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We study single spin asymmetries at one-loop accuracy in Drell-Yan processes in which one of the initial
hadrons is transversely polarized. The spin-dependent part of differential cross sections can be factorized with
various hadronic matrix elements of twist-2 and twist-3 operators. These operators can be of even and odd
chirality. In this work, the studied observables of asymmetries are differential cross sections with different
weights. These weights are selected so that the observables are spin dependent and their virtual corrections are
completely determined by the quark form factor. In the calculations of one-loop corrections we meet collinear
divergences in the contributions involving chirality-odd and chirality-even operators. We find that all of the
divergences can be correctly subtracted. Therefore, our results give an explicit example of QCD factorization
at one loop with twist-3 operators, especially QCD factorization with chirality-odd twist-3 operators.
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I. INTRODUCTION

Single transverse-spin asymmetry (SSA) can appear in
high energy hadron-hadron collisions in which one of the
initial hadrons is transversely polarized. For collisions with
large momentum transfers one can make predictions by
using QCD factorization, in which the perturbative and
nonperturbative effects are consistently separated. It is well
known that the cross sections with an unpolarized or
longitudinally polarized hadron can be factorized with
hadronic matrix elements of twist-2 operators. These matrix
elements are the standard parton distribution functions. In
the case of SSA the factorization is made with hadronic
matrix elements of operators at twist-3, as shown in [1,2].
SSA is of particular interest in theory and experiment.
Nonzero SSA indicates the existence of the nonzero
absorptive part in scattering amplitudes. The matrix ele-
ments of twist-3 operators contain more information about
inner structure of hadrons than those of twist-2 operators.
Therefore, it is important to extract them from experiment.

In this work we study SSA in Drell-Yan processes. We
construct two experimental observables, which are differ-
ential cross sections integrated over parts of phase space with
weights. These weights are chosen so that the observables
are proportional to the transverse spin. Using them one can
extract the spin-dependent part of the full differential cross
section and relevant twist-3 parton distributions. We study
one-loop corrections of the constructed observables.

The two observables studied here receive contributions
involving various parton distributions. Among them twist-3
parton distributions are unknown. It is important to know
these twist-3 parton distributions. At tree level, only two
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twist-3 parton distributions are involved. They are quark-
gluon-quark correlations inside hadrons. One is of trans-
versely polarized hadron. Its existence implies that partons
inside hadrons have nonzero orbital angular momenta.
Another one is the correlation defined with a chirality-
odd operator for an unpolarized hadron. The involved
contribution is combined with the twist-2 transversity
parton distribution, which is not well known. In hadronic
processes there are usually significant corrections from next-
to-leading order. With our results at one loop, the twist-3
parton distributions can be extracted from experimental
results more accurately than with tree results. At one loop the
twist-3 gluon distribution contributes. Knowing the one-
loop correction, it can help to extract the twist-3 gluon
distribution. Currently, the relevant experiment can be
perform at the RHIC and Compass, where the transversely
polarized proton beam or target is available.

SSA at tree level in Drell-Yan processes has been studied
extensively. In [3-8] the effect of SSA has been studied in the
case where the transverse momentum of the lepton pair is
small and approaching 0. The effect is at the order of O(a?).
For the case of the large transverse momentum SSA has been
studied in [9-14], where the effect of SSA is at the order of
O(ay). While calculations beyond tree level in QCD
factorization at twist-2 are rather standard and many one-
loop results exist, there are not many results of one-loop
calculation with twist-3 factorization. For Drell-Yan proc-
esses there is only one work in [15] where one weighted
differential cross section of SSA involving the twist-3
quark-gluon operator of [1,2] is calculated at one loop.
For semi-inclusive deep inelastic scattering (SIDIS) differ-
ent parts of one-loop results about SSA can be found in
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[16-18]. A one-loop study of twist-3 factorization for DIS
has been performed in [19].

Recently the complete twist-3 part of the hadronic tensor
of the Drell-Yan process and of semi-inclusive DIS has
been derived at the tree level O(a?) for the first time in
[8,20], respectively. According to these results one can
systematically construct weighted observables of SSA. An
interesting finding in these works is that the twist-3
hadronic tensors contain a special part. This special part
receives from higher orders of a, the virtual correction,
which is completely determined by that of the electromag-
netic form factor of a quark. The results of higher-order
correction of the quark form factor exist in the literature and
can be easily recalculated at one loop. In this work, we
construct two weighted differential cross sections. These
two observables receive at tree level contributions only
from the special part of the hadronic tensor. Therefore, the
one-loop virtual correction to the two observables is well
known. We then only need to calculate the real corrections
to the observables. One can certainly construct observables
whose tree-level results can receive contributions from
other parts of the hadronic tensor besides or except the
special part. In this case, the virtual correction needs to be
calculated and the calculation can be complicated. We leave
this for a study in the future.

In general twist-3 calculations are more complicated than
those of twist-2. In the separation of nonperturbative and
perturbative effects the gauge invariance of QCD should
not be violated. In [21] it has been shown how the gauge
invariance is maintained. In twist-3 factorization there is a
special contribution called soft-gluon-pole contribution as
shown in [2], in which one gluon is with zero momentum
entering hard scattering. It should be noted that the
momentum is not exactly 0. In fact the momentum of
the gluon is in the Glauber region [13]. The soft-gluon-pole
contribution is more difficult to calculate than others.
Interestingly, it is shown in [22-24] that the soft-gluon-
pole contribution at tree level is related to the correspond-
ing twist-2 contribution at tree level. This simplifies the
calculation of obtaining the soft-gluon-pole contribution.
With these progresses twist-3 calculations can be done in a
relatively straightforward way.

We calculate the one-loop correction of the two observ-
ables. The contributions to the observables can be divided
into two parts. One part contains hadronic matrix elements
of chirality-even operators, while another part involves
chirality-odd operators. In calculating the chirality-even
and chirality-odd contributions at one loop, one encounters
infrared (I.R.), or collinear, divergences. The L.R. diver-
gences are canceled in the sum of all contributions. The
collinear divergences can be correctly factorized into
hadronic matrix elements. The final results are finite.
Unlike the collinear factorization at twist-2 for DIS and
Drell-Yan processes, where the twist-2 factorization has
been proven to hold at all orders, there is no proof of the
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collinear factorization at twist-3 at all orders. To show the
factorization it is important to perform calculations beyond
the tree level, because collinear and I.R. divergences do not
appear at tree level. They appear at one-loop or higher
orders. These divergences are potential sources to violate
the factorization. Our work presented here gives an explicit
example of twist-3 factorization at one loop. Especially, it is
the first time in the case of the factorization involving
chirality-odd operators at one loop.

Our paper is organized as follows. In Sec. I we introduce
our notations and derive the tree-level results. In Secs. III
and IV we give the one-loop corrections for the chirality-
even and chirality-odd contributions, respectively. In these
sections, we also perform the subtraction of the collinear
contributions. The collinear singularities are subtracted into
various parton distributions. In Sec. V we give our final
results, which are finite. Section VI is our summary.

