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We consider the fragmentation of a parton into a jet with small radius R in the large z limit, where z is the
ratio of the jet energy to the mother parton energy. In this region of phase space, large logarithms of both R
and 1 − z can appear, requiring resummation in order to have a well-defined perturbative expansion. Using
the soft-collinear effective theory, we study the fragmentation function to a jet in this end-point region. We
derive a factorization theorem for this object, separating collinear and collinear-soft modes. This allows for
the resummation using renormalization group evolution of the logarithms lnR and lnð1 − zÞ simulta-
neously. We show results valid to next-to-leading logarithmic order for the global Sudakov logarithms. We
also discuss the possibility of nonglobal logarithms that should appear at two loops and give an estimate of
their size.
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I. INTRODUCTION

The fragmentation function (FF) [1], which describes an
energetic splitting of a parton into a final state, is a very
important ingredient in understanding high-energy hadron
production. Using the FF we can systematically separate
short- and long-distance interactions related to the produc-
tion. For instance, inclusive hadron production for eþe−
annihilation can be factorized as

dσðeþe− → hXÞ
dEh

¼
Z

1

zh

dz
z
dσiðzh=z; μÞ

dEi
Dh=iðz; μÞ; ð1Þ

where i denotes the flavor of the produced parton,
zh ¼ 2Eh=Ecm, and z ¼ Eh=Ei. Here, Ecm is the center
of the mass energy of the collision. The partonic scattering
cross section σi includes the hard interactions for
eþe− → iX. Long-distance interactions describing the
fragmenting process from parton i to hadron h are encoded
in the FF, Dh=iðzÞ. The FF is universal in the sense that it is
independent of the hard process and can be applied to other
scattering processes. Hence, the FF has long been studied in
order to understand its properties. (For details we refer to a
recent review [2] and the references therein.)
Because we can directly observe a jet using well-defined

jet algorithms such as the ones introduced in Refs. [3–7], it
is possible to describe the fragmentation function to a jet
(FFJ), as long as the jet radius R is small enough [8]. (For a
recent review of jet physics see, for example [9].)
Moreover, once the FFJ for the isolated jet is given, we
can systematically investigate its substructures (e.g. hadron
and subjet fragmentations [10–15] and jet mass [16] and

transverse momentum [17,18] distributions), constructing
factorization theorems in connection with the fragmenting
jet functions [19–21].
Analytical results of the FFJ have been calculated up to the

next-to-leading order (NLO) in αs [12,14,22]. Unlike the
hadron FF, the FFJ does not have any infrared (IR) diver-
gence due to the finite size of the jet radius R. However, the
presence of large logarithms of R does not give a reliable
result in perturbation theory and requires resummation to all
order in αs. As shown in Refs. [8,12,14,22], resumming
logarithms of R is equivalent to running down to a scale
μ ∼QR using Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations, where Q is a hard energy
comparable to the jet energyEJ. This resummed result of the
FFJ has been successfully applied to inclusive jet [22,23] and
hadron [15] production,where the effects of various values of
R have been investigated in detail.
If we observe a highly energetic jet, we would expect that

most of the energetic splitting processes are captured within
the jet radius R since these processes favor small angle
radiation. This implies that the large z region gives the
dominant contribution to the FFJ, where z is the ratio of the
jet energy fraction over the mother parton energy.
Accordingly, in the perturbative result for the FFJ there
are large logarithms of 1 − z, which need to be resummed
to all order in αs. Already at one loop order there appears a
double logarithm lnð1 − zÞ=ð1 − zÞþ ∼ L2, where L sche-
matic represents a large logarithm. At leading logarithm
(LL) accuracy, the resummed can be represented asP

k¼0CkðαsL2Þk ∼ expðLf0ðαsLÞÞ, which gives the dom-
inant correction to the perturbative expansion of the FFJ.
Thus, for a proper description of the FFJ in the large z

limit, we have to systematically handle large logarithms of
1 − z as well as large logarithms of R. In general, if some
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quantity involves several distinct scales, we try to factorize
it so that each factorized part can be well described at one
properly chosen scale. Then performing evolutions
between these largely separated scales, we resum the large
logarithms. For the FFJ, soft-collinear effective theory
(SCET) [24–27] provides the appropriate framework for
factorization and enable us to resum large logarithms
automatically by solving the renormalization group (RG)
equations for the factorized parts.
Near the end point where z → 1, the FFJ consists of

dynamics with two well-separated scales. Since an
observed jet carries most of energy of the mother parton,
radiation outside the jet should be soft with energy
∼EJð1 − zÞ. Therefore the jet splitting process can be
initiated by soft dynamics, while radiation inside the jet
is described dominantly by collinear interactions. However,
in the effective theory approach wide angle soft interactions
are not adequate for explaining the radiation outside the
narrow jet because they cannot effectively recognize the jet
boundary characterized by the small radius R. Instead, we
introduce a more refined soft mode, namely the collinear-
soft mode [28,29], which can resolve the narrow jet
boundary and can consistently describe the lower energy,
out-of-jet radiations. The collinear-soft mode has previ-
ously been used to factorize the cross sections for a narrow
jet at a low energy scale [30–33].
In this paper, using SCET we construct a factorization

theorem for the FFJ near the end point considering collinear
and collinear-soft interactions.1 Then we resum the large
logarithmsof1 − z andR simultaneously. InSec. IIwediscuss
the characteristics of large z physics for the FFJ and factorize it
into the collinear and the collinear-soft pieces. Then, we
confirm our factorized result through NLO by an explicit
calculation of each factorized part. In Sec. III, based on the
factorization, we resum the large logarithms by performing
RG evolution. We also discuss large NGLs that possibly
contribute to next-to-leading logarithmic (NLL) accuracy. In
Sec. IV the numerical results of theFFJ to the accuracyofNLL
plus NLO in αs are shown. Finally in Sec. V we conclude.

