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We account for dynamical spin effects in the holographic light-front wavefunction of the pion in order to
predict the mean charge radius,

ffiffiffiffiffiffiffiffi
hr2πi

p
, the decay constant, fπ , the spacelike electromagnetic form factor,

FπðQ2Þ, the twist-2 pion distribution amplitude and the photon-to-pion transition form factor FγπðQ2Þ.
Using a universal fundamental AdS/QCD scale, κ ¼ 523 MeV, and a constituent quark mass of 330 MeV,
we find a remarkable improvement in describing all observables.
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I. INTRODUCTION

Hadronic light-front wavefunctions (LFWFs) provide
the underlying link between the fundamental degrees of
freedom of QCD, i.e. quarks and gluons, and their
asymptotic hadronic states. LFWFs thus encode both the
physics of confinement and chiral symmetry breaking,
which are fundamental, intimately related [1] and yet not
fully understood, emergent properties of QCD. In phe-
nomenology, LFWFs are extremely important since all
hadronic properties can, in principle, be derived from them.
For example, in the exclusive decays of the B meson to
light mesons, which are under intense investigation at the
LHCb experiment, the theoretical nonperturbative inputs,
i.e. the meson decay constants, distribution amplitudes and
transition form factors can all be computed if the LFWFs of
the mesons are known. These nonperturbative inputs are in
fact the major source of theoretical uncertainties in current
standard model predictions [2].
In principle, LFWFs are obtained by solving the LF

Heisenberg equation for QCD: [3]

HLF
QCDjΨðPÞi ¼ M2jΨðPÞi ð1Þ

whereHLF
QCD ¼ PþP− − P2⊥ is the LFQCDHamiltonian and

M is the hadronmass. At equal light-front time ðxþ ¼ 0Þ and
in the light-front gauge Aþ ¼ 0, the hadron state jΨðPÞi
admits a Fock expansion, i.e.

jΨðPþ;P⊥; SzÞi ¼
X
n;hi

Z
½dxi�½d2k⊥i�

1ffiffiffiffi
xi

p Ψnðxi;k⊥i; hiÞ

× jn∶xiPþ; xiP⊥ þ k⊥i; hii ð2Þ

where Ψnðxi;k⊥i; hiÞ is the LFWF of the Fock state with n
constituents and the integration measures are given by

½dxi�≡
Yn
i

dxiδ

�
1 −

Xn
j¼1

xj

�

½d2ki�≡
Yn
i¼1

d2ki

2ð2πÞ3 16π
3δ2

�Xn
j¼1

ki

�
: ð3Þ

LFWFs are quantum mechanical probability amplitudes
that depends on the momenta fraction xi ¼ kþi =P

þ, the
transverse momenta k⊥i, and the helicities hi of the
constituents. In practice, it is difficult, if not impossible,
to solve Eq. (1) since it contains an infinite number of
strongly coupled integral equations. Various approximation
schemes involve truncating the Fock expansion, using
discretized light-front quantization or solving the equations
in a lower number of spatial dimensions. For a review of
light-front quantum field theories, we refer to [4].
A remarkable breakthrough during the last decade is the

discovery by Brodsky and de Téramond [5–8] of a higher
dimensional gravity dual to a semiclassical approximation
of light-front QCD. The result is a relativistic Schrödinger-
like wave equation for mesons that can be solved analyti-
cally to predict meson spectroscopy and LFWFs in terms of
a single mass scale κ. The approach can also include
baryons [7] and more recently has been extended to a
unified framework for baryons and mesons considered as
conformal superpartners [9]. This gauge/gravity duality is
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referred to as light-front holography (LFH) and is reviewed
in Ref. [3].
In the semiclassical approximation, where the quark

masses and quantum loops are neglected, the LFWFs
depend on the invariant mass M2 ¼ ðPn

i kiÞ2 of the
constituents rather than on their individual momenta ki.
For the valence (n ¼ 2 for mesons) Fock state, the invariant
mass of the qq̄ pair is M2

qq̄ ¼ k2⊥=xð1 − xÞ and the latter is
the Fourier conjugate to the impact variable ζ2 ¼ xð1 −
xÞb2 where b is the transverse separation the quark and
antiquark. The valence meson LFWF can then be written in
a factorized form:

Ψðζ; x;ϕÞ ¼ eiLϕXðxÞ ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p ð4Þ

where the helicity indices have been suppressed [3]. We
note that this suppression of the helicity indices is legiti-
mate if either the constituents are assumed to be spinless or
if the helicity dependence decouples from the dynamics. It
can then be shown that Eq. (1) reduces to a 1-dimensional
Schrödinger-like wave equation for the transverse mode of
LFWF of the valence (n ¼ 2 for mesons) state, namely:�

−
d2

dζ2
−
1 − 4L2

4ζ2
þ UðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ ð5Þ

where all the interaction terms and the effects of higher
Fock states on the valence state are hidden in the confine-
ment potential UðζÞ. The latter remains to be specified and,
at present, this cannot be done from first principles in QCD.
However, Brodsky and de Téramond found that Eq. (5)

maps onto the wave equation for the propagation of spin-J
string modes in the higher dimensional anti-de Sitter space,
AdS5, if the impact light-front variable ζ is identified with
z5, the fifth dimension of AdS space and the light-front
orbital angular momentum L2 is mapped onto ðmRÞ2 −
ð2 − JÞ2 where R and m are the AdS radius and mass
respectively. For this reason, we refer to Eq. (5) as the
holographic LF Schrödinger equation. In this AdS/QCD
duality, the confining potential in physical spacetime is
driven by the deformation of the pure AdS5 geometry.
Specifically, the potential is given by

Uðz5; JÞ ¼
1

2
φ00ðz5Þ þ

1

4
φ0ðz5Þ2 þ

�
2J − 3

4z5

�
φ0ðz5Þ ð6Þ

where φðz5Þ is the dilaton field which breaks conformal
invariance in AdS space. A quadratic dilaton, φðz5Þ ¼ κ2z25,
profile results in a light-front harmonic oscillator potential
in physical spacetime:

Uðζ; JÞ ¼ κ4ζ2 þ κ2ðJ − 1Þ ð7Þ

since z5 maps onto the LF impact variable ζ. Remarkably,
Brodsky, Dosch and de Téramond have shown that the

quadratic form of the AdS/QCD potential is unique [10]. In
fact, starting with a more general dilaton profile φ ∝ zs5 and
requiring the pion to be massless, uniquely fixes s ¼ 2 [11].
More formally, applying the mechanism of de Alfaro,
Furbini and Furlan [12] (which allows the emergence of a
mass scale in the Hamiltonian of a conformal 1-dimensional
QFTwhile retaining the conformal invariance of the under-
lying action) to semiclassical LF QCD uniquely fixes the
quadratic form of the AdS/QCD potential [10].
With the confining potential specified, one can solve the

holographic Schrödinger equation to obtain the meson
mass spectrum,

M2 ¼ 4κ2
�
nþ Lþ S

2

�
ð8Þ

which, as expected, predicts a massless pion. The corre-
sponding normalized eigenfunctions are given by

ϕnLðζÞ ¼ κ1þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ LÞ!

s
ζ1=2þL exp

�
−κ2ζ2

2

�
LL
n ðx2ζ2Þ:

ð9Þ

To completely specify the holographic meson wavefunc-
tion, we need the analytic form of the longitudinal mode
XðxÞ. This is obtained by matching the expressions for the
pion electromagnetic (EM) or gravitational form factor in
physical spacetime and in AdS space. Either matching
consistently results in XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
[5,13]. The

meson holographic LFWFs for massless quarks can thus
be written in closed form:

ΨnLðζ; x;ϕÞ ¼ eiLϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
ð2πÞ−1=2κ1þL

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ LÞ!

s
ζL exp

�
−κ2ζ2

2

�
LL
n ðx2ζ2Þ

ð10Þ

with the corresponding meson masses lying on linear
Regge trajectories as given by Eq. (8). The reasons why
a solution to a quantum field theory could reduce to a
solution of a simple, one-dimensional differential equation
are explored in Ref. [14].
For phenomenological applications, it is necessary to

restore both the quark mass and helicity dependence of the
holographic LFWF. In fact, it has recently been shown in
Ref. [15] that nonzero light quark masses drastically
improve the description of data on the photon-to-pion,
photon-to-η and photon-to-η0 transition form factors. On
the other hand, for the pion and kaon EM form factors, the
description of data actually worsens unless 3 data points at
large Q2 are excluded for the kaon form factor [15].
Accounting for nonzero light quark masses means going
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beyond the semiclassical approximation, and this is
usually done following the prescription of Brodsky and
de Téramond [16]. For the ground state pion, this leads to

Ψπðx;ζ2Þ¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞ

p
exp

�
−
κ2ζ2

2

�
exp

�
−

m2
f

2κ2xð1−xÞ
�

ð11Þ

whereN is a normalization constant fixed by requiring thatZ
d2bdxjΨπðx; ζ2Þj2 ¼ Pqq̄ ð12Þ

where Pqq̄ is the probability that the meson consists of the
leading quark-antiquark Fock state.
Note that Eq. (8) tells us that the AdS/QCD scale κ

can be chosen to fit the experimentally measured Regge
slopes. Reference [3] reports κ ¼ 590 MeV for pseudo-
scalar mesons and κ ¼ 540 MeV for vector mesons. A
recent fit to the Regge slopes of mesons and baryons,
treated as conformal superpartners, yields κ ¼ 523 MeV
[9]. On the other hand, the AdS/QCD scale κ can be
connected to the scheme-dependent pQCD renormalization
scale ΛQCD by matching the running strong coupling in the
non-perturbative (described by light-front holography) and
the perturbative regimes [17]. With κ ¼ 523 MeV and the
β-function of the QCD running coupling at 5-loops,
Brodsky, Deur and de Téramond recently predicted the

QCD renormalization scale, ΛMS
QCD, in excellent agreement

with the world average value [18]. Furthermore, light-front
holographic wavefunctions have also been used to predict
diffractive vector meson production [19,20]. A fit to the
HERA data on diffractive ρ electroproduction, with
mu=d ¼ 140 MeV, gives κ ¼ 560 MeV [19] and using κ ¼
550 MeV (with mu=d½ms� ¼ 46½140� MeV) leads to a good
simultaneous description of the HERA data on diffractive ρ
and ϕ electroproduction [20]. These findings hint toward
the emergence of a universal fundamental AdS/QCD scale
κ ∼ 550 MeV. In the most recent application of LFH to
predict nucleon EM form factors [21], it is pointed out that
this universality holds up to 10% accuracy. In this paper, we
shall use the value of κ ¼ 523 MeV which fits the meson/

baryon Regge slopes and accurately predicts ΛMS
QCD [9,18].