II. NOTATIONS AND TREE-LEVEL RESULTS

We consider the Drell-Yan process,

hy(Ps,s)+ hg(Pg)
=7 (q) +X = (ki) + (k) + X, (1)

where 5 is a spin-1/2 hadron with the spin vector s and the
spin of hp is O or averaged. We use the light-cone
coordinate system, in which a vector a* is expressed as
a' =(a*,a",a,) = ((a+a%)/V2,(a®—a*)/V2,a',a?).
We introduce two light-cone vectors # = (1,0,0,0) and
n* =(0,1,0,0). Using the two vectors we define two
tensors,

gﬁiu _ g/,ll/ —ntlr — nl/lﬂ’

eaﬂ/w —

6“1” = €aﬂﬂ’/lanﬂ’

—€apuur B =1, (2)
With the transverse metric ¢ we have /| = ¢"a, and
atl =-a, -a; = (a")? + (a*)®. The momenta of initial
hadrons and the spin of 44 in the light-cone coordinate
system are

P~ (PF.0,0,0). P~ (0,P5.0.0).
st =5 =(0,0,s', %), (3)

i.e., hy moves in the z-direction with a large momentum.
The invariant mass of the observed lepton pair is
Q? = ¢*> = (k; + k). The relevant hadronic tensor is
defined as

(2m)*
X (X|g(x)r"q(x)|hp(Pp). hs(Pa. ). (4)

4)6 )
WWZEX: / TX gx (hy(Py. s). hy(Py)[3(0)7*(0) )
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We consider the case with 0 > Agcp. At leading power

of Q?, it is well known that W is factorized with twist-2
operators, which are used to define various standard parton
distributions, whose definitions can be found in [25]. At
this order W does not depend on the transverse spin s .
The s | -dependence appears at the next-to-leading order
of the inverse power of Q. At this order W can be
factorized with twist-3 hadronic matrix elements or twist-3
parton distribution functions. We give the definitions of
relevant twist-3 matrix elements in the following. For the
transversely polarized hy, there are two relevant twist-3
matrix elements, called Efremov-Teryaev-Qiu-Sterman
(ETQS) matrix elements. They are defined as [1,2]

/ dlldj.z e-”z<x2_xl)PX_MlX1PX
47

X (hal;(An) g, G (Aan)y;(0)]hy)
1

— I,
=3 [y—]ﬁsiTF(xl,xz) + 1 livsy ]jis’iTA(xl, X))+,

(5)

where - - - denotes irrelevant terms. The vector ¥ is defined
as § =¢€"s;,. In the above and the following, we
suppress the gauge links between field operators at different
points of the space-time for a short notation. These gauge
links are important for making the definitions gauge
invariant. The two twist-3 parton distribution functions
defined in Eq. (5) have the property

Ta(x1, %) = =T (X2, x1).
(6)

One can define another two twist-3 distributions by
replacing the field-strength tensor operator in Eq. (5) with
the covariant derivative D', . In addition to them, there are
three twist-3 distributions defined with a product of two
quark field operators. Two of them are given in [26], and
one of them is defined in [20]. All of these mentioned twist-
3 distributions can be expressed with the two defined in
Eq. (5) [20,26]. Therefore, we only use Tx o to express our
results. We note here that 7 , are defined with chirality-
even operators.

There are four twist-3 distributions defined only with
gluon fields [27]. One of them can be defined as

Tr(x1, %) = Tp(xs,x1),

Tg> (xl ) X2>§”

: rabc
. if +ga/j / dyidy, e—iPX()b(Xz—xl)‘F,lel)
P} iy 4

X (ha| G442 (y 1) G (y2n) G (0) [ ha ). (7)

The definition of T is obtained by replacing if® with

(f.d)

deb¢. Besides these two distributions T2 the other two
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twist-3 distributions are defined by replacing giﬂ with eiﬂ in

Eq. (7). But the contributions with these two twist-3
distributions do not appear in calculations of our work.
For the matrix elements with f?*¢ one has

Tg)(xl,xz) = —Tg)(—xz, -x1),

Tg)(xl’XZ) = Tg)(x%xl)' (8)

Similar relations can be derived for distributions defined

with d**¢. We use T<Gf D o give our results. The contribu-
tions involving these twist-3 distributions are in combina-
tion with the twist-2 parton distribution functions of /.

There are contributions to W** involving hadronic matrix
elements defined with chirality-odd operators. These con-
tributions involve the twist-2 transversity distribution of /1,
introduced in [28]. It is defined as

i _. _
st = [ e p Gy sy Ol ©)

The twist-3 chirality-odd distributions of Ay appear in the
contributions. For the unpolarized hadron iz we can define

) ‘g _
x (hp|g(0)(iy 1,y )G (&5 1)q (&7 1) | hp)
(10)

with d as the dimension of the space-time. Another twist-3
chirality-odd distribution, called e(x), for the unpolarized
hadron is defined with the operator . With the equation
of motion one can relate e(x) to T(F") [29-31].

The complete result for the twist-3 contribution of W** in
the considered case at the leading order of a, has been
derived in [8]. It is

R T

% |:1 852(611_)( P~y vp~p

2 9q|
52(¢1¢)
Pg-q

H v=p
s+ gl - gl

_|_

(%ﬁ+%ﬁﬂ

5%(q,)
Py-q

() Tr(x.) [ (PA3 + P43)

+ g 856(%) s/i] } +O(ay), (11)

where g(y) is the antiquark distribution function of /5. The
momentum ¢ of the lepton pair is parametrized as
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g = (xP},yP3. 4} .4%). (12)

Because the result contains 6°(¢g ) and its derivative, the
result should be taken as a tensor distribution, i.e., the
U(1)-gauge invariance should be understood in the sense of
integration. By taking any test function F (g, ) one should
have from the invariance

/dZQL}—(QL)Ww% =0. (13)

The result satisfies this equation and hence is gauge
invariant. In d-dimensional space-time the result in
Eq. (11) remains the same. An interesting observation in
deriving the contribution proportional to the derivative of
8%(q,) is that the virtual correction to the contribution
beyond tree level is completely determined by the correc-
tion of the quark form factor [8].

Beyond tree level W# contains more contributions with
tensor structures different than those at tree level. In
principle one can measure various angular distributions
of the outgoing lepton to extract different components of
WH . However, this requires large statistics in experiment.
It is convenient to use weighted differential cross sections
to project out particular angular distributions, which are
transverse-spin dependent. In our case, one can construct
weighted differential cross sections to extract the spin-
dependent parts of W*¥. The differential cross section after
the integration over the phase space of the lepton pair can
be written as

do 1
- = dU o L WH'S 2 _ 2’
dQ2d4q 2sq4/ e (q Q )
&’k &Pk
dUpp- = 1 : (27)*6* (ky — ko —q)  (14)

(27)32kY (27)32k
with s = 2P} P and the leptonic tensor
LW = 4K + R — k- hog). (15)

We take the electric charge of quarks and leptons as 1 for
simplicity. This charge factor can be easily recovered later
in our final results by multiplying the factor (47aQ,)* with
Q, as the electric charge of the quark ¢ in the unit of the
electric charge of proton.

In this work we consider the weighted differential cross
section with the weight function O(q, k;) defined as

do{O(q, k1))

dde2
1
= @/ dyd®q dU s+ p-O(q. ky)
X L”,/W"l’é(q2 — QZ) (16)
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with O as a function of ¢ and k;. It is clear that the weighted
differential cross section with O = 1 is the usual one. We
consider two weights named as O, ,. They are

O, =541,
- 1 -
O, =5, kiki-q, +%(2Q2 -7q,-q1)51-q,. (17)

At the first look the second term in the weight O, takes a
strange form. One may only take the first term as a weight.
The reason for the choice of O, is that the result becomes
simpler after the integration of the lepton-pair phase space,

/ drf*f' OZ(Q’ kl )L;w

A 2 UV
= —z(dzir_l)Q4(CI’is¢ + 4¢3 + O(e)),

AF:/dFKJrfl. (18)

Without the second termin O, in Eq. (17), the contribution at
the order O(e) in the above will be at the order O(¢?). This
makes the end results very lengthy. It should be emphasized
that it is important to measure the differential cross section
weighted with O, because it receives the contributions from
the transversity h; at tree level, as shown below. Such a
measurement should not be difficult in experiment, although
O, looks more complicated than O,. The two weighted
differential cross sections can be measured more easily than
the full differential cross section.

