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A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from
first-principles QCD without approximations [Q. Wang, Y.-P. Kuang, X.-L. Wang, and M. Xiao, Phys. Rev.
D 61, 054011 (2000)] is generalized to further include scalar, vector, and axial-vector mesons. In the large
Nc limit and with an Abelian approximation, we show that the properties of the newly added mesons in our
formalism are determined by the corresponding underlying fundamental homogeneous Bethe-Salpeter
equation in the ladder approximation, which yields the equations of motion for the scalar, vector, and axial-
vector meson fields at the level of an effective chiral Lagrangian. The masses appearing in the equations of
motion of the meson fields are those determined by the corresponding Bethe-Salpeter equation.
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I. INTRODUCTION

Effective chiral Lagrangian theory is well known to be a
very useful formalism to describe low-lying mesons
(the basic papers are Refs. [1–3], for an introduction see
Ref. [4], and for a professional review see Ref. [5]), which
enables us to avoid difficulties in nonperturbative QCD in
the low-energy regime. We often dismiss the importance of
derivations of the effective chiral Lagrangian from first-
principles QCD theory and treat this derivation as a purely
theoretical exercise. This, of course, is partly due to the
difficulties in the derivation, but the more important reason
may be because the effective chiral Lagrangian has the
same chiral and discrete symmetries as the original QCD,
regardless of whether the Lagrangian is derived or simply
written down. The same form of the effective chiral
Lagrangian is always obtained, and in this sense, the
derivation seems to lose its value, because in terms of
symmetry constraints, it suffices to write all necessary
terms of the effective chiral Lagrangian. Then, why do
we need to pay a high price and play with this very
difficult derivation? There are three reasons. First, the
derivation offers us a systematic definition of low-energy
constants (LECs) in terms of the underlying QCD, which

conventionally can only be done for specific LECs by
choosing some special processes or physical quantities and
demanding a match of the computed results from the
effective chiral Lagrangian and from QCD. Based on this
systematic and fundamental expression of LECs at the
QCD level, one can develop some first-principles QCD
computation techniques for LECs. This provides us with a
possible solution to the LEC number problem encountered
in effective chiral Lagrangian theory, for which if we go to
high order in the low-energy expansion, the number of
LECs increases very rapidly. It is impossible to fix all of
them purely from experiment. Second, the derivation often
provides us with a compact expression for the effective
chiral Lagrangian, which corresponds to resumming the
infinite series of the low-energy expansion. This offers a
way to go beyond the traditional low-energy expansion for
the effective chiral Lagrangian and enlarge the available
scope of our calculation. Third, the detailed procedure of
the derivation in general is independent of various sym-
metry arguments that are heavily relied on by the traditional
effective chiral Lagrangian. Often this reveals some unex-
pected correlations between different objects, which will
make us go beyond conventional pure symmetry discus-
sions and deepen our understanding of the structure of the
QCD. For our derived effective chiral Lagrangian, although
the Lagrangian itself is phenomenological, the detailed
structure of the final expression includes all necessary
information of the underlying QCD. Although the deriva-
tion of the effective chiral Lagrangian from QCD is of such
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importance, unfortunately, it often is very difficult involv-
ing a lot of mathematical and nonperturbative techniques to
treat. The naive belief is that, if one can successfully handle
these difficulties and compare to derive the effective chiral
Lagrangian, directly using these techniques to compute
low-energy physics quantities and processes may be more
efficient. For these reasons, very little work on a reliable
derivation has appeared in the literature.
Seventeen years ago, in Ref. [6], we built a formalism to

derive the chiral Lagrangian for low-lying pseudoscalar
mesons from first-principles QCD without taking approx-
imations. The derivation is based on the standard generat-
ing functional of QCD with external bilinear light-quark
field sources in the path integral formalism. The integra-
tions of gluon and heavy-quark fields are performed
formally by expressing the result in terms of the physical
Green functions of the gluon. To integrate over the left
light-quark fields, we introduce a bilocal auxiliary field
Φðx; yÞ representing the light mesons. We then developed a
consistent way of extracting the local pseudoscalar degree
of freedom UðxÞ in Φðx; yÞ integrating out the other
degrees of freedom. With certain techniques, we worked
out the explicit UðxÞ dependence of the effective action up
to the p4 terms in the momentum expansion, which leads to
the desired chiral Lagrangian in which all LECs of the
theory are expressed in terms of Green’s functions for
certain quarks in QCD. The final result can be regarded as
the fundamental QCD definition of the LECs. With some
approximation, we found our QCD definition of the p2-
order coefficient F2

0 recovers just the well-known approxi-
mate result given by Pagels and Stokar [7].
Further developments of this work moved along two

directions. One was in terms of the compact result obtained
in Ref. [6] from QCD. We continued to develop various
techniques to calculate LECs of the pseudoscalar meson
chiral Lagrangian that included LECs of order p4 [8] and
various versions of order p6 [9–12]. To date though, we still
use an ansatz to represent the real solution of the external
source-dependent Schwinger-Dyson equation to simplify
the computations. Because of its rough approximation, it is
criticized by becoming a phenomenological model [13] and
not being derived from a first-principles calculations. We
are nevertheless improving our techniques step by step
toward a final realization of a true first-principles compu-
tation. Except our works, some other authors estimate the
contributions of resonance to the LECs, instead of comput-
ing them from the first principle of QCD [14], or in terms of
a class of gravity dual models of QCD to calculate LECs
[15]. The other direction developed extends the content of
the formalism from pure pseudoscalar mesons to include
other meson species, in particular, vector mesons in
Ref. [16] and the η0 meson in Ref. [17]. In the following
year, we changed from QCD to a general technicolor
model deriving the effective chiral Lagrangian for its
pseudo-Goldstone bosons in Ref. [18]. This direction of

development was stopped in 2001, because we have found
a key obstacle to a result given in [16]. There is inevitably a
free dimensional parameter μ appearing in our derivation,
and it seems that the masses of the vector bosons depending
on this μ parameter can take arbitrary values. This contra-
dicts our expectation because we know that QCD deter-
mines the property of vector mesons nonperturbatively via
the corresponding Bethe-Salpeter equation (BSE) [19],
which will fix the vector meson mass without any arbitra-
riness. For a correct formalism, we should automatically
produce this BSE, which fixes the amplitude of vector
boson. The situation for vector mesons contrasts that of
pseudoscalar mesons, where spontaneous chiral symmetry
breaking at the chiral limit sets their masses to zero because
of their Goldstone nature. As long as our formalism retains
the correct behavior under spontaneous chiral symmetry
breaking, the masses of pseudoscalar mesons are automati-
cally zero. Beyond pseudoscalar mesons, we do not have
this Goldstone-theorem argument, and the masses of
mesons no longer vanish even at the chiral limit. Hence,
producing the correct value of these nonzero meson masses
becomes a real challenge. It is a sign that our derivation
goes beyond the constraint of chiral symmetry and its
breaking. Here we stress the importance of producing the
correct meson masses or more generally the LECs of the
effective chiral Lagrangian in our derivation. Without this
we cannot trust the validity of the formalism we have built
up for the derivation. In fact, in the mid-1980s, there were
many articles claiming that they have achieved the
derivation in terms of the nonminimal anomaly of QCD
[20–26]. The general criticisms of the work are that the
derivations do not involve QCD dynamics because when
the quark-gluon interaction is switched off, nonzero LECs
remained. As a result, the corresponding derivations could
not produce the correct F2

