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A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from
first-principles QCD without approximations [Q. Wang, Y.-P. Kuang, X.-L. Wang, and M. Xiao, Phys. Rev.
D 61, 054011 (2000)] is generalized to further include scalar, vector, and axial-vector mesons. In the large
N limit and with an Abelian approximation, we show that the properties of the newly added mesons in our
formalism are determined by the corresponding underlying fundamental homogeneous Bethe-Salpeter
equation in the ladder approximation, which yields the equations of motion for the scalar, vector, and axial-
vector meson fields at the level of an effective chiral Lagrangian. The masses appearing in the equations of
motion of the meson fields are those determined by the corresponding Bethe-Salpeter equation.
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I. INTRODUCTION

Effective chiral Lagrangian theory is well known to be a
very useful formalism to describe low-lying mesons
(the basic papers are Refs. [1-3], for an introduction see
Ref. [4], and for a professional review see Ref. [5]), which
enables us to avoid difficulties in nonperturbative QCD in
the low-energy regime. We often dismiss the importance of
derivations of the effective chiral Lagrangian from first-
principles QCD theory and treat this derivation as a purely
theoretical exercise. This, of course, is partly due to the
difficulties in the derivation, but the more important reason
may be because the effective chiral Lagrangian has the
same chiral and discrete symmetries as the original QCD,
regardless of whether the Lagrangian is derived or simply
written down. The same form of the effective chiral
Lagrangian is always obtained, and in this sense, the
derivation seems to lose its value, because in terms of
symmetry constraints, it suffices to write all necessary
terms of the effective chiral Lagrangian. Then, why do
we need to pay a high price and play with this very
difficult derivation? There are three reasons. First, the
derivation offers us a systematic definition of low-energy
constants (LECs) in terms of the underlying QCD, which
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conventionally can only be done for specific LECs by
choosing some special processes or physical quantities and
demanding a match of the computed results from the
effective chiral Lagrangian and from QCD. Based on this
systematic and fundamental expression of LECs at the
QCD level, one can develop some first-principles QCD
computation techniques for LECs. This provides us with a
possible solution to the LEC number problem encountered
in effective chiral Lagrangian theory, for which if we go to
high order in the low-energy expansion, the number of
LECs increases very rapidly. It is impossible to fix all of
them purely from experiment. Second, the derivation often
provides us with a compact expression for the effective
chiral Lagrangian, which corresponds to resumming the
infinite series of the low-energy expansion. This offers a
way to go beyond the traditional low-energy expansion for
the effective chiral Lagrangian and enlarge the available
scope of our calculation. Third, the detailed procedure of
the derivation in general is independent of various sym-
metry arguments that are heavily relied on by the traditional
effective chiral Lagrangian. Often this reveals some unex-
pected correlations between different objects, which will
make us go beyond conventional pure symmetry discus-
sions and deepen our understanding of the structure of the
QCBD. For our derived effective chiral Lagrangian, although
the Lagrangian itself is phenomenological, the detailed
structure of the final expression includes all necessary
information of the underlying QCD. Although the deriva-
tion of the effective chiral Lagrangian from QCD is of such
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importance, unfortunately, it often is very difficult involv-
ing a lot of mathematical and nonperturbative techniques to
treat. The naive belief is that, if one can successfully handle
these difficulties and compare to derive the effective chiral
Lagrangian, directly using these techniques to compute
low-energy physics quantities and processes may be more
efficient. For these reasons, very little work on a reliable
derivation has appeared in the literature.

Seventeen years ago, in Ref. [6], we built a formalism to
derive the chiral Lagrangian for low-lying pseudoscalar
mesons from first-principles QCD without taking approx-
imations. The derivation is based on the standard generat-
ing functional of QCD with external bilinear light-quark
field sources in the path integral formalism. The integra-
tions of gluon and heavy-quark fields are performed
formally by expressing the result in terms of the physical
Green functions of the gluon. To integrate over the left
light-quark fields, we introduce a bilocal auxiliary field
®(x, y) representing the light mesons. We then developed a
consistent way of extracting the local pseudoscalar degree
of freedom U(x) in ®(x,y) integrating out the other
degrees of freedom. With certain techniques, we worked
out the explicit U(x) dependence of the effective action up
to the p* terms in the momentum expansion, which leads to
the desired chiral Lagrangian in which all LECs of the
theory are expressed in terms of Green’s functions for
certain quarks in QCD. The final result can be regarded as
the fundamental QCD definition of the LECs. With some
approximation, we found our QCD definition of the p?-
order coefficient F3 recovers just the well-known approxi-
mate result given by Pagels and Stokar [7].