With the defined weight O, it is straightforward to
obtain the results for the corresponding weighted differ-
ential cross section,

do(O,) _ _Ap 1
dxdQ*  xsQ?8N,

dé,dé,
616

x B (d =)y (x )T (34, v0)

|S¢\2

6(1=¢1)8(1 - &)

F(d- z>zz<yb>TF<xa,xa>] ,

X [—(d = 2)hy (x) T (V. y5)
+24(35) T (50 %), (19)
with
X Q2
Yo =g Y= Xeys
dnsgEsy An=cgsp (0

These weighted differential cross sections only receive the
contributions from the spin-dependent part of W**. Since
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our weights are proportional to ¢, they only receive the
contributions from terms in Eq. (11) proportional to the
derivative of *(g,). It should be noted that there are
contributions in which the parton from /5 is a quark. These
contributions involve the quark distribution function of Ap
and T'r(—x, —x) of h,. Similar contributions with chirality-
odd operators also exist. In this work we do not list these
contributions. These contributions can be obtained with the
symmetry of charge conjugation.

We study the one-loop corrections to the weighted
differential cross sections. Since the weights are propor-
tional to ¢, the virtual correction is well known as
mentioned. We only need then to calculate the real correc-
tions. In the calculations we meet L.LR. and collinear
divergences. At the end these divergences are either can-
celed or correctly subtracted. The final results of the one-
loop corrections are finite. Because of the subtraction, we
note that the contribution proportional to d — 4 = —¢ in the
firstline of Eq. (19) gives a nonzero contribution at one loop.

III. THE ONE-LOOP CORRECTION I

In this section we study one-loop correction involving
chirality-even operators and that involving purely gluonic
twist-3 operators. In general, we need to calculate diagrams
which have the patten illustrated in Fig. 1. In these
diagrams, there is one parton from the hadron hjp partici-
pating in the hard scattering represented by the middle
bubble. Figure 1 is for the case that the parton from /A is an
antiquark carrying the momentum kz. The bubble in the
middle denotes those diagrams of the hard scattering. After
making the collinear expansion for the antiquark from /g,
the contribution like those given in Fig. 1 can be written as

1 _ 1
WH |k 1 I/d4kAd4kdkz§2NQ(yb)2N

X Tr[y THH (ky, kg, k) Mg” (ka, k)], (21)
with k% = (0,y,P3,0,0) and the quark-gluon correlator

4 4
Mg’/)(kAv k) = Ys / d (’72161)8’72 eim~kA+i112'k
T

X (halg(0)G* (m2)q (i) |ha).  (22)

1
1
I
1
b) (c)

e S

FIG. 1.
grams in (b) and (c) are not included in (a).

Diagrams of one-loop correction for SSA. The dia-
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In the above we have already made some approximations to
neglect contributions at twist higher than 3.

It is now rather standard to make the collinear expansion
related to /. Here, one should do the expansion carefully
to obtain gauge-invariant results. This has been discussed in
detail in [2,21,26]. Since the calculations of twist-3 are now
straightforward, we do not give the details about the
calculations. One can find the details about how to find
gauge-invariant twist-3 contributions in [21,26]. In the
relevant twist-3 contributions, there are contributions in
which a gluon with the zero momentum from hadrons
enters the hard scattering. These contributions are called
soft-gluon-pole contributions. It is interesting to note that
there is an elegant way to find such contributions [22,23],
which we discuss more in detail in Sec. III B. Besides the
soft-gluon-pole contributions, there are soft-quark-pole
contributions and hard-pole contributions. In the latter
the momentum component k™ of the gluon is not 0 in
general.

In the real corrections there is always one parton in the
intermediate state in the hard scattering so that the trans-
verse momentum of the virtual photon becomes nonzero.
The square of the transverse momentum is given by

2

B=—qu-q. = ?—20 _E)(1-8).  (23)

In this section we list our results for the hard-pole
contribution in Sec. IIl A, for the soft-pole contributions
in Sec. III B, and for the contributions involving purely
gluonic twist-3 operators in Sec. IIIC. In Sec. IID we
perform the subtraction for factorizing the collinear con-
tributions into hadronic matrix elements to avoid a double
counting. After the subtraction the results are finite.

A. Hard-pole contributions

The hard-pole contributions are from diagrams given in
Figs. 2-4. These diagrams are for the hard scattering
represented by H in Fig. 1. In these diagrams, there is a
quark propagator with a short bar. This is to indicate that we
only take the absorptive part of the quark propagator in the
calculations. The absorptive part is responsible for SSA. To
calculate our weighted differential cross section, we need to
perform the integration over ¢ . The results after the
integration contain I.LR. and collinear divergences. These
divergences come from the momentum region where the
momentum of the massless parton in the intermediate state
is soft or collinear to P, or to Pgz. We use the dimensional
regularization to regularize these soft divergences. In the
regularization the dimension of the space-timeisd =4 —¢
and the dimension of the transverse space is 2 — €. A scale
u. related to the soft divergences is introduced. The
calculations are tedious but straightforward.
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4 | < j| 1 1
h 0000000{)000
1 I ® S| I 1 1 1
I I S | I I I I
1 1 1
: b § D g I]{ l * l % ! {
! 1 S 1 ! 1 1
|
@ © ®' @ © 0

FIG. 2. Diagrams of the hard-pole contributions. The black dots ~ FIG. 3. Diagrams of the hard-pole contributions with a gluon
denote the insertion of the electromagnetic current operators in W**. from hy.

We use the following notations in our work:
 (Ampl\? 1 ~ (In(1-¢) B _ In¢
Fp= ( 0 ) T(1—e/2)" Ly(§) = (1—_5)+L1(5) =Ly (&) ¢ (24)

The +-distributions are standard ones. The hard-pole contribution from diagrams in Fig. 2 is with an antiquark from /5. The
results from these diagrams are

do(O) _ s A a dé,dsg, | an2(2 : _ _
ddeZ Fig.2 - 4st2 47TN% FD/ 5162 {q(yb)TF(xuvZu)|: ZNL(€> 5(1 51)6(] 52)
2 (1+8) 2 144
+o(1=&)(NE+& - 1)= m +6(1 = &)NZ =~ c(1-6). AlF('§17§2):|

200 a(r0r20) (801 - 22+ (6.8 .

|SJ_|2A1"2 A Fp /d‘fldfz
Fig.2 4)CS 4 N2 5]52

2\2 2 ) 1+& 2 , 1+6 2
X((E) +E>+5(1—51)(Nc+§2—1)mg+5(1—§2)]v (1=4), ¢ +A2F(51,52)]

20T (100 20) |80 = N2+ s (61.89)| |. 3)

do(0,)
dxdQ?

{zz<yb>TF<xa, 20) [—zzvzao e)a(l - &)

! *— i

g | i g i (00000 —— —— 00000
é :(a) o000 é :(b) ﬁg-?m\ 4_'%,

| H,

! L !

o o) | oo —— oo ——e , A
(e) (H (€] (h)

—~

FIG. 4. The diagrams of the hard-pole contributions, where a gg-pair from /4 enters the hard scattering.
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In Eq. (25) we list the divergent contributions explicitly. The terms with the function A’s are finite. In this and the next
section we always give our results in this form. All finite contributions are summed in Sec. V together and the relevant
functions are given in the appendix. The variable z,, is

_ x&;
1-&(1-&)
We note that the contributions from Fig. 2 contain a double pole in e.

The hard-pole contributions from diagrams in Fig. 3 are those in which a gluon is a parton from /3. We denote the twist-2
gluon distribution function of sy as G(y). The contributions from Fig. 3 are

Za (26)

do(0;) _ |SL|2AFi g dé dé,
dde2 Fig3 - 4st2(2—i) 4ﬂNC(N% _ 1) D & G(Yb){TF(mea) |:2CFBiF(§1’£2)
2
#2801 - (1~ N2 = 12 =26+ 1] + 20, Tl 2)Bisl61.82) . (7)

for i = 1, 2. The divergent contributions from Fig. 3 are the same for i = 1, 2. The contributions here contain only a single
pole in € associated with T'f.

