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We present for the first time the complete twist-4 result for the semi-inclusive deeply inelastic scattering
e−N → e−qX with polarized electron and proton beams at the tree level of perturbative QCD. The
calculations have been carried out using the formalism obtained after collinear expansion where the multiple
gluon scatterings are taken into account and gauge links are obtained automatically in a systematical way.
The results show in particular that there are twist-4 contributions to all the eight twist-2 structure functions for
e−N → e−hX that correspond to the eight twist-2 transverse-momentum-dependent parton distribution
functions. Such higher-twist effects could be very significant and therefore have important impacts on
extracting these three-dimensional parton distribution functions from the asymmetry data on e−N → e−hX.
We suggest also an approximate way to obtain a rough estimation of such higher-twist contributions.
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I. INTRODUCTION

Three-dimensional or transverse-momentum-dependent
(TMD) parton distribution functions (PDFs) are one of the
frontiers in hadron physics in particular in the study of
hadron structure and properties of QCD [1,2]. When the
transverse momentum of the parton is concerned, the
sensitive measurable quantities in high-energy reactions
are often different azimuthal angle asymmetries. Higher-
twist contributions could be very significant and thus play
an important role when going from the one-dimensional to
the three-dimensional case.
In contrast to twist-3 contributions that often lead to

azimuthal asymmetries that are missing when only twist-2
contributions are considered (see e.g. Refs. [3–5]), in many
cases, twist-4 contributions are just addenda to twist-2
asymmetries. Since the asymmetries themselves are usually
not very large, twist-4 contributions can be relatively very
significant and have large influences on determining the
twist-2 PDFs from experimental data. This is particularly
the case in light of the fact that most of the data currently
available are from experiments at not very high energies
(see e.g. Refs. [6–11], or Ref. [12] for a recent review). It is
therefore necessary and important to make systematic
studies including higher-twist contributions. However, such
a systematic study up to twist-4 is considered as very
complicated and might be even impossible in particular
because we need to deal with quark-two-gluon-quark
correlators with three independent parton momenta and
related complicated problems.
Higher-twist effects in inclusive deeply inelastic lepton-

nucleon scattering (DIS) and Drell-Yan processes have
been studied already in the 1980s to 1990s [13–15]. It has

been shown that the collinear expansion is a necessary
procedure for obtaining the hadronic tensor or the cross
section in terms of gauge-invariant one-dimensional PDFs.
More recently, it has been shown that [16] collinear
expansion can be extended to the semi-inclusive DIS
process e−N → e−qX, where q denotes a quark that
corresponds to a jet of hadrons in experiments. In the
formalism obtained, the multiple gluon scattering are taken
into account and gauge links are obtained automatically
and systematically. Moreover, the expressions for the
hadronic tensor obtained after the collinear expansion
are simple and elegant in the sense that they are given
in terms of PDFs and hard parts. The hard parts are not only
calculable but also simplified to a form independent of the
parton momentum, and correspondingly the involved PDFs
are not only gauge invariant but also all defined via quark-
quark or quark-j-gluon-quark correlators with only one
independent parton momentum left. This makes the expres-
sions much simpler and higher-twist calculations much
more feasible. Based on this formalism, the complete twist-
3 results for e−N → e−qX and eþe− → hqX have been
obtained and were presented in Refs. [16–18].
Although there are still large differences between e−N →

e−qX and e−N → e−hX, the study of the former can
provide useful references at least qualitatively for the latter.
In this paper, we present for the first time the complete
twist-4 result for e−N → e−qX with polarized electron and
nucleon beams. After this introduction, in Sec. II, we make
a brief summary of the general formalism including the
involved TMD PDFs defined via the corresponding quark-
j-gluon-quark correlators and the relationships between
them. In Sec. III, we present the results for the structure
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functions at the tree level of pQCD up to twist-4. We
present also the results for azimuthal asymmetries and
suggest an approximate method for a rough estimation of
twist-4 contributions. In Sec. IV, we present a short
summary and discussion.

II. THE FORMALISM

To be explicit, we consider the semi-inclusive DIS
(SIDIS) e−N → e−qX. The cross section is given in terms
of the well-known leptonic tensor Lμν and the hadronic
tensor Wμν as

dσ ¼ α2eme2q
sQ4

Lμνðl; λl; l0ÞWðsiÞ
μν ðq; p; S; k0Þ d3l0d3k0

ð2πÞ32El02Ek0
;

ð2:1Þ

where l, l0, p and k0 are the 4-momenta of the incident
electron, the outgoing electron, the incident nucleon
and the outgoing quark q respectively; q ¼ l − l0 and
Q2 ¼ −q2; λl and S are the helicity of the electron and
the spin of the nucleon. The leptonic tensor is given by

Lμνðl; λl; l0Þ ¼ 2ðlμl0ν þ lνl0μ − gμνl · l0Þ þ 2iλlεμνρσlρl0σ;

ð2:2Þ

which consists of an unpolarized symmetric part and
a polarized antisymmetric part. We also note that the
leptonic tensor is space-reflection even, i.e., it satisfies
LμνðlP; λPl ; l0PÞ ¼ Lμνðl; λl; l0Þ, where lP denotes l under

space reflection. The hadronic tensor WðsiÞ
μν is defined as

WðsiÞ
μν ðq;p;S;k0Þ¼ 1

2π

X
X

hp;SjJμð0Þjk0;Xihk0;XjJνð0Þjp;Si

×ð2πÞ4δ4ðpþq−k0−pXÞ; ð2:3Þ

where Jμ ¼ ψ̄γμψ is the electromagnetic current. In
addition, the hadronic tensor is also space-reflection

even in this case, i.e., it satisfies WðsiÞ
μν ðqP; pP; SP ; k0PÞ ¼

WðsiÞμνðq; p; S; k0Þ.
We note that WðsiÞ

μν is related to the hadronic tensor

WðinÞ
μν ðq; p; SÞ for the inclusive process e−N → e−X by

WðinÞ
μν ðq; p; SÞ ¼ 1

ð2πÞ3
Z

WðsiÞ
μν ðq; p; S; k0Þ d

3k0

2Ek0
: ð2:4Þ

If we consider only the k0⊥ dependence of the cross section,
we have

dσ ¼ α2eme2q
sQ4

Lμνðl; λl; l0ÞWμνðq; p; S; k0⊥Þ
d3l0d2k0⊥
2El0

; ð2:5Þ

where Wμνðq; p; S; k0⊥Þ is the TMD semi-inclusive had-

ronic tensor that is related to WðsiÞ
μν ðq; p; S; k0Þ by

Wμνðq; p; S; k0⊥Þ ¼
1

ð2πÞ3
Z

dk0z
2Ek0

WðsiÞ
μν ðq; p; S; k0Þ: ð2:6Þ

A. The general form of the cross section
in terms of structure functions

The general form of the cross section in terms of
structure functions is obtained from the general form of
the hadronic tensor expressed as a sum of basic Lorentz
tensors multiplied by Lorentz scalar coefficients. This can
be found e.g. in Refs. [4,19–21] for e−N → e−hX or in
Refs. [22,23] for eþe− → h1h2X. It has in particular been
shown in Ref. [23] that the spin-dependent tensor set can be
given by spin-dependent Lorentz scalar(s) and/or pseudo-
scalar(s) times the unpolarized set.
For e−N → e−qX, the hadronic tensor takes exactly the

same form as that for e−N → e−hX or eþe− → h1h2X
for spin-1=2 h1 and spin-zero h2. The spin-independent
(or unpolarized) part is given by

hSμνUi ¼
�
gμν −

qμqν

q2
; pμ

qpν
q; p

fμ
q k0qνg; k0qμk0qν

�
; ð2:7Þ

~hSμνUi ¼ fεfμqpk0 ðpq; k0qÞνgg; ð2:8Þ

hAμνU ¼ p½μ
q k0qν�; ð2:9Þ

~hAμνUi ¼fεμνqp; εμνqk0g; ð2:10Þ

where h represents the space-reflection-even tensor while ~h
represents the space-reflection-odd one; the superscript S or
A denotes symmetric or antisymmetric under exchange of
(μ ↔ ν), and the subscriptU denotes the unpolarized (spin-
independent) part. A 4-momentum p with a subscript q
denotes pq ≡ p − qðp · qÞ=q2 satisfying pq · q ¼ 0. We
use, as in e.g. Ref. [23], the shorthand notations to make the
expressions more concise such as εμqpk

