
Revisiting B → K�ð→KπÞνν̄ decays

Diganta Das,1,* Gudrun Hiller,2,† and Ivan Nišandžić2,‡
1Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

2Institut für Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
(Received 5 March 2017; published 5 April 2017)

The rare decay B → K�ð→ KπÞνν̄ is expected to play an important role in searches for physics beyond
the Standard Model at the near future B-physics experiments. We investigate resonant and nonresonant
backgrounds that arise beyond the narrow-width approximation for theK�. Nonresonant B → Kπνν̄ decays
are analyzed in the region of low hadronic recoil, where B → Kπ form factors from the heavy-hadron-
chiral-perturbation theory are available. In a Breit-Wigner–type model interference-induced effects in the
K� signal region are found to be sizable, as large as 20% in the branching ratio. Corresponding effects in
the longitudinal polarization fraction FL are smaller, at most around a few percent. Effects of the broad
scalar states K�

0 and κ are at the level of percent in the branching fraction in the K� signal region and
negligible in FL. Since the backgrounds to FL are small, this observable constitutes a useful probe of form
factor calculations or, alternatively, of right-handed currents in the entire q2 region. The forward-backward
asymmetry in theKπ system, AK

FBL, with normalization to the longitudinal decay rate probes predominantly
S, P-wave interference free of short-distance coefficients and can therefore be used to control the resonant
and nonresonant backgrounds.

DOI: 10.1103/PhysRevD.95.073001

I. INTRODUCTION

The rare semileptonic hadron decays induced by jΔBj ¼
jΔSj ¼ 1 flavor changing neutral currents are sensitive
probes of the Standard Model (SM) and beyond. The
transitions b → slþl−, where l ¼ e, μ, have been the
subject of extensive theoretical and experimental studies
in the past several decades [1,2]. The main theoretical
challenges for the reliable extraction of Wilson coefficients
from the experimental data arise from the requirement
of the quantitative understanding of QCD backgrounds at
large distances. To test the SM and to improve the under-
standing of theoretical uncertainties one can pursue studies
with b → sνν̄ transitions, which are related by SUð2ÞL to
b → slþl− but not being subjected to sizable electromag-
netic contributions from charm quarks. While dineutrino
modes are theoretically better understood, they are exper-
imentally more challenging and have not been observed
to date. One can expect, however, that exclusive dineutrino
modes with SM branching ratios of ∼10−5 will be observed
and probed at the forthcoming Belle II experiment [3,4].
The current best limit is from the Belle Collaboration and
reads, at 90% confidence level [5],

BðB → K�0ν̄νÞ < 1.8 × 10−5; ð1Þ

which is just around the corner of the SM prediction.
Dedicated studies of the impact of new physics on b → sνν̄

processes can be found in the recent literature [6–10];
see also [11,12]. Here we focus on B0 → K0�ð→KπÞνν̄
decays and analyze the interplay of the SM induced
backgrounds for a K� meson beyond the narrow-width
approximation (NWA). Corresponding effects in B →
K�ð→KπÞlþl− decays from scalar states and nonresonant
contributions have been investigated previously in [13–15]
and [16,17], respectively. Interestingly, the S-wave fraction
in B → K�ð→KπÞμþμ− has recently been measured by the
LHCb Collaboration [18].
We consider only decays of neutral B mesons and omit

the charge indices throughout; the corresponding decays of
charged B mesons are additionally impacted by tree level
charged currents via a resonant tau lepton [19].
After setting the notation in Sec. II A, we give ampli-

tudes and distributions for an asymptotic final state K� in
Sec. II B. In Sec. III we work out effects from intermediate
scalar mesons K�

0 and κ, which contribute to the creation of
the outgoingKπ pair beyond the NWA forK�. Nonresonant
B → Kπνν̄ contributions for a Kπ mass around the one
of the K� are analyzed in Sec. IV. In Sec. V we conclude.
Auxiliary information is deferred to three appendixes.

II. GENERALITIES

We give the effective b → sνν̄ Hamiltonian used in
this work and some notation in Sec. II A and B → K�νν̄
distributions for a zero-width K� in Sec. II B.

A. Effective Hamiltonian and notation

We begin with the low energy effective Hamiltonian for
b → sνν̄ transitions following [6,8]
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Heff ¼ −
4GFffiffiffi

2
p λt

α

8π
½ðCL þ CRÞðs̄γμbÞ

þ ðCR − CLÞðs̄γμγ5bÞ�
X
i

ν̄iγ
μð1 − γ5Þνi þ H:c:;

ð2Þ

where λt ¼ VtbV�
ts is the product of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements and α is
the electromagnetic coupling constant. The νi denotes
the neutrinos with flavors i ¼ e, μ, τ. The value of the
Wilson coefficient CL within the SM was calculated at
the next-to-leading order in QCD [20–22]. It is given by
CL ¼ −XðxtÞ= sin2 θW , where xt ¼ m2

t =m2
W and XðxiÞ is

the corresponding loop function with XðxtÞ ¼ 1.469�
0.017 [11]. The right-handed Wilson coefficient CR is
negligible within the SM, but can be induced in beyond the
SM (BSM) scenarios. We therefore keep the explicit
dependence on this coefficient in the analytical expressions.
We denote the four-momenta of the B, K�, K, and π

mesons by pB; k; pK, and pπ , respectively, while the four-
momenta of the neutrino and the antineutrino are denoted
by pν and pν̄. We use q ¼ pν þ pν̄ and p ¼ pK þ pπ . mX
denotes the mass of the meson X ¼ B;K�; K; π. The
polarization vectors of the K� meson and the neutrino pair
in the rest frame of the B meson are given in Appendix A.