In earlier applications of LFH with massless quarks,
much lower values of κ were required to fit the pion data:
κ ¼ 375 MeV in Ref. [8] in order to fit the pion EM form
factor data and κ ¼ 432 MeV (with Pqq̄ ¼ 0.5) to fit the
photon-to-pion transition form factor data simultaneously
at large Q2 and Q2 ¼ 0 (the latter is fixed by the π0 → γγ
decay width) [22]. Note that in Ref. [8], the EM form factor
is computed, both in the spacelike and timelike regions,
as a convolution of normalizable hadronic modes with a
non-normalizable EM current which propagates in the
modified infrared region of AdS space and generates the

non-perturbative pole structure of the EM form factor in the
timelike region. Alternatively, the spacelike EM form factor
can be computed using the Drell-Yan-West formula [23,24]
in physical spacetime with the holographic pion LFWF.
The latter approach is taken in Refs. [15,25–27]. In Ref. [26],
a higher value of κ ¼ 787 MeV is used with mu=d ¼
330 MeV and the authors predict Pqq̄ ¼ 0.279, implying
an important contribution of higher Fock states in the pion. In
Ref. [27], a universal AdS/QCD scale κ ¼ 550 MeV is used
for all mesons, together with a constituent quark mass
mu=d ¼ 420 MeV, but Pqq̄ ¼ 0.6 is fixed for the pion only:
for the kaon, Pqq̄ ¼ 0.8 and for all other mesons, Pqq̄ ¼ 1.
More recently, in Ref. [15], with mu=d ¼ 330 MeV, the
authors use a universal κ ¼ 550 MeV for all mesons but fix
the wavefunction normalization for the pion so as to fit the
decay constant. Consequently, this implies that Pqq̄ ¼ 0.61
only for the pion.
All these previous studies seem to indicate that a special

treatment is required at least for the pion either by using a
distinct AdS/QCD scale κ or/and relaxing the normalization
condition on the holographic wavefunction, i.e. invoking
higher Fock states contributions. This may well be reason-
able since the pion is indeed unnaturally light and does not
lie on a Regge trajectory, as pointed out in Ref. [25].
However, we note that in the previous studies [15,26,27]
where the pion observables are predicted using the holo-
graphic wavefunction, given by Eq. (11), the helicity
dependence of the latter is always assumed to decouple
from the dynamics, i.e. the helicity wavefunction is taken to
be momentum-independent. This is actually consistent with
the semiclassical approximation within which the AdS/
QCD correspondence is exact. Consequently, Ref. [27]
derives a single formula to predict simultaneously the vector
and pseudoscalar meson decay constants, so that using a
universal scale κ andPqq̄ ¼ 1 for all mesons inevitably leads
to degenerate decay constants in conflict with experiment.
In this paper, we show that it is possible to achieve a

better description of the pion observables by using a
universal AdS/QCD scale κ and without the need to invoke
higher Fock state contributions. We do so by taking into
account dynamical spin effects in the holographic pion
wavefunction, i.e. we use a momentum-dependent helicity
wavefunction. This approach goes beyond the semiclassical
approximation, just like the inclusion of light quark masses
in the holographic wavefunction. However, it does support
the idea of the emergence of a universal, fundamental
AdS/QCD scale. A similar approach was taken previously
for the ρ meson, leading to impressive agreement to the
HERA data on diffractive ρ electroproduction [19].

II. DYNAMICAL SPIN EFFECTS

To restore the helicity dependence of the holographic
wavefunction, we assume that
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Ψðx;kÞ → Ψhh̄ðx;kÞ ¼ Shh̄ðx;kÞΨðx;kÞ ð13Þ

where Shh̄ðx;kÞ corresponds to the helicity wavefunction
for a pointlike meson-qq̄ coupling. For vector mesons, the
helicity wavefunction is therefore similar to that of the
pointlike photon-qq̄ coupling, i.e.

