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The γγ� → ηc;b transition form factors are computed using a continuum approach to the two valence-
body bound-state problem in relativistic quantum field theory, and thereby unified with equivalent
calculations of electromagnetic pion elastic and transition form factors. The resulting γγ� → ηc form factor,
GηcðQ2Þ, is consistent with available data; significantly, at accessible momentum transfers,Q2GηcðQ2Þ lies
well below its conformal limit. These observations confirm that the leading-twist parton distribution
amplitudes of heavy-heavy bound states are compressed relative to the conformal limit. A clear
understanding of the distribution of valence quarks within mesons thus emerges, a picture which connects
Goldstone modes, built from the lightest quarks in nature, with systems containing the heaviest valence
quarks that can now be studied experimentally, and highlights basic facts about manifestations of mass
within the Standard Model.
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I. INTRODUCTION

The properties of pseudoscalar mesons provide a unique
window on the Standard Model. For example, γγ� → π0,
neutral pion production in two-photon fusion [1–4], ties
physics associated with a nonperturbative anomaly [5–7]
to that connected with collinear factorization in hard-
scattering processes as demonstrated through the applica-
tion of perturbative quantum chromodynamics [8–11].
Simultaneously, pion properties provide a clean probe of
the mechanisms responsible for the generation of more than
98% of visible mass in the Universe [12–14]; and yet, from
another perspective, one might view the production of
charm-anticharm systems via gluon-gluon fusion as yield-
ing valuable, complementary information on this same
subject [15,16]. Such processes are echoed in the reaction
γγ� → ηc: measured at photon virtualities in the range
2≲Q2 ≲ 50 GeV2 [17], a subject of phenomenological
analyses [18–20], it is often supposed to yield information
on the strong running coupling at the charm-quark mass,
which can be used to inform and refine effective field
theories developed for application to systems involving
heavy quarks [21,22].
Measurements of pseudoscalar meson production via

two-photon fusion are challenging. They typically involve
the study of e− − eþ collisions, in which one of the

outgoing fermions is detected after a large-angle scattering
whilst the other is scattered through a small angle and,
hence, undetected. The detected fermion is assumed to have
emitted a highly virtual photon, while the undetected
fermion is assumed to have emitted a soft photon, and
these photons are supposed to fuse and produce the final-
state pseudoscalar meson. There are many possible back-
ground processes and loss mechanisms in this passage of
events, and thus ample room for systematic error, especially
as Q2 increases [22]. The potential for such errors plays a
large part in the controversy surrounding the most recent
measurements of γγ� → π0 [3,4], which exhibit incompat-
ible trends in their evolution with photon virtuality [23].
It does not, however, appear to play a significant role in
the debate over whether effective field theory methods can
be used to understand contemporary γγ� → ηc data [17]:
whilst leading-order (LO) and next-to-leading-order
(NLO) analyses in nonrelativistic QCD (nrQCD) seem
adequate, next-to-next-to-leading-order (NNLO) corrections
very seriously disrupt agreement with experiment [24].
One should therefore also question related predictions for
γγ� → ηb.
A consolidated explanation of all three transition form

factors within a single theoretical approach would facilitate
a resolution of these disputes. Herein, therefore, we employ
a symmetry-preserving framework for the study of strong-
interaction bound states [12,13] in an attempt to provide a
unified description of the γγ� → π0 and γγ� → ηc transi-
tions, along with a prediction for γγ� → ηb. In so doing, we
will reveal how these form factors provide insights into the
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nature of momentum sharing between the valence quanta in
these bound states.

II. TRANSITION FORM FACTORS:
FORMULATION

The transition γγ� → M5, M5 ¼ π0, ηc, ηb, is described
by a single scalar function, required to express the
amplitude:

Tμνðk1; k2Þ ¼
e2

4π2
ϵμναβk1αk2βGM5

ðk21; k1 · k2; k22Þ; ð1Þ

where the pseudoscalar meson’s momentum P ¼ k1 þ k2,
and k1 and k2 are the photon momenta. We compute
GM5

using the Dyson-Schwinger equations [12,25], a
symmetry-preserving framework whose elements have an
explicit connection with QCD [26]. At leading order in this
approach (rainbow-ladder truncation) [27]

Tμνðk1; k2Þ ¼ tr
Z

d4l
ð2πÞ4 iQχμðl;l1Þ

× ΓM5
ðl1;l2ÞSðl2ÞiQΓνðl2;lÞ; ð2Þ

where l1 ¼ lþ k1, l2 ¼ l − k2, and the kinematic con-
straints are k21 ¼ Q2, k22 ¼ 0, 2k1 · k2 ¼ −ðm2

M5
þQ2Þ.