0 (most of the attempts just gave
zero) and the p4-order LECs L7 and L8 gave the wrong
signs. In comparison, our work [6] did give the correct F2

0

predicted by Pagels and Stokar [7] and produced the correct
L7 and L8 signs, which boosted confidence in our formal-
ism and derivations. The problem became the evaluation of
the correct value of the meson mass or its other properties to
judge the reliability of the formalism and derivation, before
solving the problem of the arbitrary mass of the vector
meson. Because of the existence of the free parameter μ, we
lacked assurance to develop the formalism further for
mesons of heavier mass and had no idea how to avoid
the effect of this arbitrary parameter on vector meson
masses or how to generate the BSE within our formalism
for vector mesons. Indeed, we doubted whether our
formalism for the vector meson was correct. Considering
that the vector meson is of the lowest mass above those of
the three pseudoscalar flavor mesons, we did not expect our
formalism to work for other heavier mesons if it did not
work for vector mesons. The purpose of this work is to
solve this problem and show that the formalism set up in
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Ref. [16] is correct. The free parameter μ does not have an
effect on vector meson masses, and we can reproduce the
standard BSE for vector mesons [19] in our formalism as
well as the correct physical mass in the effective chiral
Lagrangian. Our discussion can be further generalized to
scalar and axial-vector mesons.
This paper is organized as follows: in Sec. II, we review

the previous work for pseudoscalar mesons [6] and vector
mesons [16]; in Sec. III, in the large Nc limit, which was
not discussed previously, we show in the Abelian approxi-
mation that the formalism established can reproduce the
correct ladder approximation BSE for vector mesons and
the property of vector meson is independent of free
parameter μ. We find that in our formalism, BSE leads
to the equation of motion (EOM) for vector mesons and the
mass appearing in EOM is just that determined by BSE. In
Sec. IV, we generalize our formalism to further include
scalar and axial-vector mesons. Section V provides a
summary and discussion.

II. REVIEW OF PREVIOUS DERIVATIONS OF
THE EFFECTIVE CHIRAL LAGRANGIAN FOR

PSEUDOSCALAR AND VECTOR MESONS

In this section, we review the necessary parts of
Refs. [6,16] for our later discussion in this paper.
Consider a QCD-type gauge theory with SUðNcÞ local

gauge symmetry. Let Ai
μði ¼ 1; 2;…; N2

c − 1Þ be the gluon
field; and let ψaη

α and qāηα be, respectively, light and heavy
quark fields with color index αðα ¼ 1; 2;…; NcÞ, Lorentz
spinor index η, light flavor index aða ¼ 1; 2;…; NfÞ, and
heavy flavor index āðā ¼ 1; 2;…; N0

fÞ. Let us introduce
local external sources Jσρ for the composite light quark
operators ψ̄σψρ, where σ and ρ are short notations for the
spinor and light flavor indices. The external source J can be
decomposed into scalar, pseudoscalar, vector, and axial-
vector parts

JðxÞ ¼ −sðxÞ þ ipðxÞγ5 þ vðxÞ þ aðxÞγ5; ð1Þ
where sðxÞ, pðxÞ, vμðxÞ, and aμðxÞ are Hermitian matrices,
and the light quark masses have been absorbed into the
definition of sðxÞ. The vector and axial-vector sources vðxÞ
and aðxÞ are taken to be traceless. As done in Refs. [2,3],
we start from the generating functional given in Ref. [6],

Z½J� ¼
Z

DψDψ̄ exp

�
i
Z

d4xψ̄ði∂ þ JÞψ
�

×
Z

DqDq̄DAμΔFðAμÞ

× exp

�
i
Z

d4x

�
LQCDðAÞ −

1

2ξ
½FiðAμÞ�2 − gIμ

i A
i
μ

þ q̄ði∂ −M − gAÞq
��

; ð2Þ

where LQCDðAÞ ¼ − 1
4
Ai
μνAiμν is the gluon kinetic energy

term, M is the heavy quark mass matrix, Iμ
i ≡ ψ̄ λi

2
γμψ

are colored currents composed of light quark fields,
− 1

2ξ ½FiðAμÞ�2 is the gauge-fixing term, and ΔFðAμÞ is
the Fadeev-Popov determinant. The conventions and
definitions for fields in Eq. (2) are the same as those in
Ref. [6]. As done in Ref. [6], we integrate out gluon and
quark fields, and integrate in a bilocal auxiliary field
Φσρðx; yÞ ∼ ð1=NcÞψ̄σ

αðxÞψρ
αðyÞ, which represent the bilin-

ear light-quark pair. The result is

Z½J� ¼
Z

DΦDΠeiΓ1½J;Φ;Π�; ð3Þ

Γ1½J;Φ;Π� ¼ Nc

�
−iTr ln½i∂ þ J − Π�

þ
Z

d4xd4x0Φσρðx; x0ÞΠσρðx; x0Þ

þ
X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

×
ð−iÞnðNcg2Þn−1

n!
Ḡσ1���σn

ρ1���ρn ðx1; x01;…; xn; x0nÞ

×Φσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ
�
; ð4Þ

where Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ is a generalized Green

function for gluon including a contribution from gluons
and heavy quarks. Then introducing unitary Goldstone
fields ξR and ξL by inserting in Eq. (3) a series Goldstone-
field integration as in Ref. [16], Eq. (3) is changed to

Z½J� ¼
Z

DΦDΠDξRDξLDΞδðξ†RξR − 1Þ

× δðξ†LξL − 1Þδðdet ξR − det ξLÞ
× expfiΓ1½J;Φ;Π� þ iΓI½Φ�

þ iNc

Z
d4xtrffΞ½e−iϑ=NfξRtrlðPRΦTÞξ†L

− eiϑ=NfξLtrlðPLΦTÞξ†R�gg; ð5Þ

where

e−iΓI ½Φ� ≡Y
x

�
fdet½trlPRΦTðx; xÞ� det½trlPLΦTðx; xÞ�g1=2

×
Z

Dσδ½ðtrlPRΦTÞðtrlPLΦTÞ − σ†σ�δðσ − σ†Þ
�

ð6Þ

is a compensation term to cancel the residual Φ field
dependence due to Goldstone fields ξR and ξL integration.
A further integration in the vector meson field Vab