SV
hh̄
ðx;kÞ ¼ v̄h̄ðð1 − xÞPþ;−kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − xÞp ½γ · ϵV �

uhðxPþ;kÞffiffiffi
x

p ð14Þ

where ϵμV is the polarization vector of the vector meson.
Indeed, substituting ϵμV by the photon polarization vector
and multiplying Eq. (14) by the light-front energy
denominator [28] yields the well-known photon light-front
wavefunctions [28–32]. This assumption for the helicity
structure of the vector meson is very common when
computing diffractive vector meson production in the
dipole model [31–40] and, as we mentioned earlier, was
used in Ref. [19] with the holographic wavefunction for the
ρ meson.
For the pseudoscalar pion, we replace γ · ϵV in Eq. (14)

by ðscalar functionÞ × γ5 where the most general, dimen-
sionally homogeneous, scalar function that can be con-
structed using the pion’s momentum is AðP · γÞ þ B

ffiffiffiffiffiffiffiffiffiffi
P · P

p
with A and B being arbitrary constants. Hence

Sπ
hh̄
ðx;kÞ¼ v̄h̄ðð1−xÞPþ;−kÞffiffiffiffiffiffiffiffiffiffi

1−x
p ½ðAPþBMπÞγ5�

uhðxPþ;kÞffiffiffi
x

p :

ð15Þ

We note that Refs. [41,42] take A ¼ B ¼ 1, quoting
[43–46]. References [47,48] take A ¼ 0 and the recent
paper [49] considers A ¼ B ¼ 1 but retains only the γþγ5

term in the scalar product Pγ5. This implies a momentum-
independent (nondynamical) helicity wavefunction if
B ¼ 0 and that dynamical spin effects are only allowed
if B ≠ 0. After evaluating the right-hand side using the
light-front spinors given in Ref. [28], we obtain

Sπ
hh̄
ðx;kÞ ¼

�
AM2

π þ B

�
mfMπ

xð1 − xÞ
��

ð2hÞδ−hh̄

þ B

�
Mπkeið2hÞθk

xð1 − xÞ
�
δhh̄ ð16Þ

with k ¼ keiθk . As mentioned above, if we take B ¼ 0, the
helicity wavefunction becomes momentum-independent:

Sπ
hh̄
ðx;kÞ → Sπ

hh̄
¼ 1ffiffiffi

2
p ð2hÞδ−hh̄ ð17Þ

normalized such that
P

hh̄jSπh;h̄j2 ¼ 1. Such a helicity
wavefunction is assumed for the meson (both pseudoscalar
and vector) holographic wavefunction in Refs. [15,26] and

we shall refer to it as the nondynamical (i.e. momentum-
independent) helicity wavefunction, consistent with the
semiclassical approximation of light-front holography. Our
spin-improved helicity wavefunction allows for an addi-
tional momentum-dependent contribution in the opposite-
helicities part of the wavefunction as well as configurations
in which the quark and antiquark have same helicities
[50,51]. Note that the same-helicities terms are eigenfunc-
tions of the LF orbital angular momentum operator given
by [3]

Lz ¼ −iðky∂kx − kx∂kyÞ ¼ i∂θk ð18Þ

with eigenvalues Lz ¼ −2h. In other words, for this same-
helicities component of our pion wavefunction, the orbital
angular momentum Lz ¼ −Sz where Sz ¼ hþ h̄ ¼ 2h so
that Jz ¼ Lz þ Sz ¼ 0 as required for the pion. Note that
when we allow for dynamical spin effects, we are going
beyond the semiclassical approximation, and Eq. (8) needs
to be modified due to a spin-orbit interaction term (not
specified in this paper) in the light-front Schödinger
equation. It is also useful to check that our spin-improved
wavefunction transforms correctly under the LF parity
operator, P⊥, which flips the signs of all helicities
and that of the x (or y) component of the transverse
momentum: [52]

Ψπ
hh̄
ðx;kÞ⟶P⊥ Ψπ

−h;−h̄ðx; ~kÞ ð19Þ

where ~k¼−kxþiky¼keiðπ−θkÞ. Since e−i2hðπ−θkÞ ¼ −ei2hθk ,
it is explicit from Eq. (16), that our spin-improved wave-
function is parity-odd, i.e.

P⊥Ψπ
h;h̄
ðx;kÞ ¼ −Ψπ

h;h̄
ðx;kÞ ð20Þ

as required for the pion.
A two-dimensional Fourier transform of our spin-

improved wavefunction to impact space gives

Ψπ
hh̄
ðx;bÞ ¼ fðAxð1 − xÞM2

π þ BmfMπÞð2hÞδ−hh̄
− BMπi∂bδhh̄g

Ψπðx; ζ2Þ
xð1 − xÞ ð21Þ

which can be compared to the original holographic
wavefunction,

Ψπ½o�
hh̄

ðx;bÞ ¼ 1ffiffiffi
2

p hδ−hh̄Ψπðx; ζ2Þ ð22Þ

where Ψπðx; ζ2Þ in both of the above equations, is the
holographic wavefunction given by Eq. (11). We now fix
the normalization constant N appearing in Eq. (11) by
requiring that
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Z
d2bdxjΨπðx;bÞj2 ¼ 1 ð23Þ

where

jΨπðx;bÞj2 ≡X
h;h̄

jΨπ
hh̄
ðx;bÞj2: ð24Þ

Note that Eq. (23) reduces to the normalization condition
given by Eq. (12) (with Pqq̄ ¼ 1) if we substitute the
original holographic wavefunction, Eq. (22), in Eq. (23).
Imposing our normalization condition, Eq. (23), implies
that we assume that the pion consists only of the leading
quark-antiquark Fock state.
In Fig. 1, we show the dynamical spin effects in the