B. B → K�νν̄

We recall the expressions for the B → K�νν̄ decay
amplitude and differential decay rate for an asymptotic
K�-meson state. The amplitude for B → K�νiν̄i decays,
with fixed K� polarization n ¼ �; 0, can be written as

AðnÞ ¼ −
4GFffiffiffi

2
p λt

α

8π
hμðnÞlμ; ð3Þ

where

hμðnÞ ¼ ðCL þ CRÞhK�ðnÞjs̄γμbjBi
þ ðCR − CLÞhK�ðnÞjs̄γμγ5bjBi; ð4Þ

and lμ denotes the matrix element of the vector-minus-axial
neutrino current between the vacuum and the neutrino pair.
The matrix elements of the vector and axial-vector currents
between theB andK�mesons are parametrized in terms of the
standard form factors, explicitly given inAppendix B.We use
the B → K� form factors given in Ref. [23], which were
obtained from a combined fit [24] of lattice QCD [25] and
light-cone sum rules (LCSR) results [23].
The hadronic amplitudes hμ are written in terms of the

hadronic helicity amplitudes H, which are defined as
projections of the hadronic matrix onto the polarization
vectors of the neutrino pair for a given K� polarization n as

Hn ¼ ~ϵμ�n hμðnÞ; n ¼ �; 0: ð5Þ

For easier comparison with the literature, we switch
to the transversity basis of perpendicular ð⊥Þ and
parallel ð∥Þ polarizations via H⊥¼1=

ffiffiffi
2

p ðHþ−H−Þ and
H∥ ¼ 1=

ffiffiffi
2

p ðHþ þH−Þ, while the H0 remains unchanged
from Eq. (5). The hadronic transversity amplitudes then
read

H⊥ðq2Þ ¼
ffiffiffi
2

p ðCL þ CRÞλ1=2ðm2
B; q

2; m2
K�Þ

mB þmK�
Vðq2Þ;

H∥ðq2Þ ¼
ffiffiffi
2

p
ðCL − CRÞðmB þmK� ÞA1ðq2Þ;

H0ðq2Þ ¼ −
1

2mK�
ffiffiffiffiffi
q2

p ðCL − CRÞ

×

�
ðmB þmK� Þðm2

B −m2
K� − q2ÞA1ðq2Þ

−
λðm2

B; q
2; m2

K� Þ
mB þmK�

A2ðq2Þ
�
; ð6Þ

TABLE I. SM branching fractions in units of 10−6 for different cuts in p2 [see (25)] and q2 as indicated. The (first)
row with B → K�ν̄ν corresponds to the NWA, while in the second and third rows finite width effects (10) of the K�
have been included. The ranges given for the scalar resonance contributions correspond to the ranges of the scalar
form factors (B4) and the parameters in (11). Interference between the scalar- and vector-meson induced amplitudes
is lost upon cos θK integration such that the corresponding branching fractions can simply be added. The second
uncertainty in the last two rows stems mostly from the unknown strong phase δ. The symbol � � � indicates that
theoretical predictions are not available; see text for details.

Low q2 ∈ ½0–14� GeV2 High q2 ∈ ½14–19� GeV2

BðB → K�νν̄ÞjNWA 6.96� 0.76 2.50� 0.22
BðB → K�ð→ KπÞνν̄ÞjP-cut 6.01� 0.65 2.09� 0.22
BðB → K�ð→ KπÞνν̄ÞjSþP-cut 6.80� 0.73 2.29� 0.23

BðB → ðκ; K�
0Þð→ KπÞνν̄ÞjP-cut ½0.01 � � � 0.07� � � �

BðB → ðκ; K�
0Þð→ KπÞνν̄ÞjSþP-cut ½0.04 � � � 0.30� � � �

BðB → ðK� þ nonresÞð→ KπÞνν̄ÞjP-cut � � � 2.09� 0.22þ0.42
−0.29

BðB → ðK� þ nonresÞð→ KπÞνν̄ÞjSþP-cut � � � 2.29� 0.23þ0.62
−0.27
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where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ bcþ caÞ. The
differential decay distribution in q2, the square of the
invariant mass of the νν̄ pair, is then given as

dΓ
dq2

¼ 3
G2

Fjλtj2α2j~qjq2
128 × 3π5m2

B
½jH⊥j2 þ jH∥j2 þ jH0j2�; ð7Þ

with j~qj ¼ λ1=2ðm2
B;m

2
K� ; q2Þ=ð2mBÞ. Here, the overall

factor of 3 comes from the summation over three flavors
of the final state neutrinos. Formula (7) agrees with the
corresponding results in [6,8]. Integrating this distribution
over the full kinematic region 0 ≤ q2 ≤ ðmB −mK� Þ2 we
obtain for the SM branching ratio

BðB → K�ν̄νÞ ¼ ð9.49� 1.01Þ × 10−6; ð8Þ

consistent with [7,10,11]. Partial branching ratios in low
and high q2 regions are given in Table I; see Sec. III B
for the definition of our current choice of binning in q2.

Separate q2 regions are needed since form factors for the
background modes B → K�

0ð→KπÞνν̄ and B → Kπνν̄ are
presently not available in the full q2 region.

III. RESONANT CONTRIBUTIONS
B → Kresð→KπÞνν̄

In this section we treat the K� at finite width and include
intermediate scalar states decaying as well to Kπ. Such
effects have been studied previously for B → K�lþl−

decays [13–15] and measured recently by the LHCb
Collaboration [18]. In Sec. III Awe obtain decay amplitudes
and distributions for B→ ðK�;K�

0;κÞð→KπÞνν̄ decays. In
Sec. III B we work out their phenomenology.