In Eq. (2), ΓM5
is the meson’s Bethe-Salpeter amplitude

[28,29]; Q is a matrix that associates an electric charge
with each of the meson’s valence constituents, whose
propagation is described by S; and Γ and χ are, respectively,
amputated and unamputated photon-quark vertices. The
momentum-dependent elements indicated here have long
been the subject of careful scrutiny, so that the character
of each is deeply understood, and accurate numerical
results and interpolations are available. Many of these
things were detailed in Ref. [27], which examined the
γγ� → π0 transition and unified its treatment with that of
the pion’s elastic electromagnetic form factor [30]. We now
capitalize on those insights and methods in computing and
interpreting the γγ� → ηc;b transitions.
The dressed c- and b-quark propagators and ηc;b Bethe-

Salpeter amplitudes in Eq. (2) were computed in Ref. [31],
and used to predict the leading-twist parton distribution
amplitudes (PDAs) of these heavy pseudoscalar mesons
and a range of other quantities. For example, from the
decay constants reported therein [fηc ¼ 0.26 GeV,
fηb ¼ 0.54 GeV] one obtains the following widths
[eM5

¼ ð2=3Þ; ð−1=3Þ for ηc;b, respectively]:

Γ½M5 → γγ� ¼ 1

4
πα2emm3

M5
jGM5

ðQ2 ¼ 0Þj2 ð3aÞ

¼ 8πα2eme4M5
f2M5

mM5

�¼ηc 6.1 keV;

¼ηb 0.52 keV;
ð3bÞ

where the formula in Eq. (3a) is drawn from Ref. [32]. The
ηc width compares favorably with a world average [33],
Γ½ηc → γγ� ¼ 5.1� 0.4 keV, but the ηb → γγ decay has
not yet been seen. In Eqs. (3a) and (3b), one has a useful
constraint on jGηc;bðQ2 ¼ 0Þj.
It is difficult to reliably compute integrals like that in

Eq. (2) on the entire domain of experimentally accessible
momentum transfers if the propagators, amplitudes and
vertices are only known numerically [34,35]. Therefore,
following Refs. [27,30], we have developed perturbation
theory integral representations (PTIRs) of these elements
using the gap and Bethe-Salpeter equation solutions com-
puted in Ref. [31]. The PTIRs are fully specified in the
Appendix. Here we only note that they are merely accurate,
algebraic interpolations of the dressed propagators and
Bethe-Salpeter amplitudes appearing in Eq. (2).
The photon-quark vertices in Eq. (2) remain unspecified.

We pursue a unified treatment and hence use those forms
detailed in Refs. [27,30], which are expressed completely
via the functions that characterize the dressed-quark propa-
gator involved, Eq. (A1a). Namely,

χμðko; kiÞ ¼ γμΔk2σV þ ½sγ · koγμγ · ki þ s̄γ · kiγμγ · ko�ΔσV

þ ½sðγ · koγμ þ γμγ · kiÞ
þ s̄ðγ · kiγμ þ γμγ · koÞ�iΔσS ; ð4Þ

where ΔF¼½Fðk2oÞ−Fðk2i Þ�=½k2o−k2i �, q ¼ ko − ki,
s̄ ¼ 1 − s, and the flavor label is implicit. Our ansatz for
Γμ, Eq. (3.84) in Ref. [36], is an analogue for the amputated
vertex. Up to transverse pieces associated with s, χμðko; kiÞ
and SðkoÞΓμðko; kiÞSðkiÞ are equivalent. Nothing material
is gained by making them identical because any difference
is power-law suppressed in the ultraviolet, but computa-
tional effort would increase substantially.
Owing to the Abelian anomaly [5–7], it is impossible to

simultaneously conserve the vector and axial-vector cur-
rents associated with Eq. (2). This has a measurable effect
in the neighborhood of Q2 ¼ 0, which diminishes with
increasing current-quark mass. We have thus included a
momentum redistribution factor in Eq. (4) [27]:

sf ¼ 1þ sf0 expð−EM5
=ME

f Þ; ð5Þ

where EM5
¼ ½1

4
Q2 þm2

M5
�1=2 −mM5

is the meson’s Breit-
frame kinetic energy and ME

f is the Euclidean constituent
mass associated with the valence quark in the M5 meson
[31,37], ME

f ¼ fpjp2 ¼ M2ðp2Þ; p > 0g, where Mðp2Þ ¼
σSðp2Þ=σVðp2Þ is computed using the dressed q ¼ c- or
b-quark propagator, as appropriate. This mass is similar to
the MS mass often used in connection with heavy quarks
and, using the results in the Appendix, we compute
Mc ¼ 1.28 GeV, Mb ¼ 4.30 GeV.
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III. TRANSITION FORM FACTORS:
CALCULATION

With each element in Eq. (2) now expressed via a
generalized spectral representation, the computation of
GðQ2Þ reduces to the task of summing a series of terms,
all of which involve a single four-momentum integral.
The integrand denominator in every term is a product of
l-quadratic forms, each raised to some power. Within each
such term, one uses a Feynman parametrization in order to
combine the denominators into a single quadratic form,
raised to the appropriate power. A suitably chosen change
of variables then enables routine evaluation of the four-
momentum integration using algebraic methods. After
calculating the four-momentum integration, the evaluation
of the individual term is complete after one computes a
finite number of simple integrals; namely, the integrations
over Feynman parameters and the spectral integral. The
complete result forGðQ2Þ follows after summing the series.
Following this procedure, one may fix the redistribution
factors in Eq. (5) using Eq. (3): sc0 ¼ 0.78, sb0 ¼ 0.23.
Our complete result for GηcðQ2Þ is displayed in Fig. 1.

It was obtained via the procedure detailed above supple-
mented by the inclusion of the leading-order QCD evolu-
tion [9–11] of the meson’s Bethe-Salpeter amplitude, the
nature and necessity of which was described in Ref. [27]. In
this case such evolution produces aQ2-dependent enhance-
ment, which grows logarithmically from 1.0 onQ2 ≃ 0 to a
value of ≈1.05 at Q2 ¼ 60 GeV2, i.e. on the domain
depicted, it has a noticeable impact. We note, too, that
Γ½ηc → γγ� ¼ 5.1� 0.4 keV can be obtained using
sc0 ¼ 0.67� 0.04, but this value yields a practically iden-
tical result for the Q2 dependence of GηcðQ2Þ: the curves

agree within a line width. Our result for the ηc interaction
radius is rηc ¼ 0.16 fm ¼ 0.23rπ0 , computed from the
slope of the transition form factor. Experimentally [17],
rηc ¼ 0.17� 0.01 fm.
No parameters were varied in order to obtain the solid

curve in Fig. 1. The evident agreement with the data from
Ref. [17] is therefore invested with considerable meaning.
For example, the prediction derives from an ηc Bethe-
Salpeter amplitude that produces a leading-twist PDA for
this meson, φηc , which is piecewise convex-concave-
convex and much narrower than the conformal limit result
φclðxÞ ¼ 6xð1 − xÞ. Hence, the favorable comparison with
data confirms the associated prediction for φηc in Ref. [31].
In addition, the framework used to produce GηcðQ2Þ is
precisely the same as that employed for the pion transition
form factor in Ref. [27], and, consequently, the two
transitions are simultaneously explained. Hence, agreement
herein with the data from Ref. [17] may equally be
interpreted as confirmation of the results in Ref. [27], from
which it follows that the γγ� → π0 data in Ref. [4] should be
considered as the most reliable available measurement of
this transition on Q2 ≳ 10 GeV2. It follows that the agree-
ment in Fig. 1 between data and our result provides further
support for the prediction in Refs. [13,38,39], viz. at scales
typical of modern hadron physics, the pion’s leading-twist
PDA is dilated, such that, unlike φηc , φπ is significantly
broader than φcl. Furthermore, the agreement between data
and our prediction, the qualitative agreement between both
and the NLO nrQCD result, and the disagreement between
data and our result on the one hand, and the NNLO nrQCD
result on the other, suggest that one must seriously question
the usefulness of nrQCD in applications to exclusive
processes involving charmonia [24].
It is natural at this point to consider the asymptotic

behavior of the π and ηc transition form factors, which can
be determined following Ref. [11], viz. ∀ Q2 ≫ 1 GeV2

