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Information geometry can be used to understand and optimize Higgs boson measurements at the LHC.
The Fisher information encodes the maximum sensitivity of observables to model parameters for a given
experiment. Applied to higher-dimensional operators, it defines the new physics reach of any LHC
signature. We calculate the Fisher information for Higgs production in weak boson fusion with decays into
tau pairs and four leptons and for Higgs production in association with a single top quark. In a next step, we
analyze how the differential information is distributed over phase space, which defines optimal event
selections. Conversely, we consider the information in the distribution of a subset of the kinematic
variables, showing which production and decay observables are the most powerful and how much
information is lost in traditional histogram-based analysis methods compared to fully multivariate ones.
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I. INTRODUCTION

Since its experimental discovery [1,2], the Higgs boson
and its properties have quickly become one of the most
important and active fields of research for physics beyond
the StandardModel at the LHC. In the Lagrangian language
of fundamental physics, the Higgs properties can be
described by a continuous and high-dimensional parameter
space, for example, in terms of Wilson coefficients in an
effective field theory (EFT) [3–5]. One of the main features
of moving from simple coupling modifications to higher-
dimensional operators is that we can now include kinematic
distributions in these searches [6,7]. A common challenge of
all Higgs analyses is how to navigate the vast family of
phase-space distributions.
Responding to the overwhelming number of search

strategies, we expect the LHC Collaborations to focus more
andmore on high-level statistical tools, including hypothesis
tests based onmultivariate analysis with machine learning or
the matrix element method [8,9]. Historically, these tools
compare two discrete hypotheses, and applying them to
continuous, high-dimensional parameter spaces is computa-
tionally expensive. Recently, machine learning techniques
have been extended to include inference on such continuous
high-dimensional parameter spaces [10]. With these capa-
bilities, it becomes increasingly important to be able to
effectively characterize the information contained in these
distributions. We present an approach based on information
geometry [11], intrinsically designed to study continuous
parameter spaces of arbitrary dimensionality without the
need for any discretization of the hypothesis. We use this to
compare and improve Higgs measurement strategies.
Our central object is the Fisher information matrix.

Through the Cramér-Rao bound, it determines the maxi-
mum knowledge on model parameters that we can derive

from an observation [12,13]. In that sense, the Cramér-
Rao bound for the Fisher information plays a similar role
as the Neyman-Pearson lemma [14] plays for a discrete
hypothesis test and the log-likelihood ratio: it allows us
to define and to compute the best possible outcome of
any multivariate black-box analysis [9,15]. In addition,
the Fisher information matrix defines a metric in the
space of model parameters, which not only provides an
intuitive geometric picture, but also gives us a handle on
the linearization of the observable in terms of new
physics effects.
When we apply our information geometry framework to

Higgs physics, in particular to analyses of the dimension-
six Higgs Lagrangian, we can tackle the following types of
questions:

(i) What is the maximum precision with which we can
measure continuous model parameters?

(ii) How is the information distributed over phase space?
(iii) How much of the full information is contained in a

given set of distributions?
(iv) Which role do higher-dimensional corrections in the

EFT expansion play?
We demonstrate our approach using three examples:

Higgs production in weak boson fusion (WBF) [16] with
its tagging-jet kinematics [17] is well known to probe
many aspects of the Higgs-gauge coupling structure [18].
Focusing on the WBF production kinematics, we first
analyze its combination with a Higgs decay to tau leptons
[19]. This will, for example, allow us to estimate how much
of the entire information on higher-dimensional operators is
typically included in the leading tagging jet distributions.
Combining WBF production with a Higgs decay to ZZ�
pairs, we can test how much additional information is
included in the decay distributions. Conceptually, this
contrasts two ways to constrain the same effective
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Lagrangian via large momentum flow through the relevant
vertices or via precision observables [6]. Finally, wewill test
how useful Higgs production in associationwith a single top
[20] is for a dimension-six operator analysis.
In a set of appendixes, we give a worked-out simple

example for our approach, explain how we compute the
Fisher information, show more information on our example
processes, indicate how systematic or theory uncertainties
can be included, and discuss the relation of our approach to
standard log-likelihood ratios.

II. INFORMATION GEOMETRY AND
CRAMÉR-RAO BOUND

At the LHC, we typically use a set of possibly correlated
event rates x to measure a set of model parameters. Those
can, for example, be a vector of Higgs couplings with the
unknown true value g. These Higgs couplings define a
continuous, high-dimensional model space. The outcome
of the measurement is an estimator for the couplings ĝ that
follows a probability distribution fðĝjgÞ. For an unbiased
estimator, its expectation value is equal to its true value,

ḡi ≡ E½ĝijg� ¼ gi: ð1Þ

Our argument can be trivially extended to biased estima-
tors. The variance, or for more than one model parameter,
the covariance matrix,

CijðgÞ≡ E½ðĝi − ḡiÞðĝj − ḡjÞjg�; ð2Þ

provides a measure of the precision of the measurement.
For a set of uncorrelated measurements, the covariance
matrix is a diagonal matrix made of the individual
variances.
The relation fðxjgÞ between the measurement x and

assumed true parameters g can be extracted from
Monte Carlo and detector simulations. If we know it, we
can describe the reach of a measurement using the Fisher
information matrix:

IijðgÞ≡ −E
�∂2 log fðxjgÞ

∂gi∂gj
����g
�
: ð3Þ

The Cramér-Rao bound [12] states that the covariance
matrix in Eq. (2) is bounded from below by the inverse
Fisher information: the smallest achievable uncertainty is
then given by