II. THE FFJ IN THE LIMIT z → 1

Using SCET, the FFJ can be defined as [14]

DJk=qðz; μÞ ¼
X

X∉J;XJ−1

zD−3

2Nc
Trh0jδ

�
pþ
J

z
− Pþ

�

×
n̄
2
ΨnjJkðpþ

J ; RÞX∉JihJkðpþ
J ; RÞX∉JjΨ̄nj0i;

ð2Þ

DJk=gðz; μÞ ¼
X

X∉J;XJ−1

zD−3

pþ
J ðD − 2ÞðN2

c − 1Þ

× Trh0jδ
�
pþ
J

z
− Pþ

�
B⊥μ;a
n jJkðpþ

J ; RÞX∉Ji

× hJkðpþ
J ; RÞX∉JjB⊥a

nμ j0i: ð3Þ

Here Ψn ¼ W†
nξn and B⊥μ;a

n ¼ in̄ρgμν⊥Gb
n;ρνWba

n ¼
in̄ρgμν⊥W†;ba

n Gb
n;ρν are gauge-invariant collinear quark and

gluon field strength, respectively. Wn (Wn) is a collinear
Wilson line in the fundamental (adjoint) representation
[25,26]. These collinear fields have momentum scaling
pμ
n ¼ ðpþ; p⊥; p−Þ ¼ Qð1; λ; λ2Þ, where λ is a small

parameter comparable to small jet radius R. p� are denoted
as pþ ≡ n̄ · p ¼ p0 þ n̂J · p and p− ≡ n · p ¼ p0 − n̂J · p,
where n̂J is a unit vector in the jet direction and two light
cone vectors nμ ¼ ð1; n̂JÞ and n̄μ ¼ ð1;−n̂JÞ have been
employed. The expressions for the FFJs in Eqs. (2) and (3)
are valid in the jet frame where the transverse momentum of
the observed jet, p⊥

J , is zero.
In this paper, we will consider inclusive kT-type algo-

rithms [3–5,7], where the merging condition of two light
particles is given by

θ < R0: ð4Þ

Here θ is the angle between the two particles, and R0 ¼ R
for an eþe− collider and R0 ¼ R=cosh y for a hadron
collider, where y ∼Oð1Þ is the rapidity for the central
region.
The definitions of the FFJs in Eqs. (2) and (3) hold for

z ∼Oð1Þ but are not reliable near the end point where z
goes to 1. In the limit z → 1, the observed jet takes most of
the energy from the mother parton and hence the jet
splitting (out-jet) contributions should be described by soft
gluon radiation. If 1 − z is power counted as OðηÞ with
η ≪ 1, the relevant soft mode would have momentum
scaling k ∼ ðkþ; k⊥; k−Þ ∼Qðη; η; ηÞ. However, for the
proper resummation of lnR, we need a mode that can
probe the jet boundary expressed in terms of R. This mode
would have a lower resolution than the soft mode while the
kþ component should still be power counted as OðηÞ.
Because the jet merging criterion for the soft gluon
radiation is given by [36]

tan2
R0

2
>

k−
kþ

; ð5Þ

the proper mode should allow for the hierarchy,
k− ∼ kþλ2 ≪ kþ, where λ ∼ R. Thus this mode should
have scaling k ∼Qηð1; λ; λ2Þ. From now on we will call
this mode the collinear-soft mode.
We can consistently separate the usual soft mode

∼Qðη; η; ηÞ and the collinear-soft mode as was first done

1In a strict sense our factorization theorem would hold up to
NLO in αs. Beyond NLO, large nonglobal logarithms (NGLs)
[34,35] that are sensitive to a restricted jet phase space might
appear and require some modification of our factorization
theorem presented here.
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in the dijet scattering cross section [30,31]. Furthermore,
the separation of the collinear-soft mode from the collinear
fields has been performed in the formulation of SCETþ
[28]. Because the collinear-soft mode can be considered as
a subset of the usual soft mode, we have to subtract the
overlapped of the collinear-soft contribution from the soft
contribution in loop calculations similar to the usual zero-
bin subtractions [37].
If we apply this process to the FFJ with z → 1, we see

that the soft contributions can be canceled by the collinear-
soft subtractions. Since the soft mode with a scaling
ðkþ; k−Þ ∼Qðη; ηÞ cannot resolve the jet boundary in
Eq. (5), the real soft gluon radiation does not contribute
to the in-jet contribution of the FFJ, while the out-jet
contribution from real radiation covers the full phase space
of ðkþ; k−Þ. Thus, independent of R, the total soft con-
tributions will be expressed as a function of 1 − z, namely
Sð1 − zÞ. For the collinear-soft contribution that needs to be
subtracted from the soft contribution, we apply the same
boundary conditions used for the soft mode. Hence the real
collinear-soft radiation has only the out-jet contributions,
which are the same as the soft mode. Therefore the net
result of the collinear-soft contributions that are to be
subtracted are the same as Sð1 − zÞ, canceling the soft
contribution.
Finally we are left with a collinear-soft mode at the lower

energy scale. When we apply this to the FFJ, we have to
keep the jet boundary constraint in Eq. (5). As a result the
active collinear-soft contributions can be expressed in terms
of 1 − z and R simultaneously. As we will see, the one loop
collinear-soft contributions involve double logarithms of
ln μ=ðð1 − zÞEJR0Þ. This fact indicates that the collinear-
soft interactions are responsible for large logarithms of
1 − z and its resummation would give the dominant
contribution to the FFJ near the end point.