0 ≡ εμαρσqαpρk0σ,
AfμBνg ¼ AμBν þ AνBμ, A½μBν� ¼ AμBν − AνBμ and so on.
We see that there are in total nine such basic tensors in the
unpolarized case.
For the spin-dependent part, in the γ�N center-of-mass

frame, the basic Lorentz tensors can be given by

hSμνVi ¼ f½λh; ðk0⊥ · SÞ� ~hSμνUi ; ε
k0S⊥ hSμνUj g; ð2:11Þ

~hSμνVi ¼f½λh; ðk0⊥ · SÞ�hSμνUi ; ε
k0S⊥ ~hSμνUj g; ð2:12Þ

hAμνVi ¼f½λh; ðk0⊥ · SÞ� ~hAμνUi ; ε
k0S⊥ hAμνU g; ð2:13Þ

~hAμνVi ¼f½λh; ðk0⊥ · SÞ�hAμνU ; εk
0S⊥ ~hAμνUj g; ð2:14Þ
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where εk
0S⊥ ¼ ερσ⊥ k0ρSσ and ερσ⊥ ¼ εαβρσn̄αnβ. There are in

total 27 such S-dependent basic tensors, three times as
many as those for the unpolarized part, corresponding to
three independent polarization modes.
Under the one-photon exchange approximation, parity is

conserved. We need only the space-reflection-even parts
hSμν and hAμν. In this case, we have five unpolarized, four
λh-dependent and nine ST-dependent Lorentz tensors left.
Time reversal invariance does not give any restriction here
due to the final-state interaction [24–26]. There are finally
18 independent Lorentz tensors that contribute and each
corresponds to an independent structure function.
After making the Lorentz contraction with the leptonic

tensor, we obtain the general form for the cross section. In
the γ�N c.m. frame, we have

dσ
dxdydϕSd2k0⊥

¼ α2em
xyQ2

KðWUU þ λlWLU þ λhWUL

þ λlλhWLL þ j~ST jWUT þ λlj~ST jWLTÞ;
ð2:15Þ

WUU ¼ WUU;T þ εWUU;L þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
Wcosϕ

UU cosϕ

þ εWcos 2ϕ
UU cos 2ϕ; ð2:16Þ

WLU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
Wsinϕ

LU sinϕ; ð2:17Þ

WUL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
Wsinϕ

UL sinϕþ εWsin 2ϕ
UL sin 2ϕ; ð2:18Þ

WLL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
WLL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
Wcosϕ

LL cosϕ; ð2:19Þ

WUT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
WsinϕS

UT sinϕS

þ ðWsinðϕ−ϕSÞ
UT;T þ εWsinðϕ−ϕSÞ

UT;L Þ sinðϕ − ϕSÞ
þ εWsinðϕþϕSÞ

UT sinðϕþ ϕSÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
Wsinð2ϕ−ϕSÞ

UT sinð2ϕ − ϕSÞ
þ εWsinð3ϕ−ϕSÞ

UT sinð3ϕ − ϕSÞ; ð2:20Þ

WLT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
WcosϕS

LT cosϕS

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
Wcosðϕ−ϕSÞ

LT cosðϕ − ϕSÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
Wcosð2ϕ−ϕSÞ

LT cosð2ϕ − ϕSÞ; ð2:21Þ

where x ¼ Q2=2p · q, y ¼ p · q=p · l, ε¼ð1−y−1
4
γ2y2Þ=

ð1−yþ1
2
y2þ1

4
γ2y2Þ, γ ¼ 2Mx=Q; K is a kinematic factor,

K ¼ ð1þ γ2=2xÞy2=ð1 − εÞ; ϕ is the azimuthal angle

of ~k0 defined with respect to the leptonic plane and ϕS

is that for ~ST. Here, we suggest unifying the notations in
the following way: the W’s denote the sum of the

contributions in each polarized case specified by the
subscripts; the W’s are called structure functions, and
they are Lorentz scalars and are functions of x, Q and
k0⊥2, where the superscripts denote azimuthal angle
dependences and the subscripts denote the polarizations.
We use W’s and W’s to denote those for e−N → e−qX
and F and F’s are for e−N → e−hX where the expres-
sions have exactly the same form with the replacements
of W by F, W by F, k0⊥ by ph⊥, and ϕ by ϕh.
All measurable quantities can be expressed in terms of

these 18 structure functions. In the QCD parton model,
these structure functions are given in terms of gauge-
invariant PDFs. The results up to twist-3 can e.g. be found
in Ref. [17]. In the remainder of this paper, we present the
results up to twist-4.
If we integrate over the azimuthal angle ϕ, we obtain

dσ
dxdydϕSdk0⊥2

¼ πα2em
xyQ2

KðW̄UU þ λlW̄LU þ λhW̄UL

þ λlλhW̄LL þ j~ST jW̄UT þ λlj~ST jW̄LTÞ;
ð2:22Þ

W̄UU ¼ WUU;T þ εWUU;L; ð2:23Þ

W̄LU ¼ W̄UL ¼ 0; ð2:24Þ

W̄LL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
WLL; ð2:25Þ

W̄UT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
WsinϕS

UT sinϕS; ð2:26Þ

W̄LT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
WcosϕS

LT cosϕS: ð2:27Þ

We see that only 5 of the 18 structure functions
contribute in this case. We can use this to study these
five structure functions more intensively. We see in
particular that two transverse spin asymmetries could
exist: one is the sinϕS single-spin asymmetry that has to
vanish in the inclusive DIS e−N → e−X as demanded by
the time reversal invariance. For the SIDIS e−N → e−qX
as discussed here, final-state interactions between the
struck q and the rest of the hadronic system could give
rise to such asymmetry.
If we further integrate over k0⊥, we obtain the well-known

result for the inclusive process e−N → e−X. We note that
the single-spin asymmetry vanishes in this case because of
the time-reversal invariance, so we obtain

dσin

dxdydϕS
¼ α2em

xyQ2
KðF in

UU þ λlF in
LU þ λhF in

UL

þ λlλhF in
LL þ j~ST jF in

UT þ λlj~ST jF in
LTÞ; ð2:28Þ

F in
UU ¼ Fin

UU;T þ εFin
UU;L; ð2:29Þ
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F in
LL ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
Fin
LL; ð2:30Þ

F in
LT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
Fin;cosϕS
LT cosϕS; ð2:31Þ

F in
LU ¼ F in

UL ¼ F in
UT ¼ 0: ð2:32Þ

As is well known there are four independent structure
functions in this case. Their relationships to the well-known
F1, F2, g1 and g2 are given by [4]

Fin
UU;L þ Fin

UU;T ¼ ð1þ γ2ÞF2; ð2:33Þ

Fin
UU;T ¼ 2xF1; ð2:34Þ

Fin
LL ¼ 2xðg1 − γ2g2Þ; ð2:35Þ

Fin;cosϕS
LT ¼ −2xγðg1 þ g2Þ: ð2:36Þ

B. The collinear expansion and the hadronic tensor
in the QCD parton model

At the tree level of the QCD parton model, to obtain the
hadronic tensor in terms of gauge-invariant PDFs, we need
to consider the contributions from the series of diagrams
given by Fig. 1, i.e., to include contributions from the
multiple gluon scattering. It has been shown [16] that the
collinear expansion [13,14] can be applied also to the semi-
inclusive DIS process e−N → e−qX and, after collinear
expansion, the hadronic tensor is expressed in terms of the
gauge-invariant quark-quark and quark-j-gluon-quark cor-
relators and calculable hard parts [16,17]