Cij ≥ ðI−1Þij: ð4Þ

Large entries in the Fisher information indicate directions
in model space which can be measured well. Eigenvectors
with eigenvalue zero are blind directions. Fortunately, the
Fisher information is invariant under a reparametrization of

the observables x and transforms covariantly under a
reparametrization of the model parameters g.
After removing blind directions, the Fisher information

is a symmetric and positive definite rank-two tensor and
defines a Riemannian metric on the model space [11]. This
allows us to define a local as well as global distance
measure in model space,

dlocalðgb;gaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðga − gbÞiIijðgaÞðga − gbÞj

q

dðgb;gaÞ ¼ min
gðsÞ

Z
sb

sa

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dgiðsÞ
ds

IijðgðsÞÞ
dgjðsÞ
ds

r
; ð5Þ

where the global distance is the length of a geodesic (the
curve that minimizes the distance). Contours of constant
distances define optimal error ellipsoids. The distance
tracks how (un)likely it is to measure ĝ ¼ gb given the
true value g ¼ ga. If the estimator is distributed according
to a multivariate Gaussian around the true value, the local
distance values directly correspond to the difference in ĝ
and ga measured in standard deviations.
A typical LHC measurement includes an observed

total number of events n, distributed over possible phase
space positions x. The probability distribution in Eq. (3)
factorizes [9,15]

fðx1;…;xnjgÞ ¼ PoisðnjLσðgÞÞ
Yn
i¼1

fð1ÞðxijgÞ; ð6Þ

where fð1ÞðxjgÞ is the normalized probability distribution
for a single event populating the phase space position x.
This can be calculated, for example, with Monte Carlo
simulations. The total cross section is σðgÞ, to be multiplied
with the integrated luminosity L. The corresponding Fisher
information is

Iij ¼
L
σ

∂σ
∂gi

∂σ
∂gj − LσE

�∂2 log fð1ÞðxjgÞ
∂gi∂gj

�
: ð7Þ

The Fisher information is additive when we combine
phase-space regions. After integrating over the entire phase
space, this full Fisher information defines the minimum
covariance matrix possible.
Instead of integrating over the entire phase space, it is

enlightening to study how the information is distributed in
phase space. Consider the differential quantity dIij=dv,
where v is a kinematic variable like an invariant mass or
angle calculated from x. Here Iij uses all the information in
x, but we are able to study the distribution of the
information with respect to v.1 Such a distribution defines
the important phase-space region for a measurement and
should drive the design of event selections: it allows us to

1This is similar to how the log-likelihood ratio was studied
differentially with MadMax [15,21].
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calculate the information loss from kinematic cuts and to
quantify the trade-off between signal purity and maximal
information. Integrating over this differential information
will reproduce the total Fisher information Iij.
Conversely, if in Eq. (7) we replace the full phase space

point x with a lower-dimensional set of kinematic variables
v, we will arrive at the information in this reduced set of
kinematic variables. We refer to this as the information in
distributions, and we will use this definition to identify how
efficient analyses in terms of a small number of available
kinematic distributions can be.
For our analysis, we parametrize the Higgs properties in

terms of dimension-six operators [3–5],

L ¼ LSM þ fi
Λ2

Oi implying gi ¼
fiv2

Λ2
; ð8Þ

where the additional factor v2 ensures that our parameters g
are dimensionless, and the Standard Model corresponds to
g ¼ 0. In Eq. (A8), we see that the Fisher information
around this point, Iijð0Þ, only measures the linear terms in
g ∝ 1=Λ2 and is not sensitive to higher corrections.
Dimension-six squared contributions appear away from
the Standard Model point and in the corresponding global
distances. The difference between local and global dis-
tances, thus, provides a measure of the impact of 1=Λ4

contributions [22].

III. WEAK-BOSON-FUSION HIGGS TO TAUS

The first question we tackle with our information
geometry approach is what we can learn about higher-
dimensional operators from the nontrivial kinematics of
weak-boson-fusion production. As a decay, we include a
simple fermionic two-body decay H → ττ [19]; see Fig. 1.
For our proof of concept, we stick to a parton-level analysis
at leading order. The dominant irreducible backgrounds are
QCD Zjj production and electroweak Zjj production, both
with the decay Z → ττ, and Higgs production in gluon
fusion with H → ττ.
We do not simulate tau decays, but multiply the rates

with the branching ratios for the semi-leptonic di-tau mode
and assume the di-tau system can be reconstructed with the

collinear approximation with a realistic resolution for mττ.
Following the procedure outlined in Refs. [15,21], we
smear the mττ distributions using a Gaussian (with width
17 GeV) for Higgs production and a double Gaussian
(where the dominant component has a width of 13 GeV) for
Z production, estimated from Fig. 1(a) of Ref. [23]. The
double Gaussian ensures an accurate description of the
high-mass tail of the Z peak around mττ ¼ mH. Otherwise,
no detector effects are included. We require loose cuts,

pT;j > 20 GeV jηjj < 5.0 Δηjj > 2.0

pT;τ > 10 GeV jητj < 2.5; ð9Þ

to include as much of phase space as possible.
The different QCD radiation patterns of electroweak and

QCD signal and background processes are a key feature to
separate the signal from the background [17]. We take it
into account through approximate individual jet veto
survival probabilities [19],

εCJVWBFH ¼ 0.71 εCJVEWZ ¼ 0.48

εCJVQCDZ ¼ 0.14 εCJVGFH ¼ 0.14: ð10Þ

Since our phase space x does not include any jets other than
the two tagging jets, we are not sensitive to details of the
central jet veto other than the relative survival probabilities
and possible second-order effects that would correlate the
veto with x. After the event selection of Eq. (9) and
applying the CJV efficiencies, the WBF Higgs signal of
53 fb in the SM faces a dominant QCD Z background
of 2.7 pb.
We consider fiveCP-even dimension-six operators in the

HISZ basis [6,24],

OB¼ i
g
2
ðDμϕ†ÞðDνϕÞBμν OW ¼ i

g
2
ðDμϕÞ†σkðDνϕÞWk

μν

OBB¼−
g02

4
ðϕ†ϕÞBμνBμν OWW ¼−

g2

4
ðϕ†ϕÞWk

μνWμνk

Oϕ;2¼
1

2
∂μðϕ†ϕÞ∂μðϕ†ϕÞ: ð11Þ

The first four operators introduce new Lorentz structures
into Higgs-gauge interactions, which translate into changed
kinematic shapes. The pure Higgs operator Oϕ;2 leads to a
universal rescaling of all single-Higgs couplings and
otherwise only affects the Higgs self-coupling. Other
operators that contribute to WBF Higgs production are
tightly constrained by electroweak precision data or can be
removed from the basis using field redefinitions [25]. The
effect of Oϕ;2 on gluon-fusion Higgs production is taken
into account in our analysis, while the effects from OW and
OB on the subleading electroweak Zjj background are
neglected.