In the contributions from Figs. 2 and 3 the momentum fractions x; for the outgoing quark and x, of the incoming quark,
as variables of T 5 (x1, x,), are always positive. There are contributions in which x; or x, is negative. In these contributions
there is a quark-antiquark pair from %, entering the hard scattering. These contributions are from Fig. 4. They are

do(O;) ~ siPAn a d&dé, _
2 = — 5Fp q
dxdQ? gy 4xsQ* ) 4nN? §1&

2
+Ta(=x¢24) <_5<1 -&) g+ Cia1 (&1 52)) +Tp(=24:%)Cir2(£1,62) + Ta(=2a,%:)Cin2 (81, 62) } . (28)

(Yb){TF(_x§7Za) ((1 —-2&;)6(1 —fz)§+CiF1 (51’52))

|
with x; = x, — z,. We notice that the contributions from  soft-gluon-pole contribution as shown in [22-24]. In our
those diagrams in the second row of Fig. 4 are finite. The = case, the contributions from Fig. 5 can be calculated as
contributions of the first row have the same divergent part  discussed in the following.
fori=1, 2. We consider the contribution to the twist-2 part of W
from the partonic process ¢ (x,P4)+g(w) = r*(q) + g(k,)
at tree level. After working out the color factor, the

B. Soft-pole contributions -C level. A
contribution is given by

The soft-pole contributions can be soft-gluon-pole or soft-
quark-pole contributions. The soft-gluon-pole contributions
are from diagrams in Figs. 5 and 6. The soft-quark-pole ~ WH| 2
contributions are from the diagrams in Fig. 7. The soft- N2_1
o . o ¢
quark-pole contributions can be evaluated directly, while itis = SN2 (2 /
complicated to calculate the soft-gluon-pole contributions. N (2n)
However, as mentioned, there is an elegant way to obtain the (29)

dy _
y—;’dxaq(yb)Q(xa)S“”(xaPmybPB),

(a) (b) (©) (d)

FIG. 5. Diagrams of the soft-gluon-pole contributions.
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e

(©) (d)

FIG. 6. Diagrams of the soft-gluon-pole contributions with a gluon from .

where ¢(x,) is the quark distribution function of /4. The
quantity S*(x,P,,w) can be simply calculated from the
partonic process. Now the soft-pole contribution from
Fig. 5 to W* at twist-3 can be calculated as [22,23]

W gig 5

—37 dy B
:y;/)};;dxaQ(yb)TF(xwxa)

) <M - 557) (S (xaPas W)l (30)

with kg = v, Pp. Similar results can also be derived for the
twist-3 contribution from Fig. 6.

In the calculation of the soft-gluon contributions to our
weighted differential cross sections, the obtained results
have not only contributions involving Tx(x,, x,), but also
contributions involving the derivative of Tr(x,, x,) with
respect to x,. These contributions after the integration over
q, take the form

TF(xa’ xa)

! d
[ dxalay ) 5

X a

—— [Tt g (@A), 6D

where g7 is given in Eq. (23). One can perform integration
by part to eliminate these terms with the derivative of
Tr(x,4, x,), as shown in the above. Assuming Tr(1,1) =0
the contribution from the boundary at x, =1 is 0. The
contribution from the boundary at x, = x is also 0 in d
dimension. If we expand the integral in € and then perform
the integration by part, the contribution from the boundary
at x, = x is nonzero and should be taken into account. The
final results obtained in this way are the same at the
considered orders of ¢, if we perform the integration by part
before the expansion in e. We have the contribution
from Fig. 5,

CZEOQQ s |S4;|S232' 4:;]3 Fp / dg?fz 40 Tr (x4, [25(1 _E)5(1 - &) ((5)2 _§>
-5(1 —51)2%—5(1 —52)§%+D1(§1,§2)],
[Zci%g |Fig.s = |SL4|)2C?FZ 4:&3 Fp / dgi?fz q(vp)Tr(x4, X4) [26(1 —£)6(1- &) (%)2
o _51)2%1(1—74;3_5(1 _52)§%+Dz(él,éz)} (32)

In Eq. (32) there are contributions containing double poles in e. The contributions with the double poles are canceled by

those in the virtual corrections.

In the contributions from Fig. 6 the parton from /p is a gluon. We have

d6<0i> _ |SJ_|2AF1' ach

dxdQ?

2 2C
X {g5(1 —&)(28 =25+ )& +—5

fori =1, 2.

Fig.6 B 4xs Q) 4n(N7 — 1)

dé,dé,
616

Fp G()’b)TF(ana)

&6 &)l (33)

F
2
N:
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>
T

>
T

(a) (b) (© (d)

(© () () ()

FIG. 7. Diagrams of the soft-quark-pole contributions as one-loop correction for SSA.

As shown in [32], there are soft-quark-pole contribu-  hp is an antiquark, and in the remaining diagrams the
tions, in which one of xy 5 in Tr 5 (x1,x,) is 0, i.e., a quark  parton is a gluon. The method to calculate these contribu-
or antiquark carrying zero momentum enters a hard  tions is the same as that used for hard-pole contributions in
scattering. These contributions are from diagrams given  the previous subsection. Interestingly, the results from
in Fig. 7, where in the first four diagrams the parton from  Fig. 7 can be written in a compact form,

|

do(0;) s Ay a dédé, [ _ N, B
dxdQ? Fig.7 T 4xsQ22) 4ﬂN§/ &5 (40’1:) +WG(yb))[TF( X0 0)Fip (61, 6)

+ Ta(=%4,0)Fia (61, 62)]. (34)
for i = 1, 2. The soft-quark-pole contributions here are finite.

C. Gluonic contribution

The gluonic contributions are those in which only gluons from /4, enter the hard scattering. To calculate these
contributions it is convenient to use the notation in [24,27,33] for the twist-3 gluonic matrix elements instead of those given
in Eq. (7). In this notation the matrix element of the twist-3 gluonic operator can be parametrized as

1 dA,dl, . L "
P_JrgSiS /Z_;Z_;ezilleA +idy (xy—x1) P} <hA|Ga‘+a(/11n)GC’+7(/12n)Gb’+ﬂ(0)|hA>
A
N, i

- 4O (31, x3)

(N2 =1)(N2 - 4) FEEND (x1,xp), (35)

N ¢ (N % - 1)
where all indices a, f and y are transverse. With symmetries the two tensors can be decomposed as

0% (x1,x,) = =2i[0(x1, %) gPF + O(x3, %3 — x1) 5% + O(x1, %) — x,) g%, ],
NP (x,x,) = 2N (x1, x2)g?§ = N(x3, %, — x1)¢75% = N(x1, x, — x,) g%, ], (36)

with the properties of the function O and N,
O(x1,x) = O(x2,x1), O(x1,x%) = O(=x;,—x), N(x1,x) =N(x3,x;), N(x1,%)=-N(=x;,—x). (37)

These functions are related to those defined in Eq. (7) as
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(a) (b)

FIG. 8.