squared and helicity-summed holographic wavefunction
with a constituent quark mass, mu=d ¼ 330 MeV. Recall
that we recover the original holographic pion wavefunction
by taking B ¼ 0 in our spin-improved wavefunction. In
addition, we consider the two cases ½A ¼ 0; B ¼ 1� and
½A ¼ 1; B ¼ 1� that allow for dynamical spin effects. It can
be seen that, at fixed x ¼ 0.5 (and x ¼ 0.1), the spin-
improved wavefunctions are suppressed (and enhanced)
respectively, compared to the original wavefunction. At

fixed b ¼ 0 and b ¼ 5 GeV−1, the spin-improved wave-
functions are broader than the original wavefunction. In
Fig. 2, we compare the 3-dimensional plots of the spin-
improved wavefunctions to the original wavefunction,
which clearly show that dynamical spin effects enhance
the end-point contributions in x.

III. RADIUS AND DECAY CONSTANT

Having specified our spin-improved holographic wave-
function, we shall now compute two observables: the pion
radius, sensitive to long-distance (nonperturbative) physics
and the pion decay constant, sensitive to short-distance
(perturbative) physics. We shall predict both observables
using the original and spin-improved holographic wave-
functions with a constituent quark mass,mu=d ¼ 330 MeV.
We expect to fit better the radius since the holographic pion
wavefunction lacks the perturbative, short-distance correc-
tions that may be required to accurately predict the decay
constant.
The root-mean-square pion radius is given by [8]:

ffiffiffiffiffiffiffiffi
hr2πi

q
¼

�
3

2

Z
dxd2b½bð1 − xÞ�2jΨπðx;bÞj2

�
1=2

ð25Þ
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FIG. 1. The pion holographic LFWF squared and summed over all helicities: jΨπðx;bÞj2½GeV2�. Dotted-orange: original. Continous-
red: spin-improved (A ¼ 0, B ¼ 1). Dashed-blue: spin-improved (A ¼ 1, B ¼ 1). Left: The b-dependence of the wavefunction at fixed
x ¼ 0.5 (upper) and x ¼ 0.1 (lower). Right: The x-dependence of the wavefunction at fixed b ¼ 0 (upper) and b ¼ 5 GeV−1 (lower). All
plots are generated with κ ¼ 523 MeV and mu=d ¼ 330 MeV.
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where jΨπðx;bÞj2 is given by Eq. (24). Our predictions for
the pion radius are compared to the measured value in
Table I. As can be seen, we achieve a much better
agreement with the datum with the spin-improved holo-
graphic wavefunctions. It is worth noting the excellent
agreement achieved with the (A ¼ 1, B ¼ 1) spin-improved
wavefunction.
Note that if we compute the pion radius using

the original holographic wavefunction but with κ ¼
540 MeV and mf ¼ 330 MeV as in Ref. [15], we obtainffiffiffiffiffiffiffiffi
hr2πi

p
¼ 0.530 fm which is to be compared with the

prediction of Ref. [15]:
ffiffiffiffiffiffiffiffi
hr2πi

p
¼ 0.529 fm. In Ref. [15],

the authors obtain the pion radius from the slope of the EM
pion form factor FπðQ2Þ at Q2 ¼ 0 with the constraint that
Fð0Þ ¼ 1. We note that the latter constraint on the form
factor is automatically satisfied if the pion wavefunction is

normalized with Pqq̄ ¼ 1. Thus, although the authors of
Ref. [15] imply Pqq̄ ¼ 0.62 in order to fit the decay
constant, they implicitly assume Pqq̄ ¼ 1 when computing
the EM form factor. This is why we are able to reproduce
their prediction for the pion radius even though we
assume Pqq̄ ¼ 1.
We now compute the pion decay constant, fπ , defined

by [28]

h0jΨ̄dγ
μγ5Ψujπþi ¼ fπPμ ð26Þ

where we have omitted to write a conventional
ffiffiffi
2

p
i factor

on the right-hand side. Taking μ ¼ þ and expanding the
left-hand side of Eq. (26), we obtain

h0jΨ̄dγ
þγ5Ψujπþi

¼
ffiffiffiffiffiffiffiffiffiffiffi
4πNc

p X
h;h̄

Z
d2k
16π3

dxΨπ
h;h̄
ðx;kÞ

�
v̄h̄ffiffiffiffiffiffiffiffiffiffi
1−x

p ðγþγ5Þ uhffiffiffi
x

p
�
:

ð27Þ

The light-front matrix element in curly brackets can readily
be evaluated:

�
v̄h̄ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p ðγþγ5Þ uhffiffiffi
x

p
�

¼ 2Pþð2hÞδ−hh̄; ð28Þ

FIG. 2. The normalized pion holographic wavefunction squared and summed over helicities, jΨπðx;bÞj2½GeV2�, as a function of the
transverse separation b½GeV−1� and momentum fraction x. Upper: original. Lower left: spin-improved (A ¼ 0, B ¼ 1). Lower right:
spin-improved (A ¼ 1, B ¼ 1). All plots are generated with κ ¼ 523 MeV and mf ¼ 330 MeV.

