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Dyonic gaugings of four-dimensional supergravity typically exhibit a richer vacuum structure compared
to their purely electric counterparts, but their higher-dimensional origin often remains more mysterious. We
consider a class of dyonic gaugings with gauge groups of the type ðSOðp; qÞ × SOðp0; q0ÞÞ ⋉ N with N
nilpotent. Using generalized Scherk-Schwarz reductions of exceptional field theory, we show how these
four-dimensional gaugings may be consistently embedded in type II supergravity upon compactification
around products of spheres and hyperboloids. As an application, we give the explicit uplift of the
N ¼ 4 AdS4 vacuum of the theory with gauge group ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 into a supersymmetric
AdS4 ×M5 × S1 S-fold solution of IIB supergravity. The internal spaceM5 is a squashed S5 preserving an
SOð4Þ ⊂ SOð6Þ subset of its isometries.
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I. INTRODUCTION

Ungauged supergravities in four spacetime dimensions
are defined up to a choice of the electric-magnetic sym-
plectic frame. Different frames yield physically equivalent
ungauged models, though described by inequivalent
Lagrangians. Things change when the theory is gauged,
namely when a suitable global symmetry group of the
ungauged Lagrangian is promoted to local symmetry
through the so-called “gauging procedure”. In the presence
of extended supersymmetry, only gauged supergravities, as
opposed to their ungauged counterparts, can have a scalar
potential, and thus a nontrivial vacuum structure. When
constructing these models through the gauging procedure,
the initial choice of the symplectic frame becomes physi-
cally relevant. This freedom can be taken into account by
allowing, in a fixed symplectic frame, for magnetic
components of the embedding tensor defining the gauge
algebra, namely by considering dyonic gaugings.1 Different
initial frames will in general yield different choices of the
gauge group and even gauging a same group in different
frames may yield physically distinct theories.
This feature was first exploited in N ¼ 4 supergravity

[1]. In the maximal theory the freedom in the initial choice
of symplectic frame led to the discovery of new gaugings in
[2–5] and, more recently, in [6–9]. In [7,8], in particular,
one-parameter families of dyonic SOðp; qÞ-gaugings were
found in N ¼ 8, D ¼ 4 supergravity, generalizing their

well-known electric counterparts [10,11]. These new mod-
els were constructed by gauging the same SOðp; qÞ group
in different frames, the choice of which is parametrized
by a continuous angular parameter ω. They are known as
ω-deformed models, where the value ω ¼ 0 corresponds to
the original electric gaugings of [10,11]. The parameter ω is
physical in that its value can not be offset by field
redefinitions or the action of the global symmetry group
G of the ungauged theory, and does affect the physics of
the model.
A different class of dyonic models, originally devised in

[6], are based on non-semisimple groups of the form

ðSOðp; qÞ × SOðp0; q0ÞÞ ⋉ N; ð1:1Þ

with pþ qþ p0 þ q0 ≤ 8 and N is a subgroup generated
by a nilpotent algebra whose properties are described later.
These gauge groups can be defined as different contractions
of the semisimple group SOðpþ p0; 8 − p − p0Þ, general-
izing the CSOðp; q; rÞ gaugings of [11]. They are charac-
terized by a CSOðp; q; 8 − p − qÞ subgroup gauged by the
electric vector fields and a CSOðp0; q0; 8 − p0 − q0Þ gauged
by the magnetic ones, with a subset of the nilpotent
generators gauged by a combination of the two fields.
As opposed to the ω-deformed SOðp; qÞ-models, the
corresponding gauged theories, also known also as dyonic
CSOðp; q; rÞ models, do not depend on a continuous
parameter aside from an overall coupling constant. The
only exceptions are the SOð4Þ2 ⋉ R16 gaugings and their
noncompact forms, which have a one-parameter family of
deformations corresponding to the ratio of gauge couplings
for the two semisimple factors [9].
Dyonic gaugings feature a richer vacuum structure than

their original electric counterparts. Of particular interest, for
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their application to the AdS=CFT correspondence, are the
anti–de Sitter vacua. In order to understand the general
features of the dual three-dimensional CFT, however, a UV
completion of the model within superstring or M-theory is
called for. The original SOð8Þ-gaugedmaximal supergravity
of [10] features a maximally supersymmetric AdS vacuum
and describes a consistent truncation of eleven-dimensional
supergravity compactified on a seven-sphere [12]. The CFT
dual to the maximally supersymmetric vacuum of the theory
is the ABJM model [13]. The electric CSOðp; q; rÞ-
gaugings, on the other hand, describe consistent truncations
of eleven-dimensional theories on backgrounds in which the
internal manifold has the form Hp;q ×Rr, Hp;q being a
hyperboloid [14,15]. As for the dyonic gaugings, while the
ten or eleven-dimensional origin of the ω-deformed
SOðp; qÞ models is as yet elusive [16,17], some progress
has been made for the dyonic CSOðp; q; rÞ-supergravities:
Recently the dyonic ISOð7Þ-model was interpreted as a
consistent truncation of massive type IIA string theory
[18] on a background with topology of the form
AdS4 × S6 [19–21]. In the present work we make further
progress in this direction by defining a ten-dimensional
origin for all the remaining dyonic CSOðp; q; rÞ-models. Of
special interest is the dyonic-model with gauge group
ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12, which features a characteristic
N ¼4AdS vacuum [22] of which we give a ten-dimensional
description in the type IIB theory.
Exceptional field theory (ExFT) [15,23,24] has proven to

be a valuable framework to study the higher-dimensional
origin of D-dimensional maximal gauged theories. It
provides a formulation of maximal supergravities, including
the eleven and the ten-dimensional ones, which is mani-
festly covariant with respect to the on-shell global symmetry
group of the D-dimensional model. In our analysis, we are
interested in uplifting four-dimensional maximal gauged
supergravities [5] so we choose to work in the D ¼ 4
formulation of ExFT in which the manifest duality sym-
metry is the E7ð7Þ on-shell invariance of the Cremmer-Julia
ungauged four-dimensional N ¼ 8 theory [25]. In this
framework, the fields of the D ¼ 4, N ¼ 8 supergravity
are described as formally depending, in addition to the four
spacetime coordinates xμ, on 56 coordinates YM in the
fundamental representation of E7ð7Þ. This dependence is
strongly restricted by the so-called “section constraints”
[26,27]. Solutions to these constraints describe the eleven
and ten-dimensional massless maximal supergravities writ-
ten in terms ofD ¼ 4 fields, which only depend on specific
sets of seven and six internal coordinates, respectively. In
[28], a deformed version of ExFT was defined in order to
describe the massive type IIA theory and its consistent
truncations to D ¼ 4.2

The embedding of a gauged four-dimensional model in
the eleven or ten-dimensional theories is effected through a
suitable Scherk-Schwarz Ansatz [15] in which the ExFT
fields depend on the internal coordinates through an
E7ð7Þ-valued twist matrix UM

NðYÞ. This matrix encodes
the higher dimensional fields as well as the fluxes on a
certain background around which the four-dimensional
fields ought to describe fluctuations. For instance, the
Scherk-Schwarz Ansatz for the scalar fields of the ExFT
is written in terms of the characteristic symmetric sym-
plectic E7ð7Þ-matrix MMNðx; YÞ as follows:

MMNðx; YÞ ¼ UM
KðYÞUN

LðYÞMKLðxÞ; ð1:2Þ

where MKLðxÞ describes D ¼ 4 scalar fluctuations about
the higher-dimensional background whose fields (metric,
form-fields and fluxes) are encoded in the matrix UM

NðYÞ.
If certain conditions on the twist matrix are satisfied, the
dependence of the fields on the internal coordinates through
UðYÞ factors out in the ExFT field equations, yielding the
field equations of gauged four-dimensional model in the
xμ-dependent fields. The corresponding embedding tensor
is encoded in UM

NðYÞ. The section constraints restrict the
Y dependence of this matrix and thus the possible gauged
models which can be described as consistent truncations of
the ten- or eleven-dimensional theories.
In the present paper, the embedding of the dyonic

CSOðp; q; rÞ gaugings, with pþ q ≥ 2; r ≥ 2, in the type
II theories is effected by writing the twist matrix UðYÞ as
the product of two commuting matrices ÛðyiÞ and U

∘ ð~yaÞ:

Uðyi; ~yaÞ ¼ ÛðyiÞU∘ ð~yaÞ; i ¼ 1;…; pþ q − 1;

a ¼ pþ q;…; 6: ð1:3Þ

These two matrices separately define the electric
csoðp; q; rÞ and the magnetic csoðp0; q0; r0Þ subalgebras
and the corresponding sets of coordinates fyig and f~yag are
chosen within distinct SLð8Þ representations satisfying a
suitable condition of mutual compatibility. The total twist
matrix satisfies the section constraints so that the corre-
sponding dyonic models can be embedded either in type
IIA (pþ q odd) or in type IIB (pþ q even) theories.
The dyonic model with p ¼ 6, q ¼ 0, p0 ¼ q0 ¼ 1

mentioned earlier corresponds to a gauge group of the
form ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12. It can be obtained from a
stepwise compactification of the type IIB theory as follows.
A first compactification of type IIB on AdS5 × S5 yields
five-dimensional supergravity with gauge group SOð6Þ
[31–33]. This model still features the SLð2;RÞ duality
symmetry of the type IIB theory, commuting with SOð6Þ.
As a last step one can perform a Scherk-Schwarz reduction
down to D ¼ 4, choosing a twist matrix valued in an
SOð1; 1Þ subgroup of SLð2;RÞ. The resulting model
supports the above mentioned AdS4 vacuum (not at the

2See [29] and [30] for corresponding results in the contexts of
double field theory and exceptional generalized geometry,
respectively.