Further developments of this work moved along two
directions. One was in terms of the compact result obtained
in Ref. [6] from QCD. We continued to develop various
techniques to calculate LECs of the pseudoscalar meson
chiral Lagrangian that included LECs of order p* [8] and
various versions of order p® [9—12]. To date though, we still
use an ansatz to represent the real solution of the external
source-dependent Schwinger-Dyson equation to simplify
the computations. Because of its rough approximation, it is
criticized by becoming a phenomenological model [13] and
not being derived from a first-principles calculations. We
are nevertheless improving our techniques step by step
toward a final realization of a true first-principles compu-
tation. Except our works, some other authors estimate the
contributions of resonance to the LECs, instead of comput-
ing them from the first principle of QCD [14], or in terms of
a class of gravity dual models of QCD to calculate LECs
[15]. The other direction developed extends the content of
the formalism from pure pseudoscalar mesons to include
other meson species, in particular, vector mesons in
Ref. [16] and the ' meson in Ref. [17]. In the following
year, we changed from QCD to a general technicolor
model deriving the effective chiral Lagrangian for its
pseudo-Goldstone bosons in Ref. [18]. This direction of
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development was stopped in 2001, because we have found
a key obstacle to a result given in [16]. There is inevitably a
free dimensional parameter u appearing in our derivation,
and it seems that the masses of the vector bosons depending
on this p parameter can take arbitrary values. This contra-
dicts our expectation because we know that QCD deter-
mines the property of vector mesons nonperturbatively via
the corresponding Bethe-Salpeter equation (BSE) [19],
which will fix the vector meson mass without any arbitra-
riness. For a correct formalism, we should automatically
produce this BSE, which fixes the amplitude of vector
boson. The situation for vector mesons contrasts that of
pseudoscalar mesons, where spontaneous chiral symmetry
breaking at the chiral limit sets their masses to zero because
of their Goldstone nature. As long as our formalism retains
the correct behavior under spontaneous chiral symmetry
breaking, the masses of pseudoscalar mesons are automati-
cally zero. Beyond pseudoscalar mesons, we do not have
this Goldstone-theorem argument, and the masses of
mesons no longer vanish even at the chiral limit. Hence,
producing the correct value of these nonzero meson masses
becomes a real challenge. It is a sign that our derivation
goes beyond the constraint of chiral symmetry and its
breaking. Here we stress the importance of producing the
correct meson masses or more generally the LECs of the
effective chiral Lagrangian in our derivation. Without this
we cannot trust the validity of the formalism we have built
up for the derivation. In fact, in the mid-1980s, there were
many articles claiming that they have achieved the
derivation in terms of the nonminimal anomaly of QCD
[20-26]. The general criticisms of the work are that the
derivations do not involve QCD dynamics because when
the quark-gluon interaction is switched off, nonzero LECs
remained. As a result, the corresponding derivations could
not produce the correct F3 (most of the attempts just gave
zero) and the p*-order LECs L, and Lg gave the wrong
signs. In comparison, our work [6] did give the correct F3
predicted by Pagels and Stokar [7] and produced the correct
L, and Lg signs, which boosted confidence in our formal-
ism and derivations. The problem became the evaluation of
the correct value of the meson mass or its other properties to
judge the reliability of the formalism and derivation, before
solving the problem of the arbitrary mass of the vector
meson. Because of the existence of the free parameter y, we
lacked assurance to develop the formalism further for
mesons of heavier mass and had no idea how to avoid
the effect of this arbitrary parameter on vector meson
masses or how to generate the BSE within our formalism
for vector mesons. Indeed, we doubted whether our
formalism for the vector meson was correct. Considering
that the vector meson is of the lowest mass above those of
the three pseudoscalar flavor mesons, we did not expect our
formalism to work for other heavier mesons if it did not
work for vector mesons. The purpose of this work is to
solve this problem and show that the formalism set up in
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Ref. [16] is correct. The free parameter y does not have an
effect on vector meson masses, and we can reproduce the
standard BSE for vector mesons [19] in our formalism as
well as the correct physical mass in the effective chiral
Lagrangian. Our discussion can be further generalized to
scalar and axial-vector mesons.

This paper is organized as follows: in Sec. II, we review
the previous work for pseudoscalar mesons [6] and vector
mesons [16]; in Sec. III, in the large N, limit, which was
not discussed previously, we show in the Abelian approxi-
mation that the formalism established can reproduce the
correct ladder approximation BSE for vector mesons and
the property of vector meson is independent of free
parameter . We find that in our formalism, BSE leads
to the equation of motion (EOM) for vector mesons and the
mass appearing in EOM is just that determined by BSE. In
Sec. 1V, we generalize our formalism to further include
scalar and axial-vector mesons. Section V provides a
summary and discussion.

II. REVIEW OF PREVIOUS DERIVATIONS OF
THE EFFECTIVE CHIRAL LAGRANGIAN FOR
PSEUDOSCALAR AND VECTOR MESONS

In this section, we review the necessary parts of
Refs. [6,16] for our later discussion in this paper.

Consider a QCD-type gauge theory with SU(N..) local
gauge symmetry. Let Al (i = 1,2, ..., NZ — 1) be the gluon
field; and let <" and ¢2" be, respectively, light and heavy
quark fields with color index a(a = 1,2, ...,N,.), Lorentz
spinor index 7, light flavor index a(a = 1,2, ...,Nf), and
heavy flavor index a(a@ =1,2,...,N%). Let us introduce
local external sources J,, for the composite light quark
operators y°y”, where ¢ and p are short notations for the
spinor and light flavor indices. The external source J can be
decomposed into scalar, pseudoscalar, vector, and axial-
vector parts

J(x) = =s(x) +ip(x)ys + #(x) +alx)rs, (1)

where s(x), p(x), v,(x), and a,(x) are Hermitian matrices,

and the light quark masses have been absorbed into the
definition of s(x). The vector and axial-vector sources #(x)
and a(x) are taken to be traceless. As done in Refs. [2,3],
we start from the generating functional given in Ref. [6],