μ ðxÞ by
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functionally inserting a constant integration in Eq. (5)
yields

Z
DVδ

�
Vab
μ ðxÞ þ 1

4μ4
f½ξLðxÞPR þ ξRðxÞPL�

× Πðx; xÞ½ξ†RðxÞPR þ ξ†LðxÞPL�gðaξÞðbζÞðγμÞζξ
�
: ð7Þ

Note here a mass dimension parameter μ is inevitable. This
is because the Π field has mass dimension 5 and Vμ has
dimension 1. To compensate the dimensional difference
between Π and Vμ fields, we have to match this with a
constant of mass dimension 4, μ4. This parameter is

apparently arbitrary. Nevertheless, the physical results of
our formalism must be independent of the value of this
parameter. We can treat this μ independence of the result as
a check of the reliability of our formalism. Now we
exponentiate the delta function by introducing a functional
integration over another field ~Vμ;baðxÞ and formally inte-
grate out the fields Π and Φ, Z½J�, obtaining

Z½J� ¼
Z

DξRDξLDVDΞD ~Vδðξ†RξR − 1Þδðξ†LξL − 1Þ

× δðdet ξR − det ξLÞeiΓ2½ξR;ξL;V;J;Ξ; ~V;Φc;Πc�; ð8Þ

where

eiΓ2½ξR;ξL;V;J;Ξ; ~V;Φc;Πc� ¼
Z

DΦDΠ exp

�
iΓ1½J;Φ;Π� þ iΓI½Φ�

þ iNc

Z
d4xtrf½Ξ½e−iϑ=NfξRtrlðPRΦTÞξ†L − eiϑ=NfξLtrlðPLΦTÞξ†R��

þ iNc

Z
d4x

�
Vab
μ þ 1

4μ4
½ðξLPR þ ξRPLÞΠðξ†RPR þ ξ†LPLÞ�ðaξÞðbζÞðγμÞζξ

�
~Vμ;ba

�
: ð9Þ

Πc and Φc fields are

Πc ¼
R
DΦDΠΠe���R
DΦDΠe���

; Φc ¼
R
DΦDΠΦe���R
DΦDΠe���

; ð10Þ

where � � � is the exponent of the exponential in Eq. (9). Πc
and Φc satisfy the following equations:

∂Γ2½ξR; ξL; V; J;Ξ; ~V;Φc;Πc�
∂Πc

¼ 0;

∂Γ2½ξR; ξL; V; J;Ξ; ~V;Φc;Πc�
∂Φc

¼ 0: ð11Þ

We formally finish the integration over fields ~V and Ξ in
Eq. (8),

Z½J� ¼
Z

DξRDξLDVδðξ†RξR − 1Þδðξ†LξL − 1Þ

× δðdet ξR − det ξLÞeiSeff ½ξR;ξL;V;J;Ξc; ~Vc;Φc;Πc�; ð12Þ

where

eiSeff ½ξR;ξL;V;J;Ξc; ~Vc;Φc;Πc�

¼
Z

DΞD ~VeiΓ2½ξR;ξL;V;J;Ξ; ~V;Φc;Πc�: ð13Þ

The Ξc and ~Vc fields are

Ξc ¼
R
DΞD ~VΞe���R
DΞD ~Ve���

; ~Vc ¼
R
DΞD ~V ~V e���R
DΞD ~Ve���

; ð14Þ

where � � � is the exponent of the exponential in Eq. (13). Ξc

and ~Vc satisfy the following equations:

∂Seff ½ξR; ξL; V; J;Ξc; ~Vc;Φc;Πc�
∂Ξc

¼ 0;

∂Seff ½ξR; ξL; V; J;Ξc; ~Vc;Φc;Πc�
∂ ~Vc

¼ 0: ð15Þ

With the help of Eqs. (13), (15), (11), (9), and (4), we obtain

∂Seff ½ξR; ξL; V; J;Ξc; ~Vc;Φc;Πc�
∂JσρðxÞ

����
ξR;ξL;Vfix

¼ Nc

�
Φσρ

c ðx; xÞ þ δð0Þ
4μ4

f½ξ†RðxÞPR þ ξ†LðxÞPL� ~VðxÞ½ξLðxÞPR þ ξRðxÞPL�gσρ
�
;

ð16Þ
∂Seff ½ξR; ξL; V; J;Ξc; ~Vc;Φc;Πc�

∂Vab
μ ðxÞ

����
ξR;ξL;Jfix

¼ Nc
~Vμ;baðxÞ: ð17Þ
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Here we use a bar to denote the functional average over
fields Ξ and ~V,

OðxÞ≡
R
DΞD ~VOðxÞeiΓ2½ξR;ξL;V;J;Ξ; ~V;Φc;Πc�R

DΞD ~VeiΓ2½ξR;ξL;V;J;Ξ; ~V;Φc;Πc�
; ð18Þ

where the appearance of the second term on the right-hand
side (RHS) of Eq. (16) is proportional to δð0Þ because the
last term of the RHS of Eq. (9) contributes an extra linear Π
term to the exponential of the integrand of the path integral,
which because of the integration over the Π field changes
the original constraint Φσρðx; yÞ ∼ ð1=NcÞψ̄σ

αðxÞψρ
αðyÞ

to Φσρðx; yÞ þ δðx−yÞ
4μ4

f½ξ†RðxÞPR þ ξ†LðxÞPL� ~VðxÞ½ξLðxÞPRþ
ξRðxÞPL�gσρ ∼ ð1=NcÞψ̄σ

αðxÞψρ
αðyÞ; the derivation of JσρðxÞ

for the path integral is simply ψ̄σ
αðxÞψρ

αðxÞ. Defining the
rotated source and fields by

JΩðxÞ ¼ ½ξLðxÞPR þ ξRðxÞPL�½JðxÞ þ i∂�
× ½ξ†RðxÞPR þ ξ†LðxÞPL�;

ΦT
Ωðx; yÞ ¼ ½ξRðxÞPR þ ξLðxÞPL�

×ΦTðx; yÞ½ξ†LðyÞPR þ ξ†RðyÞPL�;
ΠΩðx; yÞ ¼ ½ξLðxÞPR þ ξRðxÞPL�

× Πðx; yÞ½ξ†RðyÞPR þ ξ†LðyÞPL�; ð19Þ

the fields ϑ, Ξ, V, ~V remain unchanged. We distinguish the
fields after transformation using a subscript Ω; we then
have

Γ1½J;Φ;Π� ¼ Γ1½JΩ;ΦΩ;ΠΩ� þ anomaly terms; ð20Þ

ΓI½Φ� ¼ ΓI½ΦΩ�; ð21Þ

Γ2½ξR; ξL; V; J;Ξ; ~V;Φc;Πc�
¼ Γ2½1; 1; V; JΩ;Ξ; ~V;ΦΩc;ΠΩc�
þ anomaly terms; ð22Þ