A. Factorization of the FFJ when z → 1

With the above reasoning, we can systematically extend
the FFJs to the end-point region including collinear-soft
interactions. We first decouple the soft mode ∼Qðη; η; ηÞ
from the collinear mode ∼Qð1; R; R2Þ. Then we introduce
the collinear-soft mode ∼Qηð1; R; R2Þ in the collinear
sector, classifying collinear and collinear-soft gluons as
Aμ
n → Aμ

n þ Aμ
n;cs. Accordingly the covariant derivative in

the collinear sector decomposes as iDμ ¼ iDμ
c þ iDμ

cs ¼
Pμ þ gAμ

n þ i∂μ þ gAμ
n;cs, where Pμði∂μÞ returns collinear

(collinear-soft) momentum. In this decomposition, the
commutation relations ½Pμ; Aν

n;cs� ¼ ½∂μ; Aν
n� ¼ 0 hold.

For the factorization of the FFJ, our strategy is simple:
after the decomposition into the collinear and collinear-soft
modes, we first integrate out collinear interactions with
p2
c ∼Q2R2. As we shall see, this gives an integrated jet

function inside a jet. Then at the lower scale μcs ∼QηR we
will consider the collinear-soft interactions for the jet
splitting.

As performed in Ref. [28], at low energy we can
additionally introduce so-called “ultracollinear” modes
after integrating out the collinear interactions with off-
shellness p2

c ∼Q2R2. These modes have energy of the same
order as the collinear mode, but their fluctuations are much
smaller thanQ2R2. Then at the low energy scale an external
collinear field ϕð¼ξ; AÞn would be matched onto the
ultracollinear fields, ϕn ¼ ϕn1 þ ϕn2 þ � � �, where the light
cone vectors ni¼1;2;… reside inside the jet with radius R.
Note that collinear interactions between different ultracol-
linear modes are forbidden since we have already integrated
out the large collinear fluctuations ∼Q2R2. Moreover, as
these ultracollinear modes reside within the collinear
interactions, they cannot resolve the jet boundary.
Therefore their interactions do not contribute to the
FFJs, at least to NLO in αs. So for simplicity we will
not consider ultracollinear interactions in the FFJ.
However, in a more refined jet observable identifying
subjets, these modes may have to be included.
Adding the collinear-soft mode, the quark initiated FFJ

can be more generically expressed as

DJk=qðz; μÞ ¼
X

X∉J;XJ−1

zD−3

2Nc
Trh0jδ

�
pþ
J

z
− n̄ · iD

�

×
n̄
2
ξnjJkðpþ

J ; RÞX∉JihJkðpþ
J ; RÞX∉Jjξ̄nj0i:

ð6Þ
Compared to Eq. (2), Wnδðpþ

J =z − PþÞW†
n ¼ δðpþ

J =z −
n̄ · iDcÞ has been replaced with δðpþ

J =z − n̄ · iDÞ in Eq. (6).
In order to satisfy gauge invariances at each order in

λ ∼OðRÞ and η, following the procedure considered in
Ref. [38], we redefine the collinear gluon field:

Aμ
n ¼ Âμ

n þ Ŵn½iDμ
cs; Ŵ†

n�; ð7Þ
where Ân are newly defined collinear gluon fields and Ŵn is
the collinear Wilson line expressed in terms of Ân. As a
consequence the covariant derivative in Eq. (6) can be
rewritten as

iDμ ¼ iDμ
c þWniD

μ
csW

†
n; ð8Þ

where collinear fields on the right-hand side are the
redefined fields and we removed the hat for simplicity.
Employing Eq. (8), the delta function in Eq. (6) can be
rewritten as

δ

�
pþ
J

z
− n̄ · iD

�
¼ Wnδ

�
pþ
J

z
− Pþ − n̄ · iDcs

�
W†

n: ð9Þ

Similar to the decoupling of leading ultrasoft interactions
from collinear fields [26], we can remove collinear-soft
interactions through the term gn · Acs in the Lagrangian of
the collinear sector. To accomplish this, the collinear quark
and gluon fields can be additionally redefined as
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ξn → Ycs
n ξn; Aμ

n → Ycs
n A

μ
nY

cs†
n ; ð10Þ

where Ycs
n is the collinear-soft Wilson line that satisfies

n · iDcsYcs
n ¼ Ycs

n n · i∂ and has the usual form [26,39]

Ycs
n ðxÞ ¼ P exp

�
ig
Z

∞

x
dsn · AcsðsnÞ

�
: ð11Þ

Using Eqs. (8) and (10) we rewrite Eq. (6) as

DJk=qðz; μÞ ¼
X

X∉J;XJ−1

zD−3

2Nc
Trh0jδ

�
pþ
J

z
− Pþ − i∂þ

�

×
n̄
2
Ycs†
n̄ Ycs

n W
†
nξnjJkðpþ

J ; RÞX∉Ji
× hJkðpþ

J ; RÞX∉Jjξ̄nWnY
cs†
n Ycs

n̄ j0i; ð12Þ

where we used the relation n̄ · iDcs ¼ Ycs
n̄ i∂þY

cs†
n̄ and Ycs

n̄
has the same form as Eq. (11) with replacement of n → n̄.
We also used the crossing symmetry ϕ…jXϕi ¼ hXϕj…ϕ,
where ϕ ¼ Wn; Ycs

n̄ . The FFJ in Eq. (12) can describe
regions of ordinary z ∼Oð1Þ and z → 1. If z is ordinary and
not too close to 1, we can suppress i∂þ in the argument of
the delta function, since pþ

J =z − Pþ ∼OðQÞ is power
counted much larger than i∂þ ∼OðQηÞ. Thus the collin-
ear-soft Wilson lines cancel by unitarity and we recover the
form in Eq. (2). However, when z → 1, pþ

J =z − Pþ
becomes the same size as i∂þ, and we cannot ignore the
term i∂þ in the delta function, which gives nonzero
contributions of collinear-soft interactions.
Since Pþ returns collinear (label) momentum in

Eq. (12), Pþ can be fixed as pþ
J near the end point.