710 = / Dz//Dz/'/exp{i / d4xy'/(i8+J)l//}
x / DyDgDA,AL(A,)
cenp{i [ | Coen() - 5 14, -
+at0 - M- gA)q| | @

HAz
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where Locp(A) = —%A;',,,Ai”” is the gluon kinetic energy
term, M is the heavy quark mass matrix, 7% = 1/7%;/”1//
are colored currents composed of light quark fields,

3£ [F'(A)]7 is the gauge-fixing term, and Ar(A,) is
the Fadeev-Popov determinant. The conventions and
definitions for fields in Eq. (2) are the same as those in
Ref. [6]. As done in Ref. [6], we integrate out gluon and
quark fields, and integrate in a bilocal auxiliary field
@ (x,y) ~ (1/N.)w5(x)ya(y), which represent the bilin-
ear light-quark pair. The result is

= / DDl V1 (3)

I\[J.®.10] = N, {—iTr Infid + J — 1]
+ / d*xd*x' ®°° (x, x' )17 (x, x')

/d4x1

iy
n!

d*x,d*x) - - - d*x),

G0 /
Gl (X, X, X))

x @171 (x1,x'1)"‘(D””p”(xn’xl’)}’ W

00y

where G0 (x1,x], ..., X,,x)) is a generalized Green
function for gluon including a contribution from gluons
and heavy quarks. Then introducing unitary Goldstone
fields £ and &; by inserting in Eq. (3) a series Goldstone-
field integration as in Ref. [16], Eq. (3) is changed to

= / DODIDERDE, DES(Eép — 1)

x 8(&.& — 1)8(det&p — det&,)
x exp{il'| [/, @, I1] + i[;[ D]

+iN, /d xtry{ Ele~/Ns Eptr, (Pr®T)E]
— e®/Ni gty (PLOT)ER] ) (5)

where

e~ i) = H {{det[tr,PRCDT(x, x)] det[tr; P, @7 (x, x)]}/?

X

X /Daé[(trlPRq)T)(trlPLCDT) —o6'0]6(c - 6")

(6)

is a compensation term to cancel the residual @ field
dependence due to Goldstone fields & and &; integration.
A further integration in the vector meson field V4 (x) by
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functionally inserting a constant integration in Eq. (5)
yields

/D%ﬁ%ﬂ+ﬁﬂa@m+@wm1
X T(x, ) b (1) P + & (1P} @00 (58] ()

Note here a mass dimension parameter g is inevitable. This
is because the II field has mass dimension 5 and V, has
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apparently arbitrary. Nevertheless, the physical results of
our formalism must be independent of the value of this
parameter. We can treat this 4 independence of the result as
a check of the reliability of our formalism. Now we
exponentiate the delta function by introducing a functional
integration over another field V**“(x) and formally inte-
grate out the fields IT and ®, Z[J], obtaining

Z1) = / DexDE, DVDEDVS(Eyey — 1)5(E58, — 1)

dimension 1. To compensate the dimensional difference x &(det &g — det StL)eil"z[-;*R,&,VJ,E,V,‘DC,HC], (8)
between IT and V, fields, we have to match this with a
constant of mass dimension 4, u*. This parameter is where
|
T2l VIEV @I — / DCDDHexp{lTl [/, ®. 1] + il [@]
+iN, / d*xtrp[Ele/Nr Eptry (PRr®T)E] — e/Nr& tr)(PL®T)E]]
. 1 \7i.ba
FiN [ @t Vip 4 P+ e TP + PO e )
I1, and @, fields are iSeitEr €L VI E Vo @1
o — | DODIIIe™ | DODIde (10) = / DEDVe2liré VIEV QML (13)
‘" [DoDIle ‘" [DoDIe ’
where - - - is the exponent of the exponential in Eq. (9). I, The =, and V, fields are
and @, satisfy the following equations:
o v DEDVEe™ - DEDV Ve
6F2[§R’§LvV’J":9V’q)wnc] =0 EC:f’_‘—Nei“, Vc:f,_%’ (14)
oI, ’ [ DEDVe | DEDVe
O [Er, 1, V. I, BV, D, 11,
2lér & B ] =0. (I1)  where - - - is the exponent of the exponential in Eq. (13). E,

We formally finish the integration over fields V and E in

ZU) = / DExDE, DVS(Ehée — 1)3(E1E, — 1)
x 8(det &g — det &) )eSerlénét.VIEVe @Il (12)

where
|

and V. satisfy the following equations:

8*S‘eff[sz? §L’ V? J» EC, ‘7C’ q)c’ Hc]

=0
0=, '
aS ) ’Vy']»EcW ‘7€’¢65HC
eff[éR ‘};L ~ ] =0. (15)
V.

