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We present for the first time the complete twist-4 result for the semi-inclusive deeply inelastic scattering
e”N — e ¢gX with polarized electron and proton beams at the tree level of perturbative QCD. The
calculations have been carried out using the formalism obtained after collinear expansion where the multiple
gluon scatterings are taken into account and gauge links are obtained automatically in a systematical way.
The results show in particular that there are twist-4 contributions to all the eight twist-2 structure functions for
e”N — e~ hX that correspond to the eight twist-2 transverse-momentum-dependent parton distribution
functions. Such higher-twist effects could be very significant and therefore have important impacts on
extracting these three-dimensional parton distribution functions from the asymmetry data on e”N — e~ hX.
We suggest also an approximate way to obtain a rough estimation of such higher-twist contributions.
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I. INTRODUCTION

Three-dimensional or transverse-momentum-dependent
(TMD) parton distribution functions (PDFs) are one of the
frontiers in hadron physics in particular in the study of
hadron structure and properties of QCD [1,2]. When the
transverse momentum of the parton is concerned, the
sensitive measurable quantities in high-energy reactions
are often different azimuthal angle asymmetries. Higher-
twist contributions could be very significant and thus play
an important role when going from the one-dimensional to
the three-dimensional case.

In contrast to twist-3 contributions that often lead to
azimuthal asymmetries that are missing when only twist-2
contributions are considered (see e.g. Refs. [3—5]), in many
cases, twist-4 contributions are just addenda to twist-2
asymmetries. Since the asymmetries themselves are usually
not very large, twist-4 contributions can be relatively very
significant and have large influences on determining the
twist-2 PDFs from experimental data. This is particularly
the case in light of the fact that most of the data currently
available are from experiments at not very high energies
(see e.g. Refs. [6—11], or Ref. [12] for a recent review). It is
therefore necessary and important to make systematic
studies including higher-twist contributions. However, such
a systematic study up to twist-4 is considered as very
complicated and might be even impossible in particular
because we need to deal with quark-two-gluon-quark
correlators with three independent parton momenta and
related complicated problems.

Higher-twist effects in inclusive deeply inelastic lepton-
nucleon scattering (DIS) and Drell-Yan processes have
been studied already in the 1980s to 1990s [13—15]. It has
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been shown that the collinear expansion is a necessary
procedure for obtaining the hadronic tensor or the cross
section in terms of gauge-invariant one-dimensional PDFs.
More recently, it has been shown that [16] collinear
expansion can be extended to the semi-inclusive DIS
process e”N — e gX, where ¢ denotes a quark that
corresponds to a jet of hadrons in experiments. In the
formalism obtained, the multiple gluon scattering are taken
into account and gauge links are obtained automatically
and systematically. Moreover, the expressions for the
hadronic tensor obtained after the collinear expansion
are simple and elegant in the sense that they are given
in terms of PDFs and hard parts. The hard parts are not only
calculable but also simplified to a form independent of the
parton momentum, and correspondingly the involved PDFs
are not only gauge invariant but also all defined via quark-
quark or quark-j-gluon-quark correlators with only one
independent parton momentum left. This makes the expres-
sions much simpler and higher-twist calculations much
more feasible. Based on this formalism, the complete twist-
3 results for eN — ¢7¢X and e*e™ — hgX have been
obtained and were presented in Refs. [16-18].

Although there are still large differences between e™ N —
e gX and e”N — e hX, the study of the former can
provide useful references at least qualitatively for the latter.
In this paper, we present for the first time the complete
twist-4 result for e”N — e~ ¢X with polarized electron and
nucleon beams. After this introduction, in Sec. II, we make
a brief summary of the general formalism including the
involved TMD PDFs defined via the corresponding quark-
Jj-gluon-quark correlators and the relationships between
them. In Sec. III, we present the results for the structure
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functions at the tree level of pQCD up to twist-4. We
present also the results for azimuthal asymmetries and
suggest an approximate method for a rough estimation of
twist-4 contributions. In Sec. IV, we present a short
summary and discussion.

II. THE FORMALISM

To be explicit, we consider the semi-inclusive DIS
(SIDIS) e N — e~ ¢gX. The cross section is given in terms
of the well-known leptonic tensor L and the hadronic
tensor W, as

a2 2 d3l/d3k/
do = =2 qL"”lﬂ,l’ S k) —m——,
o=or LA LIW i (q.. ) GrV2E2E,

(2.1)

where [, I', p and k' are the 4-momenta of the incident
electron, the outgoing electron, the incident nucleon
and the outgoing quark ¢ respectively; g =7/ —1 and
Q? = —¢%; A, and S are the helicity of the electron and
the spin of the nucleon. The leptonic tensor is given by

LR (12, 1) = 2(1Y 4 0% — gL - 1) + 24 L L,
(2.2)

which consists of an unpolarized symmetric part and
a polarized antisymmetric part. We also note that the
leptonic tensor is space-reflection even, i.e., it satisfies
L (1P, a7, ') = L, (1,4, I'), where [ denotes [ under

space reflection. The hadronic tensor W,(,SJ) is defined as

si 1
Wi (q.p.SK) =5~ (p.SW,(O) K. X) (K. XI1,(0)|p.S)
X

x (2n)*s*(p+q—K —px). (23)

where J, =wy,w is the electromagnetic current. In
addition, the hadronic tensor is also space-reflection

even in this case, i.e., it satisfies Wf,ii)(qp, pP.SP KP) =
W(si)/w(q’p’ S, k/)
We note that W,(,‘i,i) is related to the hadronic tensor

ij;j” (¢, p,S) for the inclusive process e”N — e~ X by

&K
2Ey

W< )(q p,S) ﬂff q.p,S. k')

(2.4)

If we consider only the k¥, dependence of the cross section,
we have

at e? AU d*K
do =291 2, W, (q,p, S, kK, ) ——E, (2.5
9 SQ4 ( 1 ) ;w(q p J_) 2El’ ( )
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where W,,(q,p.S. k') is the TMD semi-inclusive had-
ronic tensor that is related to W,(ff)(q, p,S, k') by

.S K. (2.6)

1 dk.
W,u(q.p. S k) = 5 | s= Wi
;w(q P J_) (2 ) /2E 1z (

A. The general form of the cross section
in terms of structure functions

The general form of the cross section in terms of
structure functions is obtained from the general form of
the hadronic tensor expressed as a sum of basic Lorentz
tensors multiplied by Lorentz scalar coefficients. This can
be found e.g. in Refs. [4,19-21] for e*N — ¢~ hX or in
Refs. [22,23] for eTe™ — hyh,X. It has in particular been
shown in Ref. [23] that the spin-dependent tensor set can be
given by spin-dependent Lorentz scalar(s) and/or pseudo-
scalar(s) times the unpolarized set.