A. Amplitudes and observables

The total, resonant amplitude with fixed polarization n of
the final Kπ pair can be written as

AðB → KresðnÞð→KπÞν̄iνiÞ ¼ −
4GFffiffiffi

2
p λt

α

8π

X
res

hKπjKresðnÞi½ðCL þ CRÞhKresðnÞjs̄γμbjBi

þ ðCR − CLÞhKresðnÞjs̄γμγ5bjBi�lμgBWresðp2Þ; ð9Þ

where p2 ¼ ðpK þ pπÞ2 denotes the square of the invariant
mass of the Kπ pair. We parametrize the propagator of the
intermediate vector K� resonance by a Breit-Wigner ansatz

gBWK� ðp2Þ ¼ 1

p2 −m2
K� þ imK�ΓK�

; ð10Þ

where ΓK� denotes the (constant) width of the K� [26]. In
the absence of B → K� form factors that take into account
the finite width of the K� we employ the available narrow-
width ones instead.
For the broad scalar states we follow Ref. [13] and

include the contribution of the K�
0ð800Þ≡ κ that modifies

the tail of the K�
0ð1430Þ resonance in the p2-region relevant

to the K�,

gBWscalarðp2Þ ¼ −
gκ

p2 − ðmκ − iΓκ=2Þ2

þ 1

p2 − ðmK�
0
− iΓK�

0
=2Þ2 : ð11Þ

We employ the mass and the width of the scalar state κ from
Ref. [27], and the ranges of the magnitude and argument of
gκ given in [13], which are compatible with D → K�lν
spectra [13,28]; see Table III for a compilation of numerical
input used in this work. For alternative descriptions, see
[29,30] and [16]. We checked explicitly that the model (11)

is consistent with the measurements of the scalar fraction
FS and the cos θK distribution in B → K�ð→ KπÞμþμ−
decays [18] and the p2 distribution near the K� [31]. In the
future experimental checks can be explicitly performed
directly for the dineutrino mode by measuring the inter-
ference observable b; see (18). As for the K� we neglect a
possible p2 dependence in the decay widths.
The K�; K�

0 → Kπ decay amplitudes are expressed in
terms of the couplings gK�Kπ and gK�

0
Kπ , defined as

hKiðpKÞπjðpπÞjK�ðk; nÞi ¼ cijðϵn · pKÞgK�Kπ;

hKiðpKÞπjðpπÞjK�
0ðkÞi ¼ cijgK�

0
Kπ: ð12Þ

Here, cij denote isospin factors that depend on the charges

of the final state mesons, i.e., jcþ−j ¼
ffiffiffi
2

p jc00j ¼ 1. The
magnitudes of the couplings can be obtained from the
corresponding decay rates using

ΓðK� → KiπjÞ ¼ jcijj2
24πm2

K�
g2K�Kπj~pKj3;

ΓðK�
0 → KiπjÞ ¼ jcijj2

8πm2
K�

0

g2K�
0
Kπj~pKj; ð13Þ

where j~pKj ¼ λ1=2ðm2
K�

ð0Þ
; m2

K;m
2
πÞ=2mK�

ð0Þ
. These couplings

are important for the understanding of nonperturbative
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strong interactions; gK�Kπ has been computed in lattice
QCD [32], consistent with data [26].
We write the amplitude for the K� → Kπ transition in the

Kπ rest frame using the components of the kaon’s four-
momentum, that is, for the coordinate system defined in
Appendix A, given by pμ

K¼ðEK;0;j~pKjsinθK;j~pKjcosθKÞ.
We defined θK as the angle between the kaon and the
opposite direction of the B meson in the Kπ rest frame.
The polarization vectors of the K� resonance in this frame
are ϵμ� ¼ 1=

ffiffiffi
2

p ð0;�1; i; 0Þ and ϵμ0 ¼ ð0; 0; 0; 1Þ, resulting
in ϵ� ·pK ¼−i 1ffiffi

2
p j~pKjsinθK;ϵ0 ·pK¼−j~pKjcosθK .

Using the projection (5) and the scalar form factor (B3),
we obtain the corresponding hadronic helicity amplitude

H0
0ðq2Þ ¼ ðCR − CLÞ

λ1=2ðm2
B; q

2; m2
K�

0
Þffiffiffiffiffi

q2
p fþðq2Þ: ð14Þ

For the form factor fþðq2Þ we use the results of the QCD-
sum-rules computation from Ref. [33]; see Appendix B.
To combine vector and scalar resonance effects we write

the differential decay rate for the four-body final state
process by introducing the helicity amplitudes, distin-
guished by the tildae labels, that incorporate, with the
use of Eq. (12), the subsequent decay amplitude of the
resonance into the final Kπ pair, that is,

~H∥;⊥ðq2;p2;cosθÞ ¼−i
1ffiffiffi
2

p gK�Kπj ~p0
Kj sinθKgBWK� ðp2Þ

×H∥;⊥ðq2Þ;
~H0ðq2;p2;cosθÞ ¼−gK�Kπj ~p0

KjcosθKgBWK�ðp2ÞH0ðq2Þ;
~H0
0ðq2;p2Þ ¼ gK�

0
Kπ

gBWscalarðp2ÞH0
0ðq2Þ; ð15Þ

where j ~p0
Kj is defined in Eq. (17) below. Using the

expression for the four-body phase space, e.g., [16,34],
we obtain the threefold decay distribution

d3Γ
dq2dp2d cosθK

¼ Nðq2Þj ~q0jj ~p0
Kj

8ð2πÞ5m2
B

ffiffiffiffiffi
p2

p � X
i¼∥;⊥;0

j ~Hij2 þ 2Reð ~H0
~H0�

0Þ þ j ~H0
0j2

�
;