Seff ½ξR; ξL; V; J;Ξc; ~Vc;Φc;Πc�
¼ Seff ½1; 1; V; JΩ;Ξc; ~Vc;ΦΩc;ΠΩc�
þ anomaly terms: ð23Þ

Ignoring anomaly terms, Eqs. (16) and (17) become

∂Seff ½1; 1; V; JΩ;Ξc; ~Vc;ΦΩc;ΠΩc�
∂JσρΩ ðxÞ

����
ξR;ξL;Jfix

¼ Nc

�
Φσρ

Ωcðx; xÞ þ
δð0Þ
4μ4

~Vσρ
c ðxÞ

�
; ð24Þ

∂Seff ½1; 1; V; JΩ;Ξc; ~Vc;ΦΩc;ΠΩc�
∂Vab

μ ðxÞ
����
ξR;ξL;Jfix

¼ Nc
~Vμ;baðxÞ:

ð25Þ

III. LARGE Nc LIMIT AND ABELIAN
APPROXIMATION

In the large Nc limit, all functional integrations in the last
section, except those for ξR, ξL, and V, can be represented
by their classical fields, which satisfy the stationary
equation with a classical action. For simplicity, we drop
the subscript c in this section, and then Eqs. (22) and (23)
become

Γ2½ξR; ξL; V; J;Ξ; ~V;Φ;Π� ¼ Γ1½J;Φ;Π�; ð26Þ

Seff ½ξR; ξL; V; J;Ξ; ~V;Φ;Π�
¼ Γ2½ξR; ξL; V; J;Ξ; ~V;Φ;Π�;
¼ Γ2½1; 1; V; JΩ;Ξ; ~V;ΦΩ;ΠΩ�
þ anomaly terms; ð27Þ

Seff ½1; 1; V; JΩ;Ξ; ~V;ΦΩ;ΠΩ� ¼ Γ1½JΩ;ΦΩ;ΠΩ�; ð28Þ

where we have used the property that ΓI½Φ� is a quantity of
order 1=Nc. Equation (15) combined with Eqs. (13) and (9)
now become

e−iϑ=Nf trl½PRΦT
Ωðx; xÞ� − eiϑ=Nf trl½PLΦT

Ωðx; xÞ� ¼ 0;

e2iϑðxÞ ¼ det½trl½PRΦTðx; xÞ��
det½trl½PLΦTðx; xÞ�� ; ð29Þ

Vab
μ ðxÞ þ 1

4μ4
ΠðaξÞðbζÞ

Ω ðx; xÞðγμÞζξ ¼ 0; ð30Þ

and Eq. (11) becomes

ΦðaξÞðbηÞ
Ω ðx; yÞ þ i½ði∂ þ JΩ − ΠΩÞ−1�ðbηÞðaξÞðy; xÞ

þ 1

4μ4
δðx − yÞðγμÞηξ ~Vμ;baðxÞ ¼ 0; ð31Þ

~ΞσρðxÞδðx − yÞ þ Πσρ
Ω ðx; yÞ

þ
X∞
n¼1

Z
d4x1 � � � d4xnx4x01 � � � d4x0n

ð−iÞnþ1ðNcg2Þn
n!

× Ḡσσ1���σn
ρρ1���ρn ðx; y; x1; x01;…; xn; x0nÞΦσ1ρ1

Ω ðx1; x01Þ � � �
×Φσnρn

Ω ðxn; x0nÞ ¼ 0; ð32Þ

where ~Vμ;baðxÞ and ~ΞσρðxÞ can be understood as
effective Lagrangian multipliers, which enable the
constraints (30) and (29) to hold. Note that the
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original discussion in Ref. [6] has the constraint
that ~ΞσρðxÞ ¼ ∂

∂Φσρ
Ω ðx;xÞ

R
d4ytrlffΞðyÞ½−i sin ϑðyÞ=Nf þ

γ5 cosϑðtÞ=Nf�ΦT
ΩgjΞfix only has scalar and pseudoscalar

components and no vector, axial-vector, or tensor compo-
nents. From Eq. (25), we find ~Vμ;baðxÞ is proportional to the
left-hand side (LHS) of the EOM for a vector meson field
Vab
μ ðxÞ, and then ~Vμ;baðxÞ ¼ 0 is the EOM of vector

mesons for the effective chiral Lagrangian. We expect it
could have some connection with the BSE for vector
mesons because the BSE is a more fundamental underlying
equation describing the structure of vector mesons. For the
constraint Eq. (29), we need the coincidence limit Φðx; xÞ,
which from Eq. (31) becomes

ΦðaξÞðbηÞ
Ω ðx; xÞ þ i½ði∂ þ JΩ − ΠΩÞ−1�ðbηÞðaξÞðx; xÞ

þ 1

4μ4
δð0ÞðγμÞηξ ~Vμ;baðxÞ ¼ 0; ð33Þ

and hence we find the ~Vμ term does not make a contribution
to the constraint Eq. (29),

trl½PR
L
ΦTðx; xÞ� ¼ −itrl½PR

L
½ði∂ þ JΩ − ΠΩÞ−1�ðx; xÞ�: ð34Þ

Note at the large Nc limit [6],

Ḡσ1σ2
ρ1ρ2 ðx1; x01; x2; x02Þ

¼ −
1

2
Gμ1μ2ðx1; x2Þðγμ1Þσ1ρ2ðγμ2Þσ2ρ1δðx01 − x2Þδðx02 − x1Þ:

ð35Þ

Now we take the Abelian approximation, which retains
only the n ¼ 2 Green function Ḡσ1σ2

ρ1ρ2 ðx1; x01; x2; x02Þ and
ignores all terms n > 2 in Eq. (32) (If we ignore the
contribution from heavy quarks, changing QCD to QED,
then all the n > 2 Green functions automatically vanish.)
This simplifies Eq. (32) as follows:

~ΞðxÞδðx − yÞ þ ΠΩðx; yÞ

−
1

2
g2NcGμνðx; yÞγμ

�
iði∂ þ JΩ − ΠΩÞ−1ðx; yÞ

þ 1

4μ4
δðx − yÞ ~VðxÞ

�
γν ¼ 0; ð36Þ

where we have used Eq. (31) to cancel field ΦΩðx; yÞ.
Using the relation Gμνðx; xÞ ¼ Gð0Þgμν, we can further
simplify the above equation to