T (x1.x2) = 22((d = 2)N(x1. %) = N(x3. %, — x1)
= N(xy,x; — xz))’
TS (x1.3,) = 22((d = 2)O(x1.3,) + O(x3. 3, — x1)
+ O(x1,x1 — x3)). (38)

We use the relations later to express our final results with

T(Gf‘d). The obtained results can be conveniently expressed
with the combinations

d
Toy(x1,3%2) = T (31, x0) + T (31, x2),
d
T (x1,%0) = T (x1,%0) = T (31, 3,). (39)

It should be noted that the relations given in Eq. (38)
depend on d =4 —e. The subtraction of the collinear
divergences, as discussed in the next subsection, is

|

do(0;) s PAy a

dé,dé, _

dxdQ® g 2xsQ*?~) 4aN,

P §1€2xa

PHYSICAL REVIEW D 95, 074005 (2017)

() (d)

Diagrams of the gluonic twist-3 contributions.

determined by the evolution of Tx(x,,x,). The gluonic
part of the evolution derived in the literature is given
with T;,. Therefore, for the correct subtraction, one
should reexpress the results in terms of Ts, and
T¢_ instead of N and O. Then the e-dependence delivers
an extra contribution.

With the notation in Eq. (35) there are only four
diagrams giving the gluonic contributions. These diagrams
are given in Fig. 8. The Bose symmetry between the three
gluons is taken into account with the notation for the
twist-3 gluonic matrix elements. The gluonic contributions
are of soft-pole contributions, in which one gluon carries
zero momentum. One can use the method in [22-24] to
calculate these contributions in a similar way as explained
in the previous subsection. Again, in these contributions we
have terms with the derivative on O and N. These terms can
be eliminated with integration by part as discussed before.
We have the results from Fig. 8,

at{ [-2001 - @208 -2+ )

< (05 0) + Nt ) + 0(50,0) = Nx,.0)) + 1 (0(x,.x,)

c

N )G 61162) + - (0(3.0) = N3 )61 (612} (40)

With this result, we have the complete real chirality-even
corrections. They are the sum of those results given in
Eqgs. (25), (27), (28), (32)—(34), and (40).

D. The virtual corrections and the subtraction
of the chiral-even contributions

As mentioned, the virtual correction to the contributions
with the derivative of 6*(g,) in W is determined by
the quark form factor as observed in [8]. We call
these contributions the derivative contributions. For self-
consistence we explain here in detail how the derivative
contributions at tree level appear and hence the observation
is made.

FIG. 9. A tree-level diagram for the contribution to W**. Lines
for gluon exchanges between quark lines and bubbles are implied
(see the discussions in text).
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The tree-level contributions to W* are from Fig. 9,
where there are gluon exchanges between the upper
(lower) bubble and the quark lines from the lower (upper)
bubble. At the leading power, we can neglect all transverse
and +-components of momenta of gluons emitted from the
upper bubble. At this order, these gluons are polarized in
the —-direction. The contributions from the exchange

|

s 2 [Tk (Lo

() (123

G (&) (E)[ha).

<

X GU(E)

where there are exchanges of i gluons in the left part of
Fig. 9 and exchanges of j gluons in the right part. The gluon
fields in the matrix elements and momenta of partons from
the lower bubble scale like (1,4%, A, ) with 2 ~ Agep/ Q.
For simplicity we omit the color indices in Eq. (41). In our
case we can always neglect the — components of gluon
momenta and k; in H. This allows us to perform the
integrations over the — components of momenta and those
of space-time components in +-directions. The contribu-
tions with G~ can also be neglected.

To find the contributions at twist-3 we need to perform a
collinear expansion in which we expand the [---] in
the second line of Eq. (41) in the transverse momenta.
We notice that the twist-2 contributions are obtained by
taking the leading order in the expansion and taking all
gauge fields as G™’s. After summing the contributions of
the exchanged gluons into gauge links in the standard way,
the twist-2 contributions are determined by the quark-
photon-quark vertex at tree level. In the expansion of the
[--] in transverse momenta, one should also expand the
S-function,

& <QJ_ —kar — Z kiJ.)
m=1
2 : H 0
=0"(q.) - (kﬁL‘FZku) aq" 20 (q) +-. (42)
m=1

In the expansion, the first term gives the contributions
starting at order of twist-2, while the leading contribution
from the second term is at twist-3. It is just the second term
which gives the derivative contribution of W*¥ at tree level
in Eq. (11). The contribution at twist-3 from this term is
then obtained by taking all gauge fields as G™’s and
neglecting all transverse parton momenta in H. The
calculation is exactly the same as the calculation of

PHYSICAL REVIEW D 95, 074005 (2017)

of such gluons can be summed into gauge links along
the —-direction. This results in the relevant part from the
upper bubble in the contributions at leading power
being represented by the antiquark parton distribution
function of hg, ie., g(y,). With these approximations
the tree-level contribution from Fig. 9 with gluon ex-
changes is given by

a1 =k =) km)H”m"”a"ﬂ""ﬂ’(kA’ {ki}, {k;})

m=1

—iicmn) (hal@(0)GPr(ny) - GPi(n;)

(41)

|

twist-2 contributions. The exchange of G gluons can
be summed with gauge links along the +-direction. The
transverse momenta of partons in the second term can be
converted as transverse derivatives acting on parton fields;
the final result is then expressed with the correlation
function,

: - dl ;op+ _
—igh ()3t = [ e a(Pacs )OI,

X (An)y* O (L) (An)[ha(Py.51)).  (43)

where £, is the gauge link in the +--direction pointing to the
past. A detailed derivation from the second term in Eq. (42)
to the derivative contributions in Eq. (11) can be found in
[8]. It is shown that ¢/,(x) is related to 7r(x, x) in [8,20].
After summing the contributions of exchanged gluons
emitted from bubbles into gauge links, the derivative
contribution is determined by the quark-photon-quark
vertex, i.e., the quark form factor at tree level.

From the above discussion, it is clear that the derivative
contributions are evaluated exactly as the calculation of
twist-2 contributions except that we have here the corre-
lation function in Eq. (43) instead of the twist-2 quark
distribution of /,. In Eq. (41) H are contributions of tree-
level diagrams. For the case in which H contain exchanges
of virtual gluons, one can perform the same procedure for
the contribution with the second term in Eq. (42). After
summing the contributions of exchanged gluons emitted
from bubbles into gauge links, the derivative contribution is
then determined by the quark form factor containing
exchanges of virtual gluons. In the case that there are
exchanges of real gluons, i.e., the gluons crossing the cut in
Fig. 9, the o-function in Eq. (41) is integrated out and the
derivative contribution is absent. This leads to the obser-
vation that the virtual correction to the derivative contri-
bution is determined by the quark form factor. The same
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conclusion can also be made for SIDIS. The one-loop
calculation of the virtual correction involving 7' for Drell-
Yan processes in [15] and for SIDIS in [16] verifies our
conclusion explicitly. The above discussion is for the
contribution involving chiral-even distributions. The same
|

1

Wﬂb'vir - W

(=T 0o ()9035 + ¢75 = ¢V5) +2a(0) Tr(x,x) g

N2 /2
« {1 LG [—2(—) —3(—
2r € €

PHYSICAL REVIEW D 95, 074005 (2017)

also holds for the derivative contribution involving chiral-
odd distributions.

The one-loop result of the form factor is well known.
Therefore, we have for the derivative contributions of W*¥
up to one loop

g/i aéz(gL)
g,

)—8+n2]+0(a§)}+-~-, (44)

where - - - stand for those nonderivative terms. It is noted that the one-loop corrections of external legs are included so that
the correction does not explicitly depend on the renormalization scale u because of the conservation of the electromagnetic
current. Including the virtual corrections, the tree-level results in Eq. (19) are modified by replacement in Eq. (19),

1—>{1+asCFFD[—2<
2w

o))

We note here that the virtual corrections contain a double-pole contribution in e.
From the results in previous subsections we now add all divergent one-loop chirality-even corrections together. We find

the divergent part which can be written as

do(0)
dxdQ?