INVERSO, SAMTLEBEN, and TRIGIANTE PHYSICAL REVIEW D 95, 066020 (2017)

066020-2



scalar origin, however) preservingN ¼ 4 supersymmetries
of which we give a type IIB description. Its geometry is an
AdS4 ×M5 × S1 S-fold with the internal space M5 given
by a deformation of the round sphere S5 preserving an
SOð3Þ × SOð3Þ ⊂ SOð6Þ subset of its isometries.
The paper is organized as follows: In Sec. II A, we recall

the main facts about the dyonic CSOðp; q; rÞ gaugings.
Section II B gives a brief review of the relevant ExFT. In
Secs. II C and II D, the Scherk-Schwarz Ansätze defining
the type II embedding of the dyonic CSOðp; q; rÞ gaugings
are discussed in detail. Finally, in Sec. III, we focus on the
ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauged maximal supergravity
and work out, using the general ExFT description of type
IIB theory and the corresponding Scherk-Schwarz Ansatz,
its uplift into the IIB theory. In particular, we give the uplift
of the four-dimensional N ¼ 4 AdS vacuum into a IIB
S-fold solution. In Appendix C, we also prove that the
noncompact version of this ten-dimensional geometry (i.e.
before S-folding) falls in the class of Janus solutions found
in [34,35]. We end with some concluding remarks.

II. TYPE II ORIGIN OF DYONIC GAUGINGS

A. Dyonic gaugings

Gaugings of maximal D ¼ 4 supergravity are conven-
iently described by the embedding tensor formalism
[3,5,36–38] (for reviews, see [39,40]).
All the information about the gauge couplings of the

theory is encoded into a tensor XMN
P transforming in the

912 representation of E7ð7Þ, where indices M;N;… corre-
spond to the 56 representation. In an appropriate symplectic
frame an SL(8) subgroup of E7ð7Þ acts separately on electric
and magnetic vectors. We are interested in non-semisimple
gauge groups contained in SLð8;RÞ of the form

ðSOðp; qÞ × SOðp0; q0ÞÞ ⋉ N; ð2:1Þ

with N a nilpotent factor which becomes abelian when
pþ qþ p0 þ q0 ¼ 8 [6] (see also [40] for a review). Its
generators in the fundamental of SL(8) are triangular
matrices with nonvanishing entries either in the first
pþ q rows and last 8 − p − q columns, or in the first
8 − p0 − q0 columns and last p0 þ q0 rows. These two
sets of nilpotent generators overlap on a common
ðpþ qÞðp0 þ q0Þ-dimensional Abelian subalgebra. This
class of gaugings is described by two symmetric matrices
ηAB, ~ηAB corresponding to the 360 and 36 irreps in the
decomposition of the 912 under SL(8), with A;B;…
fundamental SL(8) indices. Up to SL(8) transformations
we can write3

ηAB ¼ diagð1;…; 1
zfflfflffl}|fflfflffl{p

;−1;…;−1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{q

; 0;……; 0Þ;
~ηAB ∝ diagð0;……; 0; 1;…; 1|fflfflffl{zfflfflffl}

p0

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q0

Þ; ð2:2Þ

such that ηAC ~η
CB ¼ 0 in order to solve the embedding

tensor quadratic constraints [6]. The embedding tensor then
takes the form

XAB;CD
EF ¼ ηA½CδD�BEF − ηB½CδD�AEF;

XAB
CD

EF ¼ −~ηA½EδCDF�B þ ~ηB½EδCDF�A; ð2:3Þ

where 56 E7ð7Þ indices M;N;… are decomposed into the
280 þ 28 of SLð8;RÞ, described by upper and lower
antisymmetrized pairs of 8 indices.
Most of these gauged models are entirely specified by

their gauge group embedded in SL(8), with a few notable
exceptions [9]. When pþ q ¼ 7 we find ISOðp; qÞ gaug-
ings. In this case the gauge group is entirely specified by
ηAB and ~ηAB only affects the gauge connection of the R7

subgroup. A nonvanishing ~ηAB is identified with the
Romans mass in a IIA uplift of the gauging [19–21].
Moreover, when pþ q ¼ p0 þ q0 ¼ 4 the relative overall
normalization of ~ηAB with respect to ηAB cannot be
reabsorbed in any E7ð7Þ transformation and thus determines
a one-parameter family of inequivalent gaugings sharing
the same gauge group.
Several of the dyonic CSOðp; q; rÞ models exhibit

interesting vacua. Maximally symmetric vacuum solutions
of the resulting gauged maximal supergravities are deter-
mined by extrema of the scalar potential [5]

VðϕÞ ¼ 1

672
MðϕÞMPðXMN

RXPQ
SMðϕÞNQMðϕÞRS

þ 7XMN
QXPQ

NÞ; ð2:4Þ

where MðϕÞMN is a symmetric matrix parametrizing the
E7ð7Þ=SUð8Þ nonlinear sigma model of the scalar fields,
and MðϕÞMN is its inverse. The deformed ISO(7) gauging
(i.e. with ~η ≠ 0) has several supersymmetric and non-
supersymmetric AdS4 solutions [6,22,41]. The ðSOð4Þ ×
SOð2; 2ÞÞ ⋉ T16 gauging (with equal normalizations for
ηAB and ~ηAB) and the ðSOð2Þ × SOð2ÞÞ ⋉ N20 model are
part of a large class of theories exhibiting Minkowski vacua
connected through singular limits in their moduli spaces
[42]. In this paper we will focus in particular on the
ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauging which is known to have
an N ¼ 4 AdS4 vacuum [22], in addition to other unstable
AdS4 solutions [6].

3If we take instead ηAB invertible and ~ηAB ∝ ðηABÞ−1, the
resulting gaugings are the families of ω-deformed SOðp; qÞ
gauged maximal supergravities [7].
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B. Scherk-Schwarz reduction
in exceptional field theory

Exceptional field theories are the manifestly duality
covariant reformulations of maximal supergravities.
Since our goal is a higher-dimensional embedding of
four-dimensional maximal supergravities, which are
obtained as gaugings [5] of the E7ð7Þ-invariant Cremmer-
Julia theory [25], the proper framework for their higher-
dimensional embedding is the E7ð7Þ-covariant exceptional
field theory constructed in [24]. This exceptional field
theory is formulated in terms of the fields ofD ¼ 4,N ¼ 8
supergravity which in addition to the 4 external coordinates
xμ formally depend on 56 internal coordinates YM forming
the fundamental representation of E7ð7Þ. The latter depend-
ence is, however, severely restricted by the section con-
straints [26,27]

ΩMKðtαÞKN∂M∂NA ¼ 0;

ΩMKðtαÞKN∂MA∂NB ¼ 0;

ΩMN∂MA∂NB ¼ 0: ð2:5Þ

Here, ðtαÞMN and ΩMN denote the E7ð7Þ generators and the
symplectic invariant antisymmetric matrix, respectively.
The section constraints (2.5) admit two inequivalent sol-
utions restricting the internal coordinate dependence to a
subset of coordinates, identified upon breaking E7ð7Þ down
to GIIA ¼ GLð6Þ and GIIB ¼ GLð6Þ × SLð2Þ, respectively,

11D=IIA∶ 56 → 60−4 þ 1−3 þ 6−2 þ 15−1 þ 150þ1 þ 60þ2

þ 1þ3 þ 6þ4;