FIG. 1. Example Feynman diagram for weak-boson-fusion
Higgs production with H → ττ. The red dot shows the Higgs-
gauge interactions affected by the dimension-six operators of our
analysis.
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A. Maximum precision on Wilson coefficients

Following Eq. (8), our model space is spanned by five
dimensionless parameters,

g ¼ v2

Λ2

0
BBBBBB@

fϕ;2
fW
fWW

fB
fBB

1
CCCCCCA
: ð12Þ

With these basis vectors, we calculate the Fisher informa-
tion for 13 TeV using a combination of MadGraph5 [26],
MadMax [21], and our own MadFisher algorithm, described in
Appendix A 2. We absorb all particle identification and
trigger efficiencies into a single universal ε (which does not

include the process-dependent CJV efficiencies). Then, for
our toy example, we assume the integrated luminosity
times universal efficiencies to be L · ε ¼ 30 fb−1. We find

Iijð0Þ ¼

0
BBBBBB@

3202.1 −625.3 −7.2 −34.8 0.3

−625.3 451.0 −109.5 23.3 −1.5
−7.2 −109.5 243.7 −5.5 2.8

−34.8 23.3 −5.5 4.1 −0.3
0.3 −1.5 2.8 −0.3 0.1

1
CCCCCCA
:

ð13Þ

The eigenvectors, ordered by the size of their
eigenvalues, are

g1 ¼

0
BBBBBBB@

0.98

−0.21
0.01

−0.01
0.00

1
CCCCCCCA

g2 ¼

0
BBBBBBB@

−0.18
−0.79
0.58

−0.04
0.01

1
CCCCCCCA

g3 ¼

0
BBBBBBB@

0.12

0.57

0.81

0.03

0.01

1
CCCCCCCA

g4 ¼

0
BBBBBBB@

0.00

−0.05
0.00

1.00

−0.07

1
CCCCCCCA

g5 ¼

0
BBBBBBB@

0.00

−0.00
−0.01
0.07

1.00

1
CCCCCCCA
: ð14Þ

The corresponding eigenvalues are (3338,395,165,2.9,0.1),
indicating that the WBF process has very different sensi-
tivities to the five operators: Oϕ;2 can be most strongly
constrained and is weakly correlated with OW . It is
followed by the strongly correlated OW −OWW plane.
The sensitivity to OB and OBB, which only play a role
in subleading Z-mediated production diagrams, is much
smaller and shows very little correlation with each other
and everything else.
We visualize our results as contours of the local and

global distances defined in Eq. (5) for slices of parameter
space in Fig. 2. First, the contours show the maximum

precision that can be attained in a measurement in this
process. Without taking into account systematic uncertain-
ties, an optimal measurement will probe the Oϕ;2 direction
with Δg ≈ 0.02, translating into Λ=

ffiffiffiffiffiffiffiffi
fϕ;2

p
≈ 1.8 TeV. The

OW and OWW directions can optimally be probed at the
Δg ≈ 0.05 or Λ=

ffiffiffiffiffiffiffiffi
fϕ;2

p
≈ 1.1 TeV level.

Comparing the local and global distances provides some
insight into the role of Oð1=Λ4Þ effects, as discussed
before. At d ¼ 1, 2 the differences are small, signaling
that an optimal measurement will be dominated by the
linearized dimension-six amplitudes. On the other hand,

FIG. 2. Error ellipses defined by the Fisher information in the WBF H → ττ channel. We show contours of local distance dlocalðg; 0Þ
(dashed) and global distance dðg; 0Þ (solid). The colored contours indicate distances of d ¼ 1:::5. In grey we show example geodesics.
The gi not shown are set to zero.
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analyses based on less luminosity or requiring more
stringent exclusion criteria (translating into larger distan-
ces) will only probe new physics scales closer to the
electroweak scale, in which case the squared dimension-six
terms will have a larger effect.

B. Differential information

The fact that the Fisher information is additive across
different phase-space regions means that we can consider
the differential information with respect to phase space
(dIij=dx) or a specific kinematic variable (dIij=dv). In
Fig. 3, we show the differential cross sections of the signal
and dominant background process for typical kinematic
distributions and compare it to the differential information.
More distributions are shown in Appendix A 3.
Obviously, the signal-to-background ratio improves for

large invariant masses of the tagging jets and towards mττ

values around the Higgs mass. The information is larger in
these phase-space regions, independent of the direction in
model space. On the other hand, most of our dimension-six
operators include derivatives, leading to an increasing
amplitude with momentum transfer through the gauge-
Higgs vertex. This momentum flow is not observable, but
the transverse momenta of the tagging jets and the Higgs
boson are strongly correlatedwith it [22]. Indeedmost of the
information on higher-dimensional operators comes from
the high-energy tail of pT;j1 .
The rapidity difference between the tagging jets indicates

a trade-off between these two effects: on the one hand, at
larger rapidity distances the signal-to-background ratio
clearly improves [18]. On the other hand, the largest effects
from dimension-six operators appear at smaller Δηjj, again
driven by the larger momentum transfer [22]. In the right
panel of Fig. 3, we see that the information on these
operators comes fromΔηjj ¼ 3…7. Tight cuts with the aim

to remove backgrounds lose a sizable fraction of the
information on dimension-six operators.

C. Information in distributions

While the integrated, fully differential information
defined in Eq. (7) provides us with optimal experimental
results, it remains to be shown that we can access it in
practice. Recent proposals using machine learning for high-
dimensional likelihood fits aim to tackle exactly this
problem [10]. Regardless, a relevant question is how much
of this maximum information is retained in simple one-
dimensional or two-dimensional distributions of standard
kinematic observables v.
In the presence of backgrounds, a histogram-based

analysis first requires a stringent event selection, either
based on traditional kinematic cuts or on a multivariate
classifier. First, we choose the WBF cuts:

105 GeV < mττ < 165 GeV pT;j1 > 50 GeV

mjj > 1 TeV Δηjj > 3.6: ð15Þ

This improves the signal-to-background ratio to approx-
imately unity, but at the cost of losing discrimination power.
Eventually, a histogram-based analysis will benefit from
optimizing this selection, for instance foregoing the simple
cuts for a multivariate approach, going beyond the scope of
this demonstration. Based on this selection, we analyze the
distributions:

(i) pT;τ1 with bin size 25 GeV up to 500 GeV and an
overflow bin;

(ii) mττ with bin size 5 GeV in the allowed range
of 105:::165 GeV;

(iii) pT;ττ with bin size 50 GeV up to 800 GeV and an
overflow bin;

FIG. 3. Distribution of the Fisher information in the WBF H → ττ channel (shaded red). We also show the normalized SM signal
(solid black) and QCD Z þ jets (dotted grey) rates. The dashed blue line shows the effect of an exaggerated fWv2=Λ2 ¼ 0.5. The last bin
is an overflow bin.
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(iv) pT;j1 with bin size 50 GeV up to 800 GeV and an
overflow bin;

(v) mjj with bin size 250 GeV up to 4 TeV and an
overflow bin;

(vi) Δηjj with bin size 0.5 up to 8.0 and an overflow bin;

(vii) Δϕjj ¼ ϕjη<0 − ϕjη>0 [27] with bin size 2π=20;
(viii) Δηττ;j1 with bin size 0.5 up to 8.0 and an over-

flow bin;
(ix) Δϕττ;j1 with bin size π=10.
Figure 4 demonstrates that virtuality measures, such as

the transverse momentum of the leading tagging jet, mostly
constrain OW , while angular correlations between the jets
are more sensitive toOWW . Stringent constraints on the full
operator space can only be achieved by combining the
information in these (or more) distributions, ideally in a
two-dimensional histogram.
In Fig. 5, we extend our comparison to the information in

all of the above distributions. The top panel shows the
eigenvalues of the individual information matrices, and the
colors indicate which operators the corresponding eigen-
vectors are composed of. This allows us to see which
operators can be measured well in which distributions, and
where blind (or flat) directions arise. In the lower panel, we
compare the determinants, providing a straightforward
measure of the information in distributions that is invariant
under basis rotations.
In general, single differential cross sections probe

individual directions in phase space well, but always suffer
from basically blind directions. To maximize the con-
straining power on all operators, we need to combine
virtuality measures and angular correlations. Even then,
there is a substantial difference to the maximum informa-
tion in the process: the combined analysis of jet transverse

FIG. 4. Information from histograms compared to the full
information (black) in the WBF H → ττ channel, shown as
contours dlocalðg; 0Þ ¼ 1. We include pT;j1 , Δϕjj, their naive
combination assuming no mutual information, and their two-
dimensional histogram. The gi not shown are set to zero.

FIG. 5. Fisher information for the WBF H → ττ channel exploiting the full phase space, after the cuts in Eq. (15), and for several
kinematic distributions. The top panel shows the eigenvalues, the colors denote the composition of the corresponding eigenvectors. The
right axis translates the eigenvalues into a new physics reach for the corresponding combination of Wilson coefficients. In the bottom
panel, we show the determinants of the Fisher information restricted to Oϕ;2, OW , and OWW , normalized to the full information. Again,
the right axis translates them into a new physics reach.
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momenta and Δϕjj has a new physics reach in the Oϕ;2 −
OW −OWW space of 0.9 TeV, compared to 1.2 TeV for
the fully differential cross section. Under our simplistic
assumptions this corresponds to roughly 3 times more data.
Half of this loss in constraining power is due to information
in background-rich regions discarded by the WBF cuts, and
half is due to nontrivial kinematics not captured by the
double differential distributions.
In light of the large amount of information discarded by

the WBF cuts in Eq. (15), we repeat this comparison with
an alternativemultivariate event selection. Instead of cutting
on standard kinematic observables, we select all events in
“signal-like” phase-space regions, defined as those with a
larger expected SM WBF rate than expected background
rates,

σSM WBFfð1ÞðxjSM WBFÞ
σbackgroundsfð1ÞðxjbackgroundsÞ

¼ ΔσSM WBFðxÞ
ΔσbackgroundsðxÞ

> 1:

ð16Þ

We then calculate the information in the same distributions
as before.
As shown in Fig. 6, the cut in Eq. (16) defines a sample

with little background contamination without sacrificing
much discrimination power. One-dimensional and two-
dimensional distributions can extract information on the
operators more reliably than after the kinematic event
selection in Eq. (15). A combined measurement of the
jet transverse momenta and Δϕjj is now able to probe
new physics scales of up to 1.1 compared to 1.2 GeV

for the fully multivariate approach, corresponding to 70%
more data.

IV. WEAK-BOSON-FUSION HIGGS
TO FOUR LEPTONS

Another question we can approach with information
geometry is how much the nontrivial decay mode H → 4l
adds to the WBF production analyzed in Sec. III. For this
particularly clean channel, shown in Fig. 7, the back-
grounds are not the limiting factor, so we omit them for our
toy study. For instance, in the relevant phase-space region,
the cross section of the dominant irreducible ZZ�jj back-
ground is over an order of magnitude smaller than the SM
Higgs signal. This also allows us to avoid smearing them4l
distribution. At the parton level, we apply the generator-
level cuts,

FIG. 6. Fisher information for the WBF H → ττ channel exploiting the full phase space, after the likelihood-based event selection in
Eq. (16), and for several kinematic distributions. Except for the initial cuts, the plot is analogous to Fig. 5.

FIG. 7. Example Feynman diagram for weak-boson-fusion
Higgs production with H → 4l. The red dots show the Higgs-
gauge interactions affected by the dimension-six operators of our
analysis.
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pT;j > 20 GeV jηjj < 5.0

pT;l > 10 GeV jηlj < 2.5; ð17Þ

with l ¼ e, μ. The SM cross section after these cuts
is 0.36 fb.