Q2GM5
ðQ2Þ ¼ uM5

fM5

Z
1

0

dxφM5
ðx;Q2Þ=x; ð6Þ

where M5 ¼ π; ηc and uπ ¼ 2 cf. uηc ¼ 8=3 reflects
differences between the electric charges of the relevant
valence quarks. Since φπ;ηc → φcl in the conformal limit,

lim
Q2→∞

½RðQ2Þ ≔ GηcðQ2Þ=GπðQ2Þ� ¼ 4

3

fηc
fπ

: ð7Þ

In our unified treatment, we can evaluate this ratio:
RðQ2

35 ≔ 35 GeV2Þ ¼ 2.4. Extant data are consistent with
our prediction, which, however, is just 64% of the con-
formal value in Eq. (7). This mismatch occurs despite the
fact that Q2

35GπðQ2
35Þ ≈ 2fπ . The discrepancy thus owes to

GηcðQ2Þ. Digging deeper, one finds that with φηcðx;Q2Þ
being much narrower than φclðxÞ, a representation of
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FIG. 1. Transition form factors: γγ� → ηf, f ¼ c, b. Curves:
dashed (blue) curve—our prediction for ηb; (grey) band—
NNLO nrQCD result for ηb [24] (the band width expresses
the sensitivity to the factorization scale); dotted (dark-green)
curve—NLO nrQCD result for ηc [24] (the NNLO result is
omitted because it is vastly different from the data and exhibits
marked sensitivity to the assumed factorization and renormal-
ization scales); and solid (black) curve—our prediction for ηc.
Data are from Ref. [17].
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φηcðx;Q2Þ in terms of eigenfunctions of the one-loop QCD
evolution operator must involve a large, negative first
“subleading” coefficient. It is then unsurprising that
GηcðQ2Þ should lie far below its conformal limit value at
currently accessed momentum transfers. (For the pion, the
same correction is smaller in magnitude and positive.)
Moreover, given that QCD evolution is logarithmic, this
must remain the case even at Q2 ≳ 1000 GeV2 [25]. (With
this prediction we contradict the sum rules study in
Ref. [19], which employed adjustable parameters.) These
points are illustrated in Fig. 2. It is worth remarking that the
mismatch between our computed ηb transition form factor
and its conformal limit (2fηb=3) is even more noticeable on
this Q2 domain.
A physical context is readily established for these

predictions. Since m2
π=Q2

35 ¼ 0.0008, m2
ρ=Q2

35 ¼ 0.02,
the hard photon “perceives” an almost scale-free system
and the π0 transition form factor lies in the neighborhood of
its conformal limit. On the other hand, m2

ηc=Q
2
35 ¼ 0.4,

m2
ηb=Q

2
35 ¼ 3.5, values which reveal that mass scales

intrinsic to the related transitions are commensurate with
(ηc) or greatly exceed (ηb) those of the probe.
Consequently, at accessible momenta, γγ� → ηc;b cannot
possibly match expectations based on conformal symmetry.
Our prediction for GηbðQ2Þ also appears in Fig. 1. In this

case the computational procedure is indirect because the
b-quark-related PTIRs (see the Appendix) are inadequate to
the task of eliminating all spurious singularities from the
vast integration domain explored by the integral in Eq. (2)
when m2

M5
¼ m2

ηb ¼ 88 GeV2 [33]. They are nevertheless
quite efficient, allowing a direct computation of the
transition form factor on m2

M5
≤ 71 GeV2. We therefore

computed a pseudo-ηb transition form factor as a function
of mM5

¼ mηpb
∈ ½7.0; 8.4� GeV. Then, at each value

of Q2, the on-shell form factor was determined by
extrapolation of the ηpb results, treated as a function of

mηpb
. Padé approximants of order ½k; k�, k ¼ 1, 2, 3, 4, were

employed, with the difference between their extrapolated
values being used to estimate the error in the procedure.
That error is small, lying within the line width of the dashed
(blue) curve in Fig. 1. The interaction radius is
rηb ¼ 0.041 fm ¼ 0.26rηc . Notably, the ordering of radii
follows the pattern rηc=rπ0 ≈ME

u=ME
c , rηb=rηc ≈ME

c =ME
b ,

where ME
f is the Euclidean constituent-quark mass ex-

plained above.
Concerning γγ� → ηb, it is worth remarking that the

differences between LO, NLO and NNLO nrQCD results
are modest [24], suggesting that this effective field theory
might be a useful tool in connection with analyses of
exclusive processes involving bottomonia. That possibility
is supported by the fact that our prediction for this transition
form factor lies completely within the (grey) band demar-
cating the NNLO nrQCD result.