�
~ΞðxÞþg2Nc

Gð0Þ
4μ4

~VðxÞ
�
δðx−yÞþΠΩðx;yÞ

−
i
2
g2NcGμνðx;yÞγμði∂þJΩ−ΠΩÞ−1ðx;yÞγν¼ 0: ð37Þ

In this work we are interested in only the linear terms in
the vector meson fields on the LHS of the EOM Eq. (25),
i.e., their kinetic and mass terms and not the interaction
terms. For this purpose, we switch off the external source
JΩ and consider only the following type of solutions for
Πσρðx; yÞ:

Πσρ
Ω ðx; yÞjJΩ¼0 ¼ δσρΣðx; yÞ þ

Z
d4z ~Πσρ;ba

μ ðx; y; zÞVμ;abðzÞ

þOðV2Þ; ð38Þ

where Σðx; yÞ is the quark self-energy, which satisfies
the Schwinger-Dyson equation (SDE) in the rainbow
approximation,

Σðx; yÞ − i
2
g2NcGμνðx; yÞγμði∂ − ΣÞ−1ðx; yÞγν ¼ 0; ð39Þ

and

~ΞðxÞjJΩ¼0;Vμ¼0 ¼ ~VμðxÞjJΩ¼0;Vμ¼0 ¼ θðxÞjJΩ¼0;Vμ¼0 ¼ 0;

ð40Þ

where Eq. (39) can be seen as the vacuum term of Eq. (37)
in which both JΩ and Vμ vanish, and Eq. (40) ensures that
constraints Eqs. (29) and (30) are naturally satisfied for the
above vacuum solution Eq. (39). The constraint (30) then is
equivalent to

~ΠðcξÞðdζÞ;ba
μ ðx; x; zÞjJΩ¼0;Vμ¼0 ¼ −μ4δðx − zÞðγμÞξζδcbδda:

ð41Þ

For Eq. (37), the terms linear in Vμ are

�
~ΞðxÞþ g2Nc

Gð0Þ
4μ4

~VðxÞ
�
δðx− yÞ

þ
Z

d4z ~Πba
λ ðx;y;zÞVλ;abðzÞ

−
i
2
g2NcGμνðx;yÞ

Z
d4x0d4y0d4zγμði∂þ JΩ −ΣÞ−1ðx;x0Þ

× ~Πba
λ ðx0; y0; zÞVλ;abðzÞði∂þ JΩ −ΣÞ−1ðy0; yÞγν ¼ 0:

ð42Þ

In Eq. (42), the two terms involving the effective
Lagrangian multipliers ~ΞðxÞ and ~VðxÞ can be treated as
inhomogeneous terms of the equation. Ignoring these
inhomogeneous terms and switching off the external source
JΩ, we obtain
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Z
d4z ~Πba

BS;λðx; y; zÞVλ;abðzÞ;

−
i
2
g2NcGμνðx; yÞ

Z
d4x0d4y0γμði∂ − ΣÞ−1ðx; x0Þ

×
Z

d4z ~Πba
BS;λðx0; y0; zÞVλ;abðzÞði∂ − ΣÞ−1ðy0; yÞγν ¼ 0;

ð43Þ

which is the standard homogeneous BSE in the ladder
approximation for the bound state with amplitude
~Πba
BS;λðx; y; zÞ. Here we use a subscript BS to denote that

it is a BS amplitude. For its vector meson solutions,
Ref. [19] presents a detailed analysis, for which Eq. (43)
is just the starting equation (4) of Ref. [19].
Now, if our ~Πba

λ ðx; y; zÞ in Eq. (42) happens to be the BS
amplitude ~Πba

BS;λðx; y; zÞ given by Eq. (43) that fixes the
vector meson structure, we expect these properties will
have some impact on the corresponding vector field Vμ.
The action on the vector field can be obtained by applying
Eq. (43) to Eq. (42),

~ΞðxÞjJΩ¼0;linear in V ¼ 0; ð44Þ

~VðxÞjJΩ¼0;linear in V ¼ 0; ð45Þ

where the interpretation of Eq. (44) is that the effective
Lagrangian multiplier ~Ξ has no linearly dependent V term.
For Eq. (45) combined with Eq. (25) (the average operation
in the formula has no effect at the large Nc limit), the
implication is that the vector meson field satisfies its own
EOM. Alternatively, in momentum space, the vector meson
is on its mass shell. This elucidates the fundamental nature
of the vector meson determined by Eq. (43) in regard to the
phenomenological EOM of the vector field. We can state

this result in a different way. We demand that the vector
meson field satisfy its own EOM, and hence from Eq. (25)
it implies Eq. (45). If we substitute this equation into
Eq. (42), then its vector part becomes BSE (42); i.e., the
EOM of the vector meson field is equivalent to its BSE.
Therefore, we have established a connection between the
BSE for the bound state at the underlying level of QCD and
the EOM at the phenomenological effective chiral
Lagrangian level for the vector mesons. In our formalism,
the BSE can lead to the EOM, and vice versa. Indeed, if we
require μ independence in Eq. (42), we get Eq. (45); i.e., the
resulting μ independence is a key requirement to relate
the fundamental BSE (43) with the phenomenological
EOM (45).
At the present stage, because we only considered the

terms linear in the vector field in the expansion of Eq. (38),
this implies that the resulting EOM only includes kinetic
and mass terms and no interaction term. This arrangement
matches the general large Nc approximation that we have
taken and the corresponding general result given in
Ref. [27] that the mesons in this limit are noninteracting
particles. It is a miracle here that these two important
equations obtained at different scales (quark gluon scale
and meson scale) are related so closely in our formalism.
Note here the mass of the vector meson is determined
through BSE (43), which has already been discussed in
detail in Ref. [19]. Despite the arbitrary parameter μ in our
formalism, the mass itself and the amplitude of the vector
mesons are independent of this parameter.
Although from BSE we can obtain EOM, the question is

whether the mass fixed in BSE is the same as that appearing
in EOM. The answer is yes. To confirm this, we need to
compute the 2-point vertex of the vector meson fields
or the inverse of the vector meson propagator, which, in
fact, is the operator in front of EOM of the free meson
field,