TABLE I. Our predictions for the pion radius using the holo-
graphic wavefunction with κ ¼ 523 MeV and mu=d ¼ 330 MeV.
The datum is from PDG 2014 [53]. ffiffiffiffiffiffiffiffi

hr2πi
p

[fm]

Original 0.544
Spin-improved (A ¼ 0, B ¼ 1) 0.683
Spin-improved (A ¼ 1, B ¼ 1) 0.673
Experiment [53] 0.672� 0.008
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which implies that only the opposite-helicities term in the
holographic wavefunction contributes to the decay con-
stant. We note, however, that the same-helicities term
affects the normalization of our wavefunction and thus
our prediction for the decay constant. Using our spin-
improved wavefunction, Eq. (21), we deduce that

fπ¼2

ffiffiffiffiffiffi
Nc

π

r Z
dxfAððxð1−xÞM2

πÞþBmfMπg
Ψπðx;ζÞ
xð1−xÞ

				
ζ¼0

:

ð29Þ

On the other hand, using the original holographic wave-
function, Eq. (22), we obtain

f½o�π ¼ 2
ffiffiffi
6

p ffiffiffiffiffiffi
4π

p Z
dx

d2k
16π3

Ψðx;kÞ

¼ 2
ffiffiffi
2

p ffiffiffiffiffiffi
Nc

4π

r Z
dxΨπðx; ζÞj

ζ¼0

ð30Þ

where we have written the momentum-space expression to
point out that, up to a factor of

ffiffiffiffiffiffi
4π

p
, it coincides with the

formula for the decay constant given in Ref. [54] and
widely used in the literature, as for example, in
Refs. [15,27,55]. The

ffiffiffiffiffiffi
4π

p
factor mismatch is consistent

with the fact that our normalization in momentum-space
[Eq. (12)] differs from the conventional light-front nor-
malization [28] by a factor of 4π.
Our predictions for the pion decay constant are shown in

Table II. As can be seen, we achieve amuch better agreement
with the datum with the spin-improved holographic wave-
functions although we still somewhat overestimate the
measured value. As we noted above, this could perhaps be
attributed to the fact that perturbative corrections are not
included in the holographic pion wavefunction.

IV. EM FORM FACTOR

We now compute the pion EM form factor defined as

hπþ∶P0jJμemð0Þjπþ∶Pi ¼ 2ðPþ P0ÞμFπðQ2Þ ð31Þ

where P0 ¼Pþq, Q2 ¼ −q2 and the EM current JμemðzÞ ¼P
fefΨ̄ðzÞγμΨðzÞ with f ¼ d̄; u and ed̄;u ¼ 1=3; 2=3. The

EM form factor can be expressed in terms of the pion
LFWF using the Drell-Yan-West formula [23,24]:

FπðQ2Þ ¼ 2π

Z
dxdbbJ0½ð1 − xÞbQ�jΨπðx;bÞj2 ð32Þ

where jΨπðx;bÞj2 is given by Eq. (24). Note that Eq. (32)
implies that Fπð0Þ ¼ 1 if the pion LFWF is normalized
according to Eq. (23) and that the slope of the EM form
factor at Q2 ¼ 0 is related to the mean radius of the pion
given by Eq. (25) via

hr2πi ¼ −
6

Fπð0Þ
dFπ

dQ2

				
Q2¼0

: ð33Þ

Our predictions for the EM form factor using the original
(dotted-orange curve) and our higher twist spin-improved
(continuous-red and dashed-blue curve) are compared with
the data from CERN [56], CEA [57], Cornell [58–60], Jlab
[61,62] and CLEO [63,64] in Fig. 3. As can be seen, the
agreement with data is very much improved with the spin-
improved holographic wavefunctions. In fact, we achieve
excellent agreement with data from the lowest Q2 datum to
Q2 ≈ 7 GeV2. For Q2 > 7 GeV2, our predictions with the
original and the spin-improved holographic wavefunctions
coincide and they both undershoot the precise CLEO data
[63]. This is the short-distance regime where perturbative
corrections, not taken into account in the purely non-
perturbative holographic wavefunction, become important.
It is worth highlighting that agreement with the precise
data in the nonperturbative region, Q2 ≤ 1 GeV2, is excel-
lent with our higher twist spin-improved holographic
wavefunctions.