ð16Þ

with

Nðq2Þ ¼ G2
Fλ

2
t α

2q2=ð8π2Þ;

j ~p0
Kj ¼ λ1=2ðp2; m2

K;m
2
πÞ
.�

2

ffiffiffiffiffi
p2

q �
;

j ~q0j ¼ λ1=2ðm2
B; p

2; q2Þ=ð2mBÞ: ð17Þ

Equation (7) is recovered in the NWA for the K� after
setting the scalar contributions to zero and integrating the
above distribution over cos θK in the interval ð−1; 1Þ.
The threefold differential decay distribution (16) can be

written as

d2Γ
dq2dp2d cos θK

¼ aðq2; p2Þ þ bðq2; p2Þ cos θK
þ cðq2; p2Þ cos2 θK; ð18Þ

where, schematically,

aðq2; p2Þ ∼
X
i¼∥;⊥

j~pKj2
jHij2
2

þ jH0
0j2;

bðq2; p2Þ cos θK ∼ −2j~pKjReðH0H0�
0Þ;

cðq2; p2Þcos2θK ∼ j~pKj2
�
jH0j2 −

X
i¼∥;⊥

jHij2
2

�
: ð19Þ

The parametrization (18) is general for contributions
from spin 0 and spin 1 kaon resonances. For spin ≥ 2
further powers of cos θK arise. The coefficient functions
aðq2; p2Þ; bðq2; p2Þ; cðq2; p2Þ represent the three indepen-
dent observables that can be measured in angular analysis
in θK. Instead of a, b, c for phenomenology we consider the
q2-differential decay rate,1

dΓ
dq2

¼ 2

�
aðq2Þ þ cðq2Þ

3

�
; ð20Þ

and the longitudinal polarization fraction of the vector
meson, FL [8],

FL ¼ dΓL=dq2

dΓ=dq2
;

dΓL

dq2
¼ 2

3
ðaðq2Þ þ cðq2ÞÞ; ð21Þ

both obtained after integration over p2. As usual, the q2-
averaged (binned) versions of ratio-type observables are
defined as

hFLi ¼
ΓL

Γ
; ΓðLÞ ¼

Z
q2max

q2min

dΓðLÞ
dq2

: ð22Þ

Note that FL does not depend on the Wilson coefficients if
right-handed currents can be neglected. In this case, which
includes the SM and which may be checked elsewhere, FL

is probing form factors in the entire q2 region. With a single
observable it is not possible to extract two form factor ratios
without further input. This is different in B → K�lþl−

1In what follows, a single argument implies that the other
variable has been integrated over, e.g., bðq2Þ ¼ R

dp2bðq2; p2Þ
and bðp2Þ ¼ R

dq2bðq2; p2Þ, etc.
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decays at high q2 which allows for a fit [35]. Within the
NWA for the K� we find after integration over the full q2

region

hFLiNWA ¼ 0.49� 0.04; ð23Þ

consistent with Ref. [8].
In addition, we consider the forward-backward asym-

metry AK
FB, or alternatively, A

K
FBL,

AK
FBðLÞ ≡

R
1
0 d cos θK

d2Γ
dq2d cos θK

−
R
0
−1 d cos θK

d2Γ
dq2d cos θK

ΓðLÞ

¼ bðq2; p2Þ
ΓðLÞ

; ð24Þ

induced by interference of the K� with intermediate scalar
states. It can be used to further check the size of the scalar
background, as pointed out for B → K�lþl− decays in
Ref. [13]. By the same argument, b ¼ 0 in the presence of
vector K� only. Note that contributions from bðq2; p2Þ
disappear from (18) after symmetric cos θK integration. In
the same way as in FL the dependence on Wilson
coefficients drops out in AK

FB if right-handed currents are
negligible. On the other hand, in AK

FBL only amplitudes with
CL − CR enter, so the Wilson coefficients cancel in this
ratio model independently.

B. Numerical analysis

We employ two different integration regions for p2

[16,18],

½ðmK� − 0.1 GeVÞ2; ðmK� þ 0.1 GeVÞ2� P cut

½ðmK þmπÞ2; 1.44 GeV2� ðSþ PÞ cut; ð25Þ

where the first one, termed P cut, refers to the K� “P-wave”
signal region. The second one, termed Sþ P cut, refers to a
wider region that allows one to study backgrounds, such as
S-wave contributions.
After fixing the integration limits for p2, the end point

in q2 is a function of p2, that is, q2max ¼ ðmB −
ffiffiffiffiffi
p2

p
Þ2.

Note that some care is required with the comparison of the
experimental results that follow from some choice of a
finite integration region in p2 with the result of Eq. (7). If
one assumes the Breit-Wigner type parametrizations, as
above, and applies the chosen p2 cut, the differential decay
rates over q2 and the resulting total rates are smaller than
those from Eq. (7). This can be explicitly seen from Table I
and has also been pointed in Ref. [36] for Bs → K�lν̄
decays.
We begin with the pure B → K�ð→KπÞνν̄ decays at

finite width. In Fig. 1 we show the branching ratio and FL

in the SM as functions of q2 in the signal (P-cut) window.
Note that FL goes to 1 and 1=3 at maximal and zero recoil,
respectively, as dictated by helicity. On top of the uncer-
tainty bands from B → K� form factors and parametric
inputs we show for FL exemplarily predictions from lattice
form factors [25,37]. Recall that FL is unaffected by BSM
physics if CR is negligible. As we will show, FL in addition
receives only small uncertainties from scalar and nonreso-
nant backgrounds. We therefore suggest it as a probe of
form factor calculations in the full q2 region.
In the following it becomes necessary to separate the

analysis into two q2 regions, “low q2” within the range
½0–14� GeV2 and “high q2” within q2 ∈ ½14–19� GeV2.
We refrain from presenting numerical predictions for
intermediate scalar resonances at high q2, where the
extrapolation of the scalar form factors Eq. (B4) into the
highly off-shell (for K�

0) region is required. Instead, we find
these effects to be highly subdominant in this region, their
kinematic suppression toward the high q2 region is evident

0 5 10 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q2 GeV2

d
dq

2
10

6
G

eV
2

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

q2 GeV2

F
L

q2

FIG. 1. Shown on the left is the differential SM branching fraction for the decay B → K�ð→KπÞνν̄ as the function of q2, integrated
over p2 within the P cut; see (25). Shown on the right is the longitudinal polarization fraction FLðq2Þ. Here, the (black) data points
correspond to form factor computations from lattice QCD [25,37]. The error bands result from the uncertainties in the form factors taken
from a combined fit [23], and parametric inputs.
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from Fig. 3. The other reason for a separation in q2 is the
nonresonant effects, whose description using chiral meth-
ods is expected to hold only at high q2; see Sec. IV. The
estimate of nonresonant effects in the low q2 region is
beyond the scope of this work.
The line shapes of the K� and the scalars are shown

in Fig. 2. They do not interfere in the B → ðK�; K�
0; κÞ

ð→KπÞνν̄ differential branching ratio. Contributions from
scalars underneath the K� peak can be probed with side-
band measurements or AK

FBðLÞ (24).
The impact of the intermediate scalar meson states on

B → K�ð→KπÞνν̄ is illustrated in Fig. 3. Shown is the
ratio of B → K�ð→KπÞνν̄ to B → ðK�; K�

0; κÞð→KπÞνν̄
differential branching ratios2 for different p2 cuts. After
integrating over cos θK, the information on the interference
between the scalar and vector amplitudes is lost and the
corresponding branching fractions can simply be added.
We find that the impact of the scalars drops with increasing
q2. It is at most∼10% for the Sþ P cut and a few percent in
the P cut.
After integrating over the low q2 region the ratio between

the corresponding integrated rates deviates from unity at the
level of at most ∼1% in the P cut and ∼4% for the (Sþ P)
cut. Branching ratios involving only the K� and only the
scalars integrated over the low q2 region are given in
Table I. The ranges given for the scalars correspond to the
minimal and maximal values obtained from the ranges of
the scalar form factors [see Eq. (B4) and the text below] and
parameters in (11).
For FL we find that its value for pure B → K�ð→KπÞνν̄

decays does not differ between NWA, the P- and (Sþ P)-
cut predictions at finite width. This can be expected since

the p2 dependence is universal for all ~Hi; see Eq. (15). We
also find that the effect of the scalar states on FL is
negligible compared to other sources of uncertainties. SM
values for FL are given in Table II.
In Fig. 4 we show the forward-backward asymmetry

integrated over the low-q2 region and normalized to the total
rate in this region (left plot) and the total longitudinal rate
(right plot), both integrated over p2 in the (Sþ P) cut. These
observables can be used to test the model of the scalar
contributions. The normalization to the longitudinal rate is
particularly useful, since the Wilson coefficients CL;R drop
out. AK

FBðLÞðp2Þ change sign across p2. Therefore, cancella-

tions arise from integration over p2 resulting in small values
of AK

FBðLÞðq2Þ, of the order of a percent.

IV. NONRESONANT CONTRIBUTIONS

We consider nonresonant contributions to the four-body
final state decay process. These contributions were studied
in [38] and were recently taken into account in B → K�ll

FIG. 2. Line shapes of the resonant K� (10) (solid blue line)
and scalar mesons [K�

0ð1430Þ; κð800Þ] (red line) at q2 ¼ 4 GeV2.
All input parameters are set to their central values, and gκ ¼
0.2; argðgκÞ ¼ π=2 (red solid line) and argðgκÞ ¼ π (red dashed
line); see Eq. (11). The (gray) shaded region corresponds to the P
cut in p2; cf. (25).

FIG. 3. The ratio of B → K�ð→KπÞνν̄ to B → ðK�; K�
0; κÞ

ð→KπÞνν̄ q2-differential branching ratios for different p2 cuts.
We set the B → K� form factors and other inputs to their central
values, except for the parameters which enter the scalar meson
contributions [B → K�

0 form factors, gκ , and other parameters in
(11)]. We leave these parameters free within the corresponding
errors, such that the boundaries of the above bands correspond to
the resulting minimal and maximal values.

TABLE II. hFLi in the SM for different cuts in p2 [see (25)] and
q2 binning as indicated (see Table I). The entries in the first row
are indistinguishable between the NWA and the finite width
treatment (10) with P and (Sþ P) cuts. The impact of scalar
mesons is negligible. The last row gives hFLi including non-
resonant contributions.

Low q2 ∈
½0–14� GeV2

High q2 ∈
½14–19� GeV2

hFLijNWA;P−;ðSþPÞ-cut 0.54� 0.04 0.34� 0.02
hFLiðB → ðK� þ nonresÞ
ð→KπÞνν̄ÞjP−;ðSþPÞ-cut

� � � 0.34� 0.02� 0.01
2This ratio corresponds to 1 − FS, where FS denotes the

fraction of scalar contributions [15].