With the help of Egs. (13), (15), (11), (9), and (4), we obtain

OSeit|Er £V, J BV, @, T1,]
AJP (x)

=N, [df;”(x, x) +
Ers&r,Viix

8Seff[§R’ §L7 Vv Jv EC, Vc’ ®cy Hc]

oVab (x)

N Ps + €L (WPl )P + P},
(16)
= N V*P(x). (17)
£ty Jfix
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Here we use a bar to denote the functional average over
fields E and V,

[ DEDVO(x)eM2lnéL VI EV O]
[ DEDVeT2lréLV I EV.0M]

O(x) = . (18)

where the appearance of the second term on the right-hand
side (RHS) of Eq. (16) is proportional to §(0) because the
last term of the RHS of Eq. (9) contributes an extra linear IT
term to the exponential of the integrand of the path integral,
which because of the integration over the I field changes
the original constraint @ (x,y) ~ (1/N )5 (x)wa(y)

to ©7(x,y) + 22 {[Eh (1) Py + € (1) P (x) 61 () P+

En0) P11 ~ (/N JE)w(y): the derivation of J7(x)
for the path integral is simply 5(x)y%(x). Defining the
rotated source and fields by

Ja(x) = [EL(x)Pg + Er(x)
X [6p(x)Pg + &L (x)Py].
G (x,y) = [Er(X)Pg + EL(x)PL]
x @ (x,y)[E (v)Pr + & (V) PL],
Mo(x.y) = [ 1 (x)Pg + Eg(x)Py]

V)Pr+EL ()P,

P[J(x) + id)

M(x, y)[ék (19)

the fields 9, B, V, V remain unchanged. We distinguish the
fields after transformation using a subscript Q; we then
have

I [J, @10 =T [Jq, Pg, o] + anomaly terms,  (20)
@] = Iy [@q). (21)
F2[§R’ éL’ Vv J9 E’ ‘N/v (I)c’ Hc]
=1,[1,1,V,Jq, BV, ®g,, To,]
+ anomaly terms, (22)
Seitlérs &L, V. J B, Vi, @, T1]
= Seir[1. 1. V. Jg. B Ve @qc. Tl
-+ anomaly terms. (23)
Ignoring anomaly terms, Eqs. (16) and (17) become
OSeit[1,1,V, Jg, B, Ve, Do, Mg, ]
aJ g) (x) Eriép Jix
op 6(0) {70
=N.|®g (x,x) + 4—M4X/C”(x)] , (24)
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aSeff[l? 1’ V, JQ’ E‘c’ ‘70’ (Dch HQC]
oVab(x)

= N Vb (x),
EroEr JTix
(25)

III. LARGE N, LIMIT AND ABELIAN
APPROXIMATION

In the large N, limit, all functional integrations in the last
section, except those for £z, &7, and V, can be represented
by their classical fields, which satisfy the stationary
equation with a classical action. For simplicity, we drop
the subscript ¢ in this section, and then Egs. (22) and (23)
become

Doég. & V.LEV, @I =T [J, @11, (26)
Seff[éR’ §L7 V’ J’ Ea ‘77 (I)a H]
=I5, &, V,J,E,V, @, 11],
=1,[1,1,V,Jo, B, V,®q, ]
+ anomaly terms, (27)
Seff[ly 17 V’ JQ7E9 ‘7’ QQ’HQ} - Fl [JQ’(DQ’HQ]’ (28)

where we have used the property that [';[®] is a quantity of
order 1/N .. Equation (15) combined with Egs. (13) and (9)
now become

e O/Nrtr [Pr®L (x, x)] — €/ Nrtr) [P L (x, x)] = 0,
det|tr)[Pr®” (x, x)]]

2i9(x) _ 29
¢ det[tr,[P, @7 (x,x)]]’ (29)
vab 1 qeseo & 30
7 (X)+4ﬂ4 o (xx)()e=0. (30)
and Eq. (11) becomes
oI (x, y) + i[(i8 + Jq — Tg) |00 (y, x)
1 a
300 =37V () =0, (31)
U
E7 (x)5(x — y) + TIg (x,¥)

_n\n+l1 N 2\n
/d4.X1 d4x:l( l) (‘ Cg)
n:

6010,
X G,,,,IH.,,,',’ (e, y, xq, X, oy

X ¢81pn (xnyx;z) =0,

XX.XI

Xy %)@ (31, x7) -
(32)
where V*%(x) and

effective Lagrangian
constraints (30) and

E°(x) can be understood as
multipliers, which enable the
(29) to hold. Note that the
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original discussion in Ref. [6] has the constraint
that E”(x) = Wfd“ytr,f{E(y) [—isind(y)/N; +
y5cos 9(1)/N;]®{ } =, only has scalar and pseudoscalar
components and no vector, axial-vector, or tensor compo-
nents. From Eq. (25), we find V*%“(x) is proportional to the
left-hand side (LHS) of the EOM for a vector meson field
Va(x), and then V*"*(x) =0 is the EOM of vector
mesons for the effective chiral Lagrangian. We expect it
could have some connection with the BSE for vector
mesons because the BSE is a more fundamental underlying
equation describing the structure of vector mesons. For the
constraint Eq. (29), we need the coincidence limit ®(x, x),
which from Eq. (31) becomes

(I)glf)(b'?) (x.x) + i[(id + Jg — HQ)—I](bW)(af) (x, x)

+ 5 700) (K P(x) =, 33)
U

and hence we find the f/ﬂ term does not make a contribution
to the constraint Eq. (29),

tr[Pr®T (x, x)] = —itr)[Px[(id + Jq — Tlg)~"](x, x)]. (34)
Note at the large N, limit [6],

GZIIZ; (‘xl ’ 'xll » X2, ‘x/Z)
1
= __G,ul,uz (xl’XZ)(y”] )0‘1/)2 (yﬂz)azplé(xll - x2)5(x/2 - xl)'

2
(35)