IIB∶ 56 → ð60; 1Þ−4 þ ð6; 2Þ−2 þ ð20; 1Þ0
þ ð60; 2Þþ2 þ ð6; 1Þþ4: ð2:6Þ

The former solution allows for the dependence of all fields
on 6þ 1 coordinates, upon which the field equations of
exceptional field theory reduce to those of D ¼ 11 super-
gravity. In the latter solution, fields depend on a maximal
set of six coordinates which are singlet under the
SLð2Þ ⊂ GIIB. The resulting field equations thus exhibit
a global SLð2Þ symmetry and coincide with the equations
of IIB supergravity. The decomposition (2.6) shows that
GIIA and GIIB intersect on a common GLð5Þ.
For the details of the E7ð7Þ exceptional field theory, in

particular its Lagrangian and field equations, we refer to
[24,43]. Here we just review its bosonic field content

fgμν;MMN;Aμ
M;Bμν α;BμνMg; ð2:7Þ

drawing on the field content of D ¼ 4 maximal super-
gravity. The matrices gμν and MMN represent the external
and internal metric, respectively, with the latter parametriz-
ing the E7ð7Þ=SUð8Þ coset space. The vectors Aμ

M and

two-forms fBμν α;BμνMg transform in the 56 and 133 ⊕ 56
of E7ð7Þ, respectively. In order to establish the equivalence
with IIA/IIB supergravity after solving the section con-
straint, the fields (2.7) are decomposed with respect to the
relevant GIIA;IIB defining (2.6). For example, the scalar
matrix MMN is parametrized as M ¼ VVT in terms of the
group-valued vielbein V, parametrized in the triangular
gauge associated with the GLð1Þ ⊂ GIIA;IIB grading accord-
ing to [44]. In IIB parametrization, this takes the form of an
expansion,

VIIB ≡ exp ½bαtαðþ3Þ� exp ½ϵklmnpqcklmntðþ2Þpq�
× exp ½bmn

αtmn
ðþ1Þα�V6V2 exp ½ϕtIIBð0Þ�; ð2:8Þ

in which one recognizes the various IIB fields.4 A similar
expansion holds for the IIA parametrization. The precise
dictionary between the ExFT formulation and IIA/IIB
supergravity further requires redefinitions of all the form
fields originating from the higher-dimensional p forms in
the usual Kaluza-Klein manner, as well as a series of
dualization and nonlinear field redefinitions, cf.a [24,45].
Consistent truncations in exceptional field theory are

conveniently constructed via a generalized Scherk-Schwarz
reduction by the Ansatz [15]

gμνðx; YÞ ¼ ρ−2ðYÞgμνðxÞ;
MMNðx; YÞ ¼ UM

KðYÞUN
LðYÞMKLðxÞ;

Aμ
Mðx; YÞ ¼ ρ−1ðYÞAμ

NðxÞðU−1ÞNMðYÞ;
Bμν αðx; YÞ ¼ ρ−2ðYÞUα

βðYÞBμνβðxÞ;
BμνMðx; YÞ ¼ −2ρ−2ðYÞðU−1ÞSPðYÞ

× ∂MUP
RðYÞðtαÞRSBμν αðxÞ; ð2:9Þ

for the bosonic fields (2.7). The dependence on the internal
coordinates is carried by an E7ð7Þ-valued twist matrix UM

N

and a scale factor ρðYÞ, satisfying the first order differential
equations [46]

½ðU−1ÞMPðU−1ÞNQ∂PUQ
K�912 ¼

! 1

7
ρΘM

αðtαÞNK;

∂NðU−1ÞMN − 3ρ−1∂NρðU−1ÞMN ¼! 2ρϑM; ð2:10Þ

with constant tensors ΘM
α and ϑM. The latter can be

identified with the irreducible components of the embed-
ding tensor of the four-dimensional gauged supergravity [5]
to which the theory reduces after the generalized Scherk-
Schwarz Ansatz. In particular, the notation ½·�912 refers to
projection onto the irreducible 912 representation of E7ð7Þ.

4Depending on the context, indices α; β;… represent either the
E7ð7Þ adjoint representation or the SL(2) fundamental. This
should cause no confusion.
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Every solution to the system (2.10) defines a consistent
truncation of exceptional field theory down to a four-
dimensional gauged supergravity with all Y dependence
consistently factoring out from the field equations. If the
matrix UM

N and the scale factor ρðYÞ satisfy the section
constraint (2.5), the dictionary with IIA/IIB supergravity
provides the explicit formulas for a geometrical uplift of the
resulting four-dimensional gauging into type II supergrav-
ity. In this paper, we will construct the twist matrices UM

N

that define the geometrical uplift of the dyonic gaugings
defined above.

C. Scherk-Schwarz twist matrices
for dyonic gaugings

The solutions to the consistency equations (2.10) con-
structed in [15] give rise to the embedding tensors associated
with the gaugings of SOðp; qÞ and CSOðp; q; rÞ and
provide a geometrical uplift of these theories via the
compactification on spheres and hyperboloids. To this
end, the 56 internal coordinates are decomposed in the
SLð8Þ frame

fYMg ¼ fY ½AB�; Y ½AB�g; A; B ¼ 1;…; 8; ð2:11Þ

into what we will refer to as “electric” and “magnetic”
coordinates. In [15], the physical coordinates are identified
among the electric Y ½AB� as yi ≡ Y ½i8�, corresponding to the
D ¼ 11 solution (2.6) of the section constraint. In the SLð8Þ
frame (2.11), the latter takes the form

∂AC⊗ ∂BCþ∂BC⊗ ∂AC ¼
1

8
δBAð∂CD ⊗ ∂CDþ∂CD ⊗ ∂CDÞ;

∂ ½AB⊗ ∂CD� ¼
1

24
εABCDEFGH∂EF ⊗ ∂GH:

ð2:12Þ

The twist matrices UA
BðyiÞ associated to sphere and hyper-

boloid compactifications can then be constructed within the
subgroup SLð8Þ ⊂ E7ð7Þ.
Here, we will generalize this result to twist matrices

U ⊂ SLð8Þ which depend on more general subsets
of coordinates (still satisfying the section constraint)
and take the form of products of the solutions found
in [15]. More precisely, let us consider a twist matrix of
the type

Uðyi; ~yaÞ≡U
∘ ð~yaÞÛðyiÞ;

ρðyi; ~yaÞ ¼ ρ
∘ð~yaÞρ̂ðyiÞ; ð2:13Þ

where U
∘

and Û separately solve the Scherk-Schwarz
consistency equations, with embedding tensors denoted

by X
∘
MN

K
and X̂MN

K, respectively. We also assume that

ϑ̂ ¼ ϑ
∘ ¼ 0. With this Ansatz, the first of the consistency

equations (2.10) for U reduces to

ρ
∘−1½ðÛ−1U

∘ −1
ÛÞMNX̂NP

Q�912 þ ρ̂−1Û½X∘MP
Q�

≡ const≡ XMP
Q: ð2:14Þ

where X̂MN
K denotes the unprojected current

X̂MN
K ≡ ρ̂−1ðÛ−1ÞMPðÛ−1ÞNQ∂PÛQ

K ð2:15Þ

(such that ½X̂MN
K�912 ¼ X̂MN

K), and

Û½X∘MP
Q�≡ ðÛ−1ÞMM0 ðÛ−1ÞNN0

ÛK0KX
∘
M0N0

K0
; ð2:16Þ

denotes the E7ð7Þ-action of Û on the embedding tensor

X
∘
MP

Q
. Let us further assume that the variables yi and ~ya

are mutually compatible in the sense that

ðρ∘−1ðU∘ −1ÞMN∂NÞjyi ¼ ∂Mjyi ;
ðρ̂−1ðÛ−1ÞMN∂NÞj~ya ¼ ∂Mj~ya ; ð2:17Þ

i.e. that we have equality of the action of these differ-
ential operators on the coordinates yi and ~ya, respectively.
With this assumption, the lhs of equation (2.14)
reduces to

X̂MP
Q þ ρ̂−1Û½X∘MP

Q� ¼ X̂MP
Q þ X

∘
MP

Q
; ð2:18Þ

such that equation (2.14) is automatically satisfied with
the resulting embedding tensor given by

XMP
Q ¼ X̂MP

Q þ X
∘
MP

Q
: ð2:19Þ

We can introduce a relative coupling constant between

X̂MP
Q and X

∘
MP

Q
by rescaling of the ~ya vs the yi

coordinates. This allows us to capture the continuous
deformation parameter of the SOð4Þ2 ⋉ T16 gaugings and
of their noncompact forms. Finally, the second
equation of (2.10) turns into

ðU∘ −1ÞKN∂NðÛ−1ÞMK þ ðÛ−1ÞMK∂NðU
∘ −1ÞKN

¼ 3ρ−1ðÛ−1U
∘ −1ÞMN∂Nρ; ð2:20Þ

which together with (2.17) and the respective equations
for ρ̂ and ρ

∘ turns into an identity.
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In the following we will consider the product Ansatz

(2.13) with matrices Û andU
∘ −1

chosen among the solutions
from [15], corresponding to gauge groups SOðp; qÞ and
SOðp0; q0Þ, respectively. In order to satisfy the compatibility
constraints (2.17) together with the section constraints
(2.12), we will choose the coordinates yi among the electric
and the ~ya among the magnetic coordinates from (2.11).
More precisely, we define coordinates fyi; ~yag

yi ≡ Yi8; ~ya ≡ Ya7; i ¼ 1;…; pþ q − 1;

a ¼ pþ q;…; 6; ð2:21Þ

which provide a solution to the section constraints (2.12).