:|Si|2Ar1 % @ /dfldé:z%
g AxsQ? 27N, P ) E& e

{a =207 50x)

328~ 26+ G0+ Pyl)00)] + 801 = )80 | Pl Tr o)

N
+%((1 + él)TF(xwx) - (1 + 5%)TF(X,1,X”)) _N05(1 - f])TF(X,X)
2(1-¢))
N. 1
_TLTA(XH’X) + 2N, (1=2&)Tp(x = x4, x) = 2N, Ta(x = X4, )

1

a

do(O,) _ Ar 0? do(O)
dxdQ? |y, Ar, dxdQ*|g,
with
P (z2)=C Lzz+§5(1_ ) (47)
qq\% Pla-2), "2 i

We note that the double-pole terms are canceled. The
remaining divergent contributions are with a single pole in
€. The divergence in the sum is from the momentum region
where the parton in the intermediate states or the exchanged
gluon in the virtual correction is collinear to /14 or hg. There
are contributions from the soft gluon in the virtual correc-
tion and in the intermediate states. These contributions are
proportional to §(1 — &£;)5(1 = &,).

(25% - 251 + l)TG+(xa»xa):| }7

(46)

It should be noted that the contributions from the momen-
tum region, where the parton in the intermediate states is
collinear to hy or hp, are in fact already included in the
hadronic matrix elements of the tree-level results given in
Eq. (19). To avoid a double counting we should consistently
subtract the collinear contributions in the one-loop correction.

We make a replacement in the tree-level results in
Eq. (19),

Tp(x,x) > Tp(x,x) = ATg(x, x),
a(y) = a(y) — Ag(y). (48)

With the replacement in the tree-level results we have the
following quantities at the one-loop accuracy:
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do(O0))  Ap(2—e)ls||* [ d&dE,

PHYSICAL REVIEW D 95, 074005 (2017)

S(1=&1)6(1 = &)(q(yp) AT p (x4, x4) + AG(yp) T p(Xas Xa)),

dxdQ? 8xsQ’N, &ié
do(O A 2 [déd
IoA0) Al [ 50— )50 — £) AT e ) + ATONTr (5, (#9)

For the subtraction we should add the above quantities to the calculated one-loop corrections, where AT and Ag are
specified in the following. We have used the dimensional regularization for ultraviolet (U.V.), L.LR., and collinear divergence.
With the dimensional regularization AT, and Ag are determined by the evolution of the renormalization scale u,

respectively. The evolution of T (x,x) can be found in [34-39]. We have then

v 72 id N,
aTye0) =52 (= 24w ) NeTpten + [ Py(orate ) + 5 (sl
14+ 2)Tr(x, &) — (1 + )T (E, 1
+( Z) F(-x 52)1 _(Z Z ) F(é 5)) +2—]\,L((1 —ZZ)TF(X,X—KE)
1(1=2) + 22
I ]|
2 712
:g_:z<_e_c ln;%)(}"q®TF+qu®TA+.7:g®TG+)(x),
o a 2 e'u? dé _ 1, 5
sl =52 (-2 +mits) [F{Puae +502 + 1 -2760 )
s 2 T’ _
:;—7‘{<—€—C+ln:ﬂ—’l;g>(qu®q+qu®G)(x), (50)

with z = x/&. Here we define five convolution s for short
notations. The derivative of AT (x,x) with p gives the
evolution kernel of T(x, x) derived in [35,37-39]. Adding
the contribution for the subtraction in Eq. (49) to the one-
loop correction, we find that all divergent contributions
with the single pole in e are canceled. Hence, the final
results are finite.

Before ending this section, it should be mentioned that
only the contributions from Figs. 2, 5, and 6 to the
differential cross section weighted with O; have been
studied in [15], where the integration over x has been
performed partly. Compared with ours the results in [15]
are incomplete for the chirality-even contributions.

IV. THE ONE-LOOP CORRECTION II

In this section, we consider the real corrections involving
twist-3 chirality-odd operators. There are hard-pole and
|

do(O,) _ |SL|2AF1 Ay F /d§1d§2
dXsz Fig.2 4)CSQZ 47TN% P &é
do(O,) _ 51 *PAr a; dé dé,
dxdQ |p,,  dxs 42N P ) &g
25(1-¢&)
—2NZ2- 2L 25 (N2 +¢ -1
¢ (1 — 52)+ 1( 1 )

[

soft-pole contributions. There is no contribution involving
the twist-3 purely gluonic matrix elements and twist-2
gluon distribution functions. The contributions at one loop
are from diagrams which have the same patten as given in
Fig. 1, where the roles of #, and hj are exchanged and the
direction of quark lines is reversed. Keeping this in mind,
the hard-pole contributions are from Figs. 2 and 4. The soft-
gluon contributions are from Fig. 5 and the soft-quark-pole
contributions are from the diagrams in the first row of
Fig. 7. The calculations are similar to those in the last
section. Below we only list our results from these diagrams
without giving the details about the calculations. In Sec. IV
A we give the results from the mentioned diagrams and the
virtual corrections. In Sec. IV B we study the subtraction.

A. The unsubtracted contributions

The hard-pole contributions from Fig. 2 are

c 2
hl(xa)T%)(va)’o) <N35(1 = &)s(1 - 52); + Aln(fhfz)),

b (e T (3 30) {2N35<1 sl —5) @2

25(1-&)

5(1 _§I)+

7+Aza(f1,fz)}7 (51)

with y, = &y,. We note that in the second equation in Eq. (51) there is a term with the double pole in €, while the first

equation contains only a single pole in e.
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The hard-pole contributions from Fig. 4 are

do(O s PAr ag dé dé ;. .

dx<dQ12> o |4J;C|SQ51 AZN2 Fp 51522 11 (x) (T (95 = Y0, =90)Biot (€1.&2) + T (v, ¥o = ¥5) Bioa (1. £2)).
ig. c

do(0,) siPAR ey /d§1d§2 (o) 2

ddeZ Fig4 - 4xs 47TN% FD 5152 h] (xa) 25(1 gl)TF (yO’yO yb)e(l 52)

+ T (3 = 0. =Y0)Bao (€1 &2) + T (0. Y0 = ¥5) Baa (&1 52)}. -

In Eq. (52) the first equation does not contain a pole in ¢, while the second equation contains only a single pole in e.
The soft-gluon-pole contributions from Fig. 5 are

do(0,)
dxdQ?

Is [PAr ay dé dE . )
Figj: 4;SQ514EN%FD gigzzhl(xa)TP(yb,yb)(—6(1—51)5(1—gz)g+clg(§l,§2)),

do(Oy)|  _IsiPAn dé,dé, (0) 2\2 2
dde2 Fig.s ~ 4xs 47tNg FD/ &é& hl(xa)TF (yb’yb) [_25(1 —¢)o(l - 52) ((Z) B E)
2 1 2 1
+250(1 - fl)gm +2816(1 - &) cd-&), + Cao (&1, fz)] . (53)

In the second equation of Eq. (53) there is a term with the double pole in e.
The soft-quark-pole contributions from the first row of Fig. 7 are

do(0;)

dxdQ?

|si|2AFi O /dfld(fz (o)

= - - h X T 07 - D‘g ) ’ 54

bar | AxsQ-D AzN? 5L 1(x)TE (0, =y,) D (&1, 62) (54)

for i = 1, 2. These contributions are finite. The complete real corrections are the sum of the results given by Egs. (51)—(54).
As discussed, the virtual corrections are obtained by the replacement specified with Eq. (45). Therefore, the virtual

corrections for the chirality-odd contributions are

do{0)
dxdQ?
do(0;)

dxdQ?

_ s [*Ar a,Cr

= dg,dg, ... B ) 2 3
v o 4xsQ? 2”NCFD/ §1& S(1 = &1)8(1 = &) (xa) T (yh’Yb)<€+2>,

_|s1PAr aCr

déd o 2\2 2
bl [ s st - e T ) (2(2) #2452 69

Since the tree-level chirality-odd contribution to the differential cross section weighted with O, is proportional to € in
Eq. (19), the corresponding one-loop virtual correction has only a single pole in e.