Further, it means that collinear interactions are relevant
only for the jet merging (in-jet) contribution to the FFJ.
Therefore the FFJ in the limit z → 1 can be expressed as2

DJq=qðz → 1; μÞ ¼
X

X∉J;XJ−1

zD−3

2Nc
Trh0jYcs†

n̄ Ycs
n
n̄
2
W†

nξnjJqðpþ
J ; RÞX∉Ji

× hJqðpþ
J ; RÞX∉Jjξ̄nWnδ

�
pþ
J

z
− P†

þ þ i∂þ

�
Ycs†
n Ycs

n̄ j0i

¼
X
Xc∈J

1

2Nc
Trh0j n̄

2
W†

nξnjqXc ∈ JihqXc ∈ Jjξ̄nWnj0i ·
X
Xcs

1

Nc
Trh0jYcs†

n̄ Ycs
n jXcsi

× hXcsjδðð1 − zÞpþ
J þ Θðθ − R0Þi∂þÞYcs†

n Ycs
n̄ j0i; ð13Þ

where Θ is the step function and we reorganized the final
states into collinear states ðqXcÞ in the jet and collinear-soft
states Xcs in order to factorize collinear and collinear-soft
interactions. In the second equality we fixed the collinear
label momentum P† as pþ

J , and then we put the jet splitting
constraint in front of i∂þ because only the out-jet collinear-
soft radiation gives a nonzero contribution for the region
z < 1. From Eq. (5), the jet splitting constraint Θðθ − R0Þ is
equivalent to tan2 R0=2 < k−=kþ, where k is the collinear-
soft momentum.
Equation (13) shows that the quark FFJ in the limit

z → 1 is factorized as

DJq=qðz → 1; μ;EJR0; ð1 − zÞEJR0Þ
¼ J qðμ;EJR0; θ < R0Þ · Sqðz; μ; ð1 − zÞEJR0Þ; ð14Þ

where J q is the integrated jet function for the in-jet
contribution, defined as

J qðμ;EJR0; θ < R0Þ

¼
X
Xc∈J

1

2Ncp
þ
J
Trh0j n̄

2
W†

nξnjqXc ∈ JðEJ; R0Þi

× hqXc ∈ Jjξ̄nWnj0i: ð15Þ

Sq is the dimensionless collinear-soft function. When we

rewrite Sq ¼ pþ
J
~Sq, the dimensionful collinear-soft func-

tion ~Sq can be expressed as

~Sqðlþ; μ;lþtÞ ¼
X
Xcs

1

Nc
Trh0jYcs†

n̄ Ycs
n jXcsi

× hXcsjδðlþ þ Θðθ − R0Þi∂þÞYcs†
n Ycs

n̄ j0i;
ð16Þ

where t≡ tanR0=2 and lþt is the scale that will minimize
large logarithms in the higher order corrections, as we will
see later.
Using the adjoint representation and taking a similar

procedure as we did with the quark case, we obtain the
factorization formula for the gluon FFJ:

2Note that the splitting q → Jg in the limit z → 1 is power
suppressed by Oð1 − zÞ compared to the splitting q → Jq. For
q → Jg, the split parton away from the observed jet is the
collinear-soft quark, which gives a power suppression of OðηÞ
compared to the collinear-soft gluon radiation. Similarly, for
gluon splitting, g → Jg dominates for the same reason.
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DJg=gðz → 1; μÞ
¼ J gðμ;EJR0; θ < R0Þ · Sgðz; μ; ð1 − zÞEJR0Þ; ð17Þ

where J g is the gluon integrated jet function and Sg is the
collinear-soft function defined similar to Eq. (16), with the
Wilson lines in the adjoint representation replacing Ycs

n;n̄.

B. NLO calculation of the FFJ near the end point

The integrated jet functions shown in Eqs. (14) and (17)
have been explicitly computed at NLO [36,40,41] and
partially computed at NNLO [31,32]. The NLO results with
the constraint of Eq. (4) read

J qðμ;EJR0;θ<R0Þ ¼ 1þαsCF

2π

�
1

ϵ2UV
þ 1

ϵUV

�
3

2
þ ln

μ2

pþ2
J t2

�

þ3

2
ln

μ2

pþ2
J t2

þ1

2
ln2

μ2

pþ2
J t2

þ13

2
−
3π2

4

�
;

ð18Þ

J gðμ;EJR0; θ < R0Þ

¼ 1þ αsCA

2π

�
1

ϵ2UV
þ 1

ϵUV

�
β0
2CA

þ ln
μ2

pþ2
J t2

�

þ β0
2CA

ln
μ2

pþ2
J t2

þ 1

2
ln2

μ2

pþ2
J t2

þ 67

9
−
23nf
18CA

−
3π2

4

�
;

ð19Þ

where pþ
J t ∼ EJR0, β0 ¼ 11Nc=3 − 2nf=3, CA ¼ Nc ¼ 3,

and nf is the number of flavors.
For the NLO computation of the collinear-soft function

in Eq. (16) we consider virtual and real gluon contributions,
respectively. Separating ultraviolet (UV) and IR divergen-
ces carefully, the virtual contributions are given by

MS
V ¼ −

αsCF

π

�
1

ϵUV
−

1

ϵIR

�
2

δðlþÞ: ð20Þ

The real contributions at one loop can be written as

MS
R ¼ αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ

×
Z

∞

0

dkþdk−ðkþk−Þ−1−ϵ½δðlþ − kþÞΘðk− − t2kþÞ

þ δðlþÞΘðt2kþ − k−Þ�≡MS
R1 þMS

R2; ð21Þ
where k is the momentum of the outgoing collinear-soft
gluon and MS

R1ðMS
R2Þ indicates the contribution from the

first (second) term in the square brackets.
In Fig. 1 we show the possible phase space for the

emitted collinear-soft gluon after the integration over
k⊥. MS

R2 covers the region below the jet border line
ðk− ¼ t2kþÞ. Hence the result is

MS
R2 ¼

αsCF

π

ðμ2eγEÞϵ
Γð1− ϵÞδðlþÞ

Z
∞

0

dkþ

Z
t2kþ

0

dk−ðkþk−Þ−1−ϵ

¼ αsCF

2π

��
1

εUV
−

1

εIR

�
2

−
�

1

εUV
−

1

εIR

�
ln t2

�
δðlþÞ:

ð22Þ

For MS
R1, kþ is fixed to be lþ by the delta function, and

the possible phase space has been denoted as a blue line in
the upper plane in Fig. 1. However we need to extract the IR
divergences as lþ → 0. In order to do so, we introduce the
so-called Λþ distribution, which is defined as

Z
L

0

dlþ½gðlþÞ�ΛþfðlþÞ ¼
Z

L

0

dlþgðlþÞfðlþÞ

−
Z

Λþ

0

dlþgðlþÞfð0Þ; ð23Þ

where fðlþÞ is an arbitrary smooth function at lþ ¼ 0. Λþ
is an arbitrary upper limit for Λþ distribution and is power
counted to have the same size as lþ. We can write MS

R1
using this distribution:

MS
R1 ¼

αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞl

−1−ϵþ

Z
∞

t2lþ
dk−k−1−ϵ−

¼ δðlþÞIR1ðΛþ; tÞ

þ αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ

�
l−1−ϵþ

Z
∞

t2lþ
k−1−ϵ−

�
Λþ
; ð24Þ

where the integration region for IR1 corresponds to the
green region in Fig. 1. Integrating over this region, we get

FIG. 1. Phase space for the real gluon emission in the collinear-
soft function. In the ðkþ; k−Þ plane, the region above the border
line k− ¼ t2kþ gives the out-jet contribution and the region below
gives the in-jet contribution. Λþ is the maximum value for the
distribution of lþ and can be chosen arbitrarily.
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IR1 ¼
αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ

�Z
∞

0

dkþ

Z
∞

t2kþ
dk−ðkþk−Þ−1−ϵ

−
Z

∞

Λþ
dkþ

Z
∞

t2kþ
dk−ðkþk−Þ−1−ϵ

�

¼ αsCF

2π

��
1

ϵUV
−

1

ϵIR

�
2

þ
�

1

ϵUV
−

1

ϵIR

�
ln t2

−
�

1

ϵ2UV
þ 1

ϵUV
ln

μ2

Λ2þt2
þ 1

2
ln2

μ2

Λ2þt2
−
π2

12

��
: ð25Þ

The second term in Eq. (24) is given by

αsCF

π

ðμ2eγEÞϵ
Γð1 − ϵÞ

�
l−1−ϵþ

Z
∞

t2lþ
k−1−ϵ−

�
Λþ

¼ αsCF

π

�
1

lþ

�
1

ϵUV
þ ln

μ2

l2þt2

��
Λþ
: ð26Þ

Finally combining Eqs. (20), (22), (25), and (26) we
obtain the bare one loop result of ~Sq:

MS ¼ MS
V þMS

R1 þMS
R2

¼ αsCF

π

�
δðlþÞ

�
−

1

2ϵ2UV
−

1

2ϵUV
ln

μ2

Λ2þt2

−
1

4
ln2

μ2

Λ2þt2
þ π2

24

�
þ
�
1

lþ

�
1

ϵUV
þ ln

μ2

l2þt2

��
Λþ

�
:

ð27Þ
The one loop result of the collinear-soft function for gluon
FFJ is the same if we replace CF with CA ¼ Nc in Eq. (27).
Since the dimensionless collinear-soft function

Sk¼q;gðzÞ ¼ pþ
J
~SkðlþÞ is a function of z, we need to

express the Λþ distribution in terms of the standard plus
distribution of z. From Eq. (23) we obtain the relation

½~gðlþÞ�Λþ ¼ 1

pþ
J
½gðzÞ�þ þ 1

pþ
J
δð1 − zÞ

Z
b

0

dz0gðz0Þ; ð28Þ

where lþ ¼ pþ
J ð1 − zÞ and gðzÞ ¼ pþ

J ~gðlþÞ. In the Λþ
distribution,Λþ has been replaced with pþ

J ð1 − bÞ, where b
is a dimensionless parameter close to 1.
Finally, the dimensionless collinear-soft functions at

NLO can be written as follows:

Sk¼q;gðz; μ; ð1 − zÞEJR0Þ

¼ δð1 − zÞ þ αsCk

2π

�
δð1 − zÞ

�
−
1

2
ln2

μ2

pþ2
J t2

þ π2

12

�

þ 2

�
1

ð1 − zÞ
�
ln

μ2

pþ2
J t2

− 2 lnð1 − zÞ
��

þ

�
; ð29Þ

where Cq ¼ CF and Cg ¼ CA. As can be seen in Eq. (29),
the scale necessary to minimize the large logarithms in the
collinear-soft functions is ð1 − zÞEJR0. In the limit z → 1,

running the collinear-soft function will be required to
obtain a precise estimate of the FFJ.
In Eqs. (14) and (17) we have shown the factorization

theorem near the end point. Combining Eqs. (18), (19), and
(29) we can easily check that the fixed NLO results of
Eqs. (14) and (17) recover the NLO results of FFJs for the
full range [12,14,22] when we take the limit z → 1.