∂2Seff ½1; 1; V; JΩ;Ξ; ~V;ΦΩ;ΠΩ�
∂Vμ;abðxÞ∂Vν;cdðx0Þ

����
JΩ¼0

¼
Z

d4yd4zd4y0d4z0
� ∂2Seff
∂Πσρ

Ω ðy; zÞ∂Πσ0ρ0
Ω ðy0; z0Þ

∂Πσρ
Ω ðy; zÞ

∂Vμ;abðxÞ
∂Πσ0ρ0

Ω ðy0; z0Þ
∂Vν;cdðx0Þ

þ ∂2Seff
∂Φσρ

Ω ðy; zÞ∂Φσ0ρ0
Ω ðy0; z0Þ

∂Φσρ
Ω ðy; zÞ

∂Vμ;abðxÞ
∂Φσ0ρ0

Ω ðy0; z0Þ
∂Vν;cdðx0Þ

þ 2
∂2Seff

∂Φσρ
Ω ðy; zÞ∂Πσ0ρ0

Ω ðy0; z0Þ
∂Φσρ

Ω ðy; zÞ
∂Vμ;abðxÞ

∂Πσ0ρ0
Ω ðy0; z0Þ

∂Vν;cdðx0Þ
�

¼ −iNc

Z
d4y1d4z1

�
~Πdc
ν ðy1; z1; x0Þ

−
i
2
Ncg2Gμ1μ2ðy1; z1Þ½γμ1ði∂ − ΣÞ−1 ~Πdc

ν ðx0Þði∂ − ΣÞ−1γμ2 �ðy1; z1Þ
�

σ1σ2

× ½ði∂ − ΣÞ−1 ~Πba
μ ðxÞði∂ − ΣÞ−1�σ2σ1ðz1; y1Þ: ð46Þ
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If we identify the ~Πdc
ν appearing in Eq. (46) with the BS

amplitude ~Πdc
BS;ν determined by BSE (43), then the above 2-

point vertex vanishes. This just shows that the mass term in
the 2-point vertex is the same as that fixed by BSE, as BSE
fixes the momentum space 2-point vertex onto the mass
shell.

IV. INCLUDE SCALAR
AND AXIAL-VECTOR MESONS

With the exception of vector meson fields, we now
include the scalar and axial-vector meson fields. We start
from the QCD generating functional Eq. (5), and func-
tionally insert an alternative constant integration,
Z

Dϕδ

�
ϕðaξÞðbζÞðxÞþ 1

μ4
f½e−

iϑðxÞ
2Nf ξLðxÞPRþ e

iϑðxÞ
2Nf ξRðxÞPL�

×Πðx;xÞ½e−
iϑðxÞ
2Nf ξ†RðxÞPRþ e

iϑðxÞ
2Nf ξ†LðxÞPL�gðaξ0Þðbζ0ÞPξ0ζ0;ξζ

�
;

ð47Þ

where ϑ is determined by Eq. (29), Pξ0ζ0;ξζ is the
projection operator, which projects a general four by

four matrix into its scalar, vector, and axial-vector
subspaces,

Pξ0ζ0;ξζ ¼ 1

4
½δζ0ξ0δξζ þ ðγμÞζ0ξ0 ðγμÞξζ − ðγμγ5Þζ0ξ0 ðγμγ5Þξζ�:

ð48Þ

Note the completion relation

δξξ
0
δζ

0ζ ¼ 1

4
ðγ5Þζ0ξ0 ðγ5Þξζ þ

1

8
ðσμνÞζ0ξ0 ðσμνÞξζ

þ Pξ0ζ0;ξζ: ð49Þ

Exponentiating the delta function by introducing functional
integration over another field ~ϕρσðxÞ and integrating out the
fields Π and Φ, Z½J� can be rearranged to give

Z½J� ¼
Z

DξRDξLDΞDϕD ~ϕδðξ†RξR − 1Þδðξ†LξL − 1Þ

× δðdet ξR − det ξLÞeiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�; ð50Þ

where

eiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc� ¼
Z

DΦDΠ exp

�
iΓ1½J;Φ;Π� þ iΓI½Φ�

þ iNc

Z
d4x

�
ϕðaξÞðbζÞðxÞ þ 1

μ4

nh
e
−iϑðxÞ

2Nf ξLðxÞPR þ e
iϑðxÞ
2Nf ξRðxÞPL

i

× Πðx; xÞ
h
e
−iϑðxÞ

2Nf ξ†RðxÞPR þ e
iϑðxÞ
2Nf ξ†LðxÞPL

ioðaξ0Þðbζ0Þ
Pξ0ζ0;ξζ

�
~ϕðbζÞðaξÞðxÞ

þ iNc

Z
d4xtrf½Ξfe−iϑ=NfξRtrlðPRΦTÞξ†L − eiϑ=NfξLtrlðPLΦTÞξ†Rg�

�
: ð51Þ

The Πc and Φc fields still satisfy Eq. (10), but � � � in
Eq. (10) now is the exponent to the exponential in Eq. (51).
Πc and Φc satisfy the following equations:

∂Γ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φc;Πc�
∂Πc

¼ 0;

∂Γ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φc;Πc�
∂Φc

¼ 0: ð52Þ

We formally finish the integration over fields ~ϕ and Ξ,

Z½J� ¼
Z

DξRDξLDϕδðξ†RξR − 1Þδðξ†LξL − 1Þ

× δðdet ξR − det ξLÞeiSeff ½ξR;ξL;ϕ;J;Ξc; ~ϕc;Φc;Πc�; ð53Þ

where

eiSeff ½ξR;ξL;ϕ;J;Ξc; ~ϕc;Φc;Πc� ¼
Z

DΞD ~ϕeiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�;

ð54Þ
ΞcðxÞ and ~ϕðxÞ are

Ξc ¼
R
DΞD ~ϕΞeiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�R
DΞD ~ϕeiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�

;

~ϕc ¼
R
DΞD ~ϕ ~ϕ eiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�R
DΞD ~ϕeiΓ2½ξR;ξL;ϕ;J;Ξ; ~ϕ;Φc;Πc�

; ð55Þ

which satisfy

∂Seff ½ξR; ξL;ϕ; J;Ξc; ~ϕc;Φc;Πc�
∂Ξc

¼ 0;

∂Seff ½ξR; ξL;ϕ; J;Ξc; ~ϕc;Φc;Πc�
∂ ~ϕc

¼ 0: ð56Þ
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Aided by Eqs. (51), (52), and (56), one can show that

dSeff ½ξR; ξL;ϕ; J;Ξc; ~ϕc;Φc;Πc�
dJσρðxÞ

����
ξR;ξL;ϕfix

¼ Nc

�
Φσρ

c ðx; xÞ þ δð0Þ
μ4

nh
e
iϑðxÞ
2Nf ξ†RðxÞPR þ e

−iϑðxÞ
2Nf ξ†LðxÞPL

i
P ~ϕðxÞ

h
e
iϑðxÞ
2Nf ξLðxÞPR þ e

−iϑðxÞ
2Nf ξRðxÞPL

io
σρ
�
; ð57Þ

which is useful in determining the LECs of the effective chiral Lagrangian. We use a bar to denote the functional average
over fields Ξ and ~ϕ,

OðxÞ≡ Nc

R
DΞD ~ϕOðxÞ expfiΓ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φc;Πc�gR

DΞD ~ϕ expfiΓ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φc;Πc�g
: ð58Þ

One can similarly find

dSeff ½ξR; ξL;ϕ; J;Ξc; ~ϕc;Φc;Πc�
dϕðaξÞðbζÞðxÞ

����
ξR;ξL;ϕfix

¼ NcPξζ;ξ0ζ0 ~ϕðbζ0Þðaξ0Þ
c ðxÞ: ð59Þ

Defining the rotated source and fields as follows:

JΩðxÞ ¼ ½eiϑðxÞ=NfξLðxÞPR þ e−iϑðxÞ=NfξRðxÞPL�½JðxÞ þ i∂�½eiϑðxÞ=Nfξ†RðxÞPR þ e−iϑðxÞ=Nfξ†LðxÞPL�;
ΦT

Ωðx; yÞ ¼ ½e−iϑðxÞ=NfξRðxÞPR þ eiϑðxÞ=NfξLðxÞPL�ΦTðx; yÞ½e−iϑðyÞ=Nfξ†LðyÞPR þ eiϑðyÞ=Nfξ†RðyÞPL�;
ΠΩðx; yÞ ¼ ½eiϑðxÞ=NfξLðxÞPR þ e−iϑðxÞ=NfξRðxÞPL�Πðx; yÞ½eiϑðyÞ=Nfξ†RðyÞPR þ e−iϑðyÞ=Nfξ†LðyÞPL�; ð60Þ

the fields θ, Ξ, ϕ, ~ϕ remain unchanged. There is no explicit ξL, ξR dependence in Eq. (51) after rotation as all the ξR and ξL
dependence is absorbed into the variables distinguished by subscript Ω.

Γ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φc;Πc� ¼ Γ2½1; 1;ϕ; JΩ;Ξ; ~ϕ;ΦΩc;ΠΩc� þ anomaly terms; ð61Þ

Seff ½ξR; ξL;ϕ; J;Ξc; ~ϕc;Φc;Πc� ¼ Seff ½1; 1;ϕ; JΩ;Ξc; ~ϕc;ΦΩc;ΠΩc� þ anomaly terms; ð62Þ

where

eiΓ2½1;1;ϕ;JΩ;Ξ; ~ϕ;ΦΩc;ΠΩc� ¼
Z

DΦΩDΠΩ exp

�
iΓ1½JΩ;ΦΩ;ΠΩ� þ ΓI½ΦΩ�

þ iNc

Z
d4x

�
ϕðaξÞðbζÞ þ 1

μ4
Πðaξ0Þðbζ0Þ

Ω Pξ0ζ0;ξζ
�
~ϕðbζÞðaξÞ þ Nc

Z
d4xtrf½Ξ½trlðγ5ΦT

ΩÞ��
�
: ð63Þ

Because the Jacobi terms coming from Φ → ΦΩ and Π → ΠΩ cancel, the functional integration measure does not change,
i.e., DΦDΠ ¼ DΦΩDΠΩ. Equations (51), (52), (55), (56), and (57) are the same as before except one must change all
quantities with subscript Ω and add an anomaly term into the numerator of Eqs. (52), (56), and (57). In particular, by
ignoring the anomaly, Eq. (57) on the rotated basis is

dSeff ½1; 1;ϕ; JΩ;Ξc; ~ϕc;ΦΩc;ΠΩc�
dJðaξÞðbζÞΩ ðxÞ

����
ξR;ξL;ϕ fix;no anomaly

¼ Nc

�
ΦðaξÞðbζÞ

Ωc ðx; xÞ þ δð0Þ
μ4

Pξζ;ξ0ζ0 ~ϕðaξ0Þðbζ0Þ
c ðxÞ

�
: ð64Þ

Equation (59) becomes

dSeff ½1; 1;ϕ; JΩ;Ξc; ~ϕc;ΦΩc;ΠΩc�
dϕðaξÞðbζÞðxÞ

����
ξR;ξL;ϕ fix

¼ NcPξζ;ξ0ζ0 ~ϕðbζ0Þðaξ0Þ
c ðxÞ: ð65Þ
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At the large Nc limit,

Seff ½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φ;Π� ¼ Γ2½ξR; ξL;ϕ; J;Ξ; ~ϕ;Φ;Π�;
¼ Γ2½1; 1;ϕ; JΩ;Ξ; ~ϕ;ΦΩ;ΠΩ�
þ anomaly terms; ð66Þ

Γ2½1; 1;ϕ; JΩ;Ξ; ~ϕ;ΦΩ;ΠΩ� ¼ Γ1½JΩ;ΦΩ;ΠΩ�; ð67Þ

Seff ½1; 1;ϕ; JΩ;Ξ; ~ϕ;ΦΩ;ΠΩ� ¼ Γ1½JΩ;ΦΩ;ΠΩ�; ð68Þ

and

trlðγ5ΦT
ΩÞ ¼ 0; ð69Þ

ϕðaξÞðbζÞ þ 1

μ4
Πðaξ0Þðbζ0Þ

Ω Pξ0ζ0;ξζ ¼ 0; ð70Þ

ΦðaξÞðbζÞ
Ω ðx; yÞ þ i½ði∂ þ JΩ − ΠΩÞ−1�ðbζÞðaξÞðy; xÞ

þ 1

μ4
δðx − yÞPζξ;ζ0ξ0 ~ϕðbζ0Þðaξ0ÞðxÞ ¼ 0; ð71Þ

∂Seff ½1;1;ϕ;JΩ;Ξ; ~ϕ;ΦΩ;ΠΩ�
∂ϕσρðxÞ

����
ξR;ξL;Jfix

¼Nc
~ϕρσðxÞ: ð72Þ

Here, we only list the equations modified by introducing
the additional meson fields; Eqs. (4) and (32) remain the
same as the pure vector meson field case. Equation (69) is a
modified version of Eq. (29); the change occurs because, in
Eqs. (47) and (60), we have included an extraUð1Þ rotation
e
iϑðxÞ
2Nf . Equation (69) implies that in the present formalism

ΦT
Ωðx; xÞ does not have a pseudoscalar component (there-

fore we have no need to consider a pseudoscalar component
in the ϕ field), as this component is already extracted as a
pseudoscalar meson field UðxÞ ¼ ξ†LðxÞξRðxÞ. Taking the
Abelian approximation, Eq. (32) becomes

~ΞðxÞδðx − yÞ þ ΠΩðx; yÞ

−
1

2
g2NcGμνðx; yÞγμ

�
iði∂ þ JΩ − ΠΩÞ−1ðx; yÞ

þ 1

μ4
δðx − yÞP ~ϕðxÞ

�
γν ¼ 0; ð73Þ

where we have used Eq. (71) to cancel field ΦΩðx; yÞ, and
~ΞðxÞ is the effective Lagrangian multiplier for the pseu-
doscalar meson field ~ΞðaξÞðbζÞðxÞ ¼ ΞabðxÞðγ5Þξζ, which
only has a γ5 component. We can further simplify the
above equation to