Moreover, the associated SLð8Þmatrices Û andU
∘
commute,

satisfy the compatibility equations (2.17), and give rise to the
product (2.13)

ðU−1ÞAB ¼ ðρ∘ρ̂−1Þ1=2

0
BBBBB@

V̂i
j 0 0 ρ̂2V̂i

0

0 W
∘
a
b

ρ
∘−2W

∘
a
0

0

0 ρ
∘−2W

∘
0

a
ρ
∘−4ð1þ u∘ K

∘ ðu∘; v∘ÞÞ 0

ρ̂2V̂0
j 0 0 ρ̂4

1
CCCCCA; ð2:22Þ

which we present in the SLð8Þ basis fAg → fi; a; 7; 8g.
The various blocks are given by

V̂0
i ≡ ηijyjK̂ðû; v̂Þ; V̂i

0 ≡ ηijyj;

V̂i
j ≡ δij þ ηikηjlykylK̂ðû; v̂Þ;

W
∘
0

a ≡ −ηab ~yb; W
∘
a
0 ≡ −ηab ~ybK

∘ ðu∘; v∘Þ;
W
∘
a
b ≡ δab; ð2:23Þ

with ηij and ηab defining the signatures of SOðp − 1; qÞ
and SOðp0 − 1; q0Þ, respectively, and the functions ρ̂, ρ∘

given by

ρ̂ ¼ ð1 − v̂Þ1=4 ≡ ð1 − yiηijyjÞ1=4;
ρ
∘ ¼ ð1 − v∘Þ1=4 ≡ ð1 − ~yaηab ~ybÞ1=4: ð2:24Þ

The functions K̂ðû; v̂Þ and K
∘ ðu∘; v∘Þ are determined by first

order differential equations and given explicitly in [15].
One may check explicitly that the matrix (2.22) solves the
consistency equations (2.10) and gives rise to the embed-
ding tensor (2.3) of the dyonic gaugings. We stress that
it is crucial for the consistency of the construction that
the coordinates yi and ~ya are chosen within distinct
SLð8Þ representations in (2.11), i.e. the yi and the ~ya are
embedded in the electric and magnetic coordinates,
respectively.

D. Type II origin

In the previous section, we have constructed the Scherk-
Schwarz twist matrices that give rise to the embedding
tensor of dyonic gaugings. Since we have identified the
coordinates fyi; ~yag on which these matrices depend
directly in the SLð8Þ frame (2.11), it is not immediately
obvious if these coordinates in the GLð6Þ bases (2.6)

correspond to a IIA or IIB solution of the section con-
straints. Wewill determine their precise higher-dimensional
origin case by case according to the value of pþ q.

1. p + q = 6

In this case, the coordinates (2.21) are given by
fY18; Y28; Y38; Y48; Y58; Y67g. Comparing this set to the
section constraint (2.12), it follows that fields can
depend on none of the other 50 internal coordinates
without violating the section constraint. We conclude
that exceptional field theory on this set of coordinates is
equivalent to IB supergravity. More specifically, we can
identify the SLð2ÞIIB under which these coordinates are
singlets as the subgroup of SLð8Þ whose generators are
given by

SLð2ÞIIB ¼ hT6
7; T7

6; T7
7 − T6

6i; ð2:25Þ

where E7ð7Þ generators are defined in Appendix B. The
GLð1ÞIIB ⊂ GIIB which provides the geometric grading of
coordinates (2.6) and fields is generated by

GLð1ÞIIB ¼
�
T8

8 −
1

2
ðT6

6 þ T7
7Þ
�
: ð2:26Þ

Indeed, evaluating the charges of the various coordinates
under this GLð1ÞIIB, we find

fYi8; Y67g∶ − 4; fYa8; Yiag∶ − 2;

fYij; Yijg∶ 0; …; ð2:27Þ

thus reproducing the IIB charges of (2.6).

2. p + q = 5

In this case, the coordinates (2.21) are given by
fY18; Y28; Y38; Y48; Y57; Y67g. It is straightforward to verify
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that they can be extended by a seventh coordinate Y56

still satisfying the section constraints (2.11). The resulting
theory thus is type IIA supergravity (with possible
D ¼ 11 embedding). The GLð1ÞIIA which provides the
geometric grading of coordinates (2.6) and fields is
generated by

GLð1ÞIIA ¼
�
3

4
ðT8

8 − T7
7Þ − 1

2
ðT5

5 þ T6
6Þ
�
; ð2:28Þ

giving rise to the charges

fYi8; Ya7g∶ − 4; fYabg∶ − 3; fYa8; Yi7g∶ − 2;

fYij; Y78; Yiag∶ − 1 …; ð2:29Þ

for the coordinates, in accordance with (2.6).

3. p + q = 4

In this case, the coordinates (2.21) are given by
fY18; Y28; Y38; Y47; Y57; Y67g. As for pþ q ¼ 6, it is
straightforward to see that these coordinates cannot be
extended by any of the other 50 internal coordinates
without violating the section constraint. Again, the result-
ing theory thus is IIB. The SLð2ÞIIB under which these
coordinates are singlets is not entirely contained in SLð8Þ
but has generators given by

SLð2ÞIIB ¼ hðT8
8 þ T4

4 þ T5
5 þ T6

6Þ; T4568; T1237i;
ð2:30Þ

the latter two of which sit in the 70 ¼ e7ð7Þnslð8Þ . The
GLð1ÞIIB which provides the geometric grading of coor-
dinates (2.6) and fields is generated by

GLð1ÞIIB ¼
�
3

4
ðT8

8 − T7
7Þ þ 1

4
ðT1

1 þ T2
2 þ T3

3

− T4
4 − T5

5 − T6
6Þ
�
; ð2:31Þ

giving charges

fYi8; Ya7g∶ − 4; fYa8; Yij; Yi7; Yabg∶ − 2;

fYia; Y78; Y78; Yiag∶ 0; …; ð2:32Þ

for the coordinates, in accordance with (2.6).

4. p + q = 3

In this case, the coordinates are given by
fY18; Y28; Y37; Y47; Y57; Y67g. Upon flipping YAB ↔ YAB,
this choice maps into the case of pþ q ¼ 5 above, it thus
corresponds to a IIA embedding of the theory.

5. p + q = 2

In this case, the coordinates are given by fY18; Y27;
Y37; Y47; Y57; Y67g. Upon flipping YAB ↔ YAB, this choice
maps into the case of pþ q ¼ 6 above, it thus corresponds
to a IIB embedding of the theory.

III. UPLIFT OF THE N = 4 AdS4 VACUUM

A. N = 4 AdS4 vacuum in D= 4 supergravity

The ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauged maximal super-
gravity admits an N ¼ 4 AdS4 vacuum preserving SO(4)
gauge symmetry [22]. This solution is part of a one-
parameter family of N ¼ 4 AdS vacua belonging to
inequivalent gauged maximal supergravities but exhibiting
similar physical properties. The other elements of this
family of solutions are vacua of the ω-deformed SO(7, 1)
gauged supergravities, whose higher-dimensional origin is
unknown. However, at a singular point in the parameter
space of the family the gauging degenerates into
ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12, for which we can now provide
an uplift to type IIB supergravity.
Using (2.22) for p¼6, q¼0 and p0¼q0¼1, the Scherk-

Schwarz Ansatz (2.9) describes the consistent truncation of
type IIB supergravity to ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauged
maximal D ¼ 4 supergravity described by the embedding
tensor (2.3) with

ηAB ¼ diagð−1;…;−1; 0; 0;−1Þ;
~ηAB ¼ diagð0;…; 0;−1; 1; 0Þ: ð3:1Þ

In order to uplift the N ¼ 4 AdS4 solution of [22] we
will need to reproduce the vacuum extremizing the scalar
potential (2.4) in terms of the scalar matrix