DAS, HILLER, and NIŠANDŽIĆ PHYSICAL REVIEW D 95, 073001 (2017)

073001-6



decays in [16,17], as well as some time ago in D → Kπlν
processes in [39]. The nonresonant matrix elements of the
(axial-) vector currents between the B and the Kπ can be
parametrized as follows [38]:

hKiπjjs̄γμbjBi ¼ cijhϵμναβpν
Bðpα

K þ pα
πÞðpβ

K − pβ
πÞ;

hKπjs̄γμγ5bjBi ¼ cij½−iwþðpKμ þ pπμÞ
− iw−ðpKμ − pπμÞ − irqμ�; ð26Þ

where the form factors w�; h, and r are functions of q2, p2,
and θK. They are presently not known from first principles
of QCD. We use the leading order heavy-hadron-chiral-
perturbation-theory (HHχPT) results [38,40]

w�ðq2; p2; θKÞ ¼ � gfBd

2f2
mB

v · pπ þ Δ
;

hðq2; p2; θKÞ ¼
g2fBd

2f2
1

ðv · pπ þ ΔÞðv · pKπ þ Δþ μsÞ
;

ð27Þ

where v denotes the four-velocity of the B meson,
f2 ¼ fπfK, Δ ¼ mB� −mB, and μs ¼ mBs

−mB. We
collect the corresponding numerical values of the inputs
in Table III. The results in (27) are expected to be valid only
in the kinematic range in which chiral perturbation theory
applies. This corresponds to pB · pπ;K=mB ≲ 1 GeV, which
is roughly satisfied in the high q2 region.
The nonresonant B → Kπνiν̄i decay amplitude can be

written as

AðB → Kπνiν̄iÞ ¼ −
4GFffiffiffi

2
p λt

α

8π
½ðCL þ CRÞhKπjs̄γμbjBi

þ ðCR − CLÞhKπjs̄γμγ5bjBi�lμ: ð28Þ

The nonresonant hadronic transversity amplitudes are
obtained by projecting the matrix elements (26) onto the
polarization vectors of the neutrino pair [see Eq. (5)],

Hnr⊥ ¼ðCLþCRÞsinθK
λ1=2ðm2

Kπ;m
2
K;m

2
πÞλ1=2ðm2

B;p
2;q2Þ

2
ffiffiffiffiffi
p2

p h;

Hnr
∥ ¼−ðCL−CRÞsinθK

λ1=2ðp2;m2
K;m

2
πÞffiffiffiffiffi

p2
p w−;

Hnr
0 ¼ iðCL−CRÞ

2
ffiffiffiffiffi
q2

p �
w−

1

p2
ððm2

K−m2
πÞλ1=2ðm2

B;q
2;p2Þ

−ðm2
B−p2−q2Þλ1=2ðm2

K;m
2
π;p2ÞcosθKÞ

þwþλ1=2ðm2
B;q

2;p2Þ
�
: ð29Þ

We model the threefold differential decay distribution
including resonance and nonresonance contributions as
follows:

d3Γ
dq2dp2d cos θK

¼ Nðq2Þj ~q0jj ~p0
Kj

8ð2πÞ5m2
B

ffiffiffiffiffi
p2

p ½je−iδ ~H⊥ þHnr⊥ j2

þ je−iδ ~H∥ þHnr
∥ j2 þ je−iδ ~H0

þHnr
0 þ e−iδ ~H0

0j2�: ð30Þ

Here, we included δ, a relative strong phase. There is just a
single phase for all transversity amplitudes because all
individual form factors can be chosen real valued and by
approximate universality of the low recoil region. In view
of other uncertainties we do not consider δ depending on
q2, because one expects the phase to only slowly vary with
q2. However, δ should vary with p2. In neglecting this
effect, which, in principle, could be taken care of, the strong
phase becomes an effective p2-bin averaged phase.
We stress that (30) is a model, with model parameter δ.

Alternative descriptions would include modified Breit-
Wigner propagators for the K� and B → K� form factors
that take into account finite width effects. The model (30)
can be improved by data, for instance, by measurements of
the line shape outside the K� signal region; see Fig. 5.

FIG. 4. The forward-backward asymmetry AK
FBðp2Þ (plot to the left) and AK

FBLðp2Þ (plot to the right) defined in (24) integrated over the
low q2 region. The corresponding decay rates have been integrated over the low q2 region and the (Sþ P) cut in p2.
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Furthermore, δ can be constrained from measurements
of the ratios of angular coefficients in the process
B → K�lþl−, e.g., I7=I5, I7=I6; see Eq. (14) in [17] for
the complete list and more details. These angular coef-
ficients are not observable in the dineutrino mode. The
benefit of using these ratios, as opposed to the total rate, lies
in their independence on short-distance physics in the limit
in which the right-handed operator can be neglected. Note
that the angular coefficients become sensitive to the relative
strong phase only in the p2 region below and above the
signal region (P cut); see [17]. Data on these coefficients
exist at present only for the signal region [45].
The nonresonant amplitudes can be expanded in terms

of orthonormal functions of the angle θK , resulting in a
distribution that is more complicated than (18), which
arises solely from vector and scalar meson states. Once
higher waves l ≥ 2 are present, the definition of the
angular observables FL and AK

FBðLÞ becomes more subtle.