III. RENORMALIZATION GROUP EVOLUTION
AND RESUMMATION OF LARGE LOGARITHMS

A. RG evolution from the factorization of the FFJ

Based on the factorized results in Eqs. (14) and (17), we
can systematically resum the large logarithms of lnR and
lnð1 − zÞ in the FFJ using the RG evolutions of the
integrated jet function J k and the collinear-soft functions
Sk. The FFJ in the limit z → 1 can be factorized at an
arbitrary factorization scale μf. ThenJ k can be evolved from
μf to collinear scale μc ∼ EJR0, where the large logarithms at
the higher order in αs are minimized and the perturbative
expansion is safely convergent. Simultaneously we can
evolve Sk from μf to μcs ∼ ð1 − zÞEJR0 to minimize the
large logarithms at μcs.
The anomalous dimensions of the integrated jet func-

tions and the collinear-soft functions defined by

d
d ln μ

J kðμÞ ¼ γc;kðμÞJ kðμÞ; ð30Þ

d
d ln μ

Skðx; μÞ ¼
Z

1

x

dz
z
γcs;kðz; μÞSkðx=z; μÞ; ð31Þ

where k ¼ q, g, are obtained from Eqs. (18), (19), and (29)
at one loop:

γð0Þc;q ¼ αsCF

2π

�
2 ln

μ2

E2
JR

02 þ 3

�
;

γð0Þc;g ¼ αsCA

2π

�
2 ln

μ2

E2
JR

02 þ
β0
CA

�
; ð32Þ

γð0Þcs;kðzÞ ¼
αsCk

2π

�
−2 ln

μ2

E2
JR

02 δð1− zÞþ 4

ð1− zÞþ

�
; ð33Þ

where pþ
J t is approximated as EJR0. When we combine

Eqs. (32) multiplied by δð1 − zÞ and Eq. (33), the loga-
rithmic terms cancel and the well-known DGLAP splitting
kernels in the limit z → 1 are reproduced:

δð1 − zÞγð0Þc;k þ γð0Þcs;kðzÞ ¼
αs
π
Pð0Þ
kk ðz → 1Þ: ð34Þ

Logarithmic terms in the leading anomalous dimensions
indicate the presence of the cusp anomalous dimension.
Beyond LL accuracy, the anomalous dimensions can be
expressed as
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γc;k ¼ AcΓC;kðαsÞ ln
μ2

E2
JR

02 þ γ̂c;kðαsÞ; ð35Þ

γcs;kðzÞ ¼ δð1 − zÞ
�
AcsΓC;kðαsÞ ln

μ2

E2
JR

02 þ γ̂cs;kðαsÞ
�

− κcsAcs
ΓC;kðαsÞ
ð1 − zÞþ

; ð36Þ

where ΓC;k ¼
P

n¼0Γn;kðαs=4πÞnþ1 are the cusp anomalous
dimensions obtained from calculations of lightlike Wilson
loops [42,43]. The first two coefficients are given by

Γ0;k ¼ 4Ck;

Γ1;k ¼ 4Ck

��
67

9
−
π2

3

�
CA −

10

9
nf

�
: ð37Þ

From the LO results in Eqs. (32) and (33) we extract
fAc; Acs; κcsg ¼ f1;−1; 2g and the noncusp anomalous
dimensions γ̂c;q ¼ 3αsCF=ð2πÞþOðα2sÞ, γ̂c;g¼αsβ0=ð2πÞþ
Oðα2sÞ, and γ̂cs;k ¼ Oðα2sÞ.
Using Eqs. (35) and (36) we perform RG evolutions of

the integrated jet functions and the collinear-soft functions
up to NLL accuracy. For J k the result of the RG evolution
from μf to μc can be written as

J kðμfÞ ¼ exp

�
2AcSΓðμf; μcÞ þ Ac ln

μ2f
E2
JR

02 a½ΓC;k�ðμf; μcÞ

þ a½γ̂c;k�ðμf; μcÞ
�
J kðμcÞ: ð38Þ

Here SΓ and a½f� are, respectively,

SΓðμf; μcÞ ¼
Z

αf

αc

dαs
bðαsÞ

ΓC;kðαsÞ
Z

αs

αf

dα0s
bðα0sÞ

;

a½f�ðμf; μcÞ ¼
Z

αf

αc

dαs
bðαsÞ

fðαsÞ; ð39Þ

where αf;c ≡ αsðμf;cÞ and bðαsÞ ¼ dαs=ðd ln μÞ is the QCD
beta function.
For the evolution of Sk, following the conventional

method introduced in Refs. [44,45], we obtain

Skðz; μfÞ ¼ exp½2AcsSΓðμf; μcsÞ

þ a½γ̂cs;k�ðμf; μcsÞ�
�

μ2f
E2
JR

02

�−ηS=κcs

× S̄k

�
ln

μ2cs
E2
JR

02 − 2∂ηS

�
e−γEηS

ΓðηSÞ
ð1 − zÞð−1þηSÞ;

ð40Þ
where ηS is defined as ηS ¼ −κcsAcsa½ΓC;k�ðμf; μcsÞ and is
positive for μf > μcs. S̄k is

S̄k½L� ¼ 1þ αsCk

2π

�
−
1

2
L2 −

π2

4

�
þOðα2sÞ: ð41Þ

B. Contribution of nonglobal logarithms

When we extend the factorized result of the FFJ to the
two loop or higher order in αs, one important issue is the
presence of NGLs [34,35]. Usually NGLs appear when jet
observables cover a limited phase space due to the jet
algorithm and arises from multiple gluon radiations near
the jet boundary. Especially when there are large energy
differences between in-jet and out-jet radiated gluons, large
NGLs are unavoidable.
For the FFJ near the end point there are two modes that

could resolve the jet boundary and give nonvanishing
contributions. The collinear mode with large energy cer-
tainly radiates only inside a jet, but the collinear-soft mode
can radiate across a jet boundary and give a nonvanishing
result as z → 1 at the lower energy scale. So we conjecture
there can exist large NGLs in the FFJ in the large z limit.
In order to systematically resum large NGLs, we would