MMN ¼ ðLLTÞMN ¼
�
MAB;CD MAB

CD

MAB
CD MAB;CD

�
; ð3:2Þ

expanded in the SLð8Þ basis (2.11). Here L is a coset
representative for E7ð7Þ=SUð8Þ. The N ¼ 4 AdS4 vacuum
is located in an SOð4Þ ⊂ SOð6Þ invariant subspace of the
scalar manifold, which turns out to be a GL(3)/SO(3)
subcoset space generated by [8]

t1 ¼
1

12
ffiffiffi
2

p ðT1
1 þ T2

2 þ T3
3 − T4

4 − T5
5 − T8

8Þ; ð3:3Þ

t2 ¼
1

24
ffiffiffi
2

p ðT1
1 þ T2

2 þ T3
3 þ T4

4 þ T5
5

þ T8
8 − 3T6

6 − 3T7
7Þ; ð3:4Þ

t3 ¼
1

4
ffiffiffi
6

p ðT6
6 − T7

7Þ; ð3:5Þ
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t4¼
1

4
ffiffiffi
6

p ðT6
7þT7

6Þ; t5¼
1

4
ffiffiffi
3

p T1236; t6¼−
1

4
ffiffiffi
3

p T1237:

ð3:6Þ

We normalize these generators so that Tr56ðtitTi Þ ¼ 1 in the
fundamental of E7ð7Þ.
Actually only some of the fields associated with these

generators acquire a nontrivial value at the N ¼ 4 AdS4
vacuum. We find that the vacuum solution is identified with
the coset representative

L ¼ exp

�
−

3ffiffiffi
2

p logð3Þt1
�
exp ð�4

ffiffiffi
3

p
t5 � 4

ffiffiffi
3

p
t6Þ: ð3:7Þ

Upon computation of the fermion shifts associated with this
extremum of the scalar potential, we explicitly recover the
solution of [22] up to an SU(8) transformation. The� signs
in the coset representative give different instances of
equivalent vacua. We will take both negative in the
following. We give the explicit form of the scalar matrix
MMN at the vacuum in Appendix A.
There are, of course, flat directions of the solution (3.7)

associated with the broken gauge symmetries. The flat
direction associated with the broken SO(1, 1) will be
relevant in the following. It corresponds to mapping
(3.7) into the gauge-equivalent solution

L → exp ðξt4ÞL: ð3:8Þ
Moreover, there are different instances of this vacuum
connected by discrete transformations. Beyond the signs
indicated above, also the outer automorphism of the

residual SO(4) that exchanges its SO(3) factors generates
new instances of this vacuum in field space. These are
obtained by the following substitutions in (3.7):

t1 → −t1; t5;6 → tT5;6: ð3:9Þ

B. Uplift formulas from generalized
Scherk-Schwarz reduction

The explicit uplift formulas that provide the embedding
of the four-dimensional gauging into the IIB theory are
straightforwardly obtained by combining the Scherk-
Schwarz Ansatz (2.9) with the dictionary between the
IIB theory and E7ð7Þ ExFTunder the corresponding solution
of the section constraint. Here, we are interested in the
uplift of a special class of four-dimensional solutions, that
preserve the AdS4 isometries. In the four-dimensional
theory, other than the external AdS4 metric, only scalar
fields are excited and take constant values. Accordingly,
among the ExFT fields (2.7) only external and internal
metric gμν,MMN are nonvanishing. The match of the latter
with the IIB fields is found upon breaking E6ð6Þ under the
GLð6Þ × SLð2Þ that defines the IIB coordinates (2.6).
Explicitly, we denote the decomposition of the 56 internal
coordinates as

fYMg → f ~Ym; ~Ymα; ~Y
kmn; ~Ymα; ~Ymg; ð3:10Þ

with m ¼ 1;…; 6 and α ¼ 1, 2 labeling the fundamental
representations of SLð6Þ and SLð2Þ, respectively.
Accordingly, the matrix MMN decomposes into blocks:

MMN ¼

0
BBBBBBBB@

Mm;m0 Mm
m0β Mm;m0n0p0 Mm;m0β Mm

m0

Mmα
m0 Mmα;m0β Mmα

m0n0p0 Mmα
m0β Mmα;m0

Mmnp;m0 Mmnp
m0β Mmnp;m0n0p0 Mmnp;m0β Mmnp

m0

Mmα;m0 Mmα
m0β Mmα;m0n0p0 Mmα;m0β Mmα

m0

Mm
m0 Mm;m0β Mm

m0n0p0 Mm
m0β Mm;m0

1
CCCCCCCCA
: ð3:11Þ

The explicit form of these blocks is read off from expanding
the exponential series (2.8) and (after proper normalization)
gives rise to the following identification of the IIB fields

Mmn ¼ G−1=2Gmn;

Mm
nα ¼

1ffiffiffi
2

p G−1=2Gmkbknβεβα;

Mmα;nβ ¼
1

2
G−1=2Gmnmαβ þ

1

2
G−1=2Gklbmk

γbnlδεαγεβδ;

Mp
lmn ¼ −2G−1=2Gpk

�
cklmn −

3

8
εαβbk½lαbmn�β

�
: ð3:12Þ

For the uplift formulas, we need to evaluate the lhs
of these expressions via the Scherk-Schwarz Ansatz (2.9),

MMNðx; YÞ ¼ UM
MðyÞUN

NðyÞMMNðxÞ; ð3:13Þ

with the SLð8Þ valued twist matrix U from (2.22). In order
to reconcile the GLð6Þ × SLð2Þ decomposition of (3.11)
with the SLð8Þ form of the twist matrix, we have to break
both groups down to their common SLð5Þ × SLð2Þ. For the
coordinates (3.10), this implies
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fYMg → f ~Ym; ~Ymα; ~Y
kmn; ~Ymα; ~Ymg

→ f ~Yi; ~Y6; ~Yiα; ~Y6α; ~Y
ijk; ~Y6ij; ~Yiα; ~Y6α; ~Yi; ~Y6g;

ð3:14Þ

upon splitting fmg → fi; 6g . Similarly, for the SLð8Þ
coordinates (2.11), and in accordance with (2.27), we
use the split of SLð8Þ indices,

fAg→ fi; ag; with i¼ fi;8g; i¼ f1;…;5g;
a¼ f6;7g; ð3:15Þ

in order to decompose the fY ½AB�; Y ½AB�g. We may then
identify the coordinates (3.14) among the SLð8Þ coordi-
nates (2.11) as

f ~Yi; ~Y6; ~Yiα; ~Y6α; ~Y
ijk; ~Y6ij; ~Yiα; ~Y6α; ~Yi; ~Y6g

¼ fYi8; Y67; Yia; εabYb8; εijki
0j0Yi0j0 ; Yij;

Yia; εabYb8; Yi8; Y67g; ð3:16Þ

where according to (2.25) we identify fag ¼ f6; 7g from
(3.15) with the SLð2Þ doublet indices fαg ¼ f1; 2g.
Let us now make the uplift formulas explicit. Combining

(3.12) with (3.13) and the form of the twist matrix (2.22),
we obtain

G−1=2Gij ¼ Mij ¼ 2Mi8;j8

¼ 2ðU−1Þkli8ðU−1Þmn
j8Mkl;mnðxÞ

¼ 2ρ2Kkl
iKmn

jMkl;mnðxÞ; ð3:17Þ

where Mkl;mnðxÞ refers to part of the lower right block of
the E7ð7Þ matrix (3.2), and we have expressed the relevant
components of the twist matrix U in terms of the Killing
vectors on the round five-sphere

Kmn
i ¼ Ĝij∂jY½mYn�; Ym ≡

n
yi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − yiyi

p o
;

Ĝij ≡ δij − yiyj: ð3:18Þ

Similar calculation determines the remaining components
of the internal six-dimensional metric, such that together
we find

Gij ¼ 2ΔKkl
iKmn

jMkl;mnðxÞ;
Gi6 ¼ 2Δρ∘2Kkl

iMkl
67ðxÞ;

G66 ¼ 2Δρ∘4M67;67ðxÞ; ð3:19Þ

with ρ
∘ from (2.24) and the scale factor Δ defined by

Δ≡ ρ2ðdetGÞ1=2: ð3:20Þ

While (3.19) represent the uplift formulas for generic
solutions of the four-dimensional theory, in the vacuum
(3.7) we are interested in lifting, the matrix MMNðxÞ is
constant, and these formulas further reduce to

Gij ¼
8<
:

ð1þ 2r2ÞΔδij − 3Δyiyj ∶ i; j ∈ f1; 2; 3g
ð3 − 2r2ÞΔδij − 3Δyiyj ∶ i; j ∈ f4; 5; 6g
−Δyiyj ∶ i ∈ f1; 2; 3g; j ∈ f4; 5; 6g

;

