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We present a new calculation of the mass and width of the exotic 0−− glueball in the framework of the
QCD sum rules. We next construct a new current which couples to a pure 0−− gluon state and derive
consistent and stable sum rules. A previously used current in this approach was shown to be inconsistent.
We obtain for this state a mass MG ¼ 6.3þ0.8

−1.1 GeV and an upper limit for the total width ΓG ≤ 235 MeV.
These values can be used as an important guide for the experimental search of this exotic state. We argue
that the mixing of this glueball state with the 0−− tetraquark is very small. Therefore, the exotic 0−− glueball
can be considered as a pure gluon state.
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Glueballs carry very important information on the
gluonic sector of QCD, and their study is one of the
fundamental tasks in strong-interaction physics. While
glueballs are predicted by QCD, there has been no clear
experimental evidence of their existence, and so they
remain as of yet a subject of theoretical and experimental
research (see Refs. [1,2]). For this reason, the study of
glueball candidates is included in many programs of
presently running and future experiments.
One of the main problems of glueball spectroscopy is the

mixing of the glueballs with ordinary meson states, which
leads to difficulties in disentangling the glueball compo-
nents in experiments. In this connection, the discovery of
the exotic 0−− glueball would be extremely useful, because
it does not mix with any qq̄ states. It is therefore very
important to investigate the properties of this glueball
within a QCD-based approach. One of the most successful
approaches to studying strong-interaction spectroscopy is
the QCD sum rules (SRs) method [3].
In this paper, for the first time, a consistent SR for the

exotic 0−− glueball is obtained. We calculate the operator
product expansion (OPE) of the correlator up to dimension
8 with a new interpolating current which couples to this
pure gluon state, and show that there is good stability for
the SR. From this stable SR, a prediction for the mass and
an upper limit of the total width of this state are found.
The QCD SR approach [3] for a bound state consists of

two parts. One is the calculation of the OPE of the
correlator defined by

ΠðQ2Þ ¼ i
Z

d4xeiqxhJð0ÞJ†ðxÞi; ð1Þ

where the current couples to the gluonic bound state jGi in
our case as

h0jJjGi ¼ FGMN−2
G :

Here Q2 ¼ −q2, N is the dimension of the current J, FG is
the decay constant, and MG is the mass of the state. To
construct the SR, we follow for the second part—usually
called the phenomenological part—the pioneering work of
Ref. [3] and the recent study of the scalar and pseudoscalar
glueballs by Forkel [4]. Putting these pieces together, the
corresponding SR for a zero-width resonance model of
the spectral density, [ρ ∼ δðs −M2

GÞ þ continuum], has the
following form:

1

π

Z
s0

0

ImΠðOPEÞð−sÞ
sþQ2

ds ¼ F2
GM

2ðN−2Þ
G

M2
G þQ2

; ð2Þ

where ΠðOPEÞð−sÞ is the OPE of the correlator, Eq. (1), and
s0 is the continuum threshold. It is known that the 0−− state
cannot couple to a three-gluon interpolating current without
derivatives [5]. In Ref. [6], a very specific current with
derivatives has been constructed to obtain the mass of the
three-gluon exotic glueball. However, in Ref. [7], it has
been demonstrated that this current leads to the incon-
sistency of QCD SRs. Here we propose a new gauge
invariant current with derivatives which couples to the 0−−

state. It has the general form

JðxÞ ¼ 2

3
g3sϵijkTrððOiGμνðxÞÞðOjGνρðxÞÞðOkGρμðxÞÞÞ;

ð3Þ

where Ga
μν is the field-strength tensor, ~Ga

μν ≡ Ga
αβiϵμναβ=2,

and the operators Oi are the products of covariant
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derivatives Oi ¼ Dα1 � � �Dαn . The lowest-dimensional
current in this form that has a nonzero LO perturbative
contribution to the SR corresponds to

O1GμνðxÞ ¼ Dα1Dα2Dα3
~GμνðxÞ;