V. DISTRIBUTION AMPLITUDE AND
TRANSITION FORM FACTOR

We can also predict the twist-2 holographic pion DA,
φπðx; μÞ, defined as [28,65]

h0jΨ̄dðzÞγþγ5Ψuð0Þjπþi ¼ fπPþ
Z

dxeixðP·zÞφπðx; μÞ

ð34Þ

where z2 ¼ 0. The DA is conventionally normalized asZ
dxφπðx; μÞ ¼ 1 ð35Þ

such that taking the limit of local operators (z → 0) in
Eq. (34), we recover the definition of the pion decay
constant given by Eq. (26) (with μ ¼ þ). Proceeding in the
same manner as for the decay constant, we are able to show
that

TABLE II. Our predictions for the pion decay constant using
the holographic wavefunction with κ ¼ 523 MeV and
mu=d ¼ 330 MeV. The datum is from PDG 2014 [53].

fπ [MeV]

Original 161
Spin-improved (A ¼ 0, B ¼ 1) 135
Spin-improved (A ¼ 1, B ¼ 1) 138
Experiment [53] 130.4� 0.04� 0.2
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fπφπðx; μÞ ¼ 2

ffiffiffiffiffiffi
Nc

π

r Z
dbJ0ðμbÞbfAððxð1 − xÞM2

πÞ

þ BmfMπg
Ψπðx; ζÞ
xð1 − xÞ : ð36Þ

In Fig. 4, we compare our spin-improved holographic
DAs to the original holographic DA and to the asymptotic
DA as predicted in pQCD: φπðx;∞Þ ¼ 6xð1 − xÞ. It can be
seen that our spin-improved holographic DAs (continuous-
red and dashed-blue curves) are broader than both the
original holographic DA (dotted-orange curve) and the
asymptotic DA (dotted-black curve). All holographic DAs
are generated with μ ¼ 1 GeV and we note they hardly
evolve for μ > 1 GeV. In other words, our holographic
DAs lack the hard, perturbative evolution given by the
Efremov-Radyushkin-Brodsky-Lepage (ERBL) equations
[66–68]. In Figure 5, we show the soft evolution of our
spin-improved ðA ¼ 0; B ¼ 1Þ holographic DA between
μ ¼ 0.3 GeV and μ ¼ 1 GeV. Implementing the ERLB
evolution, as is done in Ref. [69], will allow our spin-
improved holographic DA to evolve beyond μ ¼ 1 GeV
onto the asymptotic DA.
In order to compare our holographic DAs with the

predictions of standard non-perturbative methods such as
lattice QCD and QCD sum rules, we compute the moments
defined as

hξni ¼
Z

1

0

dxð2x − 1Þnφπðx; μÞ ð37Þ

and its inverse moment is given by

hx−1i ¼
Z

1

0

dx
φπðx; μÞ

x
: ð38Þ

Our predictions for the first two nonvanishing moments
hξ2i and hξ4i as well as the inverse moment are shown in

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

ϕ π
(x

,μ
)

Asymptotic

Original

Spin-improved [A=1,B=1]

Spin-improved [A=0,B=1]

FIG. 4. Comparing our spin-improved holographic DAs
(continuous-red and dashed-blue curves) to the original holo-
graphic DA (dotted-orange curve) at a scale μ ¼ 1 GeV, both
with κ ¼ 523 MeV and mf ¼ 330 MeV. The asymptotic DA is
the dotted black curve.

0 0.2 0.4 0.6 0.8 1
x
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0.5

1
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2

ϕ π
(x

,
μ)

Asymptotic

μ = 0.3  GeV

μ = 0.5  GeV

μ = 0.7  GeV

 μ = 1  GeV

FIG. 5. The soft evolution of our (ðA ¼ 1; B ¼ 1Þ) spin-
improved holographic pion DA at a scale μ ¼ 0.3 GeV (dot-
dot-dashed-orange), μ ¼ 0.5 GeV (dashed-blue), μ ¼ 0.7 GeV
(dot-dashed-magenta) and μ ≥ 1 GeV (continuous-red). The
asymptotic DA is the dotted-black curve.
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Q
2
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]

0
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0.4

0.6

0.8

1
F π (

Q
2 )

Spin-improved [A=1,B=1]
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Original

CEA (73)
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JLab (07)
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FIG. 3. Our predictions for the pion EM form factor. Dotted-
orange: original. Continuous-red curve: spin-improved (A ¼ 0,
B ¼ 1). Dashed-blue curve: spin-improved (A ¼ 1, B ¼ 1). All
theory curves generated with κ ¼ 523 MeV andmf ¼ 330 MeV.
Data from [56,58–64].

AHMADY, CHISHTIE, and SANDAPEN PHYSICAL REVIEW D 95, 074008 (2017)

074008-8



Table III. As can be seen, with the spin-improved
holographic DAs, we achieve better agreement with the
predictions of lattice QCD and QCD sum rules. However,
our predicted moments turn out to be smaller than the

predictions of all nonperturbative methods cited here. Our
predicted moments are also smaller than the corresponding
moments of the asymptotic DA. This discrepancy could be
an indication that all dynamical spin effects might not fully
captured by fixing B ¼ 1.
Using our holographic DAs, we are able to predict the

photon-to-pion transition form factor (TFF) which, to
leading order in pQCD, is given as [28]

FγπðQ2Þ ¼
ffiffiffi
2

p

3
fπ

Z
1

0

dx
φπðx; xQÞ

Q2x
: ð39Þ

We note that, even when computing the TFF in the
perturbative region Q2 ≥ 1 GeV2, the DA itself is probed
at a scale μ ¼ xQ, which can be low if x is close to its
endpoints. Figure 6 shows that our spin-improved holo-
graphic DAs (continuous-red and dashed-blue curves) do a
better job than the original holographic DA (dotted-orange
curve). We note that the BABAR (2009) data [81] indicate a
strong scaling violation in disagreement with the Brodsky-
Lepage limit: Fπγ�γðQ2 → ∞Þ ¼ ffiffiffi