Here we use the projections via associated Legendre poly-
nomials P0

0¼1, P0
1 ¼ cos θK , P0

2¼1=2ð3cos2θK−1Þ as

dΓL

dq2
¼
Z

1

−1

d2Γ
dq2dcosθK

�
1

3
P0
0þ

5

3
P0
2

�
dcosθK; ð31Þ

bðq2; p2Þ ¼
Z

1

−1

d2Γ
dq2dp2d cos θK

3

2
P0
1d cos θK; ð32Þ

from which hFLi and AK
FBðLÞ follow as in Eqs. (22) and (24),

respectively. In the limit in which only l ¼ 0 and l ¼ 1
effects are accounted for, one can insert the distribution (18)
into the above formula to recover (21). Consequently, b
probes predominantly S, P-wave interference.
To illustrate the effect of the nonresonant amplitudes we

present in Fig. 6 the contributions to the branching fraction
and hFLi, integrated over the high q2 region, as functions
of the strong phase and normalized to the pure K� case. We
find that the resulting uncertainty in the branching fraction
is significant and can reach up to 20% in the P cut, while in
hFLi it is smaller, at most at the level of 2.5%.
We quantify the effect of the nonresonant contributions

at high q2 on the branching ratio in the last two rows of
Table I. The corresponding central value and the first errors
are the same as the corresponding entries for the resonant
contributions (two rows above). The second errors are the
result of the variation of the parameters of the nonresonant
form factors (including the strong phase δ) via uniform
distributions, while keeping all other inputs fixed to their
central values. The upper and lower errors represent the
maximal and minimal distances from the central value. The
corresponding predictions for FL are given in last row of
Table II.
In Fig. 7 we show AK

FBL for different values of the strong
phase δ. Other numerical input is fixed to central values.
While in AK

FBL the Wilson coefficients CL;R drop out in the
l ¼ 0, 1 limit, there is a residual dependence from the
interference of the K� resonance with the D-wave compo-
nents of the nonresonant amplitude. We checked that this
effect is much smaller than the dependence on the strong

FIG. 5. Line shapes of the resonant K� contribution (solid blue
line), purely nonresonant contribution (dashed red line), and the
line shapes which also include interference effects for different
values of the strong phase δ ¼ 0;�π=2; π at q2 ¼ 16 GeV2. The
(gray) shaded region corresponds to the P cut in p2; cf. (25).

FIG. 6. Plot on the left: the ratio of B → ðK� þ nrÞð→KπÞνν̄ to B → K�ð→KπÞνν̄ in high-q2-integrated branching fractions as a
function of the relative strong phase δ. Plot on the right: the same for FL. We fixed the B → K� form factors and other parametric inputs
to their central values and varied the parameters in the nonresonant form factors via uniform distributions. The boundaries of the bands
correspond to minimal and maximal values obtained in this way. The darker and lighter blue bands correspond to P and (Sþ P) cuts
(25), respectively.
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phase δ, which allows one to experimentally constrain δ.
Note that the corresponding uncertainties from the B → K�
form factors are between 5%–8%, while the nonresonant
form factors introduce additionally ∼15%. Already a rough
determination of δ would significantly reduce the uncertain-
ties in the B → K�ð→KπÞνν̄ branching fraction; see Fig. 6.
Although presently there is no theory prediction avail-

able for nonresonant decays at low q2, AK
FBðLÞ can be studied

here experimentally as well to constrain the (nonresonant)
backgrounds also in this region.

V. CONCLUSIONS

We revisited the decay B → K�νν̄, its virtues, and its
uncertainties. B → K�νν̄ data on FL can be used, unlike
B → K�lþl− decays, in the entire q2 region to test
B → K� form factors from lattice QCD or other non-
perturbative means in a model-independent way if
right-handed currents can be neglected. The latter can
be tested, for instance, using null tests of the B → K�lþl−

angular distribution. The plot to the right in Fig. 1
illustrates the current level of form factor uncertainties.
Probing form factors is limited by the resonant and
nonresonant contributions considered in this work.
They need to be taken into account once the K� is treated
beyond the narrow-width approximation.
We analyzed (i) finite width effects of the K�, (ii) the

effects induced by nonresonant contributions in the region
of low hadronic recoil (high q2), and (iii) contributions
from scalar resonances decaying to Kπ at low q2. The
restrictions to the kinematic regions in (ii) and (iii) originate
from the current availability of B → Kπ and B → ðK�

0; κÞ
form factors, respectively.
Our findings are summarized in Tables I and II. At high

q2 the nonresonant contributions in the model (30) intro-
duce an uncertainty ofOð0.1Þ in the branching ratio, and at
around a few percent in the longitudinal polarization
fraction FL. It is desirable to check these predominantly
interference-induced effects with either a global analysis of

rare decay data or further theoretical study. On the other
hand, the contributions of the scalar resonances to the
branching ratio in the low q2 region are small with respect
to other sources of uncertainty and are at most of the order
of 1% in the signal region (P cut) and ≲4% for the wider
Sþ P cut. Their effect on FL is negligible compared to the
uncertainties from the B → K� form factors.
The uncertainties in these backgrounds can be reduced

with better knowledge of the form factors and line shapes.
At high q2 contributions from the 1430 family of higher
kaon resonances are in addition kinematically suppressed.
For nonresonant contributions at low q2 presently no
theoretical calculation is available. The new observable
AK
FBL (24) and (32) shown in Figs. 4 and 7, respectively,

which arises from interference between the K� and the
background amplitudes, can be used to experimentally
constrain hadronic backgrounds efficiently irrespective of
the underlying short-distance model.
Because of the narrower width and absence of

prominent low mass s̄s scalars decaying to KK, the
backgrounds in Bs → Φð→KKÞνν̄ decays are smaller than
in B0 → K�ð→KπÞνν̄ decays. The problem of finite width-
related backgrounds may of course be avoided altogether
with the decay B → Kνν̄, which, however, allows one to
measure only its differential decay rate proportional to
f2þðq2ÞjCL þ CRj2.
There clearly is feedback from b → sνν̄ to b → slþl−

