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We study single spin asymmetries at one-loop accuracy in Drell-Yan processes in which one of the initial
hadrons is transversely polarized. The spin-dependent part of differential cross sections can be factorizedwith
various hadronic matrix elements of twist-2 and twist-3 operators. These operators can be of even and odd
chirality. In this work, the studied observables of asymmetries are differential cross sections with different
weights. Theseweights are selected so that the observables are spin dependent and their virtual corrections are
completely determined by the quark form factor. In the calculations of one-loop corrections wemeet collinear
divergences in the contributions involving chirality-odd and chirality-even operators. We find that all of the
divergences can be correctly subtracted. Therefore, our results give an explicit example of QCD factorization
at one loop with twist-3 operators, especially QCD factorization with chirality-odd twist-3 operators.

DOI: 10.1103/PhysRevD.95.074005

I. INTRODUCTION

Single transverse-spin asymmetry (SSA) can appear in
high energy hadron-hadron collisions in which one of the
initial hadrons is transversely polarized. For collisions with
large momentum transfers one can make predictions by
using QCD factorization, in which the perturbative and
nonperturbative effects are consistently separated. It is well
known that the cross sections with an unpolarized or
longitudinally polarized hadron can be factorized with
hadronic matrix elements of twist-2 operators. These matrix
elements are the standard parton distribution functions. In
the case of SSA the factorization is made with hadronic
matrix elements of operators at twist-3, as shown in [1,2].
SSA is of particular interest in theory and experiment.
Nonzero SSA indicates the existence of the nonzero
absorptive part in scattering amplitudes. The matrix ele-
ments of twist-3 operators contain more information about
inner structure of hadrons than those of twist-2 operators.
Therefore, it is important to extract them from experiment.
In this work we study SSA in Drell-Yan processes. We

construct two experimental observables, which are differ-
ential cross sections integrated over parts of phase spacewith
weights. These weights are chosen so that the observables
are proportional to the transverse spin. Using them one can
extract the spin-dependent part of the full differential cross
section and relevant twist-3 parton distributions. We study
one-loop corrections of the constructed observables.
The two observables studied here receive contributions

involving various parton distributions. Among them twist-3
parton distributions are unknown. It is important to know
these twist-3 parton distributions. At tree level, only two

twist-3 parton distributions are involved. They are quark-
gluon-quark correlations inside hadrons. One is of trans-
versely polarized hadron. Its existence implies that partons
inside hadrons have nonzero orbital angular momenta.
Another one is the correlation defined with a chirality-
odd operator for an unpolarized hadron. The involved
contribution is combined with the twist-2 transversity
parton distribution, which is not well known. In hadronic
processes there are usually significant corrections fromnext-
to-leading order. With our results at one loop, the twist-3
parton distributions can be extracted from experimental
resultsmore accurately thanwith tree results. At one loop the
twist-3 gluon distribution contributes. Knowing the one-
loop correction, it can help to extract the twist-3 gluon
distribution. Currently, the relevant experiment can be
perform at the RHIC and Compass, where the transversely
polarized proton beam or target is available.
SSA at tree level in Drell-Yan processes has been studied

extensively. In [3–8] the effect of SSAhas been studied in the
case where the transverse momentum of the lepton pair is
small and approaching 0. The effect is at the order ofOðα0sÞ.
For the case of the large transversemomentumSSAhas been
studied in [9–14], where the effect of SSA is at the order of
OðαsÞ. While calculations beyond tree level in QCD
factorization at twist-2 are rather standard and many one-
loop results exist, there are not many results of one-loop
calculation with twist-3 factorization. For Drell-Yan proc-
esses there is only one work in [15] where one weighted
differential cross section of SSA involving the twist-3
quark-gluon operator of [1,2] is calculated at one loop.
For semi-inclusive deep inelastic scattering (SIDIS) differ-
ent parts of one-loop results about SSA can be found in
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[16–18]. A one-loop study of twist-3 factorization for DIS
has been performed in [19].
Recently the complete twist-3 part of the hadronic tensor

of the Drell-Yan process and of semi-inclusive DIS has
been derived at the tree level Oðα0sÞ for the first time in
[8,20], respectively. According to these results one can
systematically construct weighted observables of SSA. An
interesting finding in these works is that the twist-3
hadronic tensors contain a special part. This special part
receives from higher orders of αs the virtual correction,
which is completely determined by that of the electromag-
netic form factor of a quark. The results of higher-order
correction of the quark form factor exist in the literature and
can be easily recalculated at one loop. In this work, we
construct two weighted differential cross sections. These
two observables receive at tree level contributions only
from the special part of the hadronic tensor. Therefore, the
one-loop virtual correction to the two observables is well
known. We then only need to calculate the real corrections
to the observables. One can certainly construct observables
whose tree-level results can receive contributions from
other parts of the hadronic tensor besides or except the
special part. In this case, the virtual correction needs to be
calculated and the calculation can be complicated. We leave
this for a study in the future.
In general twist-3 calculations are more complicated than

those of twist-2. In the separation of nonperturbative and
perturbative effects the gauge invariance of QCD should
not be violated. In [21] it has been shown how the gauge
invariance is maintained. In twist-3 factorization there is a
special contribution called soft-gluon-pole contribution as
shown in [2], in which one gluon is with zero momentum
entering hard scattering. It should be noted that the
momentum is not exactly 0. In fact the momentum of
the gluon is in the Glauber region [13]. The soft-gluon-pole
contribution is more difficult to calculate than others.
Interestingly, it is shown in [22–24] that the soft-gluon-
pole contribution at tree level is related to the correspond-
ing twist-2 contribution at tree level. This simplifies the
calculation of obtaining the soft-gluon-pole contribution.
With these progresses twist-3 calculations can be done in a
relatively straightforward way.
We calculate the one-loop correction of the two observ-

ables. The contributions to the observables can be divided
into two parts. One part contains hadronic matrix elements
of chirality-even operators, while another part involves
chirality-odd operators. In calculating the chirality-even
and chirality-odd contributions at one loop, one encounters
infrared (I.R.), or collinear, divergences. The I.R. diver-
gences are canceled in the sum of all contributions. The
collinear divergences can be correctly factorized into
hadronic matrix elements. The final results are finite.
Unlike the collinear factorization at twist-2 for DIS and
Drell-Yan processes, where the twist-2 factorization has
been proven to hold at all orders, there is no proof of the

collinear factorization at twist-3 at all orders. To show the
factorization it is important to perform calculations beyond
the tree level, because collinear and I.R. divergences do not
appear at tree level. They appear at one-loop or higher
orders. These divergences are potential sources to violate
the factorization. Our work presented here gives an explicit
example of twist-3 factorization at one loop. Especially, it is
the first time in the case of the factorization involving
chirality-odd operators at one loop.
Our paper is organized as follows. In Sec. II we introduce

our notations and derive the tree-level results. In Secs. III
and IV we give the one-loop corrections for the chirality-
even and chirality-odd contributions, respectively. In these
sections, we also perform the subtraction of the collinear
contributions. The collinear singularities are subtracted into
various parton distributions. In Sec. V we give our final
results, which are finite. Section VI is our summary.

II. NOTATIONS AND TREE-LEVEL RESULTS

We consider the Drell-Yan process,

hAðPA; sÞ þ hBðPBÞ
→ γ�ðqÞ þ X → l−ðk1Þ þ lþðk2Þ þ X; ð1Þ

where hA is a spin-1=2 hadron with the spin vector s and the
spin of hB is 0 or averaged. We use the light-cone
coordinate system, in which a vector aμ is expressed as
aμ ¼ ðaþ; a−; ~a⊥Þ ¼ ðða0 þ a3Þ= ffiffiffi

2
p

; ða0 − a3Þ= ffiffiffi
2

p
; a1; a2Þ.

We introduce two light-cone vectors lμ ¼ ð1; 0; 0; 0Þ and
nμ ¼ ð0; 1; 0; 0Þ. Using the two vectors we define two
tensors,

gμν⊥ ¼ gμν − nμlν − nνlμ; ϵμν⊥ ¼ ϵαβμνlαnβ;

ϵαβμν ¼ −ϵαβμν; ϵ0123 ¼ 1: ð2Þ

With the transverse metric gμν⊥ we have aμ⊥ ¼ gμν⊥ aν and
a2⊥ ¼ −a⊥ · a⊥ ¼ ða1Þ2 þ ða2Þ2. The momenta of initial
hadrons and the spin of hA in the light-cone coordinate
system are

Pμ
A ≈ ðPþ

A ; 0; 0; 0Þ; Pμ
B ≈ ð0; P−

B; 0; 0Þ;
sμ ¼ sμ⊥ ¼ ð0; 0; s1; s2Þ; ð3Þ

i.e., hA moves in the z-direction with a large momentum.
The invariant mass of the observed lepton pair is
Q2 ¼ q2 ¼ ðk1 þ k2Þ2. The relevant hadronic tensor is
defined as

Wμν ¼
X
X

Z
d4x
ð2πÞ4 e

iq·xhhAðPA; sÞ; hBðPBÞjq̄ð0Þγνqð0ÞjXi

× hXjq̄ðxÞγμqðxÞjhBðPBÞ; hAðPA; sÞi: ð4Þ
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We consider the case with Q2 ≫ Λ2
QCD. At leading power

of Q2, it is well known that Wμν is factorized with twist-2
operators, which are used to define various standard parton
distributions, whose definitions can be found in [25]. At
this order Wμν does not depend on the transverse spin s⊥.
The s⊥-dependence appears at the next-to-leading order

of the inverse power of Q. At this order Wμν can be
factorized with twist-3 hadronic matrix elements or twist-3
parton distribution functions. We give the definitions of
relevant twist-3 matrix elements in the following. For the
transversely polarized hA, there are two relevant twist-3
matrix elements, called Efremov-Teryaev-Qiu-Sterman
(ETQS) matrix elements. They are defined as [1,2]

Z
dλ1dλ2
4π

e−iλ2ðx2−x1ÞP
þ
A−iλ1x1P

þ
A

× hhAjψ̄ iðλ1nÞgsGþμðλ2nÞψ jð0ÞjhAi

¼ 1

4
½γ−�ji ~sμ⊥TFðx1; x2Þ þ

1

4
½iγ5γ−�jisμ⊥TΔðx1; x2Þ þ � � � ;