A. Maximum precision on Wilson coefficients

Again we study the five-dimensional space of CP-even
Wilson coefficients given in Eq. (12). For increased
luminosity, L · ε ¼ 100 fb−1, we find the SM information,

Iijð0Þ ¼

0
BBBBBBB@

144.3 −27.3 −11.5 −1.6 −0.7
−27.3 50.9 −9.1 6.7 −0.2
−11.5 −9.1 36.9 −1.2 1.0

−1.6 6.7 −1.2 1.9 −0.1
−0.7 −0.2 1.0 −0.1 0.1

1
CCCCCCCA
;

ð18Þ

with the eigenvectors

g1 ¼

0
BBBBBBB@

0.96

−0.25
−0.08
−0.02
0.00

1
CCCCCCCA

g2 ¼

0
BBBBBBB@

−0.16
−0.79
0.58

−0.11
0.02

1
CCCCCCCA

g3 ¼

0
BBBBBBB@

0.21

0.54

0.81

0.09

0.02

1
CCCCCCCA

g4 ¼

0
BBBBBBB@

0.02

0.14

0.01

−0.99
0.04

1
CCCCCCCA

g5 ¼

0
BBBBBBB@

0.00

−0.00
−0.03
0.04

1.00

1
CCCCCCCA

ð19Þ

and the eigenvalues (152.4,52.8,27.8,1.0,0.0).

The Fisher information approach allows us to directly
compare this outcome to our earlier results for WBF
production with H → ττ in Eq. (13) or to calculate the
combined information in these two channels by simply
adding their Fisher information matrices after rescaling
them to the same luminosity. Clearly, the ττ channel
contains significantly more information on all operators.
The decayH → 4l does not even increase the sensitivity to
OB orOBB; both of them are still basically blind directions.
We visualize the information geometry in the remaining
directions in Fig. 8. The differences between local and
global distances are much larger than in the H → ττ
channel. This is because the tiny H → 4l branching
fraction decreases the new physics reach and with it the
hierarchy of scales in our effective Lagrangian. This means
that the squared dimension-six amplitudes are numerically
more relevant.

B. Production vs decay kinematics

Focusing on the question of how the decay analysis
improves our global information, we disentangle the effects
on the production and decay vertices in Fig. 9. As is well
known for the LHC, the production-side analysis benefits
froma largemomentum flow through theHiggs vertex,while
the momentum flow through the decay vertices is bounded
by theHiggsmass (neglecting off-shell phase space regions).
Formomentum-dependent operators, this disadvantage is not
compensated by the complex H → 4l decay kinematics.
Consequently, the Higgs decay only improves the reach in
theOϕ;2 direction, corresponding to a change in the total rate.
This operator also affects many other total Higgs rates, sowe
conclude that the complexH → 4l kinematics does not play
a significant role as part of a global analysis.
In complete analogy to Fig. 5 for the WBF production,

we compare the information in different distributions for
CP-even operators in Fig. 10. The standard tagging jet
observables are complemented by five observables char-
acterizing the 4l decay kinematics,

FIG. 8. Error ellipses defined by the Fisher information in the WBF H → 4l channel. We show contours of local distance dlocalðg; 0Þ
(dashed) and global distance dðg; 0Þ (solid). The colored contours indicate distances of d ¼ 1:::5. In grey we show example geodesics.
The gi not shown are set to zero.
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(i) pT;l1 ;
(ii) pT;4l;
(iii) mZ2

for the lower-mass reconstructed Z boson;
(iv) cosθ1¼p̂l−

1
·p̂Z2

jZ1
defined in terms of unit-3-vectors

p̂, and analogously cos θ2;

(v) cosΦ ¼ ðp̂l−
1
× p̂lþ

1
Þ · ðp̂l−

2
× p̂lþ

2
Þ, defined in the

ZZ or Higgs rest frame [18].
In all cases, we use at least ten bins and include underflow
and overflow bins where applicable.
In our quantitative analysis, we find similar patterns as in

the ττ mode. The key observables are again transverse
momenta and jet angular correlations. Without the compli-
cation of removing backgrounds efficiently, the combined
analysis of these variables comes close to the maximum
information: a two-dimensional histogram of jet transverse
momenta and Δϕjj probes new physics scales up to
650GeV,while for a fully differential analysis themaximum
probed new physics scale is close to 700 GeV. Under our
assumptions, this difference roughly corresponds to 25%
more data. The decay kinematics and its angular observables
do not help significantly or change the picture qualitatively.
This shows again how much the sensitivity of the decay
vertices to dimension-six operators is limited by the restric-
tion of the momentum flow to the Higgs mass. This is not
accidental: the reason behind this role of the momentum
dependence is that for all operators shown in Eq. (12), with
the exception ofOϕ;2, gauge invariance forces us to include
the field strength tensor instead of the gauge boson field,
automatically introducing a momentum dependence.

V. HIGGS PLUS SINGLE TOP

Our final example is Higgs production with a single top
with H → γγ and a hadronic top decay. As shown in

FIG. 10. Fisher information for the WBF H → 4l channel based on the full kinematics and on individual kinematic distributions.
The top panel shows the eigenvalues, the colors denote the composition of the corresponding eigenvectors. The right axis translates the
eigenvalues into a new physics reach for the corresponding combination of Wilson coefficients. In the bottom panel, we show the
determinants of the Fisher information restricted to Oϕ;2, OW , and OWW , normalized to the full information. Again, the right axis
translates them into a new physics reach.

FIG. 9. Information in the WBF H → 4l channel from includ-
ing dimension-six operators only in the production vertex (red),
only in the decay vertex (blue), and in both (black). The
information is visualized as local contours dlocalðg; 0Þ ¼ 1.
The gi not shown are set to zero.
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Fig. 11, diagrams where the Higgs is radiated off aW boson
interfere destructively with diagrams with a top-Higgs
coupling, making this channel a direct probe of the sign
of the top Yukawa coupling [20]. We stick to a parton-level
analysis at leading order in the five-flavor scheme. For our
toy example, we include only one of the dominant back-
grounds, single top production with two photons, and, in
particular, ignore the multijet background. The subleading
tt̄γγ background populates qualitatively different phase-
space regions from the single-top signal and can be
supressed with an appropriate event selection [28]. We
smear the mγγ distribution of the signal process with a
Gaussian of width 1.52 GeV estimated from Fig. 6(b) of
Ref. [29] and do not include any other detector effects. Our
basic event selection requires

pT;j > 20 GeV jηjj < 5.0

ΔRjj > 0.4 152 GeV < mbjj < 192 GeV

pT;γ > 10 GeV jηγj < 2.5

ΔRγj;ΔRγγ > 0.4 120 GeV < mγγ < 130 GeV; ð20Þ

leading to a SM tH cross section of 0.10 fb and a
background of 0.22 fb.
We consider four CP-even dimension-six operators

OW ¼ i
g
2
ðDμϕÞ†σkðDνϕÞWk

μν

Otϕ ¼ ðϕ†ϕÞðQ̄3
~ϕtRÞ þ H:c:

OWW ¼ −
g2

4
ðϕ†ϕÞWk

μνWμνk

Oϕ;2 ¼
1

2
∂μðϕ†ϕÞ∂μðϕ†ϕÞ: ð21Þ

The operators OW and OWW affect the production ampli-
tudes where the Higgs couples to a W, while Otϕ rescales
the top Yukawa coupling. Both OWW and Oϕ;2 also affect
the H → γγ decay.