Gi6 ¼ 0; G66 ¼ ð1 − ~y26ÞΔ; ð3:21Þ

with r2 ≡ ðy1Þ2 þ ðy2Þ2 þ ðy3Þ2 ≤ 1 and

Δ ¼ ðð1þ 2r2Þð3 − 2r2ÞÞ−1=4: ð3:22Þ

In a similar way, we may obtain the uplift formulas
for the remaining IIB fields from (3.12). For the two-form,
we find that its only nonvanishing components are
given by

bijα ¼ 2G1=2Gikε
abMk8

jb

¼ 4G1=2Gikε
abðU−1Þklk8Ujb

mcMkl
mc

¼ −2ΔGikKkl
k∂jYmεcdAd

αMkl
mc; ð3:23Þ

where as above we identify fag ¼ f6; 7g from (3.15) with
the SLð2Þ doublet indices fαg ¼ f1; 2g, andMkl

mc is given
in (A2). The SLð2Þ matrix Aa

b is read off as

Aa
α ≡

 
ρ
∘2 ~y6

~y6 ρ
∘−2ð1þ ~y26Þ

!
¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~y26

q
~y6

~y6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~y26

q
1
CA;

ð3:24Þ

from the (6, 7) block of (2.22), using that K
∘ ¼ 1 in

this case.
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Next, the IIB dilaton/axion matrix is obtained from
(3.12) as

mαβ ¼
1

3
GðMmnMmα;nβ − 4Mn

kαMk
nβÞ; ð3:25Þ

which when put together with (3.13) in our vacuum yields

mαβ ¼
2

3
Δ2YmYnSma;nbAa

ðα0Ab
β0Þεαα0εββ0 ; ð3:26Þ

with the matrix Aa
α from (3.24) and

Sma;nb ¼ 1

2
Mma;nb þ εacεbdðMkc;ldMkm;ln þMkm

lcMln
kdÞ:

ð3:27Þ

With the explicit values (A1)–(A6) ofMMN in our vacuum,
this expression reduces to

mαβ ¼ ðA−1MA−TÞαβ;

Mab ≡ Δ2ffiffiffi
3

p
�
3þ 2r2 −4r2

−4r2 3þ 2r2

�
; ð3:28Þ

and it comes as a nontrivial consistency check, that with the
expression (3.22) for the scale factor Δ, this matrix indeed
has determinant 1.
Finally, the expression for the only nonvanishing com-

ponents of the IIB four-form follows from

Mi
jkl ¼

1

2
Mi8;j0k0εjklj0k0 ¼

1

2
ρεjklj0k0Kkl

iðU−1Þmn
j0k0Mkl;mn

¼ 1

2Δ
ρ2Gii0Ĉjkli0 −

1

2
ρ2ρ̂−2εjklj0k0Kkl

i∇̂j0Kmn
k0Mkl;mn;

ð3:29Þ

with Ĉijkl defined as giving rise to the S5 background flux:

5∂ ½i0Ĉijkl� ¼ ω̂i0ijkl ≡ ρ̂−2εi0ijkl: ð3:30Þ

Together, the expression for the IIB four-form is given as

cijkl¼Ĉijklþ
1

4
ΔKkl

mGm½iω̂jkl�j0k0∇̂j0Kmn
k0Mkl;mn: ð3:31Þ

We have thus obtained all the nonvanishing IIB fields as
functions of the S5 Killing vectors and sphere harmonics.
Let us note that the expansion (2.8) also carries some
components bα ≡ ϵklmnpqbklmnpqα of the dual six-form of
the IIB theory which, however, vanish identically in our
vacuum.

C. The supersymmetric IIB AdS4 ×M5 × S1 solution

In this section, we calculate the field strengths and
present the IIB solution in its most compact form. The

vacuum (3.7) of the four-dimensional theory preserves
N ¼ 4 supersymmetry and, accordingly, a global SOð4Þ ¼
SOð3Þ × SOð3Þ symmetry that shows up as the internal
isometry group of the IIB solution. In order to make these
isometries manifest, we split the S5 sphere harmonics into

fYmg ¼ fYp;Zp ≡ Ypþ3g; p ¼ 1; 2; 3;

YpYp ¼ 1 − ZpZp ≡ r2: ð3:32Þ

In terms of these harmonics, the ten-dimensional IIB metric
is given by

ds2 ¼ Δ3ðð3 − 2r2Þδpq þ 8YpYqÞdYpdYq

þ Δ3ð1þ 2r2ÞdZpdZp

þ Δ−1
�
dηdηþ 1

2
ds2AdS4

�
; ð3:33Þ

with the warp factor given by (3.22) as

Δ ¼ ðð1þ 2r2Þð3 − 2r2ÞÞ−1=4; ð3:34Þ

and the AdS4 radius fixed to rAdS ¼ 1. With respect to the
previous sections, we have also changed coordinates ~y6 ¼
sinh η along the S1 direction. The internal five-dimensional
space is a deformation of the round metric on S5 which
preserves an SOð3Þ × SOð3Þ ⊂ SOð6Þ of the isometry
group. Indeed, the harmonics Yp;Zp can be regarded as
embedding coordinates for two S2 spheres of radii r andffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
, respectively. The S5 geometry is parametrized in

terms of these two spheres fibered over the interval
r ∈ ð0; 1Þ, and at the points r ¼ 0, 1 one of the S2’s
shrinks smoothly to zero size. Denoting dΩ2

1;2 the round
metrics of unit radius on the S2’s, an explicit expression for
(3.33) is

ds2 ¼ Δ3ð3 − 2r2Þr2dΩ2
1 þ Δ3ð1þ 2r2Þð1 − r2ÞdΩ2

2

þ Δ−1
�
dη2 þ dr2

1 − r2
þ 1

2
ds2AdS4

�
: ð3:35Þ

The SLð2Þ matrix of IIB supergravity,

mαβ ¼
1

Imτ

� jτj2 −Reτ
−Reτ 1

�
; τ ¼ C0 þ ie−Φ; ð3:36Þ

describing the dilaton and axion is given by (3.28) as

mαβ ¼ ðA−1MA−TÞαβ; ð3:37Þ

as a product of the SLð2Þ matrices
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Mαβ ≡ Δ2ffiffiffi
3

p
�
3þ 2r2 −4r2

−4r2 3þ 2r2

�
;

Aα
β ≡

�
cosh η sinh η

sinh η cosh η

�
: ð3:38Þ

The three-form field strength is obtained by the exterior
derivative of (3.23) and takes the form

H3
α ¼ ðV−AÞα

1þ 2r2
εpqrdYp ∧ dYq ∧

� ð3þ 2r2Þ
3ð1þ 2r2ÞdY

r −Yrdη

�

−
ðVþAÞα
3− 2r2

εpqrdZp ∧ dZq

∧
� ð5− 2r2Þ
3ð3− 2r2ÞdZ

rþZrdη

�
; ð3:39Þ

with the matrix A from (3.38) and the vectors

Vα
� ¼ f3�1=4;�3�1=4g: ð3:40Þ

Finally, the self-dual IIB five-form field strength is given by

H5 ¼ dc −
1

8
εαβbα ∧ dbβ

¼ 6Δ4

8ð1 − r2ÞZ
pdYp ∧ dYq ∧ dYr ∧ dZq ∧ dZr

þ 3Δ4ZpY½pdYq ∧ dYr� ∧ dZq ∧ dZr ∧ dη

−
1

16

ffiffiffiffiffi
jgj

p
εμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ

∧
�
dη −

4

3
YpdYp

�
: ð3:41Þ

We have explicitly verified, that this solution satisfies all
the field equations of the IIB theory, including the Einstein
equations.

D. Interpretation, S-folds and supersymmetry

The uplift provided in the previous section is in principle
on a warped S5 ×R internal space, where R is the η
direction. In fact, ∂=∂η is an isometry of the solution and
although the η dependence is present in the fluxes, it only
appears through the SL(2) matrix AðηÞ of (3.38). Indeed,
the flat direction (3.8) lifts to constant shifts of η. This
means that we can make η periodic, η≃ ηþ T, at the price
of introducing an SL(2) monodromy of the fields along the
resulting S1:

MS1 ¼ AðηÞ−1Aðηþ TÞ: ð3:42Þ

Being AðηÞ an element of a noncompact subgroup of SL(2),
there is no choice of the period T such thatMS1 ¼ 1, which
would make the solution globally geometric. Instead, the
solution is locally geometric and globally an S-fold.