ð5Þ

where � � � denotes irrelevant terms. The vector ~sμ⊥ is defined
as ~sμ⊥ ¼ ϵμν⊥ s⊥ν. In the above and the following, we
suppress the gauge links between field operators at different
points of the space-time for a short notation. These gauge
links are important for making the definitions gauge
invariant. The two twist-3 parton distribution functions
defined in Eq. (5) have the property

TFðx1; x2Þ ¼ TFðx2; x1Þ; TΔðx1; x2Þ ¼ −TΔðx2; x1Þ:
ð6Þ

One can define another two twist-3 distributions by
replacing the field-strength tensor operator in Eq. (5) with
the covariant derivative Dμ

⊥. In addition to them, there are
three twist-3 distributions defined with a product of two
quark field operators. Two of them are given in [26], and
one of them is defined in [20]. All of these mentioned twist-
3 distributions can be expressed with the two defined in
Eq. (5) [20,26]. Therefore, we only use TF;Δ to express our
results. We note here that TF;Δ are defined with chirality-
even operators.
There are four twist-3 distributions defined only with

gluon fields [27]. One of them can be defined as

TðfÞ
G ðx1; x2Þ~sμ

¼ gs
ifabcgαβ

Pþ
A

Z
dy1dy2
4π

e−iP
þ
A ðy2ðx2−x1Þþy1x1Þ

× hhAjGa;þαðy1nÞGb;þμðy2nÞGc;þβð0ÞjhAi: ð7Þ

The definition of TðdÞ
G is obtained by replacing ifabc with

dabc. Besides these two distributions Tðf;dÞ
G the other two

twist-3 distributions are defined by replacing gαβ⊥ with ϵαβ⊥ in
Eq. (7). But the contributions with these two twist-3
distributions do not appear in calculations of our work.
For the matrix elements with fabc one has

TðfÞ
G ðx1; x2Þ ¼ −TðfÞ

G ð−x2;−x1Þ;
TðfÞ
G ðx1; x2Þ ¼ TðfÞ

G ðx2; x1Þ: ð8Þ

Similar relations can be derived for distributions defined

with dabc. We use Tðf;dÞ
G to give our results. The contribu-

tions involving these twist-3 distributions are in combina-
tion with the twist-2 parton distribution functions of hB.
There are contributions toWμν involving hadronic matrix

elements defined with chirality-odd operators. These con-
tributions involve the twist-2 transversity distribution of hA
introduced in [28]. It is defined as

h1ðxÞsμ⊥ ¼
Z

dλ
4π

e−ixλP
þ
A hhAjψ̄ðλnÞγþγμ⊥γ5ψð0ÞjhAi: ð9Þ

The twist-3 chirality-odd distributions of hB appear in the
contributions. For the unpolarized hadron hB we can define

TðσÞ
F ðy1; y2Þ ¼ −

2gs
d − 2

Z
dξþ1 dξ

þ
2

4π
e−iξ

þ
1
y1P−

B−iξ
þ
2
ðy2−y1ÞP−

B

× hhBjq̄ð0Þðiγ⊥μγ
−ÞG−μðξþ2 lÞqðξþ1 lÞjhBi

ð10Þ

with d as the dimension of the space-time. Another twist-3
chirality-odd distribution, called eðxÞ, for the unpolarized
hadron is defined with the operator ψ̄ψ. With the equation

of motion one can relate eðxÞ to TðσÞ
F [29–31].

The complete result for the twist-3 contribution ofWμν in
the considered case at the leading order of αs has been
derived in [8]. It is

Wμν ¼ 1

2Nc

�
−TðσÞ

F ðy; yÞh1ðxÞ

×

�
1

2

∂δ2ðq⊥Þ
∂qρ⊥ ðgμρ⊥ ~sν⊥ þ gνρ⊥ ~sμ⊥ − gμν⊥ ~sρ⊥Þ

þ δ2ðq⊥Þ
PB · q

ðPμ
B ~s

ν⊥ þ Pν
B ~s

μ
⊥Þ
�

þ q̄ðyÞTFðx; xÞ
�
δ2ðq⊥Þ
PA · q

ðPμ
A ~s

ν⊥ þ Pν
A ~s

μ
⊥Þ

þ gμν⊥
∂δ2ðq⊥Þ
∂qρ⊥ ~sρ⊥

��
þOðαsÞ; ð11Þ

where q̄ðyÞ is the antiquark distribution function of hB. The
momentum q of the lepton pair is parametrized as
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qμ ¼ ðxPþ
A ; yP

−
B; q

1⊥; q2⊥Þ: ð12Þ

Because the result contains δ2ðq⊥Þ and its derivative, the
result should be taken as a tensor distribution, i.e., the
Uð1Þ-gauge invariance should be understood in the sense of
integration. By taking any test function F ðq⊥Þ one should
have from the invariance

Z
d2q⊥F ðq⊥ÞWμνqμ ¼ 0: ð13Þ

The result satisfies this equation and hence is gauge
invariant. In d-dimensional space-time the result in
Eq. (11) remains the same. An interesting observation in
deriving the contribution proportional to the derivative of
δ2ðq⊥Þ is that the virtual correction to the contribution
beyond tree level is completely determined by the correc-
tion of the quark form factor [8].
Beyond tree level Wμν contains more contributions with

tensor structures different than those at tree level. In
principle one can measure various angular distributions
of the outgoing lepton to extract different components of
Wμν. However, this requires large statistics in experiment.
It is convenient to use weighted differential cross sections
to project out particular angular distributions, which are
transverse-spin dependent. In our case, one can construct
weighted differential cross sections to extract the spin-
dependent parts of Wμν. The differential cross section after
the integration over the phase space of the lepton pair can
be written as

dσ
dQ2d4q

¼ 1

2sq4

Z
dΓlþl−LμνWμνδðq2 −Q2Þ;

dΓlþl− ¼ d3k1
ð2πÞ32k01

d3k2
ð2πÞ32k02

ð2πÞ4δ4ðk1 − k2 − qÞ ð14Þ

with s ¼ 2Pþ
AP

−
B and the leptonic tensor

Lμν ¼ 4ðkμ1kν2 þ kν1k
μ
2 − k1 · k2gμνÞ: ð15Þ

We take the electric charge of quarks and leptons as 1 for
simplicity. This charge factor can be easily recovered later
in our final results by multiplying the factor ð4παQqÞ2 with
Qq as the electric charge of the quark q in the unit of the
electric charge of proton.
In this work we consider the weighted differential cross

section with the weight function Oðq; k1Þ defined as

dσhOðq; k1Þi
dxdQ2

¼ 1

4Q4

Z
dyd2q⊥dΓlþl−Oðq; k1Þ

× LμνWμνδðq2 −Q2Þ ð16Þ

withO as a function of q and k1. It is clear that the weighted
differential cross section with O ¼ 1 is the usual one. We
consider two weights named as O1;2. They are

O1 ¼ ~s⊥ · q⊥;

O2 ¼ ~s⊥ · k1k1 · q⊥ þ 1

20
ð2Q2 − 7q⊥ · q⊥Þ~s⊥ · q⊥: ð17Þ

At the first look the second term in the weight O2 takes a
strange form. One may only take the first term as a weight.
The reason for the choice of O2 is that the result becomes
simpler after the integration of the lepton-pair phase space,Z

dΓlþl−O2ðq; k1ÞLμν

¼ −
AΓ

2ðd2 − 1ÞQ
4ðqμ⊥ ~sν⊥ þ qν⊥ ~s

μ
⊥ þOðϵÞÞ;

AΓ ¼
Z

dΓlþl−1: ð18Þ

Without the second term inO2 inEq. (17), the contribution at
the order OðϵÞ in the above will be at the order Oðϵ0Þ. This
makes the end results very lengthy. It should be emphasized
that it is important to measure the differential cross section
weighted withO2 because it receives the contributions from
the transversity h1 at tree level, as shown below. Such a
measurement should not be difficult in experiment, although
O2 looks more complicated than O1. The two weighted
differential cross sections can be measured more easily than
the full differential cross section.
With the defined weight O1;2 it is straightforward to

obtain the results for the corresponding weighted differ-
ential cross section,

dσhO1i
dxdQ2

¼ −
AΓ1

xsQ2

1

8Nc
js⊥j2

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þ

×

�
1

2
ðd − 4Þh1ðxaÞTðσÞ

F ðyb; ybÞ

þ ðd − 2Þq̄ðybÞTFðxa; xaÞ
�
;

dσhO2i
dxdQ2

¼ −
AΓ2

xs
1

8Nc
js⊥j2

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þ

× ½−ðd − 2Þh1ðxaÞTðσÞ
F ðyb; ybÞ

þ 2q̄ðybÞTFðxa; xaÞ�; ð19Þ
with

xa ¼
x
ξ1

; yb ¼
Q2

xξ2s
;

AΓ2 ¼
AΓ

2ðd2 − 1Þ ; AΓ1 ¼ 2AΓ
d − 2

d − 1
: ð20Þ

These weighted differential cross sections only receive the
contributions from the spin-dependent part of Wμν. Since
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our weights are proportional to q⊥, they only receive the
contributions from terms in Eq. (11) proportional to the
derivative of δ2ðq⊥Þ. It should be noted that there are
contributions in which the parton from hB is a quark. These
contributions involve the quark distribution function of hB
and TFð−x;−xÞ of hA. Similar contributions with chirality-
odd operators also exist. In this work we do not list these
contributions. These contributions can be obtained with the
symmetry of charge conjugation.
We study the one-loop corrections to the weighted

differential cross sections. Since the weights are propor-
tional to q⊥, the virtual correction is well known as
mentioned. We only need then to calculate the real correc-
tions. In the calculations we meet I.R. and collinear
divergences. At the end these divergences are either can-
celed or correctly subtracted. The final results of the one-
loop corrections are finite. Because of the subtraction, we
note that the contribution proportional to d − 4 ¼ −ϵ in the
first line of Eq. (19) gives a nonzero contribution at one loop.