A. Maximum precision on Wilson coefficients

We calculate the Fisher information in terms of the
dimensionless parameters,

g ¼ v2

Λ2

0
BBBB@

fϕ;2
fW
fWW

ftϕ

1
CCCCA; ð22Þ

for 13 TeV and an integrated luminosity times efficiencies
of L · ε ¼ 300 fb−1 and find

Iijð0Þ ¼

0
BBBB@

80.1 −18.7 −957.0 13.2

−18.7 32.6 221.7 27.0

−957.0 221.7 11446.1 −146.0
13.2 27.0 −146.0 150.3

1
CCCCA: ð23Þ

The eigenvectors are

g1 ¼

0
BBBB@

0.08

−0.02
−1.00
0.01

1
CCCCA g2 ¼

0
BBBB@

0.00

−0.23
−0.01
−0.97

1
CCCCA

g3 ¼

0
BBBB@

−0.02
0.97

−0.02
−0.23

1
CCCCA g4 ¼

0
BBBB@

1.00

0.02

0.08

−0.01

1
CCCCA; ð24Þ

with corresponding eigenvalues (11532,155,21.3,0.1). The
best constrained direction is along OWW and corresponds
to the combination of Wilson coefficients that affects the
H → γγ decay in addition to production effects, which will
already be tightly constrained once a tH measurement is
feasible. The orthogonal direction in theOϕ;2 −OWW plane
is for all practical purposes blind. Even with the assumed
sizeable event rate corresponding to 300 fb−1, the sensi-
tivity to OW and Otϕ is limited, with some mixing between
the two operators.
We visualize this maximum sensitivity to dimension-six

operators in Fig. 12. With the exception of OWW , an
optimal measurement can probe all operators at the Δg ≈
0.1…0.2 level, equivalent to Λ=

ffiffiffiffiffiffiffiffi
fϕ;2

p
≈ 600…750 GeV.

There are large differences between local and global
distances already at the d ¼ 2 level, implying that a
measurement of this channel will always be sensitive to
the squared dimension-six terms.

B. Differential information

In Fig. 13, we show the distribution of this information
over phase space. More distributions are shown in
Appendix A 3. As expected, the information is concen-
trated in the mγγ ∼mH peak and in the high-energy tails of
transverse momenta. Studying angular correlations
between the Higgs system and the top decay products,

FIG. 11. Example Feynman diagrams for Higgs production
with a single top, not resolving the loop-induced Hγγ coupling.
The red dots show the Higgs interactions affected by the
dimension-six operators of our analysis.
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we find that the region Δηγγ;bjj ≲ 3 contains a lot of
discrimination power.

C. Information in distributions

In a next step, we compare this full information to
the reduced information in one-dimensional and two-
dimensional distributions of kinematic observables. We
now require harder cuts,

pT;j1 > 50 GeV pT;γ > 50; 30 GeV

122 GeV < mγγ < 128 GeV; ð25Þ

which reduces the background to the level of the signal.
We then analyze the distributions [20,28]:

(i) pT;γ1 with bin size 25 GeV up to 400 GeV and an
overflow bin;

(ii) mγγ with bin size 1 GeV in the allowed range of
123:::127 GeV;

(iii) pT;γγ with bin size 40 GeV up to 600 GeV and an
overflow bin;

(iv) Δϕγγ with bin size π=10;
(v) pT;j1 with bin size 40 GeV up to 400 GeV and an

overflow bin;
(vi) pT;b with bin size 40 GeV up to 400 GeV and an

overflow bin;
(vii) pT;bjj with bin size 40 GeV up to 600 GeV and an

overflow bin;
(viii) Δϕγγ;b with bin size π=10;
(ix) Δηγγ;b with bin size 0.5 up to 5.0 and an over-

flow bin;

FIG. 13. Distribution of the Fisher information in the Higgs plus single top channel (shaded red). We also show the normalized SM
signal (solid black) and single-top background (dotted grey) rates. The dashed blue line shows the effect of ftϕv2=Λ2 ¼ 0.2. The last bin
is an overflow bin.

FIG. 12. Error ellipses defined by the Fisher information in Higgs plus single top production. We show contours of local distance
dlocalðg; 0Þ (dashed) and global distance dðg; 0Þ (solid). The colored contours indicate distances of d ¼ 1:::5. In grey we show example
geodesics. The gi not shown are set to zero.
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(x) mγγbjj with bin size 100 GeVup to 1500 GeVand an
overflow bin;

(xi) pT;γγbjj with bin size 40 GeV up to 400 GeV and an
overflow bin;

(xii) Δϕγγ;bjj with bin size π=10;
(xiii) Δηγγ;bjj with bin size 0.5 up to 5.0 and an over-

flow bin.
As in the WBF case, different observables probe differ-

ent Wilson operators. Figure 14 shows that the di-photon
transverse momentum constrains mostly the OW direction,
while the rapidity separation between the Higgs and top
systems is more sensitive to Otϕ.
In Fig. 15, we compare the eigenvalues, eigenvectors

and determinants of the information matrices in all of
the above distributions. We confirm that the photon
observables mostly probe changes in the Higgs-
gauge coupling from OW , while a rescaled top
Yukawa will be visible in the properties of the top
decay products. Distributions of the properties of the b
jet consistently contain significantly less information
than the corresponding distributions for the recon-
structed top system. The rapidity difference between
the γγ system and the reconstructed top provides a
particularly good probe of this operator [20]. Combining
this variable with the transverse momentum of the γγ
system we can probe new physics scales in the Oϕ;2 −
OW −Otϕ space around 550 GeV, compared to 700 GeV
for the fully differential cross section. This corresponds
to almost 3 times more data under our simplifying
assumptions.