WðsiÞ
μν ðq; p; S; k0Þ ¼

X
j;c

~Wðsi;j;cÞ
μν ðq; p; S; k0Þ; ð2:37Þ

where j denotes the number of gluons exchanged and c
denotes eventually different cuts. After integration over k0z,
these ~Wðsi;j;cÞ

μν ’s are simplified to [17]

~Wð0Þ
μν ¼ Tr½ĥð0Þμν Φ̂ð0Þ�=2; ð2:38Þ

~Wð1;LÞ
μν ¼ Tr½ĥð1Þρμν φ̂ð1Þ

ρ �=4q · p; ð2:39Þ

~Wð2;LÞ
μν ¼ Tr½ĥð1Þρμν ϕ̂ð2Þ

ρ þ N̂ð2Þρσ
μν φ̂ð2Þ

ρσ �=ð2q · pÞ2; ð2:40Þ

~Wð2;MÞ
μν ¼ Tr½ĥð2Þρσμν φ̂ð2;MÞ

ρσ �=ð2q · pÞ2; ð2:41Þ

and the hard parts are reduced to the simple forms
independent of the parton momentum, i.e.,

ĥð0Þμν ¼ γμnγν=pþ; ð2:42Þ

ĥð1Þρμν ¼ γμn̄γ
ρ
⊥nγν; ð2:43Þ

N̂ð2Þρσ
μν ¼ q−γμγ

ρ
⊥nγσ⊥γν; ð2:44Þ

ĥð2Þρσμν ¼ γμγ
ρ
⊥pγσ⊥γν; ð2:45Þ

where γρ⊥ ≡ gρσ⊥ γσ and gρσ⊥ ≡ gρσ − n̄ρnσ − n̄σnρ. The
involved quark-quark and quark-j-gluon-quark correlators
are given by

Φ̂ð0Þðx; k⊥Þ ¼
Z

pþdy−d2y⊥
ð2πÞ3 eixp

þy−−i~k⊥·~y⊥

× hNjψ̄ð0ÞLð0; yÞψðyÞjNi; ð2:46Þ

φ̂ð1Þ
ρ ðx; k⊥Þ ¼

Z
pþdy−d2y⊥

ð2πÞ3 eixp
þy−−i~k⊥·~y⊥

× hNjψ̄ð0ÞD⊥ρð0ÞLð0; yÞψðyÞjNi; ð2:47Þ

φ̂ð2Þ
ρσ ðx; k⊥Þ ¼

Z
pþdy−d2y⊥

ð2πÞ3
Z

∞

0

ipþdz−eixpþy−−i~k⊥·~y⊥

× hNjψ̄ð0ÞLð0; zÞD⊥ρðzÞD⊥σðzÞ
× Lðz; yÞψðyÞjNi; ð2:48Þ

ϕ̂ð2Þ
ρ ðx; k⊥Þ ¼ n̄σ

Z
pþdy−d2y⊥

ð2πÞ3 eixp
þy−−i~k⊥·~y⊥

× hNjψ̄ð0ÞDσð0ÞD⊥ρð0ÞLð0; yÞψðyÞjNi;
ð2:49Þ

φ̂ð2;MÞ
ρσ ðx; k⊥Þ ¼

Z
pþdy−d2y⊥

ð2πÞ3 eixp
þy−−i~k⊥·~y⊥

× hNjψ̄ð0ÞD⊥ρð0ÞLð0; yÞD⊥σðyÞψðyÞjNi;
ð2:50Þ

where Dρ ¼ −i∂ρ þ gAρ, and Lð0; yÞ is the well-known
gauge link. We see that the involved φ̂ðjÞ are all D-type and
are simplified to depend only on one independent parton
momentum. We note in particular that the leading power

contribution of ~WðjÞ
μν is twist-(jþ 2). For ~Wð2;LÞ

μν , the leading
power contribution of the first term on the rhs of Eq. (2.40)
is at twist-5 because of the presence of the factor n̄σ in the
definition of ϕ̂ð2Þ given by Eq. (2.49). It has no contribution
up to twist-4.

N(p) N(p)

q(k) q(k)

q(k′) q(k′)
γ*(q) γ*(q)

N(p) N(p)

q(k1) q(k2)g

γ*(q) γ*(q)

N(p) N(p)

q(k1) q(k2)k3 k4

γ*(q) γ*(q)

(a) (b) (c)

FIG. 1. The first three of the Feynman diagram series where
(a) j ¼ 0, (b) j ¼ 1 and (c) j ¼ 2 gluon(s) are exchanged.
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In e−N → e−qX, where the fragmentation is not consid-
ered, only chiral-even PDFs are involved. We need only the
γα and γ5γα terms in the expansion of the correlator in terms

of the Γ matrices, e.g., Φ̂ð0Þ¼ðΦð0Þ
α γα− ~Φð0Þ

α γ5γ
αþ���Þ=2.

It is useful to note that

Φ̂ð0Þ†ðx; k⊥Þ ¼ γ0Φ̂ð0Þðx; k⊥Þγ0; ð2:51Þ

φ̂ð2;MÞ†
ρσ ðx; k⊥Þ ¼ γ0φ̂

ð2;MÞ
σρ ðx; k⊥Þγ0; ð2:52Þ

while no such simple relation for φ̂ð1Þ
ρ or φ̂ð2Þ

ρσ holds. This

implies that Φð0Þ�
α ¼ Φð0Þ

α , ~Φð0Þ�
α ¼ ~Φð0Þ

α ; φð2;MÞ�
ρσα ¼ φð2;MÞ

σρα

and ~φð2;MÞ�
ρσα ¼ ~φð2;MÞ

σρα . We also emphasize that due to the
QCD equation of motion, these quark-j-gluon-quark cor-
relators are not fully independent of each other. We will
come back to this point in the next section.

C. Lorentz decompositions of quark-quark
and quark-gluon-quark correlators

1. The involved decompositions and TMD PDFs

Up to twist-4, we need the complete Lorentz decom-

positions of Φð0Þ
α and ~Φð0Þ

α . The chiral-even parts are given
by [27]

Φð0Þ
α ¼ pþn̄α

�
f1 −

εkS⊥
M

f⊥1T
�

þ k⊥αf⊥ −M ~STαfT − λh ~k⊥αf⊥L −
k⊥hαk⊥βi

M
~SβTf

⊥
T

þM2

pþ nα

�
f3 −

εkS⊥
M

f⊥3T
�
; ð2:53Þ

~Φð0Þ
α ¼ −pþn̄α

�
λhg1L −

k⊥ · ST
M

g⊥1T
�

− ~k⊥αg⊥ −MSTαgT − λhk⊥αg⊥L þ k⊥hαk⊥βi
M

SβTg
⊥
T

−
M2

pþ nα

�
λhg3L −

k⊥ · ST
M

g⊥3T
�
; ð2:54Þ

where ~k⊥α ≡ ε⊥αβk
β
⊥, and k⊥hαk⊥βi ≡ k⊥αk⊥β − g⊥αβk2⊥=2.