transitions and back: these modes are related by form
factors and other hadronic input, as well as by Wilson
coefficients in SUð2ÞL-symmetric SM extensions. On the
other hand, the dineutrino modes are not polluted by
electromagentic effects, and they do probe flavor physics
in a complementary way; notably, third generation leptons
are included and may shed light on ongoing and future tests
of lepton universality.
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FIG. 7. The forward-backward asymmetry AK
FBL obtained using (32) as a function of p2 after high q2 integration (plot to the left) and

as a function of q2 after Sþ P-cut integration (plot to the right) for different phases δ ¼ 0;�π=2; π and other input parameters fixed to
central values. In each plot the longitudinal rate (31) is integrated over the high q2 region and over p2 within the (Sþ P) cut (25).
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APPENDIX A: POLARIZATION VECTORS

Our conventions for the metric and Levi-Cività tensors
are gμν ¼ diagð1;−1;−1;−1Þ and ϵ0123 ¼ 1, respectively.
The choice of the polarization vectors of the neutrino pair in
the B-rest frame is given by

~ϵμ� ¼ 1ffiffiffi
2

p ð0;∓ 1; i; 0Þ; ~ϵμ0 ¼
1ffiffiffiffiffi
q2

p ðj~qj; 0; 0; q0Þ;

~ϵμt ¼
1ffiffiffiffiffi
q2

p ðq0; 0; 0; j~qjÞ; ðA1Þ

while the components of the four-vector qμ¼ðq0;0;0; j~qjÞ,
with j~qj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B; q
2; m2

K� Þ
p

=ð2mBÞ. The polarization vec-
tors satisfy the conditions of orthogonality and complete-
ness, respectively,

~ϵ�μm ~ϵμm0 ¼ gmm0 ;
X
m;m0

~ϵ�μm ~ϵνm0gmm0 ¼ gμν: ðA2Þ

The direction of the z axis is opposite to the direction of
motion of theK� in the B-rest frame. Polarization vectors of
the K� meson in this frame read

ϵμ�¼ 1ffiffiffi
2

p ð0;�1;i;0Þ; ϵμð0Þ¼ 1

mK�
ðkz;0;0;k0Þ; ðA3Þ

where kz ¼ −j~qj. These satisfy the orthogonality and
completeness relations

ϵ�μm ϵμm0 ¼−δmm0 ;
X
m;m0

ϵ�μm ϵνm0δmm0 ¼−gμνþkμkν

m2
K�

; ðA4Þ

where the indicesm ¼ 0, 1, 2, 3 are ordered asm ¼ t; 0;�,
respectively.

APPENDIX B: FORM FACTORS

The matrix elements of the vector and axial currents
s̄γμðγ5Þb between the B and the K� mesons with polari-
zation n are parametrized with the standard form factors
Vðq2Þ and A0;1;2ðq2Þ,

hK�ðk; nÞjs̄γμbjBðpBÞi ¼ ϵμναβϵ
�ν
n pα

Bk
β 2iVðq2Þ
mB þmK�

;

hK�ðk; nÞjs̄γμγ5bjBðpBÞi ¼ −ϵ�nμðmB þmK� ÞA1ðq2Þ

þ ðpBμ þ kμÞ
ϵ�n · q

mB þmK�
A2ðq2Þ

þ qμðϵ�n · qÞ
2mK�

q2

× ðA3ðq2Þ− A0ðq2ÞÞ; ðB1Þ

where

A3ðq2Þ ¼
mB þmK�

2mK�
A1ðq2Þ −

mB −mK�

2mK�
A2ðq2Þ: ðB2Þ

The matrix element for the final state scalar reads

hK�
0ðkÞjs̄γμγ5bjBðpBÞi ¼ ðpB þ kÞμfþðq2Þ þ qμf−ðq2Þ:

ðB3Þ

The form factors for B → K�
0ð1430Þ are calculated within

QCD sum rules (QCDSR) [33]. In our numerical
analysis we use QCDSR form factors which are para-
metrized as [33]

fiðq2Þ ¼
fið0Þ

1 − aiðq2=m2
BÞ þ biðq2=m2

BÞ2
; ðB4Þ

where ai, bi for i ¼ þ;− are fit coefficients. In the limit
of vanishing lepton masses only fþðq2Þ contributes. The
corresponding parameters are fþð0Þ ¼ 0.31� 0.08,
aþ ¼ 0.81, and bþ ¼ −0.21 [33].

APPENDIX C: NUMERICAL INPUT

In Table III we collect the numerical values of the inputs
used in this paper.

TABLE III. Numerical values of the inputs.

Parameter Value Source

jV�
tsVtbj 0.0401� 0.0010 [41]

αeðmbÞ 1=127.925ð16Þ [26]
ΓðB0Þ ð4.333� 0.020Þ × 10−13 GeV [26]

ΓðBsÞ ð4.342� 0.032Þ × 10−13 GeV [26]

mK�
0

1425� 50 MeV [26]

ΓK�
0

270� 80 MeV [26]

mκ 658(13) MeV [27]
Γκ 557(24) MeV [27]
jgκj [0…0.2] [13]
arg gκ ½π=2 � � � π� [13]
fπ 130.4� 0.2 MeV [26]
fK 156.2� 0.7 MeV [26]a

fBd
188� 4 MeV [42]

fBs
224� 5 MeV [42]

g 0.569� 0.076 [43,44]a

aUncertainties added in quadrature.
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