Now we take the Abelian approximation, which retains
only the n =2 Green function G)'5?(x;,x},x,,x,) and
ignores all terms n > 2 in Eq. (32) (If we ignore the
contribution from heavy quarks, changing QCD to QED,
then all the n > 2 Green functions automatically vanish.)
This simplifies Eq. (32) as follows:

[1]:

(x)8(x — y) +Tg(x,y)

1 . _
- 592NCG,,D(x, y)r* [1(18 +Jq —Tlg) ™ (x,y)

+ #5@ _ y))&(x)] =0, (36)

where we have used Eq. (31) to cancel field ®q(x,y).
Using the relation G,,(x,x) = G(0)g,,, we can further
simplify the above equation to

G(0)

5(5)+ PN G 7005 =3)-+ ()
u

i , B ,
—EgchG,w(x,y)y”(l@+Jg—Hg) Moy =0.  (37)
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In this work we are interested in only the linear terms in
the vector meson fields on the LHS of the EOM Eq. (25),
i.e., their kinetic and mass terms and not the interaction
terms. For this purpose, we switch off the external source
Jq and consider only the following type of solutions for
I’ (x, y):

Mg (x.y)|jg=0 = 07E(x.y) +/d4Zﬁ;‘:p'ba(x,y,Z)V"’“”(Z)

+0(V?), (38)

where X(x,y) is the quark self-energy, which satisfies
the Schwinger-Dyson equation (SDE) in the rainbow
approximation,

i

Z(xy) =5

FN G (x, y)y#(id = Z)" (x, y)y* = 0. (39)
and

é(X)|Jﬂ=o,v,,=0 = Vu(x)bgz:o,vﬂ:o = g(x)|19=o,v},=o =0,
(40)
where Eq. (39) can be seen as the vacuum term of Eq. (37)
in which both Jq and V, vanish, and Eq. (40) ensures that
constraints Egs. (29) and (30) are naturally satisfied for the

above vacuum solution Eq. (39). The constraint (30) then is
equivalent to

= (c&)(dC),ba C a
T (o x.2) gy o = —H(x — 2) (7, ) ¥ 608%.
(41)

For Eq. (37), the terms linear in V, are

{é(x) +gszf‘L%<x>} 5(x—y)

4 / 82T (x,y. ) VAab (2)
i
2
X T2 (5 ) VA (2) (D + T — £) (o) = 0.

g2NCGW(x,y)/d4x’d4y’d4zy"(i8+fg—Z)‘l(x,x’)

(42)

In Eq. (42), the two terms involving the effective
Lagrangian multipliers Z(x) and ¥ (x) can be treated as
inhomogeneous terms of the equation. Ignoring these
inhomogeneous terms and switching off the external source
Jo, we obtain
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/d4Zﬁ[§as,/1(xvva)Vi’ab(Z)’
- %gchG/w(x’ y) / d*x'd*y'y(id — )7 (x, x')

x / TS (¢ 2)VAb(2) (D — £)71 (. y)y = 0,
(43)

which is the standard homogeneous BSE in the ladder
approximation for the bound state with amplitude
I15% ,(x. v, z). Here we use a subscript BS to denote that
it is a BS amplitude. For its vector meson solutions,
Ref. [19] presents a detailed analysis, for which Eq. (43)
is just the starting equation (4) of Ref. [19].

Now, if our I15%(x, y, z) in Eq. (42) happens to be the BS
amplitude fllbg‘éj(x,y,z) given by Eq. (43) that fixes the
vector meson structure, we expect these properties will
have some impact on the corresponding vector field V.

The action on the vector field can be obtained by applying
Eq. (43) to Eq. (42),

[1]:

(x)|19:0,1inear inv — 07 (44)

<

(45)

(X) |JQ=0,linear inv — 0’

where the interpretation of Eq. (44) is that the effective
Lagrangian multiplier = has no linearly dependent V' term.
For Eq. (45) combined with Eq. (25) (the average operation
in the formula has no effect at the large N, limit), the
implication is that the vector meson field satisfies its own
EOM. Alternatively, in momentum space, the vector meson
is on its mass shell. This elucidates the fundamental nature
of the vector meson determined by Eq. (43) in regard to the
phenomenological EOM of the vector field. We can state

|

azseff[ls ls V7 JQa Ea ‘77 ®97 HQ]
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this result in a different way. We demand that the vector
meson field satisfy its own EOM, and hence from Eq. (25)
it implies Eq. (45). If we substitute this equation into
Eq. (42), then its vector part becomes BSE (42); i.e., the
EOM of the vector meson field is equivalent to its BSE.
Therefore, we have established a connection between the
BSE for the bound state at the underlying level of QCD and
the EOM at the phenomenological effective chiral
Lagrangian level for the vector mesons. In our formalism,
the BSE can lead to the EOM, and vice versa. Indeed, if we
require ¢ independence in Eq. (42), we get Eq. (45); i.e., the
resulting p independence is a key requirement to relate
the fundamental BSE (43) with the phenomenological
EOM (45).

At the present stage, because we only considered the
terms linear in the vector field in the expansion of Eq. (38),
this implies that the resulting EOM only includes kinetic
and mass terms and no interaction term. This arrangement
matches the general large N, approximation that we have
taken and the corresponding general result given in
Ref. [27] that the mesons in this limit are noninteracting
particles. It is a miracle here that these two important
equations obtained at different scales (quark gluon scale
and meson scale) are related so closely in our formalism.
Note here the mass of the vector meson is determined
through BSE (43), which has already been discussed in
detail in Ref. [19]. Despite the arbitrary parameter y in our
formalism, the mass itself and the amplitude of the vector
mesons are independent of this parameter.