Here, we use the same naming system as that used in
Refs. [4,17,18,23,27], where f’s and g’s are defined from
the γα or γ5γα term respectively; a digit j in the subscript
stands for twist-(jþ 1), and those without a j are for
twist-3; the subscript T or L denotes hadron polarization,
and those without T or L denote unpolarized hadrons.
We see that there are four chiral-even twist-4 TMD PDFs
defined via Φ̂ð0Þ. For φ̂ð1Þ, the chiral-even parts are

φð1Þ
ρα ¼ pþn̄α

�
k⊥ρf⊥d −M ~STρfdT − λh ~k⊥ρf⊥dL

−
k⊥hρk⊥βi

M
~SβTf

⊥
dT

�
þM2g⊥ρα

�
f3d −

εkS⊥
M

f⊥3dT
�

þ k⊥hρk⊥αi

�
f⊥3d þ

εkS⊥
M

f⊥2
3dT

�

þ iM2ε⊥ρα

�
λhf3dL −

k⊥ · ST
M

f⊥3
3dT

�

þ 1

2
k⊥fρ ~k⊥αg

�
λhf⊥3dL þ k⊥ · ST

M
f⊥4
3dT

�
; ð2:55Þ

~φð1Þ
ρα ¼ ipþn̄α

�
~k⊥ρg⊥d þMSTρgdT þ λhk⊥ρg⊥dL

−
k⊥hρk⊥βi

M
SβTg

⊥
dT

�
þ iM2ε⊥ρα

�
g3d −

εkS⊥
M

g⊥3dT
�

þ i
1

2
k⊥fρ ~k⊥αg

�
g⊥3d þ

εkS⊥
M

g⊥2
3dT

�

þM2g⊥ρα

�
λhg3dL −

k⊥ · ST
M

g⊥3
3dT

�

þ ik⊥hρk⊥αi

�
λhg⊥3dL þ k⊥ · ST

M
g⊥4
3dT

�
; ð2:56Þ

where we, as in ref. [23], add in the subscript a lowercase
letter d to denote TMDs defined via the D-type quark-
gluon-quark correlator.
Up to twist-4, we need only the leading power contri-

butions from φ̂ð2Þ. For the chiral-even part, we need only
the n̄α terms. They are given by

φð2Þ
ρσα ¼ pþn̄α

�
M2g⊥ρσ

�
f3dd −

εkS⊥
M

f⊥3ddT
�

þ k⊥hρk⊥σi

�
f⊥3dd þ

εkS⊥
M

f⊥2
3ddT

�

þ iM2ε⊥ρσ

�
λhf3ddL −

k⊥ · ST
M

f⊥3
3ddT

�

þ 1

2
k⊥fρ ~k⊥σg

�
λhf⊥3ddL þ k⊥ · ST

M
f⊥4
3ddT

��
; ð2:57Þ

~φð2Þ
ρσα ¼ pþn̄α

�
iM2ε⊥ρσ

�
g3dd −

εkS⊥
M

g⊥3ddT
�

þ 1

2
k⊥fρ ~k⊥σg

�
g⊥3dd þ

εkS⊥
M

g⊥2
3ddT

�

þM2g⊥ρσ

�
λhg3ddL −

k⊥ · ST
M

g⊥3
3ddT

�

þ k⊥hρk⊥σi

�
λhg⊥3ddL þ k⊥ · ST

M
g⊥4
3ddT

��
; ð2:58Þ
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where the subscript dd denotes that they are defined via the
D-type quark-two-gluon-quark correlator. Besides the
superscriptM, those for φ̂ð2;MÞ are exactly the same as φ̂ð2Þ.
Since there are more than one f⊥3dT and g⊥3dT according to

the naming rules, we introduce an additional digit in the
superscript to distinguish them from each other.Wemeet the
same problem in decompositions of φ̂ð1Þ and φ̂ð2Þ andwe use
also similar notations. In total,wehave fourf⊥3dT’s associated
with the four independent Lorentz tensors g⊥ρα, k⊥hρk⊥αi,
ε⊥ρα and k⊥fρ ~k⊥αg respectively; while g⊥3dT to g⊥4

3dT are

associated with ε⊥ρα, k⊥fρ ~k⊥αg, g⊥ρα, k⊥hρk⊥αi respectively.
The four Lorentz tensors are orthogonal to each other.
We see that for the twist-4 parts, the decompositions of φ

and ~φ have an exact one-to-one correspondence. For each
f3, there is correspondingly a g3. They always appear in
pairs. We have in total eight such pairs from φ̂ð1Þ, φ̂ð2Þ and
φ̂ð2;MÞ respectively. Due to the Hermiticity of Φ̂ð0Þ and
φ̂ð2;MÞ, PDFs defined via these two correlators are real.
However, those defined via φ̂ð1Þ and φ̂ð2Þ are complex,
which contain both real and imaginary parts.
The operator expressions of these twist-4 TMD PDFs

can be obtained by reversing the corresponding equations
for Lorentz decompositions. This can easily be done and
we will not present them here.

2. Relationships derived from the QCD
equation of motion

From the QCD equation of motion, γ ·Dψ ¼ 0, we
obtain immediately that, for the two transverse components

of Φð0Þ
ρ or ~Φð0Þ

ρ , we have

xpþΦð0Þρ ¼ −gρσ⊥ Reφð1Þ
σþ − ερσ⊥ Im ~φð1Þ

σþ; ð2:59Þ
xpþ ~Φð0Þρ ¼ −gρσ⊥ Re ~φð1Þ

σþ − ερσ⊥ Imφð1Þ
σþ; ð2:60Þ

whereφσþ ≡ nαφσα and similarly for others.By inserting the
corresponding Lorentz decompositions of these correlators
into Eqs. (2.59)–(2.60), we obtain a set of relationships
between the twist-3TMDPDFsdefined via the quark-gluon-
quark correlator φ̂ð1Þ and those defined via the quark-quark
correlator Φ̂ð0Þ. For the chiral-even part, we obtain eight real
equations by inserting Eqs. (2.53)–(2.56) into Eqs. (2.59)–
(2.60), and they can be given in the unified form [23]

fKdS − gKdS ¼ −xðfKS − igKS Þ; ð2:61Þ
where S ¼ null, L or T and K ¼ null or ⊥ whenever
applicable. Using the relations given by Eq. (2.61),
we can replace all the TMD PDFs defined via φ̂ð1Þ by
those defined via Φ̂ð0Þ in the final twist-3 results for the
hadronic tensor in SIDIS [4,17], and similarly for eþe−
annihilations [18,23].

Similarly, for the minus components ofΦð0Þ
ρ and ~Φð0Þ

ρ , we
have

ðxpþÞ2Φð0Þ
− ¼ −ðgρσ⊥ φð2;MÞ

ρσþ þ iερσ⊥ ~φð2;MÞ
ρσþ Þ=2; ð2:62Þ

ðxpþÞ2 ~Φð0Þ
− ¼ −ðgρσ⊥ ~φð2;MÞ

ρσþ þ iερσ⊥ φð2;MÞ
ρσþ Þ=2; ð2:63Þ

and for the transverse components of φρσ and ~φρσ, we have

xpþðgρσ⊥ φð1Þ
ρσ þ iερσ⊥ ~φð1Þ

ρσ Þ¼−gρσ⊥ φð2;MÞ
ρσþ − iερσ⊥ ~φð2;MÞ

ρσþ ; ð2:64Þ

xpþðgρσ⊥ ~φð1Þ
ρσ þ iερσ⊥ φð1Þ

ρσ Þ¼−gρσ⊥ ~φð2;MÞ
ρσþ − iερσ⊥ φð2;MÞ

ρσþ : ð2:65Þ

By inserting Eqs. (2.53)–(2.58) into Eqs. (2.62)–(2.65), we
obtain a set of relationships between the twist-4 PDFs
defined via φ̂ð2;MÞ, φ̂ð1Þ, and Φ̂ð0Þ. They are given by

x2f3 ¼ xf−3d ¼ −fM−3dd; ð2:66Þ

x2f⊥3T ¼ xf⊥−3dT ¼ −fM⊥
−3ddT; ð2:67Þ

x2g3L ¼ xf−3dL ¼ −fM−3ddL; ð2:68Þ

x2g⊥3T ¼ xf⊥3
−3dT ¼ −fM⊥3

−3ddT; ð2:69Þ

where f� ≡ f � g such as f−3d ≡ f3d − g3d and so on. We
note that Eqs. (2.66)–(2.69) represent 12 real equations
and can be used to replace those independent twist-4
TMD PDFs in parton model results for the cross section.