FIG. 15. Fisher information for the Higgs plus single top channel exploiting the full phase space, after the cuts in Eq. (25), and for
several kinematic distributions. The top panel shows the eigenvalues, the colors denote the composition of the corresponding
eigenvectors. The right axis translates the eigenvalues into a new physics reach for the corresponding combination of Wilson
coefficients. In the bottom panel, we show the determinants of the Fisher information restricted toOϕ;2,OW , andOtϕ, normalized to the
full information. Again, the right axis translates them into a new physics reach.

FIG. 14. Information from histograms compared to the full
information (black), shown as contours dlocalðg; 0Þ ¼ 1. We
include pT;γγ , Δηγγ;bjj, their naive combination assuming no
mutual information, and their two-dimensional histogram. The gi
not shown are set to zero.
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VI. CONCLUSIONS

We have used information geometry to calculate the
maximum sensitivity of Higgs measurements to dimension-
six operators, to understand the structure of the observ-
ables, and to discuss how to improve these measurements.
Our approach is based on the Fisher information matrix,
which according to the Cramér-Rao bound defines the
maximum precision that can be achieved in a measurement.
Unlike traditional multivariate analysis techniques, it is
designed for continuous, high-dimensional parameter
spaces like effective field theories. We have demonstrated
how the Fisher information can be reliably calculated using
Monte Carlo techniques.
Going beyond global statements, the Fisher information

can be studied differentially to understand how the dis-
criminating power is distributed over phase space, which
helps guide event selection strategies. Moreover, we can
also calculate the information contained in subsets of
kinematic distributions. This helps us determine which
observables are the most powerful, and allows us to
compare the constraining power in conventional analyses
with one or two variables to that in more complex
multivariate analyses.
Our first testing ground was Higgs production in weak

boson fusion with decays into a tau pair or into four leptons.
Crucial information comes from the high-energy tails as
well as from angular correlations between jets. Decay
kinematics hardly adds any information, since the momen-
tum flow is limited by the Higgs mass and gauge invariance
forces us to include operators with a momentum depend-
ence. Tight cuts on the rapidity separation of the tagging
jets throw away a large amount of discrimination power.
Under idealized conditions, conventional analyses based on
a simple event selection and standard kinematic distribu-
tions can probe new physics scales around 900 GeV in the
early phase of run II. Multivariate analyses have the
potential to significantly enhance the sensitivity and probe
new physics scales of up to 1.2 TeV.
In Higgs production with a single top, we find that

kinematic properties of the Higgs decay products and
observables in the top system provide orthogonal informa-
tion. The transverse momenta of the di-photon system as
well as the rapidity separation of the γγ and bjj systems are
powerful observables. But even with HL-LHC data these
distributions are only sensitive to new physics scales
around 550 GeV, while a multivariate analysis might be
able to probe scales up to 700 GeV.
To summarize, information geometry provides a

powerful and intuitive tool that can help understand
the phenomenology of models with a continuous, high-
dimensional parameter space, and in turn can be used to
optimize measurement strategies. We have demonstrated
this approach in different Higgs channels for dimension-six
operators, but it can easily be translated to other processes
and models.
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APPENDIX: ADDITIONAL RESULTS

1. A simple example

As a simple example, we study the Fisher information in
a number of rates nc measured in various Higgs channels c.
In the absence of systematic uncertainties, they follow
Poisson statistics,

fðnjνÞ ¼
Y
c

PoisðncjνcÞ ¼
Y
c

νncc e−νc

nc!
: ðA1Þ

We can calculate the Fisher information in terms of the
Poisson mean ν as

∂ log f
∂νc ¼ nc

νc
− 1

∂2 log f
∂νcνc0 ¼ −

δcc0nc
ν2c

Icc0 ≡ −E
�∂2 log f
∂νcνc0

����ν
�
¼ δcc0

νc
: ðA2Þ

If we express the expected count rates in terms of model
parameters gi, the Fisher information becomes

Iij ¼
X
c

1

νc

∂νc
∂gi

∂νc
∂gj : ðA3Þ

The matrix ∂νc=∂gi is determined by selection require-
ments, detector acceptance, and efficiencies. In the κ
framework, that only scales cross sections and branching
ratios, and the matrix ∂νc=∂gi is trivial to calculate in closed
form. For each channel, this matrix is singular, whichmeans
it measures one direction in parameter space and is blind to
all others. At least as many channels as parameters are
required to make the combined information in Eq. (A3)
nonsingular and remove all blind directions (assuming the
channels do not provide degenerate information, i. e. the
same eigenvectors in the Fisher information).
For illustration, we consider the case where we want to

measure one coupling g in one channel with the expected
number of events:
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ν ¼ LðσS þ σBÞ ¼ Lg2σ0 þ LσB: ðA4Þ
The Fisher information is then

I ¼ 4L
g2σ20

g2σ0 þ σB
¼ 4L

g2
σ2S

σS þ σB
: ðA5Þ

According to the Cramér-Rao bound, the standard
deviation of any unbiased estimator ĝ is at least

Δĝ
g

≥
1

g
ffiffi
I

p ¼ 1

2
ffiffiffiffi
L

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σS þ σB

p
σS

: ðA6Þ

The three terms show how the sensitivity to g profits from
the square in the cross section, the square-root dependence
on the statistics, and the dependence on the signal-to-
background ratio.

