ~f’s to distribution functions, ~nðωÞ ¼
1=ðeβω þ 1Þ.
Working out the trace over γ matrices in Nμ

μ, we get

Nμ
μ ¼ −

40

3
½ð1 − a1a2Þp · ðp − qÞ

− ðb1 þ b2 þ a1a2Þ½p · ðp − qÞ�⊥
þ p · ðp − qÞfc1p2⊥ þ c2ðp − qÞ2⊥g�: ð4:8Þ

Let us now consider collision events in which the transverse
components of momenta are small compared to the
longitudinal ones, when we can omit the last two terms
and calculate the dilepton rate analytically. Neglecting
quark mass, we thus get

W ¼ 20π

3
q2ð1 − a1a2ÞJ; ð4:9Þ

where

J ¼
Z

d3p
ð2πÞ34ω1ω2

f1 − ~nðω1Þ − ~nðω2Þgδðq0 − ω1 − ω2Þ:

ð4:10Þ

After working out this integral analytically, we shall apply
the mass derivatives contained in a1 and a2.
If θ is the angle between ~q and ~p, we can carry out the θ

integral by the delta function in Eq. (4.10). However, a
constraint remains to ensure that cos θ remains in the
physical region, as we integrate over the angle. We get

J ¼ 1

16π2j~qj
Z

dω1Θð1 − j cos θjÞf1 − ~nðω1Þ − ~nðω2Þg:

ð4:11Þ

FIG. 3. Current correlation function to one loop. The dashed
and solid lines represent currents and quarks.

4For eB ≠ 0, we include the necessary correction at the end of
this section.
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The Θ-function constraint gives a quadratic expression
in ω1,

ðω1 − ωþÞðω1 − ω−Þ ≤ 0; ð4:12Þ

where

ω� ¼ q0R� j~qj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 4q2m2

1

p
2q2

; R ¼ q2 þm2
1 −m2

2:

ð4:13Þ

With the corresponding limits on ω1, we get [37]

J ¼ 1

16π2j~qj
Z

ωþ

ω−

dω1

�
1 −

1

eβω1 þ 1
−

1

eβðq0−ω1Þ þ 1

�

¼ 1

16π2j~qjβ
�
ln

�
coshðβωþ=2Þ
coshðβω−=2Þ

�

− ln
�
coshðβðq0 − ωþÞ=2Þ
coshðβðq0 − ω−Þ=2Þ

��
: ð4:14Þ

We now recall that the u and d quark charges were
included correctly only in the currents but not in the
propagators. The resulting correction will effect only e2,
contained in a1, a2 in the expression forW. We can readily
find that we need to multiply e2 by 17=45 to restore the
actual charges of the quarks in their propagators. Carrying
out the mass derivatives in Eq. (4.9) and going to the limit
of zero quark masses, we finally get

W ¼ 5q2

12πj~qjβ
�
2 ln

�
cosh αþ
cosh α−

�
−
17

45
ðeBÞ2M

�
; ð4:15Þ

where M gives the effect of the magnetic field to the
leading-order result,

M¼ β2

8q2
ðsech2αþ − sech2α−Þþ

βj~qj
q4

ðtanhαþ þ tanhα−Þ:

ð4:16Þ

Here we use the abbreviation α� ¼ βðq0 � j~qjÞ=4. Note
that W is finite as j~qj → 0.

V. NUMERICAL RESULTS AND DISCUSSION

Some earlier works estimate the magnetic contribution to
the dilepton rate in the QGP phase in heavy ion collisions.
Reference [11] uses the Weizsäcker-Williams equivalent
photon approximation, in which the two vertices of Fig. 1
become independent amplitudes involving the photon,
whose probabilities are calculated in the magnetic field.
In Ref. [14], the quark propagator is calculated using
the method of eigenfunction expansion [22]. Here the
anisotropy induced by the (constant) direction of the
magnetic field is investigated in detail. In Ref. [15],
the result for the very high magnetic field is reported,
taking the lowest Landau level into account.
Here we propose a different method to include the effect

of the magnetic field on the dilepton production rate.
Assuming thermal equilibrium in the QGP phase, there
results the correlation function of quark currents. This is
evaluated with the quark propagator in the magnetic field
after expanding it up to ðeBÞ2. The calculation is carried out
in the real time method of thermal field theory.
The plots of M, the coefficient of ðeBÞ2 in W, as

functions of the invariant dilepton mass mll̄ ¼
ffiffiffiffiffi
q2

p
and

temperature T are shown in Fig. 4 for typical values of
parameters. If the second-order term in (4.16) provides
any indication of the behavior of the series, the expansion
parameters are eB=q2 and eB=T2. In Fig. 5, we plot
W=WB¼0 as a function of mll̄ for a few values of eB.
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Figure 5 shows that the magnetic field changes the
dilepton rate only at lower q2, reflecting the behavior of the
first and second term ofM [Eq. (4.16)] as 1=q2 and 1=q4 at
low q2. We also note that earlier theoretical calculations
without magnetic field disagree with experiment at low q2

[38–40]. It would, therefore, be tempting to speculate if the
effect of the magnetic field can bring the agreement, at least

in part. However, to verify this speculation, we have to
improve our calculation in a number of ways. First, we
should include the terms in (IV.9) that are left out in our
calculation. Then we need to replace the constant magnetic
field by one with its magnitude having (adiabatic) time
dependence, as realized in noncentral collisions. One can
also include the first-order QCD correction to the current
correlation function [41].
The time dependence of the magnetic field mentioned

above has to be included in the spacetime evolution of
dilepton production, which is needed to determine its
spectrum. Without going into the details of this evolution,
we may estimate roughly the effect of the time dependence
as follows. The magnetic field realized in the core may be
approximated as [7,10,11]

eBðtÞ ¼ 8α

γ

Z
t2 þ ð2R=γÞ2 ; ð5:1Þ

where α is the fine structure constant (¼ 1=137), Z and R
are the atomic number and radius of the colliding nuclei,
and γ is the Lorentz contraction factor. This expression
excludes large magnetic fields generated immediately after
collisions, so it may represent the magnetic field during the
QGP phase. Consider Au-Au collision at RHIC, for which
Z¼79, R¼6.5 fm, and γ¼100, giving eBðt¼0Þ¼m2

π=15.
However, considering Pb-Pb collision at LHC, where
Z¼82, R¼7.1 fm and γ¼2800, we get eBðt¼0Þ¼
1.4m2

π . In conclusion, we find that the effect of magnetic
field in the dilepton spectrum is confined to low invariant
masses.
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