O2GμνðxÞ ¼ Dα1Dα2GμνðxÞ;
O3GμνðxÞ ¼ Dα3GμνðxÞ: ð4Þ

In general, one might construct other interpolating currents
which couple to the 0−− state and include four gluons [8],
for example. However, the consideration of these states is
beyond of the scope of our paper and will be the subject of
our future study. The coefficient in the current Eq. (3) was
chosen to have the leading term in the following form:

JðxÞ¼LOg3sdabc ~Ga
μν;τ1τ2τ3ðxÞGb

νρ;τ1τ2ðxÞGc
ρμ;τ3ðxÞ; ð5Þ

where Ga
μν;τ1τ2���τn ¼ ∂τ1∂τ2 � � � ∂τnG

a
μν. Using this current

with Eqs. (3) and (4), we have calculated the OPE of the
correlator up to the dimension-8 operators, given by

ΠðOPEÞðQ2Þ ¼ ΠðpertÞ þ ΠðG3Þ þ ΠðG4Þ þ � � �

¼ −5α3s
11!4π

Q20L

þ −5πα3s
3325

Q14

�
hgG3i − hJ2i

4
ð5þ 2LÞ

�

þ 205π2α2s
2632

Q12Lhα2sG4i þ � � � ; ð6Þ

where αs ¼ g2s=ð4πÞ is the coupling constant, L ¼
lnðQ2=μ2Þ, μ2 is the renormalization scale, the
dimension-6 condensates are hgG3i ¼ hgfabcGa

μνGb
νρGc

ρμi
and hJ2i ¼ hJaμJaμi with the quark current Jaμ ¼ q̄γμtaq, and
the dimension-8 condensate is

hα2sG4i ¼ hðαsfabcGb
μνGc

αβÞ2i − 2hðαsfabcGb
μνGc

νβÞ2i:

We adopt the Mathematica package FEYNCALC [9] to
handle the algebraic manipulation.
In contrast with the previous study [6] mentioned above,

we have a positive LO imaginary part, and therefore, we
expect a consistent SR.Wewould like to emphasize that the
so-called direct instantons, which affect strongly the SRs
for the 0þþ and 0−þ two-gluon states [4,10,11], do not
contribute in this case due to the symmetric color structure
of the current, Eq. (3).
Following the method developed in Ref. [3], we apply

the Borel transformation B̂,

B̂Q2→M2 ½ΠðQ2Þ� ¼ lim
n→∞

ð−Q2Þn
ΓðnÞ

�
dn

dQ2nΠðQ2Þ
�
Q2¼nM2

;

to both sides of the SR, Eq. (2). Using the Borel trans-
formation allows us to reduce the SR uncertainties by
suppression of the contributions from excited resonances
and higher-order OPE terms. After the Borel transforma-
tion, the new sum rule is

X
t

Rt
0ðM2; s0Þ ¼ RðresÞ

0 ðM2; s0Þ; ð7Þ

where M2 is the Borel parameter,

Rt
0ðM2; s0Þ ¼

1

π

Z
s0

0

dsImΠtð−sÞe−s=M2

;

RðresÞ
0 ðM2; s0Þ ¼ M20

G F2
Ge

−M2
G=M

2

;

and Πt denotes the different contributions to OPE of the
correlator: the perturbative term (pert), and the dimension-6
(G3) and dimension-8 (G4) nonperturbative terms. To
extract the mass from the SR, we use a family of derivative
SRs obtained by differentiation with respect to the Borel
parameter M2:

Rt
kðM2; s0Þ ¼ M4

d
dM2

Rt
k−1ðM2; s0Þ:

We define the difference of the OPE result and the
continuum contribution as

RðSRÞ
k ðM2; s0Þ

¼ RðpertÞ
k ðM2; s0Þ þRðG3Þ

k ðM2; s0Þ þRðG4Þ
k ðM2; s0Þ:

Then the master sum rule (k ¼ 0) and the derivative SRs
(k > 0) can be expressed by the following equations:

RðSRÞ
k ðM2; s0Þ ≈RðresÞ

k ðM2; s0Þ: ð8Þ

The fiducial window M2 ∈ ½M2
−;M2þ� is limited by the

conditions that insure the reliability of the resonance model
and the OPE; i.e.,

jRðG4Þ
k ðM2;∞Þj=RðSRÞ

k ðM2;∞Þ < 1=3;

RðresÞ
k ðM2; s0Þj

RðSRÞ
k ðM2;∞Þ

≈
RðSRÞ

k ðM2; s0Þj
RðSRÞ

k ðM2;∞Þ
>

1

10
: ð9Þ

Then the QCD SRs for the mass and the decay constant can
be presented in the form
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Mk
GðM2; s0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðSRÞ

kþ1 ðM2; s0Þ
RðSRÞ

k ðM2; s0Þ

s
;

Fk
GðM2; s0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eM

2
G=M

2

RðSRÞ
k ðM2; s0Þ

q
M10

G
: ð10Þ

We define the mass and decay constant by minimization
of the criteria δkðsbf0 Þ ¼ δmin

k with respect to the threshold s0
and find the best-fit value sbf0 :

δkðs0Þ ¼
max jMk

GðM2
i ; s0Þ −Mk

Gðs0Þj
Mk

Gðs0Þ
;

Mk
Gðs0Þ≡ 1

nþ 1

Xn
i¼0

Mk
GðM2

i ; s0Þ;

where we consider n ¼ 20 points in the fiducial interval
M2

i ¼ M2
− þ ðM2þ −M2

−Þi=n. In Fig. 1, we present the
k ¼ 0 results for the glueball mass and decay constant
as a function of the Borel parameter. As one can see, we
have a rather good stability plateau for both quantities.
Finally, we define the decay constant and mass as an

average in the fiducial interval for the best-fit value of the
threshold:

MG ¼ Mk
Gðsbf0 Þ;

F2
G ¼ 1

nþ 1

Xn
i¼1

eM
2
G=M

2
i

M20
G

RðSRÞ
k ðM2

i ; s
bf
0 Þ:

We next follow the common practice of the renormal-
ization group improvement of the SR: in ImΠtð−sÞ all
coupling constants are replaced by αs → αsðM2Þ. We use
the strong coupling constant

αsðQ2Þ ¼ 4π

b0 lnðQ2=Λ2
QCDÞ

;

with b0 ¼ 11 − 2Nf=3 and QCD scale ΛQCD ¼ 300 MeV.
Since we are working in gluodynamics, we set the number

of flavors Nf ¼ 0 and eliminate the quark and quark-gluon
condensate contributions. The dimension-6 three-gluon
condensate hgG3i does not contribute here due to absence
of the correspondent lnðQ2Þ terms in the correlator, Eq. (6).
For the dimension-8 gluon condensate, the hypothesis of
vacuum dominance yields the relation

hα2sG4i ¼ 3

24
hαsG2i2:

In our case, the mass of the exotic glueball is determined
by the squared value of the gluon condensate hαsG2i ¼
hαsGa

μνGa
μνi. Unfortunately, this value is not well known.

Following the analyses carried out in Refs. [12–15], we
take �

αs
π
G2

�
¼ 0.012� 0.006 GeV4:

Implementing the QCD SR analysis described above, we
obtain for the prediction of the mass and the decay constant
from the k ¼ 0 SR [see Eqs. (8) and (10)]

MG ¼ 6.3þ0.8
−1.1 GeV; FG ¼ 67� 6 keV: ð11Þ

The mass and decay constant estimates for the higher
values of k ¼ 1, 2, 3 are in agreement, within the error bars,
with the k ¼ 0 case considered. The SR analysis in full
QCD (number of flavors Nf ¼ 3 and nonzero quark
condensate hJ2i) leads to a reduction of the glueball mass
by 0.2 GeV. The mass of the exotic glueball in Eq. (11) is
not far away from the recent unquenched lattice result
MG ¼ 5.166� 1.0 GeV [16] obtained with a rather large
pion mass mπ ¼ 360 MeV.
Here we would like to note that there are three sources of

uncertainties in the above analysis for the mass and decay
constant: (i) the variation of the gluon condensate, (ii) the
stability of the SR triggering the Borel parameter M2