Although from BSE we can obtain EOM, the question is
whether the mass fixed in BSE is the same as that appearing
in EOM. The answer is yes. To confirm this, we need to
compute the 2-point vertex of the vector meson fields
or the inverse of the vector meson propagator, which, in
fact, is the operator in front of EOM of the free meson
field,

02 Sip oy (v, z) oy (v, 2)

— d4 d4 d4 /d4 /
8V/4,czh(x)avu,cd(x/) Jot / yaza'y Z|:

82 S eff

OIY (v, 2)OMIG! (v, 2) OVl (x) OV»(x')

0D (y,2) 0’ (v, 7)

O (y.2)00G (v, 2') OV (x) OV*<d(x')

82 S eff

00y (v, z) 81'[5/’)/ (y, z’)]

2 : .
O (v, 2)IMG” (/. 2/) OV (x) OVHei(x)

= —iNC/d“yld“zl{l:I

fc(yl » 21 x’)

=SNG 1120 18 = 2 T ()2 - 2 .20

x [(i9 = £) 7'M (x) (i = 2)71]7 (21, 31).

(46)
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If we identify the 1:[5" appearing in Eq. (46) with the BS
amplitude ﬁgg,y determined by BSE (43), then the above 2-
point vertex vanishes. This just shows that the mass term in
the 2-point vertex is the same as that fixed by BSE, as BSE
fixes the momentum space 2-point vertex onto the mass
shell.

IV. INCLUDE SCALAR
AND AXIAL-VECTOR MESONS

With the exception of vector meson fields, we now
include the scalar and axial-vector meson fields. We start
from the QCD generating functional Eq. (5), and func-
tionally insert an alternative constant integration,

i9(x) i9(x)

w0 [¢<af><b<> )+l e (0P + ()P

i9(x)
2N

. + M + / / 1 51
x I(x,x)[e Nfgl‘e(x)PR+e2Nf§‘L(x)PL]}(aE)(M)pééﬂ}’
(47)
where 9 is determined by Eq. (29), P¥<¥ is the

projection operator, which projects a general four by
|
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four matrix into its scalar, vector, and axial-vector

subspaces,
2l 1 ! gl ! ! ! gl
pece — 7 69965 4 (1,)°¢ ()% = (r,75)°¢ (r5)¥].
(48)
Note the completion relation
5e sC'¢ 1 e & 1 8 (&
58 :Z<75) (7/5) +§<o-m/) (6 )
+ PFEE, (49)

Exponentiating the delta function by introducing functional

integration over another field ¢#° (x) and integrating out the
fields IT and @, Z[J] can be rearranged to give

) = / DégDE, DEDPDPS(Enie — 1)5(E} &, — 1)
x 5(det &g — det fL)eirz[fk,ﬁL,¢,J.,E,é>,<1>l-,nf], (50)

where

e T2lenéL 2O — / DCI)DHexp{iFI[J,(I),H] + il [@]

i9(x) i9(x) :|

N, / &' {(/,(a:)(bo (x) + % [ e,(0Pe + ™ a(x)P,

o

x T(x, x) [e_lz

A o aé') (bl 1l ~ a
V& (x)Pg + eZNf.fZ(x)PL} }< )0 per ,54} FE0@) ()

+iN., / d*xtr f[E{e /Nr Eptr) (Pr®T)E] — eié’/Nfthr,(PLqﬂ)g;}]}. (51)

The I1. and @, fields still satisfy Eq. (10), but --- in
Eq. (10) now is the exponent to the exponential in Eq. (51).
I1, and @, satisfy the following equations:

O, [Er. &L, . J. B, . D, T1,]

oIl =0
8r2[§R’§Lv ¢7 Jv =, ¢’(DCvHC] —0. (52)
o,

We formally finish the integration over fields g?) and &,

) = / DERDE, DPS(Enen — DSELE, — 1)

x &(det &g — det é:L)eiSeff[fRfLs¢v~7,5c-4~5e-‘bmnc]’ (53)

where

eiSeitlEnéL I Ee o @ T1] — / DEDpeT2lerér b Ed@e L]
(54)

E.(x) and ¢(x) are

[ DEDGE e r e b E4 L]

—c

[ DEDpeT:krér b Edc]

- [DED P e lnbr I EOL]
‘o fDED&eiFZ[§Rv§L~,¢J-E,(,Z.‘1)C,HC]

. (55)

which satisfy
aSeff[fR’ §L’ ¢’ J’ Ec’ (2767 q)c’ Hc]
oz,
aSeff[éR» é:>:L’ ¢9 J’ Ec’ &w (I)cv Hc]
9.