III. THE ONE-LOOP CORRECTION I

In this section we study one-loop correction involving
chirality-even operators and that involving purely gluonic
twist-3 operators. In general, we need to calculate diagrams
which have the patten illustrated in Fig. 1. In these
diagrams, there is one parton from the hadron hB partici-
pating in the hard scattering represented by the middle
bubble. Figure 1 is for the case that the parton from hB is an
antiquark carrying the momentum kB. The bubble in the
middle denotes those diagrams of the hard scattering. After
making the collinear expansion for the antiquark from hB,
the contribution like those given in Fig. 1 can be written as

WμνjFig:1 ¼
Z

d4kAd4kdk−B
1

2Nc
q̄ðybÞ

1

2Nc

× Tr½γþHa;μνρðkA; kB; kÞMa;ρ
g ðkA; kÞ�; ð21Þ

with kμB ¼ ð0; ybP−
B; 0; 0Þ and the quark-gluon correlator

Ma;ρ
g ðkA; kÞ ¼ gs

Z
d4η1d4η2
ð2πÞ8 eiη1·kAþiη2·k

× hhAjq̄ð0ÞGa;ρðη2Þqðη1ÞjhAi: ð22Þ

In the above we have already made some approximations to
neglect contributions at twist higher than 3.
It is now rather standard to make the collinear expansion

related to hA. Here, one should do the expansion carefully
to obtain gauge-invariant results. This has been discussed in
detail in [2,21,26]. Since the calculations of twist-3 are now
straightforward, we do not give the details about the
calculations. One can find the details about how to find
gauge-invariant twist-3 contributions in [21,26]. In the
relevant twist-3 contributions, there are contributions in
which a gluon with the zero momentum from hadrons
enters the hard scattering. These contributions are called
soft-gluon-pole contributions. It is interesting to note that
there is an elegant way to find such contributions [22,23],
which we discuss more in detail in Sec. III B. Besides the
soft-gluon-pole contributions, there are soft-quark-pole
contributions and hard-pole contributions. In the latter
the momentum component kþ of the gluon is not 0 in
general.
In the real corrections there is always one parton in the

intermediate state in the hard scattering so that the trans-
verse momentum of the virtual photon becomes nonzero.
The square of the transverse momentum is given by

q2⊥ ¼ −q⊥ · q⊥ ¼ Q2

ξ2
ð1 − ξ1Þð1 − ξ2Þ: ð23Þ

In this section we list our results for the hard-pole
contribution in Sec. III A, for the soft-pole contributions
in Sec. III B, and for the contributions involving purely
gluonic twist-3 operators in Sec. III C. In Sec. III D we
perform the subtraction for factorizing the collinear con-
tributions into hadronic matrix elements to avoid a double
counting. After the subtraction the results are finite.

A. Hard-pole contributions

The hard-pole contributions are from diagrams given in
Figs. 2–4. These diagrams are for the hard scattering
represented by H in Fig. 1. In these diagrams, there is a
quark propagator with a short bar. This is to indicate that we
only take the absorptive part of the quark propagator in the
calculations. The absorptive part is responsible for SSA. To
calculate our weighted differential cross section, we need to
perform the integration over q⊥. The results after the
integration contain I.R. and collinear divergences. These
divergences come from the momentum region where the
momentum of the massless parton in the intermediate state
is soft or collinear to PA or to PB. We use the dimensional
regularization to regularize these soft divergences. In the
regularization the dimension of the space-time is d ¼ 4 − ϵ
and the dimension of the transverse space is 2 − ϵ. A scale
μc related to the soft divergences is introduced. The
calculations are tedious but straightforward.

(a) (b) (c)

FIG. 1. Diagrams of one-loop correction for SSA. The dia-
grams in (b) and (c) are not included in (a).
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We use the following notations in our work:

FD ¼
�
4πμ2c
Q2

�
ϵ=2 1

Γð1 − ϵ=2Þ ; L2ðξÞ ¼
�
lnð1 − ξÞ
1 − ξ

�
þ
L1ðξÞ ¼ L2ðξÞ −

ln ξ
1 − ξ

: ð24Þ

Theþ-distributions are standard ones. The hard-pole contribution from diagrams in Fig. 2 is with an antiquark from hB. The
results from these diagrams are

dσhO1i
dxdQ2

				
Fig:2

¼ js⊥j2AΓ1

4xsQ2

αs
4πN2

c
FD

Z
dξ1dξ2
ξ1ξ2

�
q̄ðybÞTFðxa; zaÞ

�
−2N2

c

�
2

ϵ

�
2

δð1 − ξ1Þδð1 − ξ2Þ

þ δð1 − ξ1ÞðN2
c þ ξ2 − 1Þ 2

ϵ

ð1þ ξ22Þ
ð1 − ξ2Þþ

þ δð1 − ξ2ÞN2
c
2

ϵ

1þ ξ1
ð1 − ξ1Þþ

þA1Fðξ1; ξ2Þ
�

þ q̄ðybÞTΔðxa; zaÞ
�
−δð1 − ξ2ÞN2

c
2

ϵ
þA1Δðξ1; ξ2Þ

��
;

dσhO2i
dxdQ2

				
Fig:2

¼ js⊥j2AΓ2

4xs
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

�
q̄ðybÞTFðxa; zaÞ

�
−2N2

cδð1 − ξ1Þδð1 − ξ2Þ

×

��
2

ϵ

�
2

þ 2

ϵ

�
þ δð1 − ξ1ÞðN2

c þ ξ2 − 1Þ 1þ ξ22
ð1 − ξ2Þþ

2

ϵ
þ δð1 − ξ2ÞN2

c
1þ ξ1

ð1 − ξ1Þþ
2

ϵ
þA2Fðξ1; ξ2Þ

�

þ q̄ðybÞTΔðxa; zaÞ
�
−δð1 − ξ2ÞN2

c
2

ϵ
þA2Δðξ1; ξ2Þ

��
: ð25Þ

(d)

(a)

(e)

(b)

(f)

(c)

FIG. 2. Diagrams of the hard-pole contributions. The black dots
denote the insertion of the electromagnetic current operators inWμν.

(a) (b)

(d) (e) (f)

(c)

FIG. 3. Diagrams of the hard-pole contributions with a gluon
from hB.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. The diagrams of the hard-pole contributions, where a qq̄-pair from hA enters the hard scattering.
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In Eq. (25) we list the divergent contributions explicitly. The terms with the function A0s are finite. In this and the next
section we always give our results in this form. All finite contributions are summed in Sec. V together and the relevant
functions are given in the appendix. The variable za is

za ¼
xξ2

1 − ξ1ð1 − ξ2Þ
: ð26Þ

We note that the contributions from Fig. 2 contain a double pole in ϵ.
The hard-pole contributions from diagrams in Fig. 3 are those in which a gluon is a parton from hB. We denote the twist-2

gluon distribution function of hB as GðyÞ. The contributions from Fig. 3 are

dσhOii
dxdQ2

				
Fig:3

¼ js⊥j2AΓi

4xsQ2ð2−iÞ
αs

4πNcðN2
c − 1ÞFD

Z
dξ1dξ2
ξ1ξ2

GðybÞ
�
TFðxa; zaÞ

�
2CFBiFðξ1; ξ2Þ

þ 2

ϵ
δð1 − ξ1Þðð1 − ξ2ÞN2

c − 1Þð2ξ22 − 2ξ2 þ 1Þ
�
þ 2CFTΔðxa; zaÞBiΔðξ1; ξ2Þ

�
; ð27Þ

for i ¼ 1, 2. The divergent contributions from Fig. 3 are the same for i ¼ 1, 2. The contributions here contain only a single
pole in ϵ associated with TF.
In the contributions from Figs. 2 and 3 the momentum fractions x1 for the outgoing quark and x2 of the incoming quark,

as variables of TF;Δðx1; x2Þ, are always positive. There are contributions in which x1 or x2 is negative. In these contributions
there is a quark-antiquark pair from hA entering the hard scattering. These contributions are from Fig. 4. They are

dσhOii
dxdQ2

				
Fig:4

¼ js⊥j2AΓi

4xsQ2ð2−iÞ
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

q̄ðybÞ
�
TFð−xξ;zaÞ

�
ð1−2ξ1Þδð1−ξ2Þ

2

ϵ
þCiF1ðξ1;ξ2Þ

�

þTΔð−xξ;zaÞ
�
−δð1−ξ2Þ

2

ϵ
þCiΔ1ðξ1;ξ2Þ

�
þTFð−za;xξÞCiF2ðξ1;ξ2ÞþTΔð−za;xξÞCiΔ2ðξ1;ξ2Þ

�
; ð28Þ

with xξ ¼ xa − za. We notice that the contributions from
those diagrams in the second row of Fig. 4 are finite. The
contributions of the first row have the same divergent part
for i ¼ 1, 2.

B. Soft-pole contributions

The soft-pole contributions can be soft-gluon-pole or soft-
quark-pole contributions. The soft-gluon-pole contributions
are from diagrams in Figs. 5 and 6. The soft-quark-pole
contributions are from the diagrams in Fig. 7. The soft-
quark-pole contributions can be evaluated directly,while it is
complicated to calculate the soft-gluon-pole contributions.
However, as mentioned, there is an elegant way to obtain the

soft-gluon-pole contribution as shown in [22–24]. In our
case, the contributions from Fig. 5 can be calculated as
discussed in the following.
We consider the contribution to the twist-2 part of Wμν

from the partonic process qðxaPAÞþ q̄ðwÞ→ γ�ðqÞþgðkgÞ
at tree level. After working out the color factor, the
contribution is given by

Wμνjtwist−2
¼ N2

c − 1

8N2
cð2πÞ4

Z
dyb
yb

dxaq̄ðybÞqðxaÞSμνðxaPA; ybPBÞ;

ð29Þ

(b) (c) (d)(a)

FIG. 5. Diagrams of the soft-gluon-pole contributions.