dependence in terms of the criteria δmin
k , and (iii) the

roughly estimated SR uncertainty coming from the OPE

FIG. 1. We show the dependence on the Borel parameter of the mass (left panel) and the decay constant (right panel) for the central
value of the gluon condensate and best-fit value of the threshold sbf0 . Both panels are given for the k ¼ 0 case. The vertical lines denote
the fiducial interval of the Borel parameter where conditions of confidence, Eq. (9), are saturated. The horizontal lines denote average
values at fiducial interval.
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truncation. The latter uncertainty for the decay constant
comes from the definition of the fiducial interval, Eq. (9), in
the standard assumption that the contribution from the
missing terms is of the order of the last included non-
perturbative term squared: ð1=3Þ2 ∼ 10%. The same error
for the mass can be expected to be suppressed, since

the related errors for RðSRÞ
kþ1 and RðSRÞ

k are correlated. The
presumable underestimation of uncertainties related to the
OPE truncation is unlikely due to a conservative choice
of the gluon condensate uncertainty. The considered three
sources of uncertainty can be given in percentages of the
final uncertainty for the mass and the decay constant:

MG ¼ 6.3þ12%
−17% � 0.5%� 0% GeV;

FG ¼ 67þ2%
−3% � 0.6%� 5% keV;

where the first uncertainty is related to gluon condensate
variation, the second is representing the stability of SR, and
the third is OPE truncation uncertainty.
The best-fit threshold value is sbf0 ¼ 52.4þ12.6%

−16.2% GeV2

when only the uncertainty of the gluon condensate is
included. Note that the fiducial interval for the central
value of the gluon condensate is M2 ∈ ½3.7; 7.3� GeV2.
The glueball width can be estimated in the QCD SR

approach also using the broad resonance distribution. The
good stability of the zero-width-resonance-based SR,
Eq. (2), shows that we can extract only the upper limit
of the glueball width from the QCD SR. The simplest way
to introduce the width is by using unit step functions [11]:

ImΠðres2Þð−sÞ

¼ πðm2ÞN−2f2

2mΓ
ðΘðs −m2 þmΓÞ − Θðs −m2 −mΓÞÞ:

Requiring that the stability of the broad-resonance-based
SR be better than the stability of zero-width-resonance-
based SR,

max

				1 −Rðres2Þ
k ðM2

i ; s0Þ
RðSRÞ

k ðM2
i ; s0Þ

				 ≤ max

				1 −RðresÞ
k ðM2

i ; s0Þ
RðSRÞ

k ðM2
i ; s0Þ

				;
we obtain an upper limit for the glueball width,
ΓG ≤ 235 MeV. The used stability test was chosen for
the simplicity and transparency of the width estimation,

keeping the level of accuracy at the level of SR accuracy for
mass and decay constant. In the new SR, we vary only the
width value while the values for condensate, mass, and
decay constant remain fixed. The Borel parameter value is
varied in the interval M2

i ∈ ½3.7; 7.3� GeV2. This result
indicates that the 0−− glueball should be rather narrow.
Therefore, it can be seen in the appropriate experiments.
By quantum numbers the exotic glueball could mix with

the exotic 0−− tetraquark. However, a recent study with
QCD SR for this tetraquark has obtained a small mass,
Mtetra ¼ 1.66� 0.14 GeV [17]. The large mass difference
between the two states leads us to expect a very small
mixing between them. Thus, we can consider the exotic 0−−

glueball as a pure gluon state.
Summarizing, we have presented a QCD SR study for

the exotic three-gluon glueball state with quantum numbers
JPC ¼ 0−− using a new interpolating current. We have
analyzed the QCD SR consisting of contributions of
operators up to dimension 8 and have obtained an estima-
tion of the mass, the decay constant, and an upper limit for
the width of the exotic glueball. These results provide a
clear guide for the search of this important state in the
experiments.
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Note added.—Recently, we were informed of the negative
result of the search for the low-mass exotic 0−− glueball by
the Belle Collaboration [18].
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