The periodicity in η is restricted if we require that the
resulting monodromy belongs to SLð2;ZÞ. For instance, to
obtain the representatives of the infinite sequence of
hyperbolic SLð2;ZÞ conjugacy classes (see e.g. [47])

MðnÞ ¼
�

n 1

−1 0

�
; n ∈ N; n ≥ 3; ð3:43Þ

we must set T ¼ log 1
2
ðnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 4

p
Þ and redefine AðηÞ in

all expressions (including the Scherk–Schwarz matrix
(2.22) as follows5:

AðηÞ → AðηÞg; g≡
0
B@

ðn2−4Þ1=4ffiffi
2

p 0

nffiffi
2

p ðn2−4Þ1=4
ffiffi
2

p
ðn2−4Þ1=4

1
CA: ð3:44Þ

This results in the monodromy matching (3.43):

MS1 → g−1MS1g ¼ MðnÞ: ð3:45Þ

Notice that this redefinition does not affect the embedding
tensor resulting from Scherk-Schwarz-reduction. Indeed,
the D ¼ 4 gauged supergravity obtained upon truncation is
blind to the choice of SLð2;ZÞ conjugacy class of the
monodromy.
Interestingly, the fact that MS1 is in the hyperbolic

conjugacy class of SL(2) also means that we can find a
global parametrization of the SL(2)/SO(2) axio-dilaton
coset representatives such that no compensating local
SO(2) transformation on the IIB fermions is induced by
the action of MS1 . The standard parametrization of mαβ in
(3.36) can be obtained for instance from the SL(2)/SO(2)
coset representative lðC0;ΦÞ as

mαβ¼ðllTÞαβ; lðC0;ΦÞ≡
�
e−Φ=2 −eΦ=2C0

0 eΦ=2

�
; ð3:46Þ

while in order to avoid SO(2) compensating transforma-
tions under MS1 we may for instance change parametriza-
tion to

mαβ ¼ ðl0l0TÞαβ; l→ l0 ≡ g−1
1ffiffiffi
2

p
�
1 −1
1 1

�
lðχ0;ϕÞ;

ð3:47Þ

where an expression for the axio-dilaton in terms of χ0;ϕ
can be easily constructed. This is still a global choice of
coset representative and SO(2) gauge, and nowMS1 acts as

5Note that g is not unique, it can be redefined by g →
expðζ logMS1Þg for any ζ. Also note that conjugacy classes
with n < −3 cannot be obtained from our initial monodromy
matrix.
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a shift of the field ϕ without inducing local SO(2)
transformations.
The importance of this observation lies in the fact that

under a Scherk-Schwarz reduction of ExFT fermions
behave as scalar densities, at least for a certain SU(8)
gauge choice [15]. Hence, their dependence on internal
coordinates is entirely encoded in the function ρ of (2.13).
This also applies to the uplift of the gauged supergravity
residual Killing spinors at the vacuum. Because we can find
an SO(2) gauge such that the S1 monodromy does not
require compensating gauge transformations on the fer-
mions, we can conclude that the N ¼ 4 Killing spinors of
the AdS4 solution described above uplift to globally well-
defined Killing spinors of type IIB. This means that the
S-fold solution above preserves 16 supercharges which are
single-valued and, in fact, η independent at least in an
appropriate gauge.
As an aside, it is interesting to note that choosing a

different AðηÞ taking values in the SO(2) or R subgroups of
SL(2) one arrives at an S-fold interpretation of the reduction
Ansatz (2.22) for the ðSOð6Þ × SOð2ÞÞ ⋉ T12 and ðSOð6Þ ×
RÞ ⋉ T12 gaugings, respectively. The ðSOð6Þ × RÞ ⋉ T12

case has a second interesting interpretation: the R valued
AðηÞ matrix can be interpreted as inducing F1 ¼ dC0 flux
along S1, while S5 is supported by F5. If we T-dualize along
η, F1 goes into the Romans mass F0 and F5 goes into F6

filling S5 × S1. The reduction Ansatz can then be reinter-
preted as type IIA on S5 × S1 with F6 and F0 flux, where
AðηÞ ∈ R generates the Romans mass in terms of a linear
dependence of C1 on the winding coordinate η ¼ Y67 (the
physical coordinatewould be Y68). This is analogous to [29]
and in fact theAðηÞ part of such anAnsatzmatches one of the
nongeometric twist-matrices that generate the Romansmass
provided in [28]. One can alternatively implement the
Romans mass directly in ten dimensions in terms of a
deformation of the exceptional field theory/generalized
geometry [28,30], and use the CSO(6, 0, 2) Ansatz based
on ðρ̂; ÛÞ alone to implement a geometric reduction of
massive IIA to ðSOð6Þ ×RÞ ⋉ T12 gauged supergravity.

IV. DISCUSSION

In this paper, we have constructed the twist matrices that
define the consistent truncation of E7ð7Þ exceptional field
theory down to the D ¼ 4 dyonic gaugings with gauge
group ðSOðp; qÞ × SOðp0; q0ÞÞ ⋉ N. The twist matrix sat-
isfies the section constraints so that the corresponding
dyonic models can be embedded either in type IIA (pþ q
odd) or in type IIB (pþ q even) theories. Using the
dictionary between exceptional field theory and IIB super-
gravity, we have worked out the explicit uplift formulas for
the ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauging and given the uplift
of the four-dimensional AdS4 N ¼ 4 vacuum [22] into a
supersymmetric AdS4 ×M5 × S1 S-fold solution of IIB
supergravity. The internal spaceM5 is a deformation of the

round sphere preserving an SOð4Þ ⊂ SOð6Þ subset of its
isometries.
Before compactification of the η direction, the solution

we construct in section III C has the same topology as
AdS5 × S5. The parametrization we give is in the form of a
warped product AdS4 × S2 × S2 × Σ, where Σ is an infinite
strip parametrized by η and r. At the boundary of the strip
(r ¼ 0, 1) one of the two S2 smoothly shrinks to zero size,
reproducing the S5 topology. Another important observa-
tion is that with a constant SLð2;RÞ rotation the axion can
be set to vanish, while the dilaton runs along the η and r
directions as

eΦ ¼ e−2ηffiffiffi
3

p
�
3 − 2r2

1þ 2r2

�
1=2

: ð4:1Þ

This strongly suggests that our solution be part of the class
of Janus solutions with 16 supercharges of [34,35]. This is
indeed proven in Appendix C. More specifically, it corre-
sponds to a smooth solution without NS5 or D5 sources,
with the dilaton varying from −∞ to þ∞ along the infinite
stripe. This differs from the regular Janus solution of
[34,35], where the dilaton varies between finite boundary
values. Janus configurations and their relation with inter-
face N ¼ 4 super Yang-Mills have been largely studied in
the literature [48–51]. It would be interesting to understand
whether the S-fold compactified AdS4 solution we find
upon imposing periodicity in η is also part of other
constructions relating supersymmetric Janus solutions to
three-dimensionalN ¼ 4 conformal field theories [52–55].
In fact, imposing periodicity in η corresponds to compac-
tifying the infinite strip Σ to a finite cylinder, which seems
analogous to the construction in [54].
There has also been some recent activity on S-folds in the

context of D ¼ 4 N ¼ 3 conformal field theories [56–58].
In those cases a generalization of the O3 orientifold
projections is introduced, that acts with a Zk ⊂ SLð2;ZÞ
on the type IIB fields and on the stack of D3 branes
defining the CFT (k ¼ 2, 3, 4, 6). No dimensional
reduction is performed, and the theories obtained from
D3 branes on top of such background are either N ¼ 4 or
genuinely N ¼ 3. Only the elliptic subgroups of SLð2;ZÞ
are used in that case, as there must be a fixed valued of the
complex coupling τ, so that the projection is by a symmetry
of the original theory.
A distinguished property of our solution is that it arises

from a consistent truncation of type IIB supergravity to
D ¼ 4, ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12 gauged maximal super-
gravity. Thanks to the Scherk-SchwarzAnsatz (2.9),we have
access to the full configuration space of the consistent
truncation, which is part of the configuration space of IIB
supergravity, also away from the solution with 16 super-
charges. In the holographic context, this gives access also on
the field theory side to a consistent truncation to a subset of
operators. On the gravity side, this can be used to generate
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other interesting solutions. For instance, other vacua of the
gauged supergravity may haveN < 3 supersymmetry6 and
lift to less supersymmetric Janus solutions and their com-
pactifications. All types of solutions of this gauged super-
gravity (domain walls, black holes, etc.) now also admit a
type IIB embedding. It would thus be very interesting to
further clarify the relation of ðSOð6Þ × SOð1; 1ÞÞ ⋉ T12

gauged maximal supergravity to Janus solutions with
(SL(2) duality twists), and thus their relation to interface
N ¼ 4 super Yang–Mills and N ¼ 4, D ¼ 3 conformal
field theories.
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Appendix A: THE N = 4 VACUUM
IN MODULI SPACE

The nonvanishing entries ofMMN at the vacuum (3.7) are

Mij kl ¼ Mij kl ¼

8>><
>>:

3δi½kδl�j i; j ¼ 1; 2; 3

3δi½kδl�j i; j ¼ 4; 5; 8

δi½kδl�j otherwise

ðA1Þ

Mij
ka¼

�−3−1=4ϵijk i;j;k¼1;2;3ðϵ123¼þ1Þ
ð−Þaþ131=4ϵijk i;j;k¼4;5;8ðϵ458¼þ1Þ ðA2Þ

Mka
ij¼
�−31=4ϵijk i;j;k¼1;2;3ðϵ123¼þ1Þ
ð−Þaþ13−1=4ϵijk i;j;k¼4;5;8ðϵ458¼þ1Þ ðA3Þ