For e”N — e ¢X, the hadronic tensor takes exactly the
same form as that for eN — e"hX or ete™ = hjhX
for spin-1/2 h; and spin-zero h,. The spin-independent
(or unpolarized) part is given by

S}ll/:{g”y_

;4 v

Py Pk k’”k’”} (2.7)

Ry = et (p g, ki)Y, (28)
hz?j;w _ Pglk;v]’ (29)
hA/w {gﬂqu g;qu} (210)

where & represents the space-reflection-even tensor while /1
represents the space-reflection-odd one; the superscript S or
A denotes symmetric or antisymmetric under exchange of
(u <> v), and the subscript U denotes the unpolarized (spin-
independent) part. A 4-momentum p with a subscript ¢
denotes p, = p—q(p-q)/q* satisfying p,-q=0. We
use, as in e.g. Ref. [23], the shorthand notations to make the
expressions more concise such as e4PX = g"°q p ok
AWBYY = AFBY + AVBF, AWBY = A¥BY — AYB¥ and so on.
We see that there are in total nine such basic tensors in the
unpolarized case.

For the spin-dependent part, in the y*N center-of-mass
frame, the basic Lorentz tensors can be given by

i = ([ (K- SR XSy, (2.10)
i = (K- S SRy}, (212)
W =l (€L S oy (2.13)
it ={[hs (K- S XSS, (2.14)
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where X5 = &7k, S, and €7 = i n,. There are in
total 27 such S-dependent basic tensors, three times as
many as those for the unpolarized part, corresponding to
three independent polarization modes.

Under the one-photon exchange approximation, parity is
conserved. We need only the space-reflection-even parts
WS and kv In this case, we have five unpolarized, four
Aj,-dependent and nine Sy-dependent Lorentz tensors left.
Time reversal invariance does not give any restriction here
due to the final-state interaction [24-26]. There are finally
18 independent Lorentz tensors that contribute and each
corresponds to an independent structure function.

After making the Lorentz contraction with the leptonic
tensor, we obtain the general form for the cross section. In
the y*N c.m. frame, we have

do___ _ Gn KOWyu + Wiy + W
Gedydsd®K, Xy 02 vu +AWru + 4Wur
+ LW + |§T|WUT + M|S7Wer),
(2.15)

WUU = WUUT + £WUUA,L + \/ 28(1 + S)WCUOLS;ﬁ COSQ’)

+ WSS cos 29, (2.16)
Wiy = /2¢e(1 —¢) Wsm(ﬁ sin ¢, (2.17)
Wor = V/2e(1 + e)Win? sinp + eWn > sin2¢,  (2.18)
Wi =V1=W, +2e(1—e)WS? cosp,  (2.19)
Wor = /2e(1 + &) Win?s sin ¢

+ (Wyr 7" + e ") sin(g - )

W i+ )

+/2e(1 + &) Win799) sin(2¢) — gbs)

+ eWnOP0S) in (3¢ — gbs). (2.20)
Wir = /2e(1 — )W ?s cos ¢pg

+ V1= 2WG % cos(h - )

+/2e(1 = e) WSS 27795 cos(2p — ps),  (2.21)

where x = Q*/2p-q, y=p-q/p-1, e=(1-y—31°y*)/
(1=y+3y*+1r*y?), r = 2Mx/Q; K is a kinematic factor,
K= (1+y*/2x)y*/(1 —¢); ¢ is the azimuthal angle
of k' defined with respect to the leptonic plane and ¢g

is that for S’T. Here, we suggest unifying the notations in
the following way: the WV’s denote the sum of the

PHYSICAL REVIEW D 95, 074017 (2017)

contributions in each polarized case specified by the
subscripts; the W’s are called structure functions, and
they are Lorentz scalars and are functions of x, O and
k' 2, where the superscripts denote azimuthal angle
dependences and the subscripts denote the polarizations.
We use W’s and W’s to denote those for e N — e ¢gX
and F and F’s are for e”N — e~ hX where the expres-
sions have exactly the same form with the replacements
of Wby F, Wby F, ¥, by p,,, and ¢ by ¢,.

All measurable quantities can be expressed in terms of
these 18 structure functions. In the QCD parton model,
these structure functions are given in terms of gauge-
invariant PDFs. The results up to twist-3 can e.g. be found
in Ref. [17]. In the remainder of this paper, we present the
results up to twist-4.

If we integrate over the azimuthal angle ¢, we obtain

do | gy . .
KW AW AW
dxdydgsdid, 2 xQ2 Wou + AWy + Wur
+ 2 Wir + IS Wor + 4|87 W),
(2.22)
Wou = Wour +eWyu . (2.23)
V_VLU - WUL - 0, (224)
Wi =VI1-W,,, (2.25)
Wor = /2e(1 + &) Win?s sin ¢, (2.26)
Wir = /2e(1 — ) WSS cos . (2.27)

We see that only 5 of the 18 structure functions
contribute in this case. We can use this to study these
five structure functions more intensively. We see in
particular that two transverse spin asymmetries could
exist: one is the sin ¢bg single-spin asymmetry that has to
vanish in the inclusive DIS e”N — ¢~ X as demanded by
the time reversal invariance. For the SIDIS e™N — e ¢gX
as discussed here, final-state interactions between the
struck ¢ and the rest of the hadronic system could give
rise to such asymmetry.