D. Relationships between twist-4
and twist-2 PDFs at g= 0

When the multiple gluon scattering is taken into account,
these higher-twist TMD PDFs are all new and quite
involved. They reflect not only the parton distributions
but also quantum interference effects in the scattering.
There is little data available that gives direct insights into
them. However, if we neglect the multiple gluon scattering,
i.e., put g ¼ 0, we obtain a set of simple equations relating
them to the twist-2 counterparts. They could be helpful in
understanding the significance of these higher-twist PDFs
in particular at the present stage.
By putting g ¼ 0 into Eqs. (2.46)–(2.50), we relate φ̂ðjÞ

to Φ̂ð0Þ, i.e., φ̂ð1Þ
ρ ¼ −k⊥ρΦ̂ð0Þ, φ̂ð2;MÞ

ρσ ¼ k⊥ρk⊥σΦ̂ð0Þ, and

φ̂ð2Þ
ρσ þ γ0φ̂ð2Þ†

σρ γ0 ¼ k⊥ρk⊥σ∂Φ̂ð0Þ=∂x. Together with the
equation of motion, these relations relate all higher-twist
PDFs to leading-twist ones. For those defined via φ̂ð1Þ, we
have

xf3d ¼
k2⊥
2M2

xf⊥3d ¼ x2f3 ¼ −
k2⊥
2M2

f1; ð2:70Þ

xg3dL ¼ i
k2⊥
2M2

xg⊥3dL ¼ −x2g3L ¼ k2⊥
2M2

g1L; ð2:71Þ

xf⊥3dT ¼ −
k2⊥
2M2

xf⊥2
3dT ¼ x2f⊥3T ¼ −

k2⊥
2M2

f⊥1T; ð2:72Þ
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xg⊥3
3dT ¼ −i

k2⊥
2M2

xg⊥4
3dT ¼ −x2g⊥3T ¼ k2⊥

2M2
g⊥1T; ð2:73Þ

and all the others vanish. For those defined via φ̂ð2Þ, we
have

2Ref3dd ¼ 2Re
k2⊥
2M2

f⊥3dd ¼
k2⊥
2M2

∂
∂x f1; ð2:74Þ

2Reg3ddL ¼ 2Re
k2⊥
2M2

g⊥3ddL ¼ −
k2⊥
2M2

∂
∂x g1L; ð2:75Þ

2Ref⊥3ddT ¼ −2Re
k2⊥
2M2

f⊥2
3ddT ¼ k2⊥

2M2

∂
∂x f

⊥
1T; ð2:76Þ

2Reg⊥3
3ddT ¼ −2Re

k2⊥
2M2

g⊥4
3ddT ¼ −

k2⊥
2M2

∂
∂x g

⊥
1T; ð2:77Þ

and all the others vanish. Time-reversal invariance demands
f⊥1T ¼ 0 in this case [24].

III. THE COMPLETE TWIST-4 RESULT

A. The hadronic tensor

We substitute the Lorentz decompositions of the
quark-quark and quark-j-gluon-quark correlators given
by Eqs. (2.53)–(2.58) into Eqs. (2.38)–(2.41), carry out
the calculations, and obtain the hadronic tensor and cross
section up to twist-4. Those up to twist-3 can be found in
Ref. [17]. We present the results—in particular, those at
twist-4—in the following.

To get the contributions from ~Wð0Þ
μν , we need to carry out

the two traces in connection with the hard parts. They are

Tr½ĥð0Þμν n � ¼ 8nμnν=pþ; ð3:1Þ

Tr½ĥð0Þμν γ5n � ¼ 0: ð3:2Þ

We see in particular that the trace with γ5n is zero. This

implies that there is no contribution from ~Φð0Þ
α or g3S to the

hadronic tensor at twist-4. The only contributions are from

Φð0Þ
α or f3S and they are given by

~Wð0Þ
t4μν ¼

2M2

ðq · pÞ2 ðqþ xBpÞμðqþ xBpÞν
�
f3 −

1

M
εkS⊥ f⊥3T

�
;

ð3:3Þ

where we use a subscript t4 to denote the twist-4 part only,

and the superscript (0) denotes that it is from ~Wð0Þ
μν .

To get the contributions from ~Wð1Þ
μν , we need

Tr½ĥð1Þρμν γα⊥� ¼ 4ð2n̄μnνgρα⊥ þ g⊥μνg
ρα
⊥ − g⊥μ

fρg⊥ν
αgÞ; ð3:4Þ

Tr½ĥð1Þρμν γ5γ
α⊥� ¼ −4ið2n̄μnνερα⊥ þ g⊥μ

ρε⊥ν
α þ g⊥ν

αε⊥μ
ρÞ;
ð3:5Þ

and the results for the contribution from the diagram with
the left cut are given by

~Wð1;LÞ
t4μν ¼ 1

2q · p

�
4M2n̄μnν

�
f−3d −

εkS⊥
M

f⊥−3dT
�

− k⊥hμk⊥νi

�
f⊥−3d þ

εkS⊥
M

f⊥2
−3dT

�

− k⊥fμ ~k⊥νg

�
λhf⊥þ3dL þ k⊥ · ST

M
f⊥4
þ3dT

��
: ð3:6Þ

For the contributions from ~Wð2;LÞ
μν , we need

Tr½N̂ð2Þρσ
μν p� ¼ 4p · qðg⊥μνg

ρσ
⊥ þ g⊥½μρg⊥ν�σÞ; ð3:7Þ

Tr½N̂ð2Þρσ
μν γ5p� ¼ 4ip · qðg⊥μ

ρε⊥ν
σ − g⊥ν

σε⊥μ
ρÞ; ð3:8Þ

and obtain,

~Wð2;LÞ
t4μν ¼ M2

p · q

�
g⊥μν

�
fþ3dd −

εkS⊥
M

f⊥þ3ddT

�

þiε⊥μν

�
λhfþ3ddL −

k⊥ · ST
M

f⊥3
þ3ddT

��
: ð3:9Þ

For that from ~Wð2;MÞ
μν , we have

Tr½ĥð2Þρσμν p� ¼ −8pμpνg
ρσ
⊥ ; ð3:10Þ

Tr½ĥð2Þρσμν γ5p� ¼ 8ipμpνε
ρσ
⊥ ; ð3:11Þ

and the result at twist-4 is given by

~Wð2;MÞ
t4μν ¼ −

2M2

ðp · qÞ2 pμpν

�
fM−3dd −

εkS⊥
M

fM⊥
−3ddT

�
: ð3:12Þ

Adding the contributions from ~Wð0Þ
μν , ~Wð1Þ

μν and ~Wð2Þ
μν

together, and using the relations between the PDFs
defined via the quark-j-gluon-quark correlator and those
defined via the quark-quark correlator given by
Eqs. (2.66)–(2.69) to eliminate the PDFs that are not
independent of others, we obtain the complete result for
the hadronic tensor up to twist-4. It is given by
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Wt4μν ¼
2M2

ðq · pÞ2 ðqþ 2xBpÞμðqþ 2xBpÞν
�
f3 −

εkS⊥
M

f⊥3T
�

−
1

q · p

�
k⊥hμk⊥νi

�
f⊥−3d þ

εkS⊥
M

f⊥2
−3dT

�

− k⊥fμ ~k⊥νg

�
λhf⊥þ3dL þ k⊥ · ST

M
f⊥4
þ3dT

�

þ 2M2g⊥μν

�
fþ3dd −

εkS⊥
M

f⊥þ3ddT

�

þ 2iM2ε⊥μν

�
λhfþ3ddL −

k⊥ · ST
M

f⊥3
þ3ddT

��
:

ð3:13Þ

Here, only the real part of the TMD PDF contributes and
this is true for all the twist-4 PDFs involved in Eq. (3.13).
We therefore just omit the symbol Re for clarity of the
equation as well as in the remainder of this paper.
In addition, we see from Eq. (3.13) that, just as with the

twist-2 or twist-3 part [17], the complete twist-4 hadronic
tensor also satisfies the requirement of current conservation,
i.e., qμWt4μν ¼ qνWt4μν ¼ 0. It contains both a real sym-
metric part and a pure imaginary antisymmetric part. This
implies that we will obtain twist-4 contributions to the cross
section in reactions with polarized or unpolarized leptons.