B. The subtraction for the chirality-odd contributions

Summing the various contributions, we obtain the divergent part of the one-loop corrections to the chirality-odd
contributions,

dG(Ol) _%

dxdQ? |y, € e

do(O))|  [si]PAr 2 [d&dé, (o) B B 2 B

dXdQZ div - Axs 477.'N% FDE/ 5152 {hl (xa)TF (yln yb)5(1 51)5(1 52)(3 Nc) + 5(1 él)h] (xa)

1 . & -
|2 (N2 (03) = &7 O e)) =201 = )T 0= 30)
(1-¢&),

=201 = )T ) 1) OV = 1) o (56)
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We notice that there is no divergence in the chirality-odd
contribution to the differential cross section weighted with
Oy in the sum. In the chirality-odd contribution to the
differential cross section weighted with O, the double-pole
terms in € are canceled; the remaining divergence is with

the single pole in e.
Similar to the case of the chirality-even contributions, the
divergence in the sum is from the momentum region where
|

PHYSICAL REVIEW D 95, 074005 (2017)

the parton in the intermediate states or the exchanged gluon
in the virtual correction is collinear to Ay or hy. These
collinear contributions are already included in the hadronic
matrix elements in the tree-level results. Therefore, a
subtraction is needed to avoid double counting.

The subtraction procedure is the same as discussed for
the chirality-even contribution. We make the replacement
in our tree-level results,

TP (%) = T (6,0) = AT (6, x), By (x) = Iy (x) = Ay (), (57)
and obtain the contributions of the subtraction,
do(O))  Aplsi|* [ €\ [d&dé, (o) (o)
A dxd(Q? = 8xsQ°N, ) /Eé(l —&1)0(1 = &) (Ahy (x) T (Vo ¥5) + hi (X)ATE (¥, ¥5)),
do(0))  Apls [P(2- 6)/d§1d52 (o) (o)
i SE6(1 = )51 = ) (AR ()T (.35) + I WATE (. 30). (58)

These contributions should be added to the one-loop corrections in the previous subsection. We notice that the collinear
contributions are not always divergent. An example is the case of the chirality-odd contribution given by the first equation in
Eq. (56). With the correct factorization this corresponds to the fact that the contribution of the subtraction in the first
equation of Eq. (58) is finite at one loop.

Again, ATEV”) (x,x) and Ak (x) are determined by their evolution, respectively. The evolution of Tg’) has been studied in
[39-41]. From the evolution we have

(o) ag (2 e’ N:+3 () / ldz 1
AT s Ay il U \ - T s Ay -
F (x X :u) 277,' ( €C + n“'”ﬂ% 4NC F ('x X /’l) + .z (1 _ Z)+

L 1—x 5 (0) B
v Cleroplr & 5)}

2 9 (0
] G [ T I

(NCT%’) (x.8) = TF (& 5))

(59)

with z = x/&. Taking the derivative of AT&f’) (x, x, ) we obtain the evolution of Tgf> (x, x, ). The evolution of /; has been

determined in [42]. From the result there we have

_ay 2 e’ dé 27 3

a 2 er'u?
= Z (—€—C+ IHW) (PJ_q ® hl)(x)

c

(60)

As in Sec. III D we define here two convolutions for short notations.

With the given ATl(f) and A/, in the above one can perform the subtraction with Eq. (58). For the differential cross
section weighted with O,, we realize that all divergent parts with the pole in € are exactly canceled after the subtraction. For
the differential cross section weighted with O}, although there is no collinear divergence, the subtraction is finite here.

V. THE FINITE RESULTS

To sum our results in previous sections, we introduce two functions as the sums of evolutions combined with other
distributions,
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'A(xav yb) = Q(J’b)(}-q ® TF + FAq 2 TA + -Fg ® TG+)(xa) + TF(xavxa)(qu ® ‘_] + qu ® G)(.yb)’
Bl vy) = hy () (F oy ® TE) s v) + T (3 ) (P 1y ® hy)(x,)- (61)

The various evolutions can be found in Secs. III D and IVB. The constants Ar; and A, with d = 4 are

1 1
App = — Apy = ——. 2
" 6n 2 2407 (62)
Our final result for the differential cross section weighted with O is
do(O) s [*Ap [ dédé, _ a, ey
=- o(1=¢&)o(1 — T ,Xg) — —A(xg, yp) In—
dde2 4st2NC 5152 ( 51) ( 52)[‘1()%) F('xa X ) 2” A('x yb) n Q2
(XSCF ) _ A (o)
T on (7> = 5)q(yp)Tr(xq. X4) + E<_B(xavyb) +3Crhi(x) T (Vb ¥5))]
a, 1 do(0))
e La(1 = )28 = 26 + 13T (h0x) = 2o (1, 0) | + 1] (63)

The last term stands for the sum of all finite parts in previous sections. The final result for the differential cross section
weighted with O, is

do(0;) _ s [PAry [ dé1dé
dxdQ? 4xsN, &

{5(1 =&)o(1-¢&) [E](yb)TF(xavxa) —;X_;A(xa,)’b) lng—zz

2
B = 9700 r (e 0) = I (50T (50030) + 52 Bl 30) In
ag 1

87,
do(0;)
dxdQ?

+ B2 (s - n2>h1<xa>rff><yb,yb>] + 2 5(1 - &)(28 - 28, + 1)

X (3T, (t0r ) - 2T (xe. o>>} n (64)

R
In these results the contribution with the combination (37, — 2T ;_) is the extra contribution discussed after Eq. (39). The

final results are finite.
The finite parts in the above are given by

ds(0;) _ as‘sL|2AFi /d'fldfz

dde2 - - 16TEXS(Q2)2_iN% 5152 {EI(yb>[TF(xa’ Za)AiF<§17 52) + TA (xa’ Za>AiA (él ’ 52)

+ Tp(=xg24)Cir1 (61, &) + Tp(=24: X£)Cipa (81, &2) + Ta(=x¢. 24)Cin1 (€1, 62)

1 /3
T30 (6160 To k) D6 60+ 51 (5T (50 x) = o (200))

1 1
X giJr(gl s 52) + 2% <TG—('xa’ 0) - 5 TG+(xa’ xa)) gi_(él s 52):|
+ G(yp)[Tr(xa: 20)Bir (&1, &) + Ta(X4. 20) Bia (&1, &) + Tr(x,. x4)E:1(&1.. &)

+ <C_]()’b) + LG(Yb)) [Tr(=x4,0)Fir (&1, &) + Ta(=x4,0)Fa (&1, &)

2Cr
+h (xa)[T}") (Vs Y0) Aig (&1, &) + TJ@ (s = Y0» =Y0)Bis1 (&1, &2)
=+ Tl(f) ()’0,)’0 - yb>8i62('§17'§2) + Tl(f) ()’b, yb)cio(élv 52) =+ ng) (O, _yb)Dia(§17§2)] } (65)

with
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_ x&,
1-4(1-&)’

The functions A’s to G’s are given in the appendix.
As discussed in previous sections about subtractions, the

Zq Xe =Xg —Za» Yo = éZyb' (66)

evolutions of Tp(x, x), TI@ (x,x) and h;(x) in our short
notations are given by

OTp(x,x, 1) o
ﬂT:;(Fq®TF+}-Aq®TA

+Fy®To)(x),

oy (x.x.p) @
o
ahl('x’ ﬂ) A

”T:?(PLq@)hl)(X)' (67)

(Fy ® TY)(x),

The evolution of Tr(x,x) is given in [35,37-39]. The

evolution of Tgf) and h; are derived in [39,41] and [42],
respectively. With these evolutions and those of the
standard parton distribution functions, one can easily verify
that our final results do not depend on the renormalization
scale .