If we further integrate over k', , we obtain the well-known
result for the inclusive process e”N — ¢~ X. We note that
the single-spin asymmetry vanishes in this case because of
the time-reversal invariance, so we obtain

do™ azn . .
— ,C mn l fln l fln
dxdydds o0 (Fou +4F Ly + T
+ M FrL + ST F e + MlSe|FEr),  (2.28)
]:iLI/lU = FilI}U,T + EFilI}U,Lv (2.29)
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i — /1 —g2Fin (2.30)
i — \/2e(1 — e)F®s cos g, (2.31)
Fin = Fin — Fin —0, (2.32)

As is well known there are four independent structure
functions in this case. Their relationships to the well-known
F,, F5, g; and g, are given by [4]

Fiy, + Fiyr = (1+7°)F,, (2.33)
Fiyr = 2xF), (2.34)

Fpp = 2x(91 = 7*92), (2.35)
FIF P = =2xy(g) + o). (2.36)

B. The collinear expansion and the hadronic tensor
in the QCD parton model

At the tree level of the QCD parton model, to obtain the
hadronic tensor in terms of gauge-invariant PDFs, we need
to consider the contributions from the series of diagrams
given by Fig. 1, i.e., to include contributions from the
multiple gluon scattering. It has been shown [16] that the
collinear expansion [13,14] can be applied also to the semi-
inclusive DIS process e”N — e¢~¢X and, after collinear
expansion, the hadronic tensor is expressed in terms of the
gauge-invariant quark-quark and quark-j-gluon-quark cor-
relators and calculable hard parts [16,17]

W( ) ZWﬂ”JL q.p. S, k’),

q,p.S. k) (2.37)

where j denotes the number of gluons exchanged and ¢
denotes eventually different cuts. After integration over &7,

these W,(ffj g are simplified to [17]

WY = Te[hl) &) /2, (2.38)
Wit = Trhl ¢l /4q - p, (2.39)
Wit = Tulhn d5 + N2 a1/ (2q - p)?. (2.40)

FIG. 1. The first three of the Feynman diagram series where
(@) j=0, (b) j=1 and (c) j = 2 gluon(s) are exchanged.
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> ,(2, o A (2,
W =Telha 0%/ 2q - )2 (2.41)

and the hard parts are reduced to the simple forms
independent of the parton momentum, i.e.,

) = y,m7,/pt, (2.42)
I = v, oy, (2.43)
NS = a1 mr 7, (2.44)
W = 1.0 o7 1. (2.45)

where | =¢7y, and ¢’ =¢° —i’n° —i°n”. The
involved quark-quark and quark-j-gluon-quark correlators
are given by

CIA)(O) ()C, kJ_) = /7p+6(1;;;l;2yj‘ eiXp+}'7—iZL'5:i
X (N (0)L(0, )y (y)IN). (2.46)
@5)1)()5, kJ_) = /7+(<1;ﬂ>d YL ixpty =ik, 3.
X (N[@(0)D1,(0)L(0,y)w(y)IN),  (2.47)

+ - 72 ) 7
p dy d yl/ l.p+dz—eixp+y’—ikyh

NI
o) = [Es |
X (NB0)£(0.2)D.,()D1,(2)

x L(z, )y (y)|N), (2.48)
&5;)2) (x’ kL) =n° / 7[)-"_?;7_[;132)“' eixfy’—ih-h
X (N[ (0)D,(0)D,(0)L(0, y)w(y)|N),
(2.49)

oM prdyd®y, - i s
Ppe )(kal):/ (27) ety

x (N[ (0)D1,(0)L£(0,y)D 1 ,(y)w(y)IN),
(2.50)

where D, = —i0, 4 gA,, and L£(0,y) is the well-known
gauge link. We see that the involved ${) are all D-type and
are simplified to depend only on one independent parton
momentum. We note in particular that the leading power
contribution of W,(/y) is twist-(j 4 2). For W,(,%’L), the leading
power contribution of the first term on the rhs of Eq. (2.40)
is at twist-5 because of the presence of the factor 71” in the
definition of &5(2) given by Eq. (2.49). It has no contribution
up to twist-4.
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In e N — e~ ¢X, where the fragmentation is not consid-
ered, only chiral-even PDFs are involved. We need only the
y* and y5y” terms in the expansion of the correlator in terms
of the I matrices, e.g., @) = (c1>f,°>ya—ci>§,°)y5y“+---)/2.

It is useful to note that

OO (x, k) = 1@ (x, k1 )70, (2.51)
@%Mﬁ(& k)= }’o@ng) (x, k1 )v0, (2.52)

while no such simple relation for (Apf,1> or @,,%,) holds. This

implies that CD,(,O)* = (D,(,O), &)5,0)* = &)(0), go/(,ig/[ K — (pg;,i‘/[ )
and (pﬁ,%,é,” "= (pé?,,i” ). We also emphasize that due to the

QCD equation of motion, these quark-j-gluon-quark cor-
relators are not fully independent of each other. We will
come back to this point in the next section.