B. The structure functions

Performing the Lorentz contraction of the hadronic
tensor with the leptonic tenor given by Eq. (2.2), we obtain
the differential cross section in terms of the gauge-invariant
TMD PDFs. By comparing the results with the general
form given by Eq. (2.15), we obtain the expressions for the
structure functions in terms of PDFs. Among the 18
structure functions, ten have twist-4 contributions. They
are given by

WUU;T ¼ xf1 þ 4x2κ2Mfþ3dd; ð3:14Þ

WUU;L ¼ 8x3κ2Mf3; ð3:15Þ

Wcos 2ϕ
UU ¼ −2x2κ2M

j~k⊥j2
M2

f⊥−3d; ð3:16Þ

Wsin 2ϕ
UL ¼ 2x2κ2M

j~k⊥j2
M2

f⊥þ3dL; ð3:17Þ

WLL ¼ xg1L þ 4x2κ2Mfþ3ddL; ð3:18Þ

Wsinðϕ−ϕSÞ
UT;T ¼ j~k⊥j

M

�
xf⊥1T þ 4x2κ2Mf

⊥
þ3ddT

�
; ð3:19Þ

Wsinðϕ−ϕSÞ
UT;L ¼ 8x3κ2M

j~k⊥j
M

f⊥3T; ð3:20Þ

WsinðϕþϕSÞ
UT ¼ −x2κ2M

j~k⊥j3
M3

ðf⊥4
þ3dT þ f⊥2

−3dTÞ; ð3:21Þ

Wsinð3ϕ−ϕSÞ
UT ¼ −x2κ2M

j~k⊥j3
M3

ðf⊥4
þ3dT − f⊥2

−3dTÞ; ð3:22Þ

Wcosðϕ−ϕSÞ
LT ¼ j~k⊥j

M
ðxg⊥1T þ 4x2κ2Mf

⊥3
þ3ddTÞ: ð3:23Þ

Here, we omit the overall factor e2q and a sum over flavor is
also implicit. We introduce κM ≡M=Q that is the typical
suppression factor for higher-twist contributions. κ2M sym-
bolizes twist-4 whereas κM symbolizes twist-3.
The other eight structure functions have only twist-3

contributions up to twist-4. They are given in e.g. Ref. [17].
For completeness and comparison, we include them in the
following:

Wcosϕ
UU ¼ −2x2κM

j~k⊥j
M

f⊥; ð3:24Þ

Wsinϕ
UL ¼ −2x2κM

j~k⊥j
M

f⊥L ; ð3:25Þ

Wsinϕ
LU ¼ 2x2κM

j~k⊥j
M

g⊥; ð3:26Þ

Wcosϕ
LL ¼ −2x2κM

j~k⊥j
M

g⊥L ; ð3:27Þ

WsinϕS
UT ¼ −2x2κMfT; ð3:28Þ

Wsinð2ϕ−ϕSÞ
UT ¼ −x2κM

j~k⊥j2
M2

f⊥T ; ð3:29Þ

WcosϕS
LT ¼ −2x2κMgT; ð3:30Þ

Wcosð2ϕ−ϕSÞ
LT ¼ −x2κM

j~k⊥j2
M2

g⊥T : ð3:31Þ

From the results given by Eqs. (3.14)–(3.31), we see
clearly the following distinct features:
(1) Up to twist-4, all 18 structure functions are nonzero.

Besides those eight that have twist-3 as leading
power contributions, the remaining ten have twist-4
contributions. For e−N → e−qX that we consider
here, four of them have twist-2 and the other six have
twist-4 as leading power contributions. And all four
twist-2 structure functions have twist-4 addenda to
them. It is also very interesting and important to note
that the twist-3 part contributes to azimuthal asym-
metries that are all missing at either twist-2 or twist-4
and hence can be studied separately. However the
twist-4 and twist-2 contributions may mix with each
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other and give rise to the same asymmetry and hence
are difficult to separate from each other.

(2) The structure functions that describe the azimuthal
asymmetries given by either the cosine or sine of a
single ϕ or ϕS or 2ϕ − ϕS, i.e., cosϕ, sinϕ, cosϕS,
sinϕS, cosð2ϕ − ϕSÞ, and sinð2ϕ − ϕSÞ, have only
twist-3 contributions. For the structure functions that
describe the azimuthal-angle-independent part, or
the azimuthal angle dependences given by the cosine
or sine of even number of ϕ or ϕS such as 2ϕ,
ϕ − ϕS, ϕþ ϕS and 3ϕ − ϕS, we have twist-2 and/or
twist-4 contributions.

(3) We recall that for e−N → e−hX where fragmenta-
tion is considered, there are eight twist-2 structure
functions F that correspond to the eight twist-2
TMD PDFs.We see that all theW’s corresponding to
them have twist-4 contributions. This means that
we have to consider twist-4 contributions if we use
data on e−N → e−hX to extract the corresponding
twist-2 TMD PDFs. Since e−N → e−hX is one of
the major sources for the data [12] now available for
extracting TMD PDFs, it is thus important to study
these twist-4 contributions to get correct and precise
knowledge even on twist-2 TMDs.

(4) If we consider e−N → e−hX, besides WUU;L and

Wsinðϕ−ϕSÞ
UT;L , all the twist-4 contributions are addenda

to twist-2 structure functions. Since WUU;L is added

to WUU;T and Wsinðϕ−ϕSÞ
UT;L to Wsinðϕ−ϕSÞ

UT;T to give the
final observable effects, this means that all the twist-
4 contributions are addenda to twist-2 contributions
in e−N → e−hX. This makes it very difficult to
separate them from each other. A clean and perhaps
practical way to study twist-4 effects is to study
e−N → e−qX, i.e., by measuring the jet production.
In this case we have six structure functions that
have twist-4 as the leading power contributions and
four of them correspond to separate azimuthal
asymmetries.

C. Azimuthal asymmetries

There are two twist-2 azimuthal asymmetries for e−N →
e−qX and, up to twist-4, they are given by,

hsinðϕ − ϕSÞiUT ¼ j~k⊥j
2M

f⊥1T
f1

ð1 − αUTκ
2
MÞ; ð3:32Þ

hcosðϕ − ϕSÞiLT ¼ j~k⊥j
2M

CðyÞ
AðyÞ

g⊥1T
f1

ð1 − αLTκ
2
MÞ; ð3:33Þ

where the twist-4 modification factors are given by,

αUT ¼ αUU − 8x2
EðyÞ
AðyÞ

f⊥3T
f⊥1T

− 4x
f⊥þ3ddT

f⊥1T
; ð3:34Þ

αLT ¼ αUU − 4x
f⊥3
þ3ddT

g⊥1T
; ð3:35Þ

where αUU is due to twist-4 contributions to WUU. It is the
ratio of the twist-4 to twist-2 contributions in unit of κ2M, i.e.,