IV. CONCLUSION

This study of γγ� → ηc;b transitions achieves, within a
single computational framework that possesses a traceable
connection to QCD, the unification of a wide variety of
ground-state 1S0 quarkonia properties—masses, decay
constants, PDAs, transition form factors, etc.—with an
even wider array of properties of QCD’s archetypal
Goldstone modes, extending to, e.g. ππ scattering lengths
[45,45], and electromagnetic pion elastic and transition
form factors [27,30]. No parameters were varied in order to
achieve agreement with the experimental value of any
quantity discussed herein and hence the computed results
may validly be described as predictions. The calculations
are built upon the leading-order term in a systematic,
symmetry-preserving truncation of those equations in
quantum field theory which describe bound states, their
constituents, and the interactions of those constituents with
electromagnetic probes. Quantitative corrections to the
results must therefore be expected; but in the channels
upon which this study focuses, those corrections are known
to be small for reasons that are well understood [12].
The predicted γγ� → ηc form factor, GηcðQ2Þ, matches

available data. It is thus significant that onQ2 ≲ 100 GeV2,
Q2GηcðQ2Þ does not exceed 70% of the conformal limit
result. We attribute this behavior to compression of the
leading-twist PDAs describing heavy-heavy bound states,
cf. the conformal limit. Such compression is anticipated
[31,46,47], but the agreement between our predictions and
data provides quantitative confirmation.
In confirming the data [17] as a reliable measure of the

γγ� → ηc transition form factor, our study strengthens
claims [24] that nrQCD is not a reliable effective field
theory for analyses of exclusive processes involving char-
monia. Regarding γγ� → ηb, on the other hand, there is
good agreement between our prediction and the result
obtained at next-to-next-to-leading order in nrQCD. Thus,
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FIG. 2. Q2GM5
ðQ2Þ for γγ� → M5, M5 ¼ π0; ηc. Dotted and

dot-dot-dashed curves display the respective conformal limits,
Eq. (6). ηc data are drawn from Ref. [17]. π0 data are omitted
owing to controversy at large Q2 [23,27,40–44].
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in this case one should view the theoretical predictions as
well founded and look for them to be verified at a new
generation of e−eþ colliders [48].
One can now draw various threads together and argue

that, with the predictions described herein, we have reached
a sound understanding of the distribution of valence quarks
within mesons, a picture which smoothly joins Goldstone
modes, constituted from the lightest quarks in nature, with
systems containing the heaviest valence quarks that can
today be studied experimentally. Data confirms both that
the PDAs of light-quark mesons are dilated with respect to
the conformal limit and those for heavy-heavy systems are
compressed, becoming narrower as the current mass of the
valence quarks increases. (In this connection, the boundary
between light and heavy lies just above the strange-quark
mass [31].)
These visible features express basic facts about the origin

and manifestation of mass within the Standard Model [14].
Namely, in systems formed by those quarks with theweakest
coupling to the Higgs boson, dynamical mass generation via
strong-interaction processes [dynamical chiral symmetry
breaking (DCSB)] is the dominant effect, and it is revealed
in a marked dilation of the PDAs associated with these
systems [38]. Moreover, DCSB ensures that this dilation
persists even when coupling to the Higgs vanishes. On the
flip-side, the leading-twist PDA for a system constituted
from valence quarks with a strong coupling to the Higgs is
narrow, it becomes narrower as that coupling increases, and
there is no mass scale within the Standard Model which can
prevent the PDA approaching a δ function as the Higgs
coupling continues to grow. It follows that the root-mean-
square relative velocity of valence constituents within a
meson has a nonzero, finite upper bound, fixed by the
strength of DCSB, but must vanish with increasing current
mass of the meson’s valence quarks.
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APPENDIX: INTERPOLATING FUNCTIONS