C. Lorentz decompositions of quark-quark
and quark-gluon-quark correlators
1. The involved decompositions and TMD PDFs
Up to twist-4, we need the complete Lorentz decom-

positions of @E,O) and <i>£,0). The chiral-even parts are given
by [27]

(0) _ elis 1
O, = P+"a (fl _ﬁflT>

k akJ_
t kiaft = MSrafr = bk ioft - =SS0 f
M2 EkS
N )] 2.53)
= (0 ki -Sr
oY = -pti, </1h91L Y, i
- kigk,
- kJ_agL - MSTagT - ﬂhklagJL_ + % Sg"g%
M k- Sy
S 7 e e 2.54
o na( n93L M 93T> ( )

where &k, = e 4k, and ky .k g = ki ok — 91apk3 /2.
Here, we use the same naming system as that used in
Refs. [4,17,18,23,27], where f’s and g¢’s are defined from
the y, or ysy, term respectively; a digit j in the subscript
stands for twist-(j 4+ 1), and those without a j are for
twist-3; the subscript 7' or L denotes hadron polarization,
and those without 7 or L denote unpolarized hadrons.
We see that there are four chiral-even twist-4 TMD PDFs

defined via ®©). For @\, the chiral-even parts are
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ohi = PR, <kLpfj — MSr,far = Mnki,fa;
kikip kS
7;4 Sﬂfd7> + M29¢pa (de - ﬁf%}ﬂ)
ks

+ kL /)kLa <f3d +—= f3dT>
. k,-S

+iMPe )y (ﬂhfde - # 3Ld3T)
1 ~ k- Sy

+ 2 kigpkiay </1hf3ldL + Y ﬁT> ) (2.55)

~(1 . _ 7
{pf)a) = lP+”a (klpg(Ji_ + MSTpng + lth_pg(Ji_L

kipkip 4 . eks

- /TS[TgﬁT + legLﬂ(z 934 — ﬁg;d]"
Ij_S
kJ_{ka_a} <Q3d += M g3dT>
k,-S

+ Msz/Ia <’1h93dL - ijrgé_;T>

. ki -S
+ ik K 1) (ﬂhng +— ngﬁj‘r), (2.56)

where we, as in ref. [23], add in the subscript a lowercase
letter d to denote TMDs defined via the D-type quark-
gluon-quark correlator.

Up to twist-4, we need only the leading power contri-
butions from (). For the chiral-even part, we need only
the 71, terms. They are given by

kS
N _ €
§0§70')a = pti, {Mzglpg <f3dd y f3ddT)

ks
+kipkis) <f3dd + = f3ddT>

ki St .5 )

+ iM’e 1o (ﬂhf 3ddL = 3 J 3dar

1 ki -S
+5 kl{l’kiff} </1hf3ddL‘|‘ LM L 3l;dT>:|’ (2.57)

e )
ﬁgwdr
ks
+5 kl{/}km} <93dd+ g3ddT>
_kiSr s >
M Y3dar

k| -Sr
+ ki pkie) <’1h93ddL t gﬁdrﬂ ,

-2 _ .
€0f<m>a = pti, |:lM2€J_po' <g3dd -

+M%g) </1h93ddL

(2.58)
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where the subscript dd denotes that they are defined via the
D-type quark-two-gluon-quark correlator. Besides the
superscript M, those for p() are exactly the same as $(?).

Since there are more than one f 3ldr and g3LdT according to
the naming rules, we introduce an additional digit in the
superscript to distinguish them from each other. We meet the
same problem in decompositions of $!) and > and we use
also similar notations. In total, we have four f3 L sassociated
with the four independent Lorentz tensors g, g, k1 (,k1q),
€10 and kj (k. tespectively; while gi,; to gif are
associated with & | ,,, k| 4 ,,l~< La}s 9Lpa K1k 1q) rEspectively.
The four Lorentz tensors are orthogonal to each other.

We see that for the twist-4 parts, the decompositions of ¢
and ¢ have an exact one-to-one correspondence. For each
f3, there is correspondingly a g;. They always appear in
pairs. We have in total eight such pairs from ¢!, $(®) and
@*M) respectively. Due to the Hermiticity of & and
@*M) | PDFs defined via these two correlators are real.
However, those defined via @' and $? are complex,
which contain both real and imaginary parts.

The operator expressions of these twist-4 TMD PDFs
can be obtained by reversing the corresponding equations
for Lorentz decompositions. This can easily be done and
we will not present them here.

2. Relationships derived from the QCD
equation of motion

From the QCD equation of motion, y- Dy =0, we
obtain immediately that, for the two transverse components

of CI)éO) or &);O), we have

xptdOr g‘fRe(pﬂ+ ¢’ Im (pﬁ),

g/ 6R (p(7+

where ¢, = n”¢,, and similarly for others. By inserting the
corresponding Lorentz decompositions of these correlators
into Egs. (2.59)—-(2.60), we obtain a set of relationships
between the twist-3 TMD PDFs defined via the quark-gluon-
quark correlator () and those defined via the quark-quark
correlator @), For the chiral-even part, we obtain eight real
equations by inserting Egs. (2.53)—(2.56) into Egs. (2.59)—
(2.60), and they can be given in the unified form [23]

(2.59)

xpt®dOr Imgl!),  (2.60)

s = alis = —x(f§ = igf), (2.61)

where S =null, L or T and K = null or L. whenever
applicable. Using the relations given by Eq. (2.61),
we can replace all the TMD PDFs defined via ¢! by
those defined via ® in the final twist-3 results for the
hadronic tensor in SIDIS [4,17], and similarly for eTe™
annihilations [18,23].

Similarly, for the minus components of d>£,0) and &320), we
have

PHYSICAL REVIEW D 95, 074017 (2017)
oo ~(2,M)
()Cp ) (g/J_ (p/m'Jr + lg,o—(pp(ﬂr )/2’

(gi (ppaJr + l8p6¢p0+ )/2

and for the transverse components of ¢, and ¢,,,, we have

(2.62)

(xp™)2d (2.63)

G ~ G ~ (2.

(gi 90/’0' wp (P/Jo- ) gﬁ_ (ﬂp5+ lsp paf) ’ (264)
0 o ~ (2. o

(gﬁ_ (,0/)(; lgp (/)ﬂo’) (ppaf _lep (ppaJr . (265)

By inserting Egs. (2.53)—(2.58) into Eqs. (2.62)—(2.65), we
obtain a set of relationships between the twist-4 PDFs

defined via @M »(1) and ®©). They are given by

Xfs=xf_zq = _fli/Ide’ (2.66)
X fir = xf a0 = = Ydar (2.67)
g3 = Xf zaL = _fli/lsddL’ (2.68)
gz = xf B = — Y (2.69)

where f, = f + g such as f_3; = f3; — g3 and so on. We
note that Egs. (2.66)—(2.69) represent 12 real equations
and can be used to replace those independent twist-4
TMD PDFs in parton model results for the cross section.