αUU ¼ 8x2
EðyÞ
AðyÞ

f3
f1

þ 4x
fþ3dd

f1
: ð3:36Þ

Here, AðyÞ ¼ 1þ ð1 − yÞ2, CðyÞ ¼ yð2 − yÞ, and EðyÞ ¼
2ð1 − yÞ. There are four twist-4 azimuthal asymmetries
given by,

hcos 2ϕiUU ¼ −κ2M
j~k⊥j2
M2

EðyÞ
AðyÞ

xf⊥−3d
f1

; ð3:37Þ

hsin 2ϕiUL ¼ κ2M
j~k⊥j2
M2

EðyÞ
AðyÞ

xf⊥þ3dL

f1
; ð3:38Þ

hsinðϕþ ϕSÞiUT ¼ −xκ2M
j~k⊥j3
2M3

EðyÞ
AðyÞ

f⊥4
þ3dT þ f⊥2

−3dT
f1

;

ð3:39Þ

hsinð3ϕ − ϕSÞiUT ¼ −xκ2M
j~k⊥j3
2M3

EðyÞ
AðyÞ

f⊥4
þ3dT − f⊥2

−3dT
f1

:

ð3:40Þ

They have only twist-4 contributions up to this level and can
therefore serve as good places to study such twist-4 effects.
Corresponding to the eight structure functions that have

twist-3 contributions, we have eight twist-3 azimuthal
asymmetries. The expressions were given in Ref. [17].
For completeness, we repeat them here:

hcosϕiUU ¼ −κM
j~k⊥j
M

BðyÞ
AðyÞ

xf⊥
f1

; ð3:41Þ

hsinϕiUL ¼ −κM
j~k⊥j
M

BðyÞ
AðyÞ

xf⊥L
f1

; ð3:42Þ

hsinϕiLU ¼ κM
j~k⊥j
M

DðyÞ
AðyÞ

xg⊥
f1

; ð3:43Þ

hcosϕiLL ¼ −κM
j~k⊥j
M

BðyÞxf⊥ þ λlλhDðyÞxg⊥L
AðyÞf1 þ λlλhCðyÞg1L

; ð3:44Þ

hsinϕSiUT ¼ −κM
BðyÞ
AðyÞ

xfT
f1

; ð3:45Þ

hsinð2ϕ − ϕSÞiUT ¼ −κMj
j~k⊥j2
2M2

BðyÞ
AðyÞ

xf⊥T
f1

; ð3:46Þ
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hcosϕSiLT ¼ −κM
DðyÞ
AðyÞ

xgT
f1

; ð3:47Þ

hcosð2ϕ − ϕSÞiLT ¼ −κM
j~k⊥j2
2M2

DðyÞ
AðyÞ

xg⊥T
f1

; ð3:48Þ

where BðyÞ ¼ 2ð2 − yÞ ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
, and DðyÞ ¼ 2y

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
. It

is clear that if we insert the relations given by Eqs. (2.70)–
(2.77) into Eqs. (3.32)–(3.40), we obtain results for g ¼ 0
such as those obtained in Refs. [28,29]. The deviations
from them reflect the effects of multiple gluon scattering.
We note in particular that by replacing ϕ by ϕh, the six

azimuthal asymmetries given by Eqs. (3.32)–(3.33) and
(3.37)–(3.40) are just the six twist-2 asymmetries in
e−N → e−hX. Measurements of them are one of the major
tools that we use to extract twist-2 TMDs. Here we see
clearly that, even if the fragmentation part is not consid-
ered, there are twist-4 contributions to all of them. We
emphasize that the factor ð1 − αUUκ

2
MÞ is due to the twist-4

contributions to WUU. It exists for all azimuthal asymme-
tries that have twist-2 contributions. This means that this is
the least modification factor that we have for all six twist-2
azimuthal asymmetries for e−N → e−hX.
In light of the fact that Q2 in the experiments such

as HERMES or JLab (see e.g. Refs. [7,9]) are usually
from 1 to 10 GeV2 so κ2M takes values from 0.1 to 1,
the twist-4 modifications can be quite large depending
on the coefficient of κ2M in the equations given above.
A reliable estimation of these twist-4 contributions depends
on the unknown twist-4 PDFs involved. We note that there
are in total 18 independent twist-4 TMD PDFs involved in
the final results: two from Φ̂ð0Þ, four pairs from φ̂ð1Þ, and
four pairs from φ̂ð2Þ. These twist-4 TMDs contain infor-
mation on the intrinsic parton distribution in the nucleon
and the effects of multiple gluon scattering contained in the
gauge link. They contain in particular quantum interference
effects in the multiple gluon scattering and thus there are no
simple probability interpretations.
Clearly, it is still a long way to go to make precise

measurements of all of the twist-4 TMD PDFs involved
here. Presently, lacking knowledge about these twist-4
TMD PDFs, we suggest to use relationships between
higher-twist TMDs and corresponding twist-2 ones
obtained at g ¼ 0 given by Eqs. (2.70)–(2.77) as a first
approximation to make rough estimates of twist-4
effects. More precisely, we use the relationships given
by Eqs. (2.70)–(2.77) to replace the twist-4 PDFs by the
corresponding twist-2 ones, and make estimations of their
contributions to the cross section and/or azimuthal asym-
metries. Though this is very crude, it might be helpful at
this stage to get a feeling of the magnitudes of these twist-4
contributions. A more reliable model calculation will be left
for a future study.

Under such approximations, we obtain that hsin2ϕiUL≈0,
the other three twist-4 asymmetries become

hcos 2ϕiUU ≈ κ2M
j~k⊥j2
M2

EðyÞ
AðyÞ ; ð3:49Þ

hsinðϕþ ϕSÞiUT ≈ −κ2M
j~k⊥j3
2M3

EðyÞ
AðyÞ

f⊥1T
f1

; ð3:50Þ

hsinð3ϕ − ϕSÞiUT ≈ κ2M
j~k⊥j3
2M3

EðyÞ
AðyÞ

f⊥1T
f1

; ð3:51Þ

and the modification factors for the two twist-2 asymmetries
given by Eqs. (3.32)–(3.33) become

αUT ≈
j~k⊥j2
M2

�
−
∂ ln f1
∂ ln x þ ∂ ln f⊥1T

∂ ln x
�
; ð3:52Þ

αLT ≈
j~k⊥j2
M2

�
4EðyÞ
AðyÞ −

∂ ln f1
∂ ln x −

∂ ln g⊥1T
∂ ln x

�
; ð3:53Þ

αUU ≈
j~k⊥j2
M2

�
4EðyÞ
AðyÞ −

∂ ln f1
∂ ln x

�
: ð3:54Þ

For the twist-4 azimuthal asymmetries, by comparing
Eqs. (3.50)–(3.51) with the twist-2 part of the Sivers
asymmetry given by Eq. (3.32), we see that the asymme-

tries are suppressed by a factor j~k⊥j2=Q2 and might be
significant in the energy regions currently available to
experiments [6–12].
For the modification factors α given by Eqs. (3.52)–

(3.54), we see that the first term in the square bracket for
αLT or αUU can already reach 4. To get a feeling of how

large their magnitudes could be, in Fig. 2, we plot ~αUU ¼
M2αUU=j~k⊥j2 and ~αUT ¼ M2αUT=j~k⊥j2 as functions of x
given by Eqs. (3.52) and (3.54) using the parametrizations

FIG. 2. Estimation of the modification factor ~αUU or ~αUT as a
function of x at y ¼ 0.5.
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available for f⊥1T given in Ref. [30]. The parametrization of
f1 is taken from Ref. [31]. In obtaining the figure, only
light flavors were taken into account. We see from Fig. 2
that these modifications could be quite significant.