-0,

=0. (56)
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Aided by Egs. (51), (52), and (56), one can show that

dSeiilEr. L, . T By per @, L]
dJo?(x)

SroEr-plix

i9(x) i9(x

5(0 901) _id) ~ ) - op
= N [cpzf’(x, x) + %{ [Py + ¢ TEL (L] PA) [T 6L ()P + ¢ Ng(x)P ] } ] . (s7)

which is useful in determining the LECs of the effective chiral Lagrangian. We use a bar to denote the functional average
over fields E and ¢,

== _ v [ DEDHO(x) exp{ils[ép. &1 4. I E. . @, TL]} ‘

Of) =N L= P s (58)
| DED¢ exp{il;[éx. & p. J.E. . @ TL]}
One can similarly find
dSett[Er- 81 . ). B . e IL] = NCP5§»§’§’€;5£M)(“§/)(x). (59)
dg 99 (x) iy dix
Defining the rotated source and fields as follows:
Ja(x) = [ePONig, (x)Pg + e PN ER(x) P ][I (x) + id] [0/ & (x) P + e POINig] () P,
(D(Tz(x,y) _ [e—m(x)/foR(x)PR + eitg(x)/foL(x)PLMDT(x,y) [e—i&(y)/Nfgzz (}’)PR + em(y)/Nfé:};(y)PL]’
Mg (x,y) = [e®CNrg (x) Py + e /N rgg (x) P T (x, Y)[ei'g(”/[vfﬂe(Y)PR + e_i'g(y)/Nf‘fz ()Pl (60)

the fields 6, E, ¢, ¢ remain unchanged. There is no explicit &; , £z dependence in Eq. (51) after rotation as all the £z and &;
dependence is absorbed into the variables distinguished by subscript Q.

D[R, 6. ] B . @1 = T5[1,1, . J o, B, . D, g, ] + anomaly terms, (61)
Seff [ng éLa ¢7 J» E‘c’ &cv q)c’ HL] = Seff[1 s 17 ¢v JQ’ Ec’ (’lacv (Dch HQC] + anomaly terms, (62)
where
el 101054 Paclla] — / Do, DI, exp{irl Va, Po. Mg + ' [Dg)]

1 a& d /o ~ a —
+iN, / d4x[¢<af><b<> + Engf )08 pee ,ﬂ P LN, / d4xtrf[;[u,(y5q>g)ﬂ}. (63)

Because the Jacobi terms coming from ® — @ and I1 — Il cancel, the functional integration measure does not change,
i.e., DODII = DDy DIlg,. Equations (51), (52), (55), (56), and (57) are the same as before except one must change all
quantities with subscript Q and add an anomaly term into the numerator of Egs. (52), (56), and (57). In particular, by
ignoring the anomaly, Eq. (57) on the rotated basis is

dSeii[1, 1, ., Jq, Be, e, P, g ] =N [dxa:)(bg) (x,x) + 5(0) PEEd plac) (b (x)} (64)
(ag)(bE) . c Qc ’ 4 ¢ .
dJg (x) Eg.£p . fix.no anomaly )2
Equation (59) becomes
dSeff[la 1’ ¢7JQ’EC’ ¢C’¢).QC’H.QC] =N Pfésf/glwllf/)w' (65)
dgplad)(bd) (x) b b fix c c
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At the large N, limit,

=Talép &1 ¢0.J.E. ¢, @.11),
= Fz[lv 1’¢’JQ3E3&7¢97HQ]
+ anomaly terms, (66)

Seit[Ers €, ., B, ¢, @, T1]
F2[17 17 ¢’ JQyEa g)’@Q’HQ] = Fl [‘]Q’QQ’HQ]’ (67)

Seff[l’ 1’ ¢v‘]§275‘7 g;ﬁvCDQvHQ] = 1—‘1 [JQ’CDQ’HQ]’ (68)

and
tr;(y5®@g) = 0, (69)
P00 1 Lpeeo0) press g, (70)

@7 (x,y) + il(i6 + o = Tg) )4 (3, x)

1 yor ~ (PPN
—l——45(x—y)Pg‘f’C‘f(ﬁ(b‘:)(aé)(x) =0, (71)
U

OSee[1.1,¢.J0. B, , D Tg)]
0 (x)

Here, we only list the equations modified by introducing
the additional meson fields; Eqs. (4) and (32) remain the
same as the pure vector meson field case. Equation (69) is a
modified version of Eq. (29); the change occurs because, in

Eqgs. (47) and (60), we have included an extra U(1) rotation
i9(x)
e™r. Equation (69) implies that in the present formalism

®L (x,x) does not have a pseudoscalar component (there-
fore we have no need to consider a pseudoscalar component
in the ¢ field), as this component is already extracted as a
pseudoscalar meson field U(x) = &} (x)&g(x). Taking the
Abelian approximation, Eq. (32) becomes

—NHO). (72)

Er:Er I fix

[1]:

(x)8(x —y) +Tg(x, y)

1 L. _
- 3N G i00 4 T = Th)(5.)

LT y)qu(x)] =0, (73)
U

where we have used Eq. (71) to cancel field @q(x, y), and
E(x) is the effective Lagrangian multiplier for the pseu-

doscalar meson field 2% (x) = 59 (x)(y5)%, which
only has a ys5 component. We can further simplify the
above equation to

PHYSICAL REVIEW D 95, 074012 (2017)

()~ Lgn, G;P PP, 50— y) + T x.y)

1
2

i . _ )
—EgchGW(x,y)y"(l@ﬂLJg—Hg) Hx,y)y*=0. (74)

Switching off external source Jg and considering only the
following type of solution I1°”(x, y), then