D. Relationships between twist-4
and twist-2 PDFs at g=0

When the multiple gluon scattering is taken into account,
these higher-twist TMD PDFs are all new and quite
involved. They reflect not only the parton distributions
but also quantum interference effects in the scattering.
There is little data available that gives direct insights into
them. However, if we neglect the multiple gluon scattering,
i.e., put g = 0, we obtain a set of simple equations relating
them to the twist-2 counterparts. They could be helpful in
understanding the significance of these higher-twist PDFs
in particular at the present stage.

By putting g = 0 into Eqs. (2.46)—(2.50), we relate (/)

o ®O, ie, o = -k, 0, 55"
QAD/%) + y%&i”yo =k, k 1,00 /9x. Together with the
equation of motion, these relations relate all higher-twist

PDFs to leading-twist ones. For those defined via ("), we
have

=k, k@, and

2 K2
xf3q = 2M2 xfzd =x'f; = ]\/LIZ fi, (2.70)

kP k2
XG3ar = lz—z\fﬂxgi“ = —x’gy, = 2—1\;29““’ (2.71)
xfsldT 2M2 xf3dT 2f%T =T flT’ (2.72)
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2 2

k3
=i XGadr = =X Gy = M2 9irs

o (2.73)

13
XG3ar =

and all the others vanish. For those defined via $, we
have

2Ref344 = 2Re 2];2/[2 f%dd = 2];;2 Ox == f1 (2.74)
2Reg3441, = 2Re 2];;2 Bgar = 2%2%9&, (2-75)
2Ref3lddT = —2Re 211(;2 f?ddT = 2132;2% 1LT’ (2.76)

2Reg3lde = —2Re 2];;2 g3l;dT 2];;2 ac") ng’ (2.77)

and all the others vanish. Time-reversal invariance demands
fir = 0 in this case [24].

III. THE COMPLETE TWIST-4 RESULT

A. The hadronic tensor

We substitute the Lorentz decompositions of the
quark-quark and quark-j-gluon-quark correlators given
by Egs. (2.53)—(2.58) into Egs. (2.38)—(2.41), carry out
the calculations, and obtain the hadronic tensor and cross
section up to twist-4. Those up to twist-3 can be found in
Ref. [17]. We present the results—in particular, those at
twist-4—in the following.

To get the contributions from WL?,), we need to carry out
the two traces in connection with the hard parts. They are

Tr[h\Yw (3.1)

(3.2)

] = 8nﬂny/p+’
Tr[hlY ysi] = 0.

We see in particular that the trace with ys# is zero. This
implies that there is no contribution from <i>§,°) or gsg to the

hadronic tensor at twist-4. The only contributions are from

CIJE,O) or f3g and they are given by

~ 0 2M?
W§4,)w = (q ; p)2 (C] + pr)y(q + 'xBP)I/ <f _gL f3T> )

(3.3)

where we use a subscript 14 to denote the twist-4 part only,
and the superscript (0) denotes that it is from WL‘?
To get the contributions from W,S'J, we need

Tr[il;(tppyoi] = 4(2ﬁynv.df( + gJ_/,w.dia - gj_p{pglba})v (34)
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= —4i(2a,n,e" + g1,/ €1, + g1, €1, ).
(3.5)

~(1
Tr [hiw)p 7s 71]

and the results for the contribution from the diagram with
the left cut are given by

. 1 kS
1,L _
W 54#1/) = 2q -p |:4M2nﬂnl/ <f—3d - A; fJ—_3dT>

L
- kJ_ kJ_u <f—3d M 3dT>

- kl{ﬂkLv} (Ahf-&-SdL + kLMST i§dT>:| . (3.6)
For the contributions from W,(,ZU’L), we need
T[NP = 4p - (9.9 + 9147907 (3.7)
Tr [ /m}’sﬂ] =4ip-q(9., €1,° —91.°€1,").  (3.8)
and obtain,
z ﬁuLu) = plzq [gi;w <f +3dd %f i3ddT>
+ie <ihf+3ddL - % iim>] . (3.9
For that from W,%M), we have
Telh ") = ~8p,upud (3.10)
e[ ysp] = 8ipup, ey, (3.11)

and the result at twist-4 is given by

kS

~ OM 2M?>
P e f—3ddT (3~12)

oy — T - q)z DPuPv <f—3dd

Adding the contributions from Wﬁ), V~V,(49 and W,(,ZD)
together, and using the relations between the PDFs
defined via the quark-j-gluon-quark correlator and those
defined via the quark-quark correlator given by
Egs. (2.66)—-(2.69) to eliminate the PDFs that are not
independent of others, we obtain the complete result for
the hadronic tensor up to twist-4. It is given by
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2M?
(q-p)?

1
- n |:kL(;4kLL/> < L3(1 + f 3dT>

kl S,
- kl{ukLv} <’1hf aL T fB‘dT)
oks
ﬁf i3ddT>

ki St . )}
_T +3ddr | |-

(3.13)

Wl4;w =

o
Mf3T>

(q +2xpp),(q +2xpp), <f3 -

+2M?g,,, <f 13dd —

+ 2iM%e </1hf 13ddL

Here, only the real part of the TMD PDF contributes and
this is true for all the twist-4 PDFs involved in Eq. (3.13).
We therefore just omit the symbol Re for clarity of the
equation as well as in the remainder of this paper.

In addition, we see from Eq. (3.13) that, just as with the
twist-2 or twist-3 part [17], the complete twist-4 hadronic
tensor also satisfies the requirement of current conservation,
ie., ¢"Wu = ¢"Wyy,, = 0. It contains both a real sym-
metric part and a pure imaginary antisymmetric part. This
implies that we will obtain twist-4 contributions to the cross
section in reactions with polarized or unpolarized leptons.