2. The MadFisher algorithm

We calculate the Fisher information in Eq. (7) with
Monte Carlo methods. WithZ

dxfð1ÞðxÞ →
X

events k

Δσk=σ; ðA7Þ

we find

IijðgÞ ¼
X
eventsk

L
ΔσkðgÞ

∂ΔσkðgÞ
∂gi

∂ΔσkðgÞ
∂gj ; ðA8Þ

requiring the differential cross sections and their derivatives
as input.
We first generate event samples for a number of bench-

mark parameters withMadMax [21]. This add-on to MadGraph 5

[26] allows us to simultaneously calculate differential rates

FIG. 16. Distribution of the Fisher information in the WBF H → ττ channel (shaded red). We also show the normalized SM signal
(solid black) and QCD Z þ jets (dotted grey) rates. The dashed blue line shows the effect of an exaggerated fWv2=Λ2 ¼ 0.5
(fWWv2=Λ2 ¼ 0.5 in the bottom right panel). The first (last) bins are underflow (overflow) bins.
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for different parameter points using the same phase-space
grid. Our FeynRules [30] model file of the relevant dimension-
six operators does not truncate operator effects atOð1=Λ2Þ.
MadMax requires fixed renormalization and factorization
scales, which we set following Ref. [7]. To keep the
calculation times manageable, we restrict some processes
to the dominant subprocesses, for instance to initial-state u
and d quarks in theWBF case. We then normalize the Higgs
rates to the LHC HXS WG recommendations for the total
cross section [7], calculating the effect of the different
acceptance regions with MadGraph 5. Background processes
are simply rescaled to MadGraph predictions.
A morphing technique allows us to calculate the differ-

ential cross sections and their derivatives at arbitrary
positions in parameter space [31]. The effect of Oϕ;2 and
systematic rate uncertainties (see Sec. A 4) is taken into
account analytically. The contributions from the other

operators are decomposed into a number of basis compo-
nents and can be exactly reconstructed from a set of
simulated benchmark points. Our example processes
require up to 70 such basis components (in the WBF H →
4l case).
We can then easily calculate the Fisher information

according to Eq. (A8). Finally, global distances as in Eq. (5)
are calculated in analogy to free fall in general relativity: a
starting point and a set of directions in parameter space
define the initial conditions, from which we numerically
calculate distances along curves defined by the geodesic
equation.

3. Additional distributions

In Fig. 16, we show the distribution of the differential
information in the WBF H → ττ channel over various

FIG. 17. Distribution of the Fisher information in the Higgs plus single top channel (shaded red). We also show the normalized SM
signal (solid black) and single-top background (dotted grey) rates. The dashed blue line shows the effect of ftϕv2=Λ2 ¼ 0.2. The first
(last) bins are underflow (overflow) bins.
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kinematic variables. Figure 17 contains similar distribu-
tions for the Higgs plus single top channel.

4. Systematic uncertainties

Our information geometry approach can easily be
extended to include systematic and theory uncertainties.

The parameter space then consists of nuisance parameters
νi in addition to the Wilson coefficients, and constraint
terms are added to the likelihood. If for instance the kth
parameter is a nuisance parameter with a Gaussian con-
straint term with width σk, the additional term in the Fisher
information reads

FIG. 18. Effects of Gaussian uncertainties of 5% and 10% on the total signal rate. In the left panel, we show the expected error ellipse
dlocalððg; νÞ; 0Þ ¼ 1 in the plane spanned by a physical parameter and the nuisance parameter ν rescaling the signal rate. In the right
panel, we show the error ellipses in the OW −Oϕ;2 plane after profiling over this systematic uncertainty.

FIG. 19. Fisher information for the WBFH → ττ channel profiled over a 10% signal rate uncertainty. We compare the information for
the full phase space, after the cuts in Eq. (15), and for several kinematic distributions. The top panel shows the eigenvalues, the colors
denote the composition of the corresponding eigenvectors. The right axis translates the eigenvalues into a new physics reach for the
corresponding combination of Wilson coefficients. In the bottom panel we show the determinants of the Fisher information restricted to
Oϕ;2, OW , and OWW , normalized to the full information. Again, the right axis translates them into a new physics reach.
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Iijðg; νÞ ¼ …þ δikδjk
σ2k

: ðA9Þ

This also applies to a log-normal constraint through
reparametrization of ν. Local and global distances now
refer to combined theory and nuisance parameters ðg; νÞ.
We define a profiled local distance between two points

gb and ga∶

dprofiledðgb;gaÞ ¼ min
ν

dlocalððgb; νÞ; ðga; 0ÞÞ: ðA10Þ

Equivalently, we can define a profiled Fisher information
matrix. Assuming the last parameter to be the only nuisance
parameter, the Fisher information matrix has the form

Iij ¼
�
Itheory m

mT n

�
; ðA11Þ

where Itheory is the informationmatrix restricted to the theory
parameters, the vector m describes the mixing between
theory and nuisance parameter, and n is the component that
only affects the nuisance parameters. Technically described
by the parallel projection of an ellipsoid, the projected Fisher
information is given by

Iprofiled ij ¼ Itheoryij −
mimj

n
: ðA12Þ

We demonstrate this for WBF Higgs production in the ττ
mode in Fig. 18. We assign a 5% or 10% Gaussian
uncertainty on the overall signal rate, representing, for
instance, missing higher orders, pdf, or efficiency uncer-
tainties. This significantly reduces the information in the

total rate and, thus, mostly the expected precision in the
Oϕ;2 direction. In Fig. 19, we show how the information in
various distributions is affected by such an uncertainty. The
new physics reach in the Oϕ;2 direction is reduced by
800 GeV.

5. Likelihood ratios and Fisher distance

There is some subtlety in the relationship between
standard likelihood ratio tests and the Fisher distance.
We anticipate that the confidence intervals in g will
continue to be based on likelihood ratio tests. While
both are invariant to reparametrization of g, nonlinear
terms in g that lead to curvature in the information
geometry can break the one-to-one relationship between
the expected value of the log-likelihood ratio and the Fisher
information distance.
In Fig. 20, we compare the two tools. As an example, we

study WBF Higgs production in the ττ mode and sample
parameter points g in the OW −OWW plane. For each of
these points, we calculate the local and global distance from
the SM defined by the Fisher information, as well as the
expected log-likelihood ratio:

qðgb;gaÞ≡ −2E
�
log

fðxjgbÞ
fðxjgaÞ

����ga

�
: ðA13Þ

For small significance deviations, the local and especially
the global distances are almost exactly equal to the
expected likelihood ratio, with differences only becoming
visible around the 3σ level. This demonstrates that different
statistical tools probe the same physics and can be chosen
based on convenience.

FIG. 20. Comparison of the local (left) and global (right) distances defined by the Fisher information with the expected local
likelihood ratio. We use WBF Higgs production in the ττ mode and sample parameter points in the OW −OWW plane.
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