H?f(x,y)ljﬂzo
() + [ @ (2 PR + O,
(75)
The constraint (70) then is equivalent to
7" (x, x, jomogpeo = —H*8(x = 2)577 87" (76)
For (74), the terms linear in ¢ are

EORTA

7,,P55(X)7"} 8(x—y)
+ [ @t ) o)
- —g2NC G (x.y) /d4x’d4y’d4zy”(i@ +Jo=2)""(x,x)

2
x 177 (XY, 2)[P(2)]77 (id+Tq—Z) (¥, y)r* = 0.
(77)

In Eq. (77), the two terms involving effective Lagrangian
multipliers Z(x) and yﬂP(;ﬁ(x)y” can be treated as inhomo-
geneous terms of the equation. Ignoring these inhomo-
geneous terms and switching off the external source Jg, we
obtain the following equation:

/ d*2I155 (x,.2)[Pp(2)]7”

NG y) [ daty (D=2 (n.x)

. / A58 (¥, Y, 2) [Ph(2))77 (10— ) (V. y)r* =0,
(78)

which is also the standard homogeneous BSE in the
ladder approximation for the bound state with amplitude
Igg (x,.2).

Whereas Ref. [19] describes vector mesons, Ref [28]
describes scalar and axial-vector mesons. If our I (x, v, 7)

in Eq. (77) is just the BS amplitude HBS (x,y,z) given by
Eq. (78), then Eq. (77) for this BS amplitude further implies
that
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E(x) =0, (79)
7, Ph(x)r" = 0. (80)

Note that for the Lorentz index structures, = only has a
pseudoscalar part, whereas yﬂPg;ﬁ(x)y” only has scalar,
vector, and axial-vector parts, with each independent part
vanishing separately. The interpretation of Eq. (79) is that
the effective Lagrangian multiplier £ has no linearly
dependent ¢ (which includes scalar, vector, and axial-
vector) term. For Eq. (80), in combination with Eq. (72),
Eq. (80) implies that the scalar, vector, and axial-vector
meson fields satisfy their own EOM. As done in Eq. (46) in
the last section, we can prove by computing 2-point vertices
that the masses appearing in the EOM are the same as those
determined by the BSE (78).

V. SUMMARY AND DISCUSSION

We reinvestigated the derivation of the effective vector
meson from QCD to recognize that it can reproduce both
BSE and EOM for the vector meson, and we show that the
mass appearing in the EOM is the same as that determined
by the BSE. The computation is done in the large N, limit
and with Abelian approximation. We know that in the large
N. limit mesons are free particles, and this makes the
discussion much simpler. The Abelian approximation
makes our resulting SDE (39) equivalent to that in the
standard rainbow approximation, and the BSE (43) equiv-
alent to that in the conventional ladder approximation. We
can easily go beyond the Abelian approximation to
reformulate our formalism, but that requires a SDE and
a BSE that extend beyond the traditional rainbow and
ladder approximations. In Ref. [29], we have made a
preliminary investigation into the effects of SDE beyond
the rainbow approximation.

We have generalized the formalism for vector mesons to
further include scalar and axial-vector mesons, with quali-
tative results similar to those for vector mesons. One may ask
why we only consider scalar and axial-vector mesons. In
general, the projection operator (48) can further include
pseudoscalar and antisymmetric tensor parts, which corre-
spond to introducing pseudoscalar and antisymmetric tensor

PHYSICAL REVIEW D 95, 074012 (2017)

mesons. As noted for pseudoscalar mesons, we have already
introduced this degree of freedom as & and &; through the
chiral rotation, and there is no need to reintroduce them.
Even if one does introduce them into the theory, by
considering the pseudoscalar part 1 (y5)¢¢ (ys)% for the
extra pseudoscalar meson field in the projection operator
(48), this pseudoscalar part is trivial and will play no role in
our theory because of constraint (69). This result can be seen
as follows: taking the coincidence limit of Eq. (71), then
constraints (69) and (80) imply the pseudoscalar component
of (id + Jo — )~ (x, x) is zero. Substituting this result
into the coincidence limit of Eq. (74) and combining it with
Egs. (79) and (80), the pseudoscalar part of TIg(x,x)
vanishes, which from constraint (70) implies the pseudo-
scalar part of introduced field ¢(x) is zero. For tensor
mesons, Refs. [30,31] have proved that at the effective chiral
Lagrangian level, the antisymmetric tensor fields descrip-
tion of mesons is equivalent to a vector meson field
description. With this equivalence, one can change our
resultant vector meson chiral Lagrangian given by Ref. [16]
into its antisymmetric tensor version. As we have already
introduced a vector meson field into our theory, there is no
need to consider a corresponding antisymmetric tensor part.
If the antisymmetric tensor fields is introduced, then by
considering antisymmetric tensor part 1 (o,,)¢¢ (6#*)¥ in
the projection operator (48), one finds that for the anti-
symmetric tensor part, the EOM of Eq. (80) is an identity due
to the fact that yﬂaﬂ/‘/y" = (; i.e., it is just trivially satisfied
without any relation to its underlying BSE. This is an
indication of double counting, because the EOM for other
mesons are all related to their BSE. Only if the BSE is valid
can we have an EOM.

Apart from the present way of introducing mesons into
the theory, one can further consider adding in differentials
of the I1 field in Eq. (47). These fields correspond to excited
meson states, and the analysis for them follows similarly as
presented herein.
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