B. The structure functions

Performing the Lorentz contraction of the hadronic
tensor with the leptonic tenor given by Eq. (2.2), we obtain
the differential cross section in terms of the gauge-invariant
TMD PDFs. By comparing the results with the general
form given by Eq. (2.15), we obtain the expressions for the
structure functions in terms of PDFs. Among the 18
structure functions, ten have twist-4 contributions. They
are given by

Wyur = Xf1 + 4%k f 3000 (3.14)
Wour = 8x3](%4f3, (315)
cos2¢p 2.2 |zl|2 L
WUU = -2x Ky M2 f—3d’ (316)
Wsm2¢ oy 2 2 |kJ-| L (3 17)
= M2 w3are :
WLL =xg; + 4x2K%/[f+3ddLv (318)
i) _ K|

W?Jr}((é)" = Vl Xfip + Ak e ) (3:19)
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sin(¢p+¢ |k |
WUT(4+/S): —x*K 2 = (f+3dT 3dT) (3.21)
sin(3¢p—q¢ |7€»J_|3
WUT( P=0s) = —xz’cﬁ JVE ( f;dT_ fssz), (3.22)
) _ |1
Wiorg(d) » = " (xgi7 + 4x* K f Baar)- (3.23)

Here, we omit the overall factor eg and a sum over flavor is
also implicit. We introduce «,; = M/Q that is the typical
suppression factor for higher-twist contributions. k3, sym-
bolizes twist-4 whereas k;, symbolizes twist-3.

The other eight structure functions have only twist-3
contributions up to twist-4. They are given in e.g. Ref. [17].
For completeness and comparison, we include them in the
following:

k
WP — _2x2ky, % 1t (3.24)
in ié
Wit = —2x2KM% 1t (3.25)
sind _ 2, KLl 1 3.26
WLU_XKMM97 (3.26)
k
Wz(}f’/’ = —2x’Kky %gi—, (3.27)
Wn?s — —2x2ky, fr., (3.28)
sin(2¢p—gps) |ki |2
WUT = —X"Ky fT7 (3-29)
WS’ = —2x%kygr. (3.30)
cos(2¢p—¢s) | kJ_ |2

From the results given by Egs. (3.14)—(3.31), we see

clearly the following distinct features:

(1) Up to twist-4, all 18 structure functions are nonzero.
Besides those eight that have twist-3 as leading
power contributions, the remaining ten have twist-4
contributions. For e”N — e¢~¢X that we consider
here, four of them have twist-2 and the other six have
twist-4 as leading power contributions. And all four
twist-2 structure functions have twist-4 addenda to
them. It is also very interesting and important to note
that the twist-3 part contributes to azimuthal asym-
metries that are all missing at either twist-2 or twist-4
and hence can be studied separately. However the
twist-4 and twist-2 contributions may mix with each
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other and give rise to the same asymmetry and hence
are difficult to separate from each other.

(2) The structure functions that describe the azimuthal
asymmetries given by either the cosine or sine of a
single ¢ or ¢ or 2¢p — ¢y, i.e., cos ¢, sin ¢, cos ¢y,
sin ¢g, cos(2¢p — ¢s), and sin(2¢) — ¢bs), have only
twist-3 contributions. For the structure functions that
describe the azimuthal-angle-independent part, or
the azimuthal angle dependences given by the cosine
or sine of even number of ¢ or ¢ such as 2¢,
¢ — ¢s, ¢ + ¢s and 3¢ — ¢, we have twist-2 and/or
twist-4 contributions.

(3) We recall that for e”N — e~ hX where fragmenta-
tion is considered, there are eight twist-2 structure
functions F that correspond to the eight twist-2
TMD PDFs. We see that all the W’s corresponding to
them have twist-4 contributions. This means that
we have to consider twist-4 contributions if we use
data on e”N — e~ hX to extract the corresponding
twist-2 TMD PDFs. Since e”N — e~ hX is one of
the major sources for the data [12] now available for
extracting TMD PDF:s, it is thus important to study
these twist-4 contributions to get correct and precise
knowledge even on twist-2 TMDs.

(4) If we consider e™N — e~ hX, besides W, and

W;}HT((/) 9s) , all the twist-4 contributions are addenda

to twist-2 structure functions. Since Wy, is added

to Wyyr and WSI}HT((’j ?s) ¢ W;}I}(d’ ?s) to give the

final observable effects, th1s means that all the twist-
4 contributions are addenda to twist-2 contributions
in e"N — ¢ hX. This makes it very difficult to
separate them from each other. A clean and perhaps
practical way to study twist-4 effects is to study
e”N — e ¢gX, i.e., by measuring the jet production.
In this case we have six structure functions that
have twist-4 as the leading power contributions and
four of them correspond to separate azimuthal
asymmetries.

C. Azimuthal asymmetries

There are two twist-2 azimuthal asymmetries for e N —
e~ gX and, up to twist-4, they are given by,

kol fL
sin(g = ds))ur = 52 (1~ ). (332)
ki) Cly
foosd = b = B SOMIE (1 — 1), (333

where the twist-4 modification factors are given by,

E®y) far [ 3dar
Qur = Qyy — 8X2WE - +%T R (334)
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13
arr = Quy — 4foJfldT, (335)

9ir

where ay; is due to twist-4 contributions to Wy, It is the
ratio of the twist-4 to twist-2 contributions in unit of Kﬁ, 1.e.,

= 8x 2(—gﬁjw f}idd. (3.36)

1
Here, A(y) = 1+ (1-y)?, C(y) = y(2 ), and E(y) =
2(1 —y). There are four twist-4 azimuthal asymmetries
given by,

o kP EQ) xf25y

(cos2¢) MM ALY f (3:37)
. ]_é 2E ¥
(sin2¢p) ;. = K3y |A;2| Ag; Xf;de’ (3%
. kPP EQ) [ + 15

(sin(p + ¢s))yr = —xKiy |211L/1|3 Ag; = !Tfl : -
(3.39)

|/T<L|3 E(y) Lng_ f32dT

(Sin(3¢ = ds)hur = =3 545 R
(3.40)

They have only twist-4 contributions up to this level and can
therefore serve as good places to study such twist-4 effects.