ONE-LOOP CORRECTIONS TO SINGLE SPIN … PHYSICAL REVIEW D 95, 074005 (2017)

074005-7



where qðxaÞ is the quark distribution function of hA. The
quantity SμνðxaPA; wÞ can be simply calculated from the
partonic process. Now the soft-pole contribution from
Fig. 5 to Wμν at twist-3 can be calculated as [22,23]

WμνjFig:5
¼ −~sρ

16N2
cð2πÞ4

Z
dyb
yb

dxaq̄ðybÞTFðxa; xaÞ

×

� ∂
∂wρ

⊥
−
kBρ
k−B

∂
∂wþ

�
½SμνðxaPA; wÞ�jwρ¼kρB

; ð30Þ

with kB ¼ ybPB. Similar results can also be derived for the
twist-3 contribution from Fig. 6.
In the calculation of the soft-gluon contributions to our

weighted differential cross sections, the obtained results
have not only contributions involving TFðxa; xaÞ, but also
contributions involving the derivative of TFðxa; xaÞ with
respect to xa. These contributions after the integration over
q⊥ take the form

Z
1

x
dxaðq2⊥Þ−ϵ=2fðxaÞ

d
dxa

TFðxa; xaÞ

¼ −
Z

1

x
dxaTFðxa; xaÞ

d
dxa

ððq2⊥Þ−ϵ=2fðxaÞÞ; ð31Þ

where q2⊥ is given in Eq. (23). One can perform integration
by part to eliminate these terms with the derivative of
TFðxa; xaÞ, as shown in the above. Assuming TFð1; 1Þ ¼ 0
the contribution from the boundary at xa ¼ 1 is 0. The
contribution from the boundary at xa ¼ x is also 0 in d
dimension. If we expand the integral in ϵ and then perform
the integration by part, the contribution from the boundary
at xa ¼ x is nonzero and should be taken into account. The
final results obtained in this way are the same at the
considered orders of ϵ, if we perform the integration by part
before the expansion in ϵ. We have the contribution
from Fig. 5,

dσhO1i
dxdQ2

				
Fig:5

¼ js⊥j2AΓ1

4xsQ2

αs
4πN2

c
FD

Z
dξ1dξ2
ξ1ξ2

q̄ðybÞTFðxa; xaÞ
�
2δð1 − ξ1Þδð1 − ξ2Þ

��
2

ϵ

�
2

−
2

ϵ

�

− δð1 − ξ1Þ
2

ϵ

ð1þ ξ22Þξ2
ð1 − ξ2Þþ

− δð1 − ξ2Þ
2

ϵ

1þ ξ21
ð1 − ξ1Þþ

þD1ðξ1; ξ2Þ
�
;

dσhO2i
dxdQ2

jFig:5 ¼
js⊥j2AΓ2

4xs
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

q̄ðybÞTFðxa; xaÞ
�
2δð1 − ξ1Þδð1 − ξ2Þ

�
2

ϵ

�
2

− δð1 − ξ1Þ
2

ϵ

ξ2ð1þ ξ22Þ
ð1 − ξ2Þþ

− δð1 − ξ2Þ
2

ϵ

1þ ξ21
ð1 − ξ1Þþ

þD2ðξ1; ξ2Þ
�
: ð32Þ

In Eq. (32) there are contributions containing double poles in ϵ. The contributions with the double poles are canceled by
those in the virtual corrections.
In the contributions from Fig. 6 the parton from hB is a gluon. We have

dσhOii
dxdQ2

				
Fig:6

¼ js⊥j2AΓi

4xsQ2ð2−iÞ
αsNc

4πðN2
c − 1ÞFD

Z
dξ1dξ2
ξ1ξ2

GðybÞTFðxa; xaÞ

×

�
2

ϵ
δð1 − ξ1Þð2ξ22 − 2ξ2 þ 1Þξ2 þ

2CF

N2
c
Eiðξ1; ξ2Þ

�
; ð33Þ

for i ¼ 1, 2.

(a) (b) (c) (d)

FIG. 6. Diagrams of the soft-gluon-pole contributions with a gluon from hB.

A. P. CHEN, J. P. MA, and G. P. ZHANG PHYSICAL REVIEW D 95, 074005 (2017)

074005-8



As shown in [32], there are soft-quark-pole contribu-
tions, in which one of x1;2 in TF;Δðx1; x2Þ is 0, i.e., a quark
or antiquark carrying zero momentum enters a hard
scattering. These contributions are from diagrams given
in Fig. 7, where in the first four diagrams the parton from

hB is an antiquark, and in the remaining diagrams the
parton is a gluon. The method to calculate these contribu-
tions is the same as that used for hard-pole contributions in
the previous subsection. Interestingly, the results from
Fig. 7 can be written in a compact form,

dσhOii
dxdQ2

				
Fig:7

¼ js⊥j2AΓi

4xsQ2ð2−iÞ
αs

4πN2
c

Z
dξ1dξ2
ξ1ξ2

�
q̄ðybÞ þ

Nc

N2
c − 1

GðybÞ
�
½TFð−xa; 0ÞF iFðξ1; ξ2Þ

þ TΔð−xa; 0ÞF iΔðξ1; ξ2Þ�; ð34Þ

for i ¼ 1, 2. The soft-quark-pole contributions here are finite.

C. Gluonic contribution

The gluonic contributions are those in which only gluons from hA enter the hard scattering. To calculate these
contributions it is convenient to use the notation in [24,27,33] for the twist-3 gluonic matrix elements instead of those given
in Eq. (7). In this notation the matrix element of the twist-3 gluonic operator can be parametrized as

1

Pþ
A
gsi3

Z
dλ1
2π

dλ2
2π

eiλ1x1P
þ
Aþiλ2ðx2−x1ÞPþ

A hhAjGa;þαðλ1nÞGc;þγðλ2nÞGb;þβð0ÞjhAi

¼ Nc

ðN2
c − 1ÞðN2

c − 4Þ d
abcOαβγðx1; x2Þ −

i
NcðN2

c − 1Þ f
abcNαβγðx1; x2Þ; ð35Þ

where all indices α, β and γ are transverse. With symmetries the two tensors can be decomposed as

Oαβγðx1; x2Þ ¼ −2i½Oðx1; x2Þgαβ ~sγ⊥ þOðx2; x2 − x1Þgβγ ~sα⊥ þOðx1; x1 − x2Þgγα ~sβ⊥�;
Nαβγðx1; x2Þ ¼ −2i½Nðx1; x2Þgαβ ~sγ⊥ − Nðx2; x2 − x1Þgβγ ~sα⊥ − Nðx1; x1 − x2Þgγα ~sβ⊥�; ð36Þ

with the properties of the function O and N,

Oðx1; x2Þ ¼ Oðx2; x1Þ; Oðx1; x2Þ ¼ Oð−x1;−x2Þ; Nðx1; x2Þ ¼ Nðx2; x1Þ; Nðx1; x2Þ ¼ −Nð−x1;−x2Þ: ð37Þ

These functions are related to those defined in Eq. (7) as

(b) (c) (d)(a)

(e) (f) (g) (h)

FIG. 7. Diagrams of the soft-quark-pole contributions as one-loop correction for SSA.
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TðfÞ
G ðx1; x2Þ ¼ 2πððd − 2ÞNðx1; x2Þ − Nðx2; x2 − x1Þ

− Nðx1; x1 − x2ÞÞ;
TðdÞ
G ðx1; x2Þ ¼ 2πððd − 2ÞOðx1; x2Þ þOðx2; x2 − x1Þ

þOðx1; x1 − x2ÞÞ: ð38Þ

We use the relations later to express our final results with

Tðf;dÞ
G . The obtained results can be conveniently expressed

with the combinations

TGþðx1; x2Þ ¼ TðfÞ
G ðx1; x2Þ þ TðdÞ

G ðx1; x2Þ;
TG−ðx1; x2Þ ¼ TðdÞ

G ðx1; x2Þ − TðfÞ
G ðx1; x2Þ: ð39Þ

It should be noted that the relations given in Eq. (38)
depend on d ¼ 4 − ϵ. The subtraction of the collinear
divergences, as discussed in the next subsection, is

determined by the evolution of TFðxa; xaÞ. The gluonic
part of the evolution derived in the literature is given
with TGþ. Therefore, for the correct subtraction, one
should reexpress the results in terms of TGþ and
TG− instead of N and O. Then the ϵ-dependence delivers
an extra contribution.
With the notation in Eq. (35) there are only four

diagrams giving the gluonic contributions. These diagrams
are given in Fig. 8. The Bose symmetry between the three
gluons is taken into account with the notation for the
twist-3 gluonic matrix elements. The gluonic contributions
are of soft-pole contributions, in which one gluon carries
zero momentum. One can use the method in [22–24] to
calculate these contributions in a similar way as explained
in the previous subsection. Again, in these contributions we
have terms with the derivative onO and N. These terms can
be eliminated with integration by part as discussed before.
We have the results from Fig. 8,

dσhOii
dxdQ2

				
Fig:8

¼ πjs⊥j2AΓi

2xsQ2ð2−iÞ
αs

4πNc
FD

Z
dξ1dξ2
ξ1ξ2xa

q̄ðybÞ
��

−
2

ϵ
δð1 − ξ2Þ2ð2ξ21 − 2ξ1 þ 1Þ

�

× ðOðxa; xaÞ þ Nðxa; xaÞ þOðxa; 0Þ − Nðxa; 0ÞÞ þ
1

Nc
ðOðxa; xaÞ

þ Nðxa; xaÞÞGiþðξ1; ξ2Þ þ
1

Nc
ðOðxa; 0Þ − Nðxa; 0ÞÞGi−ðξ1; ξ2Þ

�
: ð40Þ

With this result, we have the complete real chirality-even
corrections. They are the sum of those results given in
Eqs. (25), (27), (28), (32)–(34), and (40).

D. The virtual corrections and the subtraction
of the chiral-even contributions

As mentioned, the virtual correction to the contributions
with the derivative of δ2ðq⊥Þ in Wμν is determined by
the quark form factor as observed in [8]. We call
these contributions the derivative contributions. For self-
consistence we explain here in detail how the derivative
contributions at tree level appear and hence the observation
is made.

(a) (b) (c) (d)

FIG. 8. Diagrams of the gluonic twist-3 contributions.