VI. SUMMARY

We have performed one-loop calculations for the two
weighted differential cross sections. They are transverse-
spin dependent. These differential cross sections are fac-
torized with hadronic matrix elements defined not only

PHYSICAL REVIEW D 95, 074005 (2017)

with twist-2 operators but also with twist-3 operators. In
our results all collinear contributions, which can be
divergent, are factorized into hadronic matrix elements.
The final results are finite. Our work gives an example of
twist-3 factorization at one loop, in particular, an example
of the factorization with chirality-odd twist-3 operators for
the first time. With our results SSAs can be predicted more
precisely than with tree-level results, or one can extract
from experiment, e.g. at the RHIC, twist-3 parton distri-
butions more precisely by measuring the two observables
studied here. These distributions will help to understand the
inner structure of hadrons. Besides twist-3 parton distri-
butions, one can also use our results to extract the twist-2
transversity distribution, which is still not well known.

In this work, the two weighted differential cross sections
for SSA are constructed in such a way that their virtual
corrections, as discussed in the introduction, are determined
by the corrections of the quark form factor. It is noted
that one can construct more observables than the two here.
The virtual corrections of these observables may not be
determined by the quark form factor and can be compli-
cated. We leave the study of one-loop corrections for such
observables for the future.
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APPENDIX FINITE PARTS OF THE HARD COEFFICIENTS

We give here all functions appearing in the finite part of our results in Eq. (65). These functions are

Aip(61.6) =8(1 = E)(N2+ & = 1)(& = 1= (1 + B)L1(&)) = 8(1 = &)NA(1 + &)Ly (&) — (N2 + & - 1)

_ats+h-1
52(51 - 1)+(§2 - 1)+

s AlA(éh 52)

=6(1 - &)NZ(1 = &)Ly (&) — (N7 + &— )= :

1 —8+&-1
&S -1 (& -1),

’ AZF(éla 52)

= 2o - &)olt - &)+ ot -6 MR (14 B - D) + 20
_ 2 1"’51 _ _ 2 o 51"’%%
+6(1 52)Nc7(1 e, (& =DLa(G) + 1) = (Ne+ & - 1) G -1).-1), An(ér.6)
%2
(1= V(1 = ELa(E) = ) = (kB = 1) 2 B (6, 5)

1

(51 - 1)+(52 - 1)+

— |8(1=&)(Ne(1 = &) = 1) (=L (&) (1 = &) (28 =26 + 1) +25(&5 - 1))

T 20,
(1-&)N2 -1
52(1 - 51)+

E1(286,& — &8 — & — 28 + 38 - 35 + 1),
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1 £,)N? . 8 o
Bia(&1, &) = ZCF(gz(fzzgl) E(28E - &8 —& +38 35+ 1),
Bar(1 &) = 55— 801 = E)NE(1 = &) = (=1 = £)(26 = 26 + DLi(&) + 26 - 1))
~ 51(253—2524'1)
—(N2(1 = &) —1
1 ~ £(25-1)
Boa(&1.6) = 2C; (N %(1—52)—1)m,

21452\ &
Ll-&). '8

1 Yl
-2 2
(1 _ 52) 52 (52 52 + )

1-5)%28 +& -2 :
£(1-8) <%cfl+cfz )N C;(zglm 2)B-25+2)
2 2

Coa (1. 82) = & (1= Bp)2 - Ncg—%é% 25 42).

2

Cip1(&1,82) = (281 = 1)8(1 = &)Ly (E)(1 = &) + (26, + & —2)(& — 28, +2),

Cia1(&1.&) = 6(1 =&)Ly (&)(1 = &) +

C1F2(f1,52) -

28, =28+ 1
Carr(61.82) = (281 = D301 = &)(Lald) (1 ~&) = 1) + 2o =5 = N2 (20 48 + BB +2),
2
B 25, -1 & 2

Con1(€1,62) = 6(1 = &) (La (&) (1 = &) = 1) + +N. 2 (2685 -1) - &),

(1-&), 52
Comalén. &) = &1(1 = B)(26 & + 1) +Nc?(—2:léz 148+ B -4k +2),

2

ConalE1,8) = (1 = E2) (26 + B — 1) + N, g (<26 - 1) = B),

2

1 _ £ 3 1— 2 3
Dy(6ne) =o(1 =0 (1 + Beake) + 278 vat -y (04 sty + 1T ST
(1 52)+ (] d31)+

—8E, +28 + 26,8 — 26, + & - 25 + 25
(1-8),(1-&), ’
Dy(£1,E) =6(1 = E)((1+E)EL (&) + 1+ &) +8(1 = &)((1 4+ E)Ly(&)) — E (1 + &)
52(252 — 1) +&(28 - 38, + 1) + & — 28 + 2§,
(1-&),(1-&), ’

{ (1=EN((2E =25 + 1)&(1 = &)L (&) — 28 + 48 - 25 + 1)

+

2

2CF

E1(é1.6) =

1 - - - - - -
T gy, @ EB8 - 5) +2H(65 125, +8) + £(28 -85 + 105, - 4>]
+

2

Ex(EnE) = { (1= 8)(E(1 = £)(28 — 26 + 1)Ly (&) — 48 + 68 — 36 + 1)

T 2C;

+

! = F P ~ ~ ~
o) G- 268 + 80825 - ) + 6608 -6 + 5>],
+
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Fip(€r.6) = &(=28 = 38/&, + 68, =& +5&, - ).
Fia(é1.6) = 51(51‘52—2514‘52 3524‘3)7
For(é1.6) = &(-28 + 465, - & - &),

sz( ):fl( 51)’

G1+(&.&) =N, [5(1 —&)(2(28 =28 + 1)(1 — &)L (&) + 4&] — 4 + 26, +2)

1 . . .
+ o (18 —48) +&1(86 — 12) + 28 -8, - 8)] ,
(1-&),

Gi-(&1,&) = N, [5(1 = &)(2028 =28 + 1)(1 = &)Ly (&) + 85 — 16£7 + 10&))

L (B(16-128) + £ (-85 + 325, - 28) + 108 — 24F, + 16)} :
(1_§Z)+

9o+ (61.6) = N, [5(1 = &)(2(287 =26, + 1)(1 = &)Ly (&) + 487 — 857 + 6¢1)

1 - - -
o (4E} + £,6,(6&, — 10) — 4& + 652)] ,

(=R
Go-(£1.62) = N, [5(1 —&)(2(28 =28, + 1)(1 = &)Ly (&) + 8E — 2067 + 14&) - 2)
+ _1 (5%(20—1652)+§1<1OE%—6%2—8)—85%+10&)},
(1-&),
Auo(61.£2) = N20(1 =) (801 = &) = ) = (V6= 1601 = &) e
Aun(61:8) = 2001 = )NALI &) + 1)+ 25V + 6 = 1) (800 = &)Ll + (= =g )

Bisi(&1.&) =&(1=¢&1)(& + & - 1),
Bin(&1.8) =8(1-&)(& - 1)+ &(1-& - &),
Boo1(£1.6) = E1(=& + 28, - 1),

2 ~
Byn(&1,&) = 28(1 = &1)((1 = &)Ly (&) + 1) + _(51 (&1 —25+1),
(I=¢&),
&
C , o6(1 — ,
16(61,62) = 6(1 51)( &), +6( )(1 —&).
1 1 EBEE-E-6+])
C , = =2&0(1 — ——+L —285(1 - ——+L —
(e &) = m2al ‘51)<<1 —&). 1(52)> 50l 52)(0 —&). 2(51)> (1-&).(1- &),
Di(61.6) =&(& - 1)(& +& - 1),
Do, (61,.6) = (& - 28, +1). (A1)
The variable &, is given by
L=1-&(1-&) (A2)
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