Corresponding to the eight structure functions that have
twist-3 contributions, we have eight twist-3 azimuthal
asymmetries. The expressions were given in Ref. [17].
For completeness, we repeat them here:

(cos )y M'k—%y;% (.41)
(sing)y, = —Ku MBg;xj:lL (3.42)

(sing) .y @%%, (3.43)
(sinbs)yr = =Ky E ; xfl r (3.45)
fin(2 ) = o S POTE (34
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~ e D(y) xgr
<C05¢S>LT = MA(y) 7 s (3'47)
(cos(2p = b)) 1y = ey KEEPOIIE (5 44

YoMZAY) fi

where B(y) =2(2—y)y/T =y, and D(y) =2y/1—y. It
is clear that if we insert the relations given by Egs. (2.70)—
(2.77) into Egs. (3.32)—(3.40), we obtain results for g =0
such as those obtained in Refs. [28,29]. The deviations
from them reflect the effects of multiple gluon scattering.

We note in particular that by replacing ¢ by ¢, the six
azimuthal asymmetries given by Egs. (3.32)—(3.33) and
(3.37)—-(3.40) are just the six twist-2 asymmetries in
e”N — e~ hX. Measurements of them are one of the major
tools that we use to extract twist-2 TMDs. Here we see
clearly that, even if the fragmentation part is not consid-
ered, there are twist-4 contributions to all of them. We
emphasize that the factor (1 — ayyx3,) is due to the twist-4
contributions to Wy;;. It exists for all azimuthal asymme-
tries that have twist-2 contributions. This means that this is
the least modification factor that we have for all six twist-2
azimuthal asymmetries for e™N — e”hX.

In light of the fact that Q? in the experiments such
as HERMES or JLab (see e.g. Refs. [7,9]) are usually
from 1 to 10 GeV? so «3, takes values from 0.1 to 1,
the twist-4 modifications can be quite large depending
on the coefficient of «3, in the equations given above.
A reliable estimation of these twist-4 contributions depends
on the unknown twist-4 PDFs involved. We note that there
are in total 18 independent twist-4 TMD PDFs involved in
the final results: two from ﬁ)(o), four pairs from 60(1), and
four pairs from $(). These twist-4 TMDs contain infor-
mation on the intrinsic parton distribution in the nucleon
and the effects of multiple gluon scattering contained in the
gauge link. They contain in particular quantum interference
effects in the multiple gluon scattering and thus there are no
simple probability interpretations.

Clearly, it is still a long way to go to make precise
measurements of all of the twist-4 TMD PDFs involved
here. Presently, lacking knowledge about these twist-4
TMD PDFs, we suggest to use relationships between
higher-twist TMDs and corresponding twist-2 ones
obtained at g = 0 given by Egs. (2.70)—(2.77) as a first
approximation to make rough estimates of twist-4
effects. More precisely, we use the relationships given
by Egs. (2.70)—(2.77) to replace the twist-4 PDFs by the
corresponding twist-2 ones, and make estimations of their
contributions to the cross section and/or azimuthal asym-
metries. Though this is very crude, it might be helpful at
this stage to get a feeling of the magnitudes of these twist-4
contributions. A more reliable model calculation will be left
for a future study.

PHYSICAL REVIEW D 95, 074017 (2017)

Under such approximations, we obtain that (sin2¢) ;,;; =0,
the other three twist-4 asymmetries become

(o8 200) y ~ K2 VZ,;' ig ; (3.49)

713 L
i + ds))ur = s a (350
(30— d9r = o I (3

and the modification factors for the two twist-2 asymmetries
given by Egs. (3.32)—(3.33) become

CkPT omf, | dlnfly
wr Ry p Olnx Olnx |’ (3.52)
kP [4EG) Omf, dlngl
T p A(y) 9Olnx  9dlnx (3:53)
ki [4E(y) Olnf,
U E A(y) Olnx |’ (3:54)

For the twist-4 azimuthal asymmetries, by comparing
Egs. (3.50)—(3.51) with the twist-2 part of the Sivers
asymmetry given by Eq. (3.32), we see that the asymme-

tries are suppressed by a factor |k, [>/Q? and might be
significant in the energy regions currently available to
experiments [6—12].

For the modification factors a given by Eqgs. (3.52)-
(3.54), we see that the first term in the square bracket for
arr or ayy can already reach 4. To get a feeling of how

large their magnitudes could be, in Fig. 2, we plot a;; =

M2ayy/ |k, | and @y = M2ayp/|k, | as functions of x
given by Eqs. (3.52) and (3.54) using the parametrizations

20 —

FIG. 2. Estimation of the modification factor a; or ayr as a
function of x at y = 0.5.
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available for f{; given in Ref. [30]. The parametrization of
f1 is taken from Ref. [31]. In obtaining the figure, only
light flavors were taken into account. We see from Fig. 2
that these modifications could be quite significant.

D. Contributions from the four-quark correlator

The calculations presented so far are made for e”N —
e~ qX where quark-j-gluon-quark correlators (j =0, 1,
2,--+) are included. At the twist-4 level, there are also
contributions from processes with four-quark correlator
defined as

Pl (kK )
- d'y d'y, d'y,
16 ) (2n)* (2n)* (2n)*
X (N[ (0) L0,y )y (Y)W (y2) L(v2, )w (¥)]IN).
(3.55)

eilka=k)yy pi(k=ky)ys pikiy

This comes from the four-quark diagrams (Fig. 3) widely
studied for the inclusive reaction e"N — e~ X [13,15].
They contribute to e N — e~ ¢X if the cut is at the middle
and to e”N — e ¢X if the cut is at the left or right.
In experiments, it is difficult to differentiate between
e N - e gX and e”N — ¢ gX, as both give rise to
e"N = e” +jet+ X.