need to modify our factorization theorem as it is designed to
resum global Sudakov logarithms. To include resummation
of NGLs using effective theory, at two loop order we might
have to consider dressed collinear-soft gluons decoupled
from a (ultra)collinear gluon along a certain direction inside
a jet, which could give rise to a new dipole operator other
than Ycs

n;n̄ at low energy. We will not pursue such a refined
factorization theorem here, but we mention that some
advanced treatments of NGLs have been recently intro-
duced in Refs. [30,32,46–50].
To estimate the size of the NGLs in the FFJ, we note that

they should have same form as the end-point logarithms,
lnð1 − zÞ, which can be inferred from the ratio of scales
between the collinear scale μc ∼ EJR0 and the collinear-soft
scale μcs ∼ ð1 − zÞER0. As seen in the threshold expansion
of inclusive jet production [51], leading NGLs start to
appear at two loops, α2sL2 ∼ α2sðlnð1 − zÞ=ð1 − zÞÞþ, where
L schematically denotes a large logarithm. So at NLL
accuracy we have to resum these leading NGLs to all order
in αs, i.e.,

P
n¼2C

n
NGðαsLÞn.

For the hemisphere jet mass distribution in eþe−
annihilation, the resummed result of leading NGLs is
known in the large Nc limit [34]. Interestingly the
resummed result of leading NGLs for an individual narrow
jet is found to have the same form as the case of the
hemisphere jet mass, the only difference simply arising
from the need to choose suitable evolution scales [52,53].
Therefore, using the result in Ref. [34] we conjecture the
resummed result of leading NGLs for the FFJ in the large
Nc limit should be of the form

Δk
NGðμc; μcsÞ ¼ exp

�
−CACk

π2

3

�
1þ ðatÞ2
1þ ðbtÞc

�
t2
�
; ð42Þ
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where k ¼ q, g and

t ¼ 1

β0
ln
αsðμcsÞ
αsðμcÞ

∼ −
1

β0
ln

�
1 −

β0
4π

αsðμcÞ ln
μ2c
μ2cs

�
: ð43Þ

The fit parameters from the Monte Carlo implementation of
the parton shower are given by a ¼ 0.85CA, b ¼ 0.86CA,
and c ¼ 1.33 [34]. Note that our treatment of large
logarithm to NLL accuracy only holds for the anti-kT
algorithm. As discussed in Ref. [52], for other kT-type
algorithms, such as kT and C/A, clustering effects [54,55]
give rise to additional large logarithmic terms, which can be
also present at NLL order.
Up to NLL accuracy (plus NLO) in αs, the resummation

factor for NGLs in Eq. (42) just multiplies the resummed
results of the FFJ from the previous section, where the
resummed expressions of J k¼q;g and Sk¼q;g are shown in
Eqs. (38) and (40), respectively. In the next section we
show various numerical results for the FFJ in the large z
region comparing the results using only DGLAP evolutions
and our resummed results of the large logarithms as well as
the NGLs.

IV. NUMERICAL RESULTS

In this section we show numerical results of the
resummed FFJ focusing on the large z region. For sim-
plicity we set R0 ¼ R. As shown in Sec. III A, in order to
resum large logarithms in DJk=kðz; μfÞ, the integrated jet
functions J k are run from the jet scale μc ¼ ER to μf, and
the collinear-soft functions Sk from μcs ¼ ERð1 − zÞ to μf.
Because the FFJ is dependent upon the scale μf (actually
following DGLAP evolution), the shape of the FFJ varies
for different choices of μf. For convenience we choose
μf ¼ EJ throughout this section. Error estimations of the jet
and the collinear-soft functions are obtained by varying the
jet scale and the collinear-soft scale within ðμc=2; 2μcÞ and

ðμcs=2; 2μcsÞ, respectively. Then errors of DJk=kðz; μfÞ are
obtained by summing these in quadrature.
Based on the factorized expressions in Eqs. (14) and

(17), Fig. 2 shows NLLG þ NLO results ofDJq=q andDJg=g

for different energies of jets with the same radius R ¼ 0.2.
Here NLLG represents the NLL accuracy including only
global logarithms from the factorization approach in
Sec. III A. For the extreme end-point region where
μcs ¼ EJRð1 − zÞ ≈ ΛQCD, our description is not reliable
because of nonperturbative contributions. Figure 3 shows
NLLG þ NLO results of DJq=q and DJg=g for different jet
radii with the jet energy fixed to be 1000 GeV. From Figs. 2
and 3 we can see the tendencies that energetic parton
showering processes are captured more in the jet as the jet
energy EJ and/or the radius R become larger.
To see the importance of the factorization description on

the FFJs, in Fig. 4 we compare the resummed results at
NLLG þ NLO and the results using leading DGLAP
evolution naively. Here using only DGLAP evolution from
μc ¼ EJR to μf ¼ EJ can be understood as resumming
only large logarithms of R. As z goes to 1, the resummed
results of only lnR blow up. However, when we do
DGLAP evolution from μcs ¼ EJRð1 − zÞ to μf ¼ EJ,
we can see more realistic results. Compared with our
factorization approach with the accuracy of
NLLG þ NLO, both DGLAP evolved results involve much
larger uncertainties.
Figure 5 shows the resummed result of the FFJs with the

accuracy of NLLGþNG þ NLO using our conjectured result
for including leading NGLs discussed in Sec. III B,
obtained by multiplication of the FFJ at NLLG þ NLO
by Δk¼q;g

NG ðμc; μcsÞ in Eq. (42). The result including leading
NGLs gives rise to some suppression to the FFJs. A similar
suppression can be also seen in the light jet mass distri-
bution for the hemisphere jet production when the
resummed results including the NGLs are compared with
the case without the NGLs [50]. Because of additional

FIG. 2. DJq=qðzÞ (left panel) andDJg=gðzÞ (right panel) with different jet energies. Red, blue, and black curves correspond to jet energy
EJ equal to 500, 1000, and 2000 GeV, respectively. The jet radius is chosen to be R ¼ 0.2 and the factorization scale is μf ¼ EJ . Error
estimation is described in the text.
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dependences on both μc and μcs from Δk¼q;g
NG ðμc; μcsÞ, the

result with NGLs increases the errors. The errors might be
reduced if we include the NNLO result in αs, which is
beyond the scope of our paper.