FIG. 9. A tree-level diagram for the contribution to Wμν. Lines
for gluon exchanges between quark lines and bubbles are implied
(see the discussions in text).
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The tree-level contributions to Wμν are from Fig. 9,
where there are gluon exchanges between the upper
(lower) bubble and the quark lines from the lower (upper)
bubble. At the leading power, we can neglect all transverse
and þ-components of momenta of gluons emitted from the
upper bubble. At this order, these gluons are polarized in
the −-direction. The contributions from the exchange

of such gluons can be summed into gauge links along
the −-direction. This results in the relevant part from the
upper bubble in the contributions at leading power
being represented by the antiquark parton distribution
function of hB, i.e., q̄ðybÞ. With these approximations
the tree-level contribution from Fig. 9 with gluon ex-
changes is given by

WμνjTree ¼
X

i¼0;j¼0

Z
d4kA

�Yi
m¼1

d4km

��Yj
n¼1

d4 ~kn

�
q̄ðybÞ

�
δ2
�
q⊥ − kA⊥ −

Xi

m¼1

km⊥
�
Hμνα1���αiβ1���βjðkA; fkig; f~kjgÞ

�

×
Z

d4ξ
ð2πÞ4 e

ikA·ξ

�Yi
m¼1

d4ξm
ð2πÞ4 e

ikm·ξm

��Yj
n¼1

d4ηn
ð2πÞ4 e

−i~kn·ηn

�
hhAjψ̄ð0ÞGβ1ðη1Þ � � �GβjðηjÞ

× Gα1ðξ1Þ � � �GαiðξiÞψðξÞjhAi; ð41Þ

where there are exchanges of i gluons in the left part of
Fig. 9 and exchanges of j gluons in the right part. The gluon
fields in the matrix elements and momenta of partons from
the lower bubble scale like ð1; λ2; λ; λÞ with λ ∼ ΛQCD=Q.
For simplicity we omit the color indices in Eq. (41). In our
case we can always neglect the − components of gluon
momenta and k−A in H. This allows us to perform the
integrations over the − components of momenta and those
of space-time components in þ-directions. The contribu-
tions with G− can also be neglected.
To find the contributions at twist-3 we need to perform a

collinear expansion in which we expand the ½� � �� in
the second line of Eq. (41) in the transverse momenta.
We notice that the twist-2 contributions are obtained by
taking the leading order in the expansion and taking all
gauge fields as Gþ’s. After summing the contributions of
the exchanged gluons into gauge links in the standard way,
the twist-2 contributions are determined by the quark-
photon-quark vertex at tree level. In the expansion of the
½� � �� in transverse momenta, one should also expand the
δ-function,

δ2
�
q⊥ − kA⊥ −

Xi

m¼1

ki⊥
�

¼ δ2ðq⊥Þ −
�
kμA⊥ þ

Xi

m¼1

kμi⊥
� ∂
∂qμ⊥ δ2ðq⊥Þ þ � � � : ð42Þ

In the expansion, the first term gives the contributions
starting at order of twist-2, while the leading contribution
from the second term is at twist-3. It is just the second term
which gives the derivative contribution of Wμν at tree level
in Eq. (11). The contribution at twist-3 from this term is
then obtained by taking all gauge fields as Gþ’s and
neglecting all transverse parton momenta in H. The
calculation is exactly the same as the calculation of

twist-2 contributions. The exchange of Gþ gluons can
be summed with gauge links along the þ-direction. The
transverse momenta of partons in the second term can be
converted as transverse derivatives acting on parton fields;
the final result is then expressed with the correlation
function,

−iq0∂ðxÞ~sμ⊥ ¼
Z

dλ
4π

eixλP
þ
A hhAðPA; s⊥Þjψ̄ð0ÞLn

× ðλnÞγþ∂μ
⊥ðL†

nψÞðλnÞjhAðPA; s⊥Þi; ð43Þ

whereLn is the gauge link in theþ-direction pointing to the
past. A detailed derivation from the second term in Eq. (42)
to the derivative contributions in Eq. (11) can be found in
[8]. It is shown that q0∂ðxÞ is related to TFðx; xÞ in [8,20].
After summing the contributions of exchanged gluons
emitted from bubbles into gauge links, the derivative
contribution is determined by the quark-photon-quark
vertex, i.e., the quark form factor at tree level.
From the above discussion, it is clear that the derivative

contributions are evaluated exactly as the calculation of
twist-2 contributions except that we have here the corre-
lation function in Eq. (43) instead of the twist-2 quark
distribution of hA. In Eq. (41) H are contributions of tree-
level diagrams. For the case in whichH contain exchanges
of virtual gluons, one can perform the same procedure for
the contribution with the second term in Eq. (42). After
summing the contributions of exchanged gluons emitted
from bubbles into gauge links, the derivative contribution is
then determined by the quark form factor containing
exchanges of virtual gluons. In the case that there are
exchanges of real gluons, i.e., the gluons crossing the cut in
Fig. 9, the δ-function in Eq. (41) is integrated out and the
derivative contribution is absent. This leads to the obser-
vation that the virtual correction to the derivative contri-
bution is determined by the quark form factor. The same
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conclusion can also be made for SIDIS. The one-loop
calculation of the virtual correction involving TF for Drell-
Yan processes in [15] and for SIDIS in [16] verifies our
conclusion explicitly. The above discussion is for the
contribution involving chiral-even distributions. The same

also holds for the derivative contribution involving chiral-
odd distributions.
The one-loop result of the form factor is well known.

Therefore, we have for the derivative contributions of Wμν

up to one loop

Wμνjvir ¼
1

4Nc
f−TðσÞ

F ðy; yÞh1ðxÞðgμρ⊥ ~sν⊥ þ gνρ⊥ ~sμ⊥ − gμν⊥ ~sρ⊥Þ þ 2q̄ðyÞTFðx; xÞgμν⊥ ~sρ⊥g
∂δ2ðq⊥Þ
∂qρ⊥

×
�
1þ αsCF

2π
FD

�
−2

�
2

ϵ

�
2

− 3

�
2

ϵ

�
− 8þ π2

�
þOðα2sÞ

�
þ � � � ; ð44Þ

where � � � stand for those nonderivative terms. It is noted that the one-loop corrections of external legs are included so that
the correction does not explicitly depend on the renormalization scale μ because of the conservation of the electromagnetic
current. Including the virtual corrections, the tree-level results in Eq. (19) are modified by replacement in Eq. (19),

1 →

�
1þ αsCF

2π
FD

�
−2

�
2

ϵ

�
2

− 3

�
2

ϵ

�
− 8þ π2

��
: ð45Þ

We note here that the virtual corrections contain a double-pole contribution in ϵ.
From the results in previous subsections we now add all divergent one-loop chirality-even corrections together. We find

the divergent part which can be written as

dσhO1i
dxdQ2

				
div

¼ js⊥j2AΓ1

4xsQ2

αs
2πNc

FD

Z
dξ1dξ2
ξ1ξ2

2

ϵ

�
δð1 − ξ1ÞTFðxa; xaÞ

×

�
1

2
ð2ξ22 − 2ξ2 þ 1ÞGðybÞ þ Pqqðξ2Þq̄ðybÞ

�
þ δð1 − ξ2Þq̄ðybÞ

�
Pqqðξ1ÞTFðxa; xaÞ

þ Nc

2ð1 − ξ1Þ
ðð1þ ξ1ÞTFðxa; xÞ − ð1þ ξ21ÞTFðxa; xaÞÞ − Ncδð1 − ξ1ÞTFðx; xÞ

−
Nc

2
TΔðxa; xÞ þ

1

2Nc
ð1 − 2ξ1ÞTFðx − xa; xÞ −

1

2Nc
TΔðx − xa; xÞ

−
1

2xa
ð2ξ21 − 2ξ1 þ 1ÞTGþðxa; xaÞ

��
;

dσhO2i
dxdQ2

				
div

¼ AΓ2Q2

AΓ1

dσhO1i
dxdQ2

				
div
; ð46Þ

with

PqqðzÞ ¼ CF

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
: ð47Þ

We note that the double-pole terms are canceled. The
remaining divergent contributions are with a single pole in
ϵ. The divergence in the sum is from the momentum region
where the parton in the intermediate states or the exchanged
gluon in the virtual correction is collinear to hA or hB. There
are contributions from the soft gluon in the virtual correc-
tion and in the intermediate states. These contributions are
proportional to δð1 − ξ1Þδð1 − ξ2Þ.

It should be noted that the contributions from the momen-
tum region, where the parton in the intermediate states is
collinear to hA or hB, are in fact already included in the
hadronic matrix elements of the tree-level results given in
Eq. (19). To avoid a double counting we should consistently
subtract the collinear contributions in the one-loop correction.
We make a replacement in the tree-level results in

Eq. (19),

TFðx; xÞ → TFðx; xÞ − ΔTFðx; xÞ;
q̄ðyÞ → q̄ðyÞ − Δq̄ðyÞ: ð48Þ

With the replacement in the tree-level results we have the
following quantities at the one-loop accuracy:
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Δ
dσhO1i
dxdQ2

¼ AΓ1ð2 − ϵÞjs⊥j2
8xsQ2Nc

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þðq̄ðybÞΔTFðxa; xaÞ þ Δq̄ðybÞTFðxa; xaÞÞ;

Δ
dσhO2i
dxdQ2

¼ AΓ2js⊥j2
4xsNc

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þðq̄ðybÞΔTFðxa; xaÞ þ Δq̄ðybÞTFðxa; xaÞÞ: ð49Þ

For the subtraction we should add the above quantities to the calculated one-loop corrections, where ΔTF and Δq̄ are
specified in the following. We have used the dimensional regularization for ultraviolet (U.V.), I.R., and collinear divergence.
With the dimensional regularization ΔTF and Δq̄ are determined by the evolution of the renormalization scale μ,
respectively. The evolution of TFðx; xÞ can be found in [34–39]. We have then

ΔTFðx; xÞ ¼
αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

��
−NcTFðx; xÞ þ

Z
1

x

dz
z

�
PqqðzÞTFðξ; ξÞ þ

Nc

2

�
TΔðx; ξÞ

þ ð1þ zÞTFðx; ξÞ − ð1þ z2ÞTFðξ; ξÞ
1 − z

�
þ 1

2Nc
ðð1 − 2zÞTFðx; x − ξÞ

þ TΔðx; x − ξÞÞ − 1

2

ð1 − zÞ2 þ z2

ξ
TGþðξ; ξÞ

��

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðF q ⊗ TF þ FΔq ⊗ TΔ þ F g ⊗ TGþÞðxÞ;

Δq̄ðxÞ ¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�Z
dξ
ξ

�
PqqðzÞq̄ðξÞ þ

1

2
½z2 þ ð1 − zÞ2�GðξÞ

�

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðPqq ⊗ q̄þ Pqg ⊗ GÞðxÞ; ð50Þ

with z ¼ x=ξ. Here we define five convolutionF ’s for short
notations. The derivative of ΔTFðx; xÞ with μ gives the
evolution kernel of TFðx; xÞ derived in [35,37–39]. Adding
the contribution for the subtraction in Eq. (49) to the one-
loop correction, we find that all divergent contributions
with the single pole in ϵ are canceled. Hence, the final
results are finite.
Before ending this section, it should be mentioned that

only the contributions from Figs. 2, 5, and 6 to the
differential cross section weighted with O1 have been
studied in [15], where the integration over x has been
performed partly. Compared with ours the results in [15]
are incomplete for the chirality-even contributions.