It can be shown that the collinear expansion is also
applicable in this case and the gauge links included in
Eq. (3.55) are obtained during the expansion by taking the
multiple gluon scattering into account. Up to twist-4, we
need only to consider the leading power contribution of

@Eg;). The calculations are essentially the same as those for

the inclusive process [13,15]. The only difference is that a
k| dependence in the correlation functions is not inte-
grated. We present the contributions ¢e”N — e~ ¢gX and
e~ N — e ¢gX separately. They both take the form

W@/ q)

2 .
(4q)pv - n/ dxldXZdXhZéq (glmxcs - lgL/prs)v

(3.56)

where C; and C,, are two TMD four-quark correlation
functions. They depend on, besides p and S of the nucleon,
the longitudinal variables x;, x, and x,, and k| of the gluon.
¢,=C,+Cy and C,;=C, +C,, are scalar and
pseudoscalar respectively, and C;; is given by

k+q k+q k+q k+q
[ 73 18 i I b Ve mt K I . . I I )
1] M 2 |k 1/\ 2 (k2 kil R /N2 VAN / N\
—— —— —_ ~—

FIG. 3. Four-quark diagrams without multiple gluon scattering.
The quark 4-momenta are ki, kp, k| = k; —k and k) =k, — k
respectively.
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Cij= /d4k d*kd*ky6(kT — x, pt)o(ky — x,pT)

- kﬁ_)§0(0) (ki k, ky; p, S).

X 5()( - k+/p+)52(kl (4q)ij
(3.57)

(0)

The unintegrated correlation function Plag)ij is defined as

¢<0) .= g_z/ d4y d4y2 d4y1 eilka=k)yy p=i(ky=k)ys pikyy
“aii =16 ) (27)* (27)* (27)*

x (N|[@ (0)T £(0,y1 )y (y1)]
X [ (y2)T7 L(y2: )y (9)]|IN),

and I, = y#, T} = y¥ys.

The coefficient hgéq is determined by the hard part after
collinear expansion and is a function of the longitudinal
variables x;, x and x,. It is a sum of four terms corre-
sponding to the four graphs in Fig. 3. For ¢e™N — e ¢X,
we have

(3.58)

h = S(x — xp) 5(x — xp)
Y (xy —xg —ie)(x, —xg +ie)  (xy +ie)(x; —i€)
n S(x — xp) (1o

(xy — xp — i€)(x; — i€)
(3.59)

where (1 <> 2) denotes the left-neighboring term after

exchange of 1 and 2. For e™N — ¢ ¢X, hq = th + h4q,

5(x; — xp)
(xy —xp — i€)(x — xg — i€)
5(X—x1 — Xp)

_(xz—xB ie)(x — xp — i€)+(xz_)x_x2)’

hiy = — (x> x—x,)

(3.60)

and h{)(x).x.x,) = h{;" (x,.x.x;). Adding all of them
together, we obtain hy, = hf{q + hﬂq that is exactly the
result given by Eqgs. (65)—(66) in Ref. [15] for the inclusive
reaction.

After the integration over x;, x, and x;, C; and C);
reduce to functions of xz, k|, p and S. They are decom-
posed as

kS
/ dxldde2h4qCS = <f4q f4qT>’ (361)

ki -S
/wMM%%=WQm% le&
(3.62)

We obtain their contributions to structure functions as
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Wuuraq = 4x2K%/[f4q7 (3.63)
Wipag = 4Ky fagrs (3.64)
sin(g~ |
W T(q; ;44;;) = 4x*k3, T fagr (3.65)
cos(p—¢ps |]_él|
Wi=ts) = 4 fi (3.66)

We see that they contribute to the unpolarized and double-
longitudinally polarized structure functions, the Sivers
asymmetry and so on. They behave as addenda to f 3,4,
fi3aars [rsgar. and f13,,; defined via the quark-two-
gluon-quark correlator. They all vanish at g = 0 and bring
no change to the discussions given in the last subsections.

E. Reducing to inclusive DIS

After we integrate over k| and apply the constraints from
time-reversal invariance, we obtain the cross section and
structure functions for the inclusive DIS process. The
results are given as follows:

Fyr =xf1 +4°k5(f 130 + fag).  (3.67)
Fiy = 8x°k3, 13, (3.68)

FP, = xgip + 4x°k3,(f 13001 — faqr),  (3.69)
FiFe " = =2k gz, (3.70)

where the PDFs are the k,-integrated ones and are
functions of x only. Comparing with Egs. (2.33)—(2.36),
we obtain that,

xXFy = [xf1 +7*(f13aa + f14)]/2. (3.71)

Fy =2x(F +7°f3)/(1 +7%), (3.72)
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xg1 = [xgi + v (f43dar — faqr) + v xg97]/2(1 4 %),
(3.73)

g1+ 92 = 9gr/2. (3.74)
From these results, we see twist-4 contributions to the
violation of Callan-Gross relations and so on.

IV. SUMMARY

In summary, benefitting from the collinear expansion, we
carried out the calculations up to twist-4 and presented for
the first time the complete twist-4 result for e™N — e gX
with a polarized beam and target. The results show that,
among the 18 structure functions, besides the eight that
have only twist-3 contributions, the other ten have twist-4
contributions. We showed in particular that among these
twist-4 contributions, four correspond to azimuthal asym-
metries where twist-4 are the leading power contributions
in eN — e ¢gX and can serve as good places to study
these twist-4 effects. We also showed that for all eight twist-
2 structure functions for e”N — e~ hX that correspond to
the eight twist-2 TMD PDFs, there are twist-4 addenda to
them. These twist-4 contributions could be quite significant
and have a strong impact on the study of TMD PDFs in
particular in the energy regions of existing DIS experiments
such as HERMES and those in JLab. We suggested an
approximate way to obtain rough estimations of twist-4
contributions using corresponding twist-2 PDFs.
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