�
~ΞðxÞ−1

2
g2Nc

Gð0Þ
μ4

γμP ~ϕðxÞγμ
�
δðx−yÞþΠΩðx;yÞ

−
i
2
g2NcGμνðx;yÞγμði∂þJΩ−ΠΩÞ−1ðx;yÞγν¼ 0: ð74Þ

Switching off external source JΩ and considering only the
following type of solution Πσρðx; yÞ, then

Πσρ
Ω ðx;yÞjJΩ¼0

¼ δσρΣðx;yÞþ
Z

d4z ~Πσρ;σ0ρ0 ðx;y;zÞ½PϕðzÞ�σ0ρ0 þOðϕ2Þ:

ð75Þ

The constraint (70) then is equivalent to

~Πσρ;σ0ρ0 ðx; x; zÞjJΩ¼0;ϕ¼0 ¼ −μ4δðx − zÞδσσ0δρρ0 : ð76Þ

For (74), the terms linear in ϕ are

�
~ΞðxÞ− 1

2
g2Nc

Gð0Þ
μ4

γμP ~ϕðxÞγμ
�
δðx− yÞ

þ
Z

d4z ~Πσ0ρ0
λ ðx;y;zÞ½PϕðzÞ�σ0ρ0

−
i
2
g2NcGμνðx;yÞ

Z
d4x0d4y0d4zγμði∂þ JΩ −ΣÞ−1ðx;x0Þ

× ~Πσ0ρ0 ðx0; y0; zÞ½PϕðzÞ�σ0ρ0 ði∂þ JΩ−ΣÞ−1ðy0;yÞγν ¼ 0:

ð77Þ

In Eq. (77), the two terms involving effective Lagrangian
multipliers ~ΞðxÞ and γμP ~ϕðxÞγμ can be treated as inhomo-
geneous terms of the equation. Ignoring these inhomo-
geneous terms and switching off the external source JΩ, we
obtain the following equation:

Z
d4z ~Πσ0ρ0

BS ðx; y; zÞ½PϕðzÞ�σ
0ρ0

−
i
2
g2NcGμνðx; yÞ

Z
d4x0d4y0γμði∂ −ΣÞ−1ðx; x0Þ

×
Z

d4z ~Πσ0ρ0
BS ðx0; y0; zÞ½PϕðzÞ�σ

0ρ0 ði∂ −ΣÞ−1ðy0; yÞγν ¼ 0;

ð78Þ

which is also the standard homogeneous BSE in the
ladder approximation for the bound state with amplitude
~Πσ0ρ0
BS ðx; y; zÞ.
Whereas Ref. [19] describes vector mesons, Ref. [28]

describes scalar and axial-vectormesons. If our ~Πσ0ρ0 ðx; y; zÞ
in Eq. (77) is just the BS amplitude ~Πσ0ρ0

BS ðx; y; zÞ given by
Eq. (78), then Eq. (77) for this BS amplitude further implies
that
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~ΞðxÞ ¼ 0; ð79Þ

γμP ~ϕðxÞγμ ¼ 0: ð80Þ

Note that for the Lorentz index structures, ~Ξ only has a
pseudoscalar part, whereas γμP ~ϕðxÞγμ only has scalar,
vector, and axial-vector parts, with each independent part
vanishing separately. The interpretation of Eq. (79) is that
the effective Lagrangian multiplier ~Ξ has no linearly
dependent ϕ (which includes scalar, vector, and axial-
vector) term. For Eq. (80), in combination with Eq. (72),
Eq. (80) implies that the scalar, vector, and axial-vector
meson fields satisfy their own EOM. As done in Eq. (46) in
the last section, we can prove by computing 2-point vertices
that the masses appearing in the EOM are the same as those
determined by the BSE (78).

V. SUMMARY AND DISCUSSION

We reinvestigated the derivation of the effective vector
meson from QCD to recognize that it can reproduce both
BSE and EOM for the vector meson, and we show that the
mass appearing in the EOM is the same as that determined
by the BSE. The computation is done in the large Nc limit
and with Abelian approximation. We know that in the large
Nc limit mesons are free particles, and this makes the
discussion much simpler. The Abelian approximation
makes our resulting SDE (39) equivalent to that in the
standard rainbow approximation, and the BSE (43) equiv-
alent to that in the conventional ladder approximation. We
can easily go beyond the Abelian approximation to
reformulate our formalism, but that requires a SDE and
a BSE that extend beyond the traditional rainbow and
ladder approximations. In Ref. [29], we have made a
preliminary investigation into the effects of SDE beyond
the rainbow approximation.
We have generalized the formalism for vector mesons to

further include scalar and axial-vector mesons, with quali-
tative results similar to those for vectormesons.Onemay ask
why we only consider scalar and axial-vector mesons. In
general, the projection operator (48) can further include
pseudoscalar and antisymmetric tensor parts, which corre-
spond to introducing pseudoscalar and antisymmetric tensor

mesons. As noted for pseudoscalar mesons, we have already
introduced this degree of freedom as ξR and ξL through the
chiral rotation, and there is no need to reintroduce them.
Even if one does introduce them into the theory, by
considering the pseudoscalar part 1

4
ðγ5Þζ0ξ0 ðγ5Þξζ for the

extra pseudoscalar meson field in the projection operator
(48), this pseudoscalar part is trivial and will play no role in
our theory because of constraint (69). This result can be seen
as follows: taking the coincidence limit of Eq. (71), then
constraints (69) and (80) imply the pseudoscalar component
of ði∂ þ JΩ − ΠΩÞ−1ðx; xÞ is zero. Substituting this result
into the coincidence limit of Eq. (74) and combining it with
Eqs. (79) and (80), the pseudoscalar part of ΠΩðx; xÞ
vanishes, which from constraint (70) implies the pseudo-
scalar part of introduced field ϕðxÞ is zero. For tensor
mesons, Refs. [30,31] have proved that at the effective chiral
Lagrangian level, the antisymmetric tensor fields descrip-
tion of mesons is equivalent to a vector meson field
description. With this equivalence, one can change our
resultant vector meson chiral Lagrangian given by Ref. [16]
into its antisymmetric tensor version. As we have already
introduced a vector meson field into our theory, there is no
need to consider a corresponding antisymmetric tensor part.
If the antisymmetric tensor fields is introduced, then by
considering antisymmetric tensor part 1

8
ðσμνÞζ0ξ0 ðσμνÞξζ in

the projection operator (48), one finds that for the anti-
symmetric tensor part, the EOMofEq. (80) is an identity due
to the fact that γμσμ

0ν0γμ ¼ 0; i.e., it is just trivially satisfied
without any relation to its underlying BSE. This is an
indication of double counting, because the EOM for other
mesons are all related to their BSE. Only if the BSE is valid
can we have an EOM.
Apart from the present way of introducing mesons into

the theory, one can further consider adding in differentials
of theΠ field in Eq. (47). These fields correspond to excited
meson states, and the analysis for them follows similarly as
presented herein.
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