2
p

fπ obtained by sub-
stituting the asymptotic DA in Eq. (39) and shown as the
dotted-black curves in Fig. 6. The more recent Belle (2012)
data [82] do not confirm the BABAR (2009) data for
Q2 > 10 GeV2 and the issue is likely to be resolved by
precise future measurements in this kinematic range. Our
spin-improved holographic wavefunctions clearly cannot
describe the strong scaling violation indicated by the
BABAR (2009) data and neither do our predictions exceed
the asymptotic Brodsky-Lepage limit. For alternative mod-
els of the pion DA which are able to accommodate the

TABLE III. Our predictions for the first two nonvanishing moments and the inverse moment of the pion
holographic twist-2 DA with κ ¼ 523 MeV and mf ¼ 330 MeV, compared to the predictions of lattice QCD by
Braun et al. in 2006 [70] and 2015 [71], QCD sum rules with nonlocal condensates by Bakulaev et al. [72], QCD
sum rules by Chernyak and Zhitnitsky [73], QCD sum rules by Ball and Zwicky [74], light-front quark model of
Choi and Ji with two different potentials [47], renormalon model of Agaev [75], instanton vacuum models of Petrov
et al. [76] and Nam et al. [77], Dyson-Schwinger equations of Chang et al. [78] in the rainbow-ladder (RL)
approximation and using the dynamical chiral symmetry breaking improved kernel (DB) and finally the platykurtic
DA of Stefanis et al. [79,80].

DA μ [GeV] hξ2i hξ4i hx−1i
Asymptotic ∞ 0.2 0.085 3
LFH spin-improved (A ¼ 1, B ¼ 1) ∼1 0.195 0.076 2.74
LFH spin-improved (A ¼ 0, B ¼ 1) ∼1 0.199 0.078 2.76
LFH (original) ∼1 0.151 0.050 2.50
LF Quark Model [47] ∼1 0.24[0.22] 0.11[0.09]
Sum Rules [74] 1 0.24 0.11
Renormalon model [75] 1 0.28 0.13
Instanton vacuum [76,77] 1 0.22,0.21 0.10,0.09
Lattice [70,71] 2 0.2361(41)(39), 0.27� 0.04
NLC Sum Rules [72] 2 0.248þ0.016

−0.015 0.108þ0.05
−0.03 3.16þ0.09

−0.09
Sum Rules [73] 2 0.343 0.181 4.25
Dyson-Schwinger[RL,DB][78] 2 0.280,0.251 0.151,0.128 5.5,4.6
Platykurtic [79] 2 0.220þ0.009

−0.006 0.098þ0.008
−0.005 3.13þ0.14

−0.10
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FIG. 6. Our predictions for the photon-to-pion TFF as a
function of the photon’s virtuality, Q2. Dotted-orange curve:
original DA. Continuous-red and dashed-blue curves: spin-
improved with ½A ¼ 0; B ¼ 1� and ½A ¼ 1; B ¼ 1� respectively.
All theory curves are generated with κ ¼ 523 MeV and
mf ¼ 330 MeV. The dotted black curve is generated using the
asymptotic DA with the measured pion decay constant. For
asymptotic Q2, they indicate the Brodsky-Lepage limit. The data
are from CELLO [87], CLEO [88], BABAR [82] and Belle [82].
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BABAR (2009) data, we refer to Refs. [83–85] and for an
exhaustive analysis of the TFF data, we refer to [86].

VI. CONCLUSIONS

We have accounted for dynamical spin effects in the
holographic pion light-front wavefunction and found a
remarkable improvement in the description of pion radius,
decay constant, EM form factor and photon-to-pion TFF.
To generate our predictions, we have used a constituent
quark mass of 330 MeV and the universal AdS/QCD scale
κ ¼ 523 MeV, together with the assumption that the pion
consists only of the leading quark-antiquark Fock state. Our
results suggest that it could be possible to have a unified
treatment of all light mesons, including the pion, with a
universal fundamental AdS/QCD scale which fits the
baryon and meson Regge slopes and also accurately

predicts the nonperturbative QCD scale ΛMS
QCD. We also

found that the predicted moments for the spin-improved
holographic pion twist-2 DA are in better agreement with
the predictions of standard nonperturbative methods such
as lattice QCD and QCD sum rules, although they remain

smaller than the latter. This suggests that tuning the values
of A and B could be necessary or, at a deeper level, that
the assumption underlying our Eq. (13) might not be
capturing all the dynamical spin effects in the pion. But
this assumption, together with ðA ¼ 0; 1;B ¼ 1Þ, does
bring a significant improvement in the description of all
available experimental data without necessarily having to
use a much smaller AdS/QCD scale and/or invoke higher
Fock states contributions exclusively for the pion. Our
findings thus support the idea of the emergence of a
universal AdS/QCD confinement scale κ.
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