The dressed-quark propagator is represented as

SðpÞ ¼ −iγ · pσVðp2; ζ2Þ þ σSðp2; ζ2Þ; ðA1aÞ

¼
Xjm
j¼1

�
zj

iγ · pþmj
þ z�j
iγ · pþm�

j

�
: ðA1bÞ

We find that jm ¼ 2 is adequate, i.e. with the parameters
listed in the top panel of Table I, one obtains interpolations
of the dressed c- and b-quark propagators computed in
Ref. [30] that are accurate throughout the domains sampled
by the integral in Eq. (2).
Any pseudoscalar meson’s Bethe-Salpeter amplitude

may be written as

ΓM5
ðk̂;PÞ¼ γ5½iEπðk̂;PÞþγ ·PFπðk̂;PÞ

þγ · k̂ k̂ ·PGπðk̂;PÞþσμνk̂μPνHπðk̂;PÞ�: ðA2Þ

In connection with Eq. (2), l1¼ k̂þηP, l2¼ k̂−ð1−ηPÞ,
η ∈ ½0; 1�, and Poincaré covariance entails that no observ-
able can depend on η, i.e. the definition of the relative
momentum. With relative momentum defined via η ¼ 1=2,
we represent the scalar functions in Eq. (A2) ðF ¼E;F;GÞ
as a sum of two terms,

F ðk;PÞ ¼ F iðk;PÞ þ F uðk;PÞ; ðA3Þ

where that describing the infrared behavior, labelled “i,”
is expressed via the PTIR

F iðk;PÞ ¼ ciF

Z
1

−1
dzρνiF ðzÞ½aF Δ̂

4
Λi
F
ðk2zÞ þ a−F Δ̂

5
Λi
F
ðk2zÞ�;

ðA4Þ

and the ultraviolet “u” term is expressed analogously,

Euðk;PÞ ¼ cuE

Z
1

−1
dzρνuEðzÞΔ̂

1þg
Λu
E
ðk2zÞ; ðA5aÞ

Fuðk;PÞ ¼ cuF

Z
1

−1
dzρνuFðzÞΛu

Fk
2Δ2þg

Λu
F
ðk2zÞ; ðA5bÞ

Guðk;PÞ ¼ cuG

Z
1

−1
dzρνuGðzÞΛu

GΔ
2þg
Λu
G
ðk2zÞ; ðA5cÞ

TABLE I. Interpolation coefficients for PTIRs. Upper panel:
Dressed propagators for c- and b-quarks; the pair ðx; yÞ repre-
sents the complex number xþ iy. Lower panel: Bethe-Salpeter
amplitudes of ηc;b mesons. (These interpolations are drawn from
Ref. [26], and mass-dimensioned quantities are listed in GeV).

z1 m1 z2 −m2

c (0.49,1.12) (1.75,0.26) (0.028,0) (2.36,0)
b (0.49,0.97) (5.06,0.50) (0,0.0018) (2.45,1.91)

ci cu νi νu a Λi Λu

Eηc 0.88 0.15 3 1 2 1.7 0.77
Fηc 0.22 0.012 3 1 3=½Λi

F� 1.5 0.73

Gηc −0.018 −0.0015 3 1 4.4=½Λi
G�3 1.3 0.92

Eηb 0.77 0.38 7 1 5 2.5 1.0
Fηb 0.037 0.013 7 1 20=Λi

F 2.5 0.82
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with Δ̂ΛðsÞ ¼ Λ2ΔΛðsÞ, k2z ¼ k2 þ zk · P, a−E ¼ 1 − aE,
a−F ¼ 1=Λi

F − aF, a−G ¼ 1=½Λi
G�3 − aG, g ¼ 0.085, and

ρνðzÞ ¼
Γð3

2
þ νÞffiffiffi

π
p

Γð1þ νÞ ð1 − z2Þν: ðA6Þ

As elsewhere [30,38], Hðk;PÞ is small, has little impact,
and is thus neglected.
Used with the appropriate entries in the lower panel

of Table I, Eqs. (A2)–(A6) define interpolations of the

Bethe-Salpeter equation solutions in Ref. [30] that are
accurate throughout the domains sampled when evaluating
the integral in Eq. (2). At this point it is worth remarking
that in the pseudoscalar channel (a) heavy-heavy mesons
are predominantly S-wave in character, and (b) the G
components of meson Bethe-Salpeter amplitudes corre-
spond to P-waves in the bound-state rest frame. These
observations explain the small size of Gηc , defined by the
values of ci;u in Row 3 of the lower-panel in Table I, and the
complete neglect of Gηb .
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