IV. THE ONE-LOOP CORRECTION II

In this section, we consider the real corrections involving
twist-3 chirality-odd operators. There are hard-pole and

soft-pole contributions. There is no contribution involving
the twist-3 purely gluonic matrix elements and twist-2
gluon distribution functions. The contributions at one loop
are from diagrams which have the same patten as given in
Fig. 1, where the roles of hA and hB are exchanged and the
direction of quark lines is reversed. Keeping this in mind,
the hard-pole contributions are from Figs. 2 and 4. The soft-
gluon contributions are from Fig. 5 and the soft-quark-pole
contributions are from the diagrams in the first row of
Fig. 7. The calculations are similar to those in the last
section. Below we only list our results from these diagrams
without giving the details about the calculations. In Sec. IV
Awe give the results from the mentioned diagrams and the
virtual corrections. In Sec. IV B we study the subtraction.

A. The unsubtracted contributions

The hard-pole contributions from Fig. 2 are

dσhO1i
dxdQ2

				
Fig:2

¼ js⊥j2AΓ1

4xsQ2

αs
4πN2

c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞTðσÞ
F ðyb; y0Þ

�
N2

cδð1 − ξ1Þδð1 − ξ2Þ
2

ϵ
þA1σðξ1; ξ2Þ

�
;

dσhO2i
dxdQ2

				
Fig:2

¼ js⊥j2AΓ2

4xs
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞTðσÞ
F ðyb; y0Þ

�
2N2

cδð1 − ξ1Þδð1 − ξ2Þ
�
2

ϵ

�
2

− 2N2
c
2

ϵ

δð1 − ξ1Þ
ð1 − ξ2Þþ

− 2ξ1ðN2
c þ ξ1 − 1Þ 2

ϵ

δð1 − ξ2Þ
ð1 − ξ1Þþ

þA2σðξ1; ξ2Þ
�
; ð51Þ

with y0 ¼ ξ2yb. We note that in the second equation in Eq. (51) there is a term with the double pole in ϵ, while the first
equation contains only a single pole in ϵ.
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The hard-pole contributions from Fig. 4 are

dσhO1i
dxdQ2

				
Fig:4

¼ js⊥j2AΓ1

4xsQ2

αs
4πN2

c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞðTðσÞ
F ðyb − y0;−y0ÞB1σ1ðξ1; ξ2Þ þ TðσÞ

F ðy0; y0 − ybÞB1σ2ðξ1; ξ2ÞÞ;

dσhO2i
dxdQ2

				
Fig:4

¼ js⊥j2AΓ2

4xs
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞ
�
−2δð1 − ξ1ÞTðσÞ

F ðy0; y0 − ybÞ
2

ϵ
ð1 − ξ2Þ

þ TðσÞ
F ðyb − y0;−y0ÞB2σ1ðξ1; ξ2Þ þ TðσÞ

F ðy0; y0 − ybÞB2σ2ðξ1; ξ2Þ
�
: ð52Þ

In Eq. (52) the first equation does not contain a pole in ϵ, while the second equation contains only a single pole in ϵ.
The soft-gluon-pole contributions from Fig. 5 are

dσhO1i
dxdQ2

				
Fig:5

¼ js⊥j2AΓ1

4xsQ2

αs
4πN2

c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞTðσÞ
F ðyb; ybÞ

�
−δð1 − ξ1Þδð1 − ξ2Þ

2

ϵ
þ C1σðξ1; ξ2Þ

�
;

dσhO2i
dxdQ2

				
Fig:5

¼ js⊥j2AΓ2

4xs
αs

4πN2
c
FD

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞTðσÞ
F ðyb; ybÞ

�
−2δð1 − ξ1Þδð1 − ξ2Þ

��
2

ϵ

�
2

−
2

ϵ

�

þ 2ξ2δð1 − ξ1Þ
2

ϵ

1

ð1 − ξ2Þþ
þ 2ξ21δð1 − ξ2Þ

2

ϵ

1

ð1 − ξ1Þþ
þ C2σðξ1; ξ2Þ

�
: ð53Þ

In the second equation of Eq. (53) there is a term with the double pole in ϵ.
The soft-quark-pole contributions from the first row of Fig. 7 are

dσhOii
dxdQ2

				
Fig:7

¼ js⊥j2AΓi

4xsQ2ði−2Þ
αs

4πN2
c

Z
dξ1dξ2
ξ1ξ2

h1ðxaÞTðσÞ
F ð0;−ybÞDiσðξ1; ξ2Þ; ð54Þ

for i ¼ 1, 2. These contributions are finite. The complete real corrections are the sum of the results given by Eqs. (51)–(54).
As discussed, the virtual corrections are obtained by the replacement specified with Eq. (45). Therefore, the virtual

corrections for the chirality-odd contributions are

dσhO1i
dxdQ2

				
vir

¼ −
js⊥j2AΓ1

4xsQ2

αsCF

2πNc
FD

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þh1ðxaÞTðσÞ
F ðyb; ybÞ

�
2

ϵ
þ 3

2

�
;

dσhO2i
dxdQ2

				
vir

¼ −
js⊥j2AΓ2

4xs
αsCF

2πNc
FD

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2Þh1ðxaÞTðσÞ
F ðyb; ybÞ

�
2

�
2

ϵ

�
2

þ 2

ϵ
þ 5 − π2

�
: ð55Þ

Since the tree-level chirality-odd contribution to the differential cross section weighted with O1 is proportional to ϵ in
Eq. (19), the corresponding one-loop virtual correction has only a single pole in ϵ.

B. The subtraction for the chirality-odd contributions

Summing the various contributions, we obtain the divergent part of the one-loop corrections to the chirality-odd
contributions,

dσðO1Þ
dxdQ2

				
div

¼ 2

ϵ
× 0;

dσðO2Þ
dxdQ2

				
div

¼ js⊥j2AΓ2

4xs
αs

4πN2
c
FD

2

ϵ

Z
dξ1dξ2
ξ1ξ2

�
h1ðxaÞTðσÞ

F ðyb; ybÞδð1 − ξ1Þδð1 − ξ2Þð3 − N2
cÞ þ δð1 − ξ1Þh1ðxaÞ

×

�
−2

1

ð1 − ξ2Þþ
ðN2

cT
ðσÞ
F ðyb; yÞ − ξ2T

ðσÞ
F ðyb; ybÞÞ − 2ð1 − ξ2ÞTðσÞ

F ðy; y − ybÞ
�

−
2

ϵ
δð1 − ξ2ÞTðσÞ

F ðyb; ybÞh1ðxaÞðN2
c − 1Þ 2ξ1

ð1 − ξ1Þþ

�
: ð56Þ
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We notice that there is no divergence in the chirality-odd
contribution to the differential cross section weighted with
O1 in the sum. In the chirality-odd contribution to the
differential cross section weighted with O2 the double-pole
terms in ϵ are canceled; the remaining divergence is with
the single pole in ϵ.
Similar to the case of the chirality-even contributions, the

divergence in the sum is from the momentum region where

the parton in the intermediate states or the exchanged gluon
in the virtual correction is collinear to hA or hB. These
collinear contributions are already included in the hadronic
matrix elements in the tree-level results. Therefore, a
subtraction is needed to avoid double counting.
The subtraction procedure is the same as discussed for

the chirality-even contribution. We make the replacement
in our tree-level results,

TðσÞ
F ðx; xÞ → TðσÞ

F ðx; xÞ − ΔTðσÞ
F ðx; xÞ; h1ðxÞ → h1ðxÞ − Δh1ðxÞ; ð57Þ

and obtain the contributions of the subtraction,

Δ
dσðO1Þ
dxdQ2

¼ AΓ1js⊥j2
8xsQ2Nc

�
−
ϵ

2

�Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2ÞðΔh1ðxaÞTðσÞ
F ðyb; ybÞ þ h1ðxÞΔTðσÞ

F ðyb; ybÞÞ;

Δ
dσðO2Þ
dxdQ2

¼ −
AΓ2js⊥j2ð2 − ϵÞ

8xsNc

Z
dξ1dξ2
ξ1ξ2

δð1 − ξ1Þδð1 − ξ2ÞðΔh1ðxaÞTðσÞ
F ðyb; ybÞ þ h1ðxÞΔTðσÞ

F ðyb; ybÞÞ: ð58Þ

These contributions should be added to the one-loop corrections in the previous subsection. We notice that the collinear
contributions are not always divergent. An example is the case of the chirality-odd contribution given by the first equation in
Eq. (56). With the correct factorization this corresponds to the fact that the contribution of the subtraction in the first
equation of Eq. (58) is finite at one loop.

Again, ΔTðσÞ
F ðx; xÞ and Δh1ðxÞ are determined by their evolution, respectively. The evolution of TðσÞ

F has been studied in
[39–41]. From the evolution we have

ΔTðσÞ
F ðx; x; μÞ ¼ αs

2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

��
−
N2

c þ 3

4Nc
TðσÞ
F ðx; x; μÞ þ

Z
1

x

dz
z

1

ð1 − zÞþ

�
NcT

ðσÞ
F ðx; ξÞ − z

Nc
TðσÞ
F ðξ; ξÞ

�

þ 1

Nc

Z
1−x

0

dξ
ξ

ðξþ xÞ2 T
ðσÞ
F ðx;−ξÞ

�

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðF σ ⊗ TðσÞ

F ÞðxÞ; ð59Þ

with z ¼ x=ξ. Taking the derivative of ΔTðσÞ
F ðx; x; μÞ we obtain the evolution of TðσÞ

F ðx; x; μÞ. The evolution of h1 has been
determined in [42]. From the result there we have

Δh1ðxÞ ¼
αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
CF

Z
dξ
ξ

�
2z

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�
h1ðξÞ

¼ αs
2π

�
−

2

ϵc
þ ln

eγμ2

4πμ2c

�
ðP⊥q ⊗ h1ÞðxÞ: ð60Þ

As in Sec. III D we define here two convolutions for short notations.

With the given ΔTðσÞ
F and Δh1 in the above one can perform the subtraction with Eq. (58). For the differential cross

section weighted withO2, we realize that all divergent parts with the pole in ϵ are exactly canceled after the subtraction. For
the differential cross section weighted with O1, although there is no collinear divergence, the subtraction is finite here.