D. Contributions from the four-quark correlator

The calculations presented so far are made for e−N →
e−qX where quark-j-gluon-quark correlators (j ¼ 0; 1;
2; � � �) are included. At the twist-4 level, there are also
contributions from processes with four-quark correlator
defined as

φ̂ð0Þ
ð4qÞðk1; k; k2Þ

¼ g2

16

Z
d4y
ð2πÞ4

d4y2
ð2πÞ4

d4y1
ð2πÞ4 e

iðk2−kÞy1eiðk−k1Þy2eik1y

× hNj½ψ̄ð0ÞLð0; y1Þψðy1Þ�½ψ̄ðy2ÞLðy2; yÞψðyÞ�jNi:
ð3:55Þ

This comes from the four-quark diagrams (Fig. 3) widely
studied for the inclusive reaction e−N → e−X [13,15].
They contribute to e−N → e−gX if the cut is at the middle
and to e−N → e−qX if the cut is at the left or right.
In experiments, it is difficult to differentiate between
e−N → e−qX and e−N → e−gX, as both give rise to
e−N → e− þ jetþ X.
It can be shown that the collinear expansion is also

applicable in this case and the gauge links included in
Eq. (3.55) are obtained during the expansion by taking the
multiple gluon scattering into account. Up to twist-4, we
need only to consider the leading power contribution of

φ̂ð0Þ
ð4qÞ. The calculations are essentially the same as those for

the inclusive process [13,15]. The only difference is that a
k⊥ dependence in the correlation functions is not inte-
grated. We present the contributions e−N → e−gX and
e−N → e−qX separately. They both take the form

~Wðg=qÞ
ð4qÞμν ¼

2

p · q

Z
dx1dx2dxh

g=q
4q ðg⊥μνCs − iε⊥μνCpsÞ;

ð3:56Þ
where Cs and Cps are two TMD four-quark correlation
functions. They depend on, besides p and S of the nucleon,
the longitudinal variables x1, x, and x2, and k⊥ of the gluon.
Cs ¼ Cvv þ Caa and Cps ¼ Cva þ Cav are scalar and
pseudoscalar respectively, and Cij is given by

Cij ¼
Z

d4k1d4kd4k2δðkþ1 − x1pþÞδðkþ2 − x2pþÞ

× δðx − kþ=pþÞδ2ðk⊥ − k0⊥Þφð0Þ
ð4qÞijðk1; k; k2;p; SÞ:

ð3:57Þ

The unintegrated correlation function φð0Þ
ð4qÞij is defined as

φð0Þ
ð4qÞij ¼

g2

16

Z
d4y
ð2πÞ4

d4y2
ð2πÞ4

d4y1
ð2πÞ4 e

iðk2−kÞy1e−iðk1−kÞy2eik1y

× hNj½ψ̄ð0ÞΓþ
i Lð0; y1Þψðy1Þ�

× ½ψ̄ðy2ÞΓþ
j Lðy2; yÞψðyÞ�jNi; ð3:58Þ

and Γμ
V ¼ γμ, Γμ

A ¼ γμγ5.

The coefficient hg=q4q is determined by the hard part after
collinear expansion and is a function of the longitudinal
variables x1, x and x2. It is a sum of four terms corre-
sponding to the four graphs in Fig. 3. For e−N → e−gX,
we have

hg4q ¼
δðx − xBÞ

ðx2 − xB − iϵÞðx1 − xB þ iϵÞ þ
δðx − xBÞ

ðx2 þ iϵÞðx1 − iϵÞ

þ δðx − xBÞ
ðx2 − xB − iϵÞðx1 − iϵÞ þ ð1 ↔ 2Þ�;

ð3:59Þ
where ð1 ↔ 2Þ denotes the left-neighboring term after
exchange of 1 and 2. For e−N → e−qX, hq4q ¼ hqL4q þ hqR4q ,

hqL4q ¼ δðx1 − xBÞ
ðx2 − xB − iϵÞðx − xB − iϵÞ − ðx2 → x − x2Þ

−
δðx − x1 − xBÞ

ðx2 − xB − iϵÞðx − xB − iϵÞ þ ðx2 → x − x2Þ;

ð3:60Þ

and hqR4q ðx1; x; x2Þ ¼ hqL�4q ðx2; x; x1Þ. Adding all of them
together, we obtain h4q ¼ hq4q þ hg4q that is exactly the
result given by Eqs. (65)–(66) in Ref. [15] for the inclusive
reaction.
After the integration over x1, x, and x2, Cs and Cps

reduce to functions of xB, k⊥, p and S. They are decom-
posed as

Z
dx1dxdx2h4qCs ¼ M2

�
f4q −

εkS⊥
M

f⊥4qT
�
; ð3:61Þ

Z
dx1dxdx2h4qCps ¼ M2

�
λhf4qL −

k⊥ · S⊥
M

f⊥2
4qT

�
:

ð3:62Þ

We obtain their contributions to structure functions as

FIG. 3. Four-quark diagrams without multiple gluon scattering.
The quark 4-momenta are k1, k2, k01 ¼ k1 − k and k02 ¼ k2 − k
respectively.
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WUU;T;4q ¼ 4x2κ2Mf4q; ð3:63Þ

WLL;4q ¼ −4x2κ2Mf4qL; ð3:64Þ

Wsinðϕ−ϕSÞ
UT;T;4q ¼ 4x2κ2M

j~k⊥j
M

f⊥4qT; ð3:65Þ

Wcosðϕ−ϕSÞ
LT;4q ¼ −4x2κ2M

j~k⊥j
M

f⊥2
4qT: ð3:66Þ

We see that they contribute to the unpolarized and double-
longitudinally polarized structure functions, the Sivers
asymmetry and so on. They behave as addenda to fþ3dd,
fþ3ddL, f⊥þ3ddT , and f⊥3

þ3ddT defined via the quark-two-
gluon-quark correlator. They all vanish at g ¼ 0 and bring
no change to the discussions given in the last subsections.

E. Reducing to inclusive DIS

After we integrate over k⊥ and apply the constraints from
time-reversal invariance, we obtain the cross section and
structure functions for the inclusive DIS process. The
results are given as follows:

Fin
UU;T ¼ xf1 þ 4x2κ2Mðfþ3dd þ f4qÞ; ð3:67Þ

Fin
UU;L ¼ 8x3κ2Mf3; ð3:68Þ

Fin
LL ¼ xg1L þ 4x2κ2Mðfþ3ddL − f4qLÞ; ð3:69Þ

Fin;cosϕS
LT ¼ −2x2κMgT; ð3:70Þ

where the PDFs are the k⊥-integrated ones and are
functions of x only. Comparing with Eqs. (2.33)–(2.36),
we obtain that,

xF1 ¼ ½xf1 þ γ2ðfþ3dd þ f4qÞ�=2; ð3:71Þ

F2 ¼ 2xðF1 þ γ2f3Þ=ð1þ γ2Þ; ð3:72Þ

xg1 ¼ ½xg1L þ γ2ðfþ3ddL − f4qLÞ þ γ2xgT �=2ð1þ γ2Þ;
ð3:73Þ

g1 þ g2 ¼ gT=2: ð3:74Þ
From these results, we see twist-4 contributions to the
violation of Callan-Gross relations and so on.

IV. SUMMARY

In summary, benefitting from the collinear expansion, we
carried out the calculations up to twist-4 and presented for
the first time the complete twist-4 result for e−N → e−qX
with a polarized beam and target. The results show that,
among the 18 structure functions, besides the eight that
have only twist-3 contributions, the other ten have twist-4
contributions. We showed in particular that among these
twist-4 contributions, four correspond to azimuthal asym-
metries where twist-4 are the leading power contributions
in e−N → e−qX and can serve as good places to study
these twist-4 effects. We also showed that for all eight twist-
2 structure functions for e−N → e−hX that correspond to
the eight twist-2 TMD PDFs, there are twist-4 addenda to
them. These twist-4 contributions could be quite significant
and have a strong impact on the study of TMD PDFs in
particular in the energy regions of existing DIS experiments
such as HERMES and those in JLab. We suggested an
approximate way to obtain rough estimations of twist-4
contributions using corresponding twist-2 PDFs.
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