There is one more comment about error estimations used
above. Since μcs ¼ EJRð1 − zÞ is z dependent and bound
to hit the Landau pole as z → 1, we have used the following
profile function to avoid the Landau pole:

FIG. 3. DJq=qðzÞ (left panel) and DJg=gðzÞ (right panel) with different jet radii. Red, blue, and black curves correspond to the jet radius
R equal to 0.1, 0.2, and 0.4, respectively. The jet energy is EJ ¼ 1000 GeV and the factorization scale is μf ¼ EJ .

FIG. 4. Comparison of the result using leading DGLAP evolution and the resummed result at NLLG þ NLO from the factorization
approach. The orange [green] curves are obtained using leading DGLAP evolution with FFJs running from μc ¼ EJR ½μcs ¼
EJRð1 − zÞ� to μf ¼ EJ . Blue curves are the resummed result of the FFJs. The jet radius is R ¼ 0.2 and jet energy is EJ ¼ 1000 GeV.

FIG. 5. Comparison of the resummed results with (orange) and without (blue) resumming the NGLs. Here R ¼ 0.2 and
EJ ¼ 1000 GeV.
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μcs;PFðzÞ ¼
�
1þ δ

1þ exp½ðz − z1Þ=ð1 − z1Þ�
�

×

� ð1 − zÞμc if z < z1;

μMin þ að1 − zÞ2 if z ≥ z1;
ð44Þ

where μMin ¼ 0.3, μc ¼ EJR, and a and z1 are fixed by
requiring that μcs;PFðzÞ and its first derivative are continu-
ous at z ¼ z1. The profile function is shown in Fig. 6. To
vary the collinear-soft scale, we used δ ¼ f0;−0.5; 1g.
μcs;PFðzÞ is devised to ensure that the collinear-soft scale
freezes as it approaches the Landau pole and coincides with
μcsðzÞ otherwise.

V. CONCLUSION AND OUTLOOK

In this paper, as shown in Eqs. (14) and (17), we have
developed a factorization theorem of the FFJ with a small
jet radius R in the large z limit. At the scale μ ∼ EJR0 we
first integrate out collinear modes with off-shellness p2

c ∼
ðEJR0Þ2 and obtain the integrated jet functions, J q;g. At the
lower scale μ ∼ ð1 − zÞEJR0 the collinear-soft mode can
probe the jet boundary and gives a nonvanishing result at
higher order in αs. Combining NLO results of the inte-
grated jet function and the collinear-soft function, we can
successfully reproduce the NLO result of the FFJ in the
limit z → 1.
Performing RG evolutions of the factorized jet and

collinear-soft functions we resummed large logarithms of
1 − z and R simultaneously. The anomalous dimensions of
each factorized function involves the cusp anomalous
dimension, which enables us to systematically resum large
logarithms beyond leading order. As a result we have
shown the resummed result at NLL, which significantly
modifies the large z behavior of the FFJ when compared to
the result of only resumming logarithms of R through naive
DGLAP evolution. Large NGLs may appear at NNLO in αs
and could contribute to the resummed result at NLL

accuracy. We therefore have estimated NGL contributions
to the FFJ applying the resummed formalism in the large
Nc limit [34].
The finite size of the jet radius R plays an important

role in performing successful RG evolution of the FFJ in
the large z limit.3 Even though R is small, the radius
makes it possible to have an observed jet with nonzero
invariant mass and each factorized function for the FFJ is
IR finite. Similar results occur for the heavy quark
fragmentation function (HQFF) in the large z limit, where
the HQFF can be factorized into the heavy quark function
and the soft shape function [57,58]. Due to a nonzero
heavy quark mass M, both functions are IR finite and
systematic RG evolutions to the scales M and Mð1 − zÞ
can be done.
Note that the FFJ reduces to a light hadron fragmentation

function if R goes to zero. In this case the factorization to
collinear and collinear-soft interactions breaks down
because the relevant anomalous dimensions blow up and
RG evolutions become nonperturbative, as can be checked
from Eqs. (32) and (33) A similar result can be applied to
the parton distribution function (PDF) near the end point.
Actually, in order to resum large logarithm lnð1 − zÞ in the
PDF, a similar factorization approach to ours has been
considered in Ref. [59], where soft gluon radiation is
responsible for the parton splitting. Interestingly the fac-
torized collinear and soft functions for the PDF contain
rapidity divergences [60,61] as well as UV and IR diver-
gences. However the rapidity RG evolution turns out to be
IR sensitive and become nonperturbative. (We checked if
there exist rapidity divergences in the factorized functions
for the FFJ, but the finite size of R forbids rapidity
divergences and guarantees ordinary RG evolutions from
pure UV divergences.)
Our factorized and resummed result analyzed here can be

widely applied for energetic jet productions. The resum-
ming procedure of large logarithms of 1 − z from the
effective theory approach can be used for systematic
resummations of threshold logarithms for inclusive jet
[51,62] and dijet production [56,63]. However, for more
precisely resummed results of large logarithms, explicit
calculations beyond NLO are required, and a thorough
analysis of factorization including NGLs is needed.
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FIG. 6. Profile function μcs;PF [solid black curve and gray band,
defined in Eq. (44)] is used to estimate errors due to variation of
the collinear-soft scale. The dashed line is the z-dependent
collinear-soft scale μcð1 − zÞ with μc ¼ 200 GeV.

3Compared to a massless jet, some differences of a jet with
small and finite R have been discussed in the resummation of
threshold logarithms [51,56].
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