V. THE FINITE RESULTS

To sum our results in previous sections, we introduce two functions as the sums of evolutions combined with other
distributions,
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Aðxa; ybÞ ¼ q̄ðybÞðF q ⊗ TF þ FΔq ⊗ TΔ þ F g ⊗ TGþÞðxaÞ þ TFðxa; xaÞðPqq ⊗ q̄þ Pqg ⊗ GÞðybÞ;
Bðxa; ybÞ ¼ h1ðxaÞðF σ ⊗ Tσ

FÞðyb; ybÞ þ TðσÞ
F ðyb; ybÞðP⊥q ⊗ h1ÞðxaÞ: ð61Þ

The various evolutions can be found in Secs. III D and IVB. The constants AΓ1 and AΓ2 with d ¼ 4 are

AΓ1 ¼
1

6π
; AΓ2 ¼

1

240π
: ð62Þ

Our final result for the differential cross section weighted with O1 is

dσhO1i
dxdQ2

¼ −
js⊥j2AΓ1

4xsQ2Nc

Z
dξ1dξ2
ξ1ξ2

�
δð1 − ξ1Þδð1 − ξ2Þ½q̄ðybÞTFðxa; xaÞ −

αs
2π

Aðxa; ybÞ ln
eμ2

Q2

þ αsCF

2π
ðπ2 − 5Þq̄ðybÞTFðxa; xaÞ þ

αs
4π

ð−Bðxa; ybÞ þ 3CFh1ðxaÞTðσÞ
F ðyb; ybÞÞ�

þ αs
8π

1

xa
δð1 − ξ2Þð2ξ21 − 2ξ1 þ 1Þð3TGþðxa; xaÞ − 2TG−ðxa; 0ÞÞ

�
þ dσhO1i

dxdQ2

				
F
: ð63Þ

The last term stands for the sum of all finite parts in previous sections. The final result for the differential cross section
weighted with O2 is

dσhO2i
dxdQ2

¼ −
js⊥j2AΓ2

4xsNc

Z
dξ1dξ2
ξ1ξ2

�
δð1 − ξ1Þδð1 − ξ2Þ

�
q̄ðybÞTFðxa; xaÞ −

αs
2π

Aðxa; ybÞ ln
μ2

Q2

þ αsCF

2π
ðπ2 − 8Þq̄ðybÞTFðxa; xaÞ − h1ðxaÞTðσÞ

F ðyb; ybÞ þ
αs
2π

Bðxa; ybÞ ln
eμ2

Q2

þ αsCF

2π
ð5 − π2Þh1ðxaÞTðσÞ

F ðyb; ybÞ
�
þ αs
8π

1

xa
δð1 − ξ2Þð2ξ21 − 2ξ1 þ 1Þ

× ð3TGþðxa; xaÞ − 2TG−ðxa; 0ÞÞ
�
þ dσhO2i

dxdQ2

				
F
: ð64Þ

In these results the contribution with the combination ð3TGþ − 2TG−Þ is the extra contribution discussed after Eq. (39). The
final results are finite.
The finite parts in the above are given by

dσhOii
dxdQ2

				
F
¼ αsjs⊥j2AΓi

16πxsðQ2Þ2−iN2
c

Z
dξ1dξ2
ξ1ξ2

�
q̄ðybÞ½TFðxa; zaÞAiFðξ1; ξ2Þ þ TΔðxa; zaÞAiΔðξ1; ξ2Þ

þ TFð−xξ; zaÞCiF1ðξ1; ξ2Þ þ TFð−za; xξÞCiF2ðξ1; ξ2Þ þ TΔð−xξ; zaÞCiΔ1ðξ1; ξ2Þ

þ TΔð−za; xξÞCiΔ2ðξ1; ξ2Þ þ TFðxa; xaÞDiðξ1; ξ2Þ þ
1

2xa

�
3

2
TGþðxa; xaÞ − TG−ðxa; 0Þ

�

× Giþðξ1; ξ2Þ þ
1

2xa

�
TG−ðxa; 0Þ −

1

2
TGþðxa; xaÞ

�
Gi−ðξ1; ξ2Þ

�

þGðybÞ½TFðxa; zaÞBiFðξ1; ξ2Þ þ TΔðxa; zaÞBiΔðξ1; ξ2Þ þ TFðxa; xaÞEiðξ1; ξ2Þ�

þ
�
q̄ðybÞ þ

1

2CF
GðybÞ

�
½TFð−xa; 0ÞF iFðξ1; ξ2Þ þ TΔð−xa; 0ÞF iΔðξ1; ξ2Þ�

þ h1ðxaÞ½TðσÞ
F ðyb; y0ÞAiσðξ1; ξ2Þ þ TðσÞ

F ðyb − y0;−y0ÞBiσ1ðξ1; ξ2Þ

þ TðσÞ
F ðy0; y0 − ybÞBiσ2ðξ1; ξ2Þ þ TðσÞ

F ðyb; ybÞCiσðξ1; ξ2Þ þ TðσÞ
F ð0;−ybÞDiσðξ1; ξ2Þ�

�
; ð65Þ

with
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za ¼
xξ2

1 − ξ1ð1 − ξ2Þ
; xξ ¼ xa − za; y0 ¼ ξ2yb: ð66Þ

The functions A’s to G’s are given in the appendix.
As discussed in previous sections about subtractions, the

evolutions of TFðx; xÞ, TðσÞ
F ðx; xÞ and h1ðxÞ in our short

notations are given by

μ
∂TFðx; x; μÞ

∂μ ¼ αs
π
ðF q ⊗ TF þ FΔq ⊗ TΔ

þ F g ⊗ TGþÞðxÞ;

μ
∂TðσÞ

F ðx; x; μÞ
∂μ ¼ αs

π
ðF σ ⊗ TðσÞ

F ÞðxÞ;

μ
∂h1ðx; μÞ

∂μ ¼ αs
π
ðP⊥q ⊗ h1ÞðxÞ: ð67Þ

The evolution of TFðx; xÞ is given in [35,37–39]. The

evolution of TðσÞ
F and h1 are derived in [39,41] and [42],

respectively. With these evolutions and those of the
standard parton distribution functions, one can easily verify
that our final results do not depend on the renormalization
scale μ.

VI. SUMMARY

We have performed one-loop calculations for the two
weighted differential cross sections. They are transverse-
spin dependent. These differential cross sections are fac-
torized with hadronic matrix elements defined not only

with twist-2 operators but also with twist-3 operators. In
our results all collinear contributions, which can be
divergent, are factorized into hadronic matrix elements.
The final results are finite. Our work gives an example of
twist-3 factorization at one loop, in particular, an example
of the factorization with chirality-odd twist-3 operators for
the first time. With our results SSAs can be predicted more
precisely than with tree-level results, or one can extract
from experiment, e.g. at the RHIC, twist-3 parton distri-
butions more precisely by measuring the two observables
studied here. These distributions will help to understand the
inner structure of hadrons. Besides twist-3 parton distri-
butions, one can also use our results to extract the twist-2
transversity distribution, which is still not well known.
In this work, the two weighted differential cross sections

for SSA are constructed in such a way that their virtual
corrections, as discussed in the introduction, are determined
by the corrections of the quark form factor. It is noted
that one can construct more observables than the two here.
The virtual corrections of these observables may not be
determined by the quark form factor and can be compli-
cated. We leave the study of one-loop corrections for such
observables for the future.
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APPENDIX FINITE PARTS OF THE HARD COEFFICIENTS

We give here all functions appearing in the finite part of our results in Eq. (65). These functions are

A1Fðξ1; ξ2Þ ¼ δð1 − ξ1ÞðN2
c þ ξ2 − 1Þðξ2 − 1 − ð1þ ξ22ÞL1ðξ2ÞÞ − δð1 − ξ2ÞN2

cð1þ ξ1ÞL2ðξ1Þ − ðN2
c þ ~ξ2 − 1Þ

·
ξ1 þ ~ξ32 þ ~ξ2 − 1

~ξ2ðξ1 − 1Þþðξ2 − 1Þþ
;A1Δðξ1; ξ2Þ

¼ δð1 − ξ2ÞN2
cð1 − ξ1ÞL2ðξ1Þ − ðN2

c þ ~ξ2 − 1Þ ξ1 − ~ξ32 þ ~ξ2 − 1

~ξ2ðξ1 − 1Þþðξ2 − 1Þþ
;A2Fðξ1; ξ2Þ

¼ −2N2
cδð1 − ξ1Þδð1 − ξ2Þ þ δð1 − ξ1Þ

N2
c þ ξ2 − 1

ð1 − ξ2Þþ
ðð1þ ξ22Þðξ2 − 1ÞL1ðξ2Þ þ 2ξ2Þ

þ δð1 − ξ2ÞN2
c

1þ ξ1
ð1 − ξ1Þþ

ððξ1 − 1ÞL2ðξ1Þ þ 1Þ − ðN2
c þ ~ξ2 − 1Þ ξ1 þ ~ξ22

ðξ1 − 1Þþðξ2 − 1Þþ
;A2Δðξ1; ξ2Þ

¼ δð1 − ξ2ÞN2
cðð1 − ξ1ÞL2ðξ1Þ − 1Þ − ðN2

c þ ~ξ2 − 1Þ · ξ1 − ~ξ22
ðξ1 − 1Þþðξ2 − 1Þþ

;B1Fðξ1; ξ2Þ

¼ 1

2CF

�
δð1 − ξ1ÞðN2

cð1 − ξ2Þ − 1Þð−L1ðξ2Þð1 − ξ2Þð2ξ22 − 2ξ2 þ 1Þ þ 2ξ2ðξ2 − 1ÞÞ

þ ð1 − ~ξ2ÞN2
c − 1

~ξ2ð1 − ξ1Þþ
ξ1ð2ξ1 ~ξ2 − ξ1 ~ξ

2
2 − ξ1 − 2~ξ32 þ 3~ξ22 − 3~ξ2 þ 1Þ

�
;
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B1Δðξ1; ξ2Þ ¼
1

2CF

ð1 − ~ξ2ÞN2
c − 1

~ξ2ð1 − ξ1Þþ
ξ1ð2ξ1 ~ξ2 − ξ1 ~ξ

2
2 − ξ1 þ 3~ξ22 − 3~ξ2 þ 1Þ;

B2Fðξ1; ξ2Þ ¼
1

2CF

�
δð1 − ξ1ÞðN2

cð1 − ξ2Þ − 1Þð−ð1 − ξ2Þð2ξ22 − 2ξ2 þ 1ÞL1ðξ2Þ þ ð2ξ2 − 1Þ2Þ

− ðN2
cð1 − ~ξ2Þ − 1Þ ξ1ð2

~ξ22 − 2~ξ2 þ 1Þ
ð1 − ξ1Þþ

�
;

B2Δðξ1; ξ2Þ ¼
1

2CF
ðN2

cð1 − ~ξ2Þ − 1Þ ξ1ð2
~ξ2 − 1Þ

ð1 − ξ1Þþ
;

C1F1ðξ1; ξ2Þ ¼ ð2ξ1 − 1Þδð1 − ξ2ÞL2ðξ1Þð1 − ξ1Þ þ
2ξ1 þ ~ξ2 − 2

~ξ2ð1 − ξ2Þþ
− Nc

ξ1
~ξ22
ð2ξ1 þ ~ξ2 − 2Þð~ξ22 − 2~ξ2 þ 2Þ;

C1Δ1ðξ1; ξ2Þ ¼ δð1 − ξ2ÞL2ðξ1Þð1 − ξ1Þ þ
1

ð1 − ξ2Þþ
− Nc

ξ1
~ξ2
ð~ξ22 − 2~ξ2 þ 2Þ;

C1F2ðξ1; ξ2Þ ¼
ξ1ð1 − ~ξ2Þ2ð2ξ1 þ ~ξ2 − 2Þ

~ξ2
þ Nc

ξ1
~ξ22
ð2ξ1 þ ~ξ2 − 2Þð~ξ22 − 2~ξ2 þ 2Þ

C1Δ2ðξ1; ξ2Þ ¼ −ξ1ð1 − ~ξ2Þ2 − Nc
ξ1
~ξ2
ð~ξ22 − 2~ξ2 þ 2Þ;

C2F1ðξ1; ξ2Þ ¼ ð2ξ1 − 1Þδð1 − ξ2ÞðL2ðξ1Þð1 − ξ1Þ − 1Þ þ 2ξ1 − 2~ξ2 þ 1

ð1 − ξ2Þþ
− Nc

ξ1
~ξ2
ð−2ξ1 ~ξ2 þ 4ξ1 þ ~ξ22 − 4~ξ2 þ 2Þ;

C2Δ1ðξ1; ξ2Þ ¼ δð1 − ξ2ÞðL2ðξ1Þð1 − ξ1Þ − 1Þ þ 2~ξ2 − 1

ð1 − ξ2Þþ
þ Nc

ξ1
~ξ2
ð−2ξ1ð~ξ2 − 1Þ − ~ξ22Þ;

C2F2ðξ1; ξ2Þ ¼ ξ1ð1 − ~ξ2Þð2ξ1 − ~ξ2 þ 1Þ þ Nc
ξ1
~ξ2
ð−2ξ1 ~ξ2 þ 4ξ1 þ ~ξ22 − 4~ξ2 þ 2Þ;

C2Δ2ðξ1; ξ2Þ ¼ ξ1ð1 − ~ξ2Þð2ξ1 þ ~ξ2 − 1Þ þ Nc
ξ1
~ξ2
ð−2ξ1ð~ξ2 − 1Þ − ~ξ22Þ;

D1ðξ1; ξ2Þ ¼ δð1 − ξ1Þ
�
ð1þ ξ22Þξ2L1ðξ2Þ þ

1þ ξ2 − ξ22 þ ξ32
ð1 − ξ2Þþ

�
þ δð1 − ξ2Þ

�
ð1þ ξ21ÞL2ðξ1Þ þ

1 − ξ1 þ ξ21 þ ξ31
ð1 − ξ1Þþ

�

þ −ξ21 ~ξ2 þ 2ξ21 þ 2ξ1 ~ξ
2
2 − 2ξ1 þ ~ξ32 − 2~ξ22 þ 2~ξ2

ð1 − ξ1Þþð1 − ξ2Þþ
;

D2ðξ1; ξ2Þ ¼ δð1 − ξ1Þðð1þ ξ22Þξ2L1ðξ2Þ þ 1þ ξ2Þ þ δð1 − ξ2Þðð1þ ξ21ÞL2ðξ1Þ − ξ1ð1þ ξ1ÞÞ

þ ξ21ð2~ξ2 − 1Þ þ ξ1ð2~ξ22 − 3~ξ2 þ 1Þ þ ~ξ32 − 2~ξ22 þ 2~ξ2
ð1 − ξ1Þþð1 − ξ2Þþ

;

E1ðξ1; ξ2Þ ¼ −
N2

c

2CF

�
δð1 − ξ1Þðð2ξ22 − 2ξ2 þ 1Þξ2ð1 − ξ2ÞL1ðξ2Þ − 2ξ32 þ 4ξ22 − 2ξ2 þ 1Þ

þ 1

ð1 − ξ1Þþ
ðξ41 þ ξ31ð3~ξ2 − 5Þ þ ξ21ð6~ξ22 − 12~ξ2 þ 8Þ þ ξ1ð2~ξ32 − 8~ξ22 þ 10~ξ2 − 4Þ

�
;

E2ðξ1; ξ2Þ ¼ −
N2

c

2CF

�
δð1 − ξ1Þðξ2ð1 − ξ2Þð2ξ22 − 2ξ2 þ 1ÞL1ðξ2Þ − 4ξ32 þ 6ξ22 − 3ξ2 þ 1Þ

þ 1

ð1 − ξ1Þþ
ðξ41 − 2ξ31 ~ξ2 þ ξ21ð5~ξ32 − 2~ξ2 − 1Þ þ ξ1 ~ξ2ð2~ξ22 − 7~ξ2 þ 5Þ

�
;
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F 1Fðξ1; ξ2Þ ¼ ξ1ð−2ξ21 − 3ξ1 ~ξ2 þ 6ξ1 − ~ξ22 þ 5~ξ2 − 5Þ;
F 1Δðξ1; ξ2Þ ¼ ξ1ðξ1 ~ξ2 − 2ξ1 þ ~ξ22 − 3~ξ2 þ 3Þ;
F 2Fðξ1; ξ2Þ ¼ ξ1ð−2ξ21 þ 4ξ1 ~ξ2 − ξ1 − ~ξ22Þ;
F 2Δðξ1; ξ2Þ ¼ ξ1ð~ξ22 − ξ1Þ;

G1þðξ1; ξ2Þ ¼ Nc

�
δð1 − ξ2Þð2ð2ξ21 − 2ξ1 þ 1Þð1 − ξ1ÞL2ðξ1Þ þ 4ξ31 − 4ξ21 þ 2ξ1 þ 2Þ

þ 1

ð1 − ξ2Þþ
ðξ21ð8 − 4~ξ2Þ þ ξ1ð8~ξ2 − 12Þ þ 2~ξ22 − 8~ξ2 − 8Þ

�
;

G1−ðξ1; ξ2Þ ¼ Nc

�
δð1 − ξ2Þð2ð2ξ21 − 2ξ1 þ 1Þð1 − ξ1ÞL2ðξ1Þ þ 8ξ31 − 16ξ21 þ 10ξ1Þ

þ 1

ð1 − ξ2Þþ
ðξ21ð16 − 12~ξ2Þ þ ξ1ð−8~ξ22 þ 32~ξ2 − 28Þ þ 10~ξ22 − 24~ξ2 þ 16Þ

�
;

G2þðξ1; ξ2Þ ¼ Nc

�
δð1 − ξ2Þð2ð2ξ21 − 2ξ1 þ 1Þð1 − ξ1ÞL2ðξ1Þ þ 4ξ31 − 8ξ21 þ 6ξ1Þ

þ 1

ð1 − ξ2Þþ
ð4ξ21 þ ξ1 ~ξ2ð6~ξ2 − 10Þ − 4~ξ22 þ 6~ξ2Þ

�
;

G2−ðξ1; ξ2Þ ¼ Nc

�
δð1 − ξ2Þð2ð2ξ21 − 2ξ1 þ 1Þð1 − ξ1ÞL2ðξ1Þ þ 8ξ31 − 20ξ21 þ 14ξ1 − 2Þ

þ 1

ð1 − ξ2Þþ
ðξ21ð20 − 16~ξ2Þ þ ξ1ð10~ξ22 − 6~ξ2 − 8Þ − 8~ξ22 þ 10~ξ2Þ

�
;

A1σðξ1; ξ2Þ ¼ N2
cδð1 − ξ1Þ

�
δð1 − ξ2Þ −

1

ð1 − ξ2Þþ

�
− ðN2

c þ ξ1 − 1Þδð1 − ξ2Þ
ξ1

ð1 − ξ1Þþ
;

A2σðξ1; ξ2Þ ¼ 2δð1 − ξ1ÞN2
cðL1ðξ2Þ þ 1Þ þ 2ξ1ðN2

c þ ξ1 − 1Þ
�
δð1 − ξ2ÞL2ðξ1Þ þ

1

ð1 − ξ1Þþð1 − ξ2Þþ

�
;

B1σ1ðξ1; ξ2Þ ¼ ξ1ð1 − ξ1Þðξ1 þ ~ξ2 − 1Þ;
B1σ2ðξ1; ξ2Þ ¼ δð1 − ξ1Þðξ2 − 1Þ þ ξ1ð1 − ξ1 − ~ξ2Þ;
B2σ1ðξ1; ξ2Þ ¼ ξ21ð−ξ1 þ 2~ξ2 − 1Þ;

B2σ2ðξ1; ξ2Þ ¼ 2δð1 − ξ1Þðð1 − ξ2Þ2L1ðξ2Þ þ 1Þ þ ξ21
ð1 − ξ1Þþ

ðξ1 − 2~ξ2 þ 1Þ;

C1σðξ1; ξ2Þ ¼ δð1 − ξ1Þ
ξ2

ð1 − ξ2Þþ
þ δð1 − ξ2Þ

ξ21
ð1 − ξ1Þþ

;

C2σðξ1; ξ2Þ ¼ −2ξ2δð1 − ξ1Þ
�

1

ð1 − ξ2Þþ
þ L1ðξ2Þ

�
− 2ξ21δð1 − ξ2Þ

�
1

ð1 − ξ1Þþ
þ L2ðξ1Þ

�
−
ξ1ð3ξ1 ~ξ2 − ξ1 − ~ξ2 þ 1Þ
ð1 − ξ1Þþð1 − ξ2Þþ

;

D1σðξ1; ξ2Þ ¼ ξ1ðξ1 − 1Þðξ1 þ ~ξ2 − 1Þ;
D2σðξ1; ξ2Þ ¼ ξ21ðξ1 − 2~ξ2 þ 1Þ: ðA1Þ

The variable ~ξ2 is given by

~ξ2 ¼ 1 − ξ1ð1 − ξ2Þ: ðA2Þ
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