Mia jb ¼
� ffiffi

3
p
2
δijδab i; j ¼ 1; 2; 3

1

2
ffiffi
3

p δijð5δab − 4σ1abÞ i; j ¼ 4; 5; 8
ðA4Þ

Mia jb ¼
� 1

2
ffiffi
3

p δijð5δab þ 4σ
ab
1 Þ i; j ¼ 1; 2; 3ffiffi

3
p
2
δijδab i; j ¼ 4; 5; 8

ðA5Þ

M67 67 ¼ M67 67 ¼ δ6½6δ7�7 ¼ 1=2: ðA6Þ

Appendix B: E7ð7Þ GENERATORS

½TA
B�CD ¼ 4δCAδ

B
D −

1

2
δBAδ

D
C; ðB1Þ

½TA
B�MN ¼

� 2δ½E½C½TA
B�D�F�

−2δ½C½E½TA
B�F�D�

�
; ðB2Þ

½TABCD�MN ¼
�

εABCDEFGH

4!δEFGHABCD

�
: ðB3Þ

Appendix C: RELATION TO THE
N = 4 JANUS SOLUTION

In this appendix, we show that the solution discussed in
Section III C, upon suitable redefinitions and an S-duality
rotation, coincides with the N ¼ 4 supersymmetric Janus
solution of [53].
Let us define the S2 × S2 sphere harmonics as

Yp
1 ≡ 1

r
Yp; Yp

2 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p Zp; ðC1Þ

such that Yp
1Y

p
1 ¼ 1 ¼ Yp

2Y
p
2 . Then,

dYp ¼ rdYp
1 þ Yp

1dr;

dZp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
dYp

2 −
rffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2
p Yp

2dr: ðC2Þ

Let us also set

r ¼ sin x; ðC3Þ

with 0 ≤ x ≤ π=2. We shall define on the surface Σ
parametrized by η, x the complex coordinate z ¼ η − ix,
with Imz ¼ x ∈ ½0; π

2
�. Upon these redefinitions, the ten-

dimensional IIB metric (3.33) has the form

ds2 ¼ Δ3sin2xð1þ 2cos2xÞdYp
1dY

p
1

þ Δ3ð1þ 2sin2xÞcos2xdYp
2dY

p
2

þ Δ−1ðdxdxþ dηdηÞ þ 1

2
Δ−1ds2AdS4 ; ðC4Þ

with the warp factor given by

Δ ¼ ðð1þ 2 sin2 xÞð1þ 2 cos2 xÞÞ−1=4; ðC5Þ

and the AdS4 radius fixed to rAdS ¼ 1.
Comparing to the notation of [53], in which the metric is

written as

ds2 ¼ f24ds
2
AdS4

þ f21ds
2
S2
1

þ f22ds
2
S2
2

þ 4ρ2dzdz̄; ðC6Þ6Some unstable vacua are known [6].
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we can make the following identifications:

f84 ¼
1

16
Δ−4 ¼ 1

16
ð1þ 2sin2xÞð1þ 2cos2xÞ;

f21 ¼ Δ3sin2xð1þ 2cos2xÞ;
f22 ¼ Δ3ð1þ 2sin2xÞcos2x;
4ρ2 ¼ Δ−1: ðC7Þ

As explained in Sec. III D, in order to match our solution
with that of [53], the following S-duality transformation has
to be performed on the SLð2Þ-covariant fields:

mαβ → m0
σγ ¼ SασSβγmσγ ¼

�
e−Φ

0
0

0 eΦ
0

�
;

Hα
3 → H0α

3 ¼ S−1βαH
β
3; ðC8Þ

where

Sαβ ≡ 1ffiffiffi
2

p
�
1 −1
1 1

�
: ðC9Þ

We then find

mαβ ¼

0
B@

ffiffiffi
3

p
e2η ð1þ2sin2xÞ1=2

ð1þ2cos2xÞ1=2 0

0 1ffiffi
3

p e−2η ð1þ2cos2xÞ1=2
ð1þ2sin2xÞ1=2

1
CA; ðC10Þ

from which we read off

e−2Φ
0 ¼ 3e4η

ð1þ 2 sin2 xÞ
ð1þ 2 cos2 xÞ : ðC11Þ

The three-form field strengths take the form

H3
0þ ¼

ffiffiffi
2

p
3−1=4e−ηsin2x
1þ 2sin2x

εpqrY
p
1dY

q
1 ∧ dYr

1

∧
�
3þ 2sin2x
1þ 2sin2x

cos xdx − sin xdη

�
¼ ωS1

1
∧ db1

H3
0− ¼

ffiffiffi
2

p
31=4eηcos2x

1þ 2cos2x
εpqrY

p
2dY

q
2 ∧ dYr

2

∧
�
3þ 2cos2x
1þ 2cos2x

sin xdx − cos xdη

�
¼ ωS1

2
∧ db2; ðC12Þ

where

b1 ¼ 2
ffiffiffi
2

p
3−1=4e−ηsin3x
1þ 2sin2x

; b2 ¼ −
2
ffiffiffi
2

p
31=4eηcos3x

1þ 2cos2x
:

ðC13Þ

Finally, the self-dual IIB five-form field strength is
given by

H5 ¼
9

4
Δ4sin2xcos2xYp

2Y
½p
1 dY

q
1 ∧ dYr�

1 ∧ dYq
2 ∧ dYr

2

∧
�
dxþ 4

3
sin x cos xdη

�

−
1

16 · 4

ffiffiffiffiffi
jgj

p
εμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ

∧
�
dη −

4

3
sin x cos xdx

�

¼ 3

2
Δ4sin2xcos2xωS1

1
∧ ωS1

2
∧
�
dxþ 4

3
sin x cos xdη

�

−
3

2 · 4
ω0123 ∧

�
dη −

4

3
sin x cos xdx

�
; ðC14Þ

where we used the property

Y½p
1 dY

q
1 ∧ dYr�

1 ¼ 1

3
εpqrωS1 : ðC15Þ

To compare the solution to the Janus one, it is useful to
write H5 in the form

H5 ¼ f21f
2
2ωS1

1
∧ ωS1

2
∧ ð�2F Þ − f44ω0123 ∧ F ; ðC16Þ

where �2 is the Hodge duality operation on the disk
spanned by η and x, and

f44F ¼ dj1; j1 ≡ 1

8
ð3ηþ cosð2xÞÞ:; ðC17Þ

so that

f44F ¼ 3

8

�
dη −

4

3
cos x sin xdx

�
; ðC18Þ

and

f21f
2
2 �2F ¼ 3

2
Δ4sin2xcos2x

�
dxþ4

3
cosxsinxdη

�
ðC19Þ

1. Reconstruct the solution from the
harmonic functions A1, A2

To show the matching of the above solution with that in
[53], we need to prove that all the functions describing it
can be expressed, through appropriate relations given in the
same reference, in terms of only two harmonic functions
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A1, A2 on the surface Σ spanned by η, x, or, equivalently,
by the complex coordinate z ¼ η − ix. This readily follows
from the identification

A1 ¼
31=4

4
ffiffiffi
2

p ez; A2 ¼ −
3−1=4

4
ffiffiffi
2

p e−z; ðC20Þ

in terms of which we define the harmonic functions h1, h2
and their duals ~h1; ~h1:

h1 ¼ −iðA1 − Ā1Þ ¼ −
31=4

2
ffiffiffi
2

p eη sin x;

h2 ¼ A2 þ Ā2 ¼ −
3−1=4

2
ffiffiffi
2

p e−η cos x; ðC21Þ

~h1 ¼ A1 þ Ā1 ¼
31=4

2
ffiffiffi
2

p eη cos x;

~h2 ¼ iðA2 − Ā2Þ ¼
3−1=4

2
ffiffiffi
2

p e−η sin x: ðC22Þ

It is then straightforward to show that the functions entering
the solution satisfy the following relations characterizing
the solution of [53]:

W ¼ ∂h1∂̄h2 þ ∂̄h1∂h2 ¼ −
1

8
sin x cos x;

N1 ¼ 2h1h2j∂h1j2 − h21W

¼
ffiffiffi
3

p

128
e2η sin x cos xð1þ 2sin2xÞ;

N2 ¼ 2h1h2j∂h2j2 − h22W

¼ 1ffiffiffi
3

p
128

e−2η sin x cos xð1þ 2cos2xÞ;

f84 ¼ 16
N1N2

W2
¼ 1

16
Δ−4;

ð4ρ2Þ4 ¼ 256
N1N2W2

h41h
4
2

¼ Δ−4;

f81 ¼ 16h81
N2W2

N3
1

¼ sin8xð1þ 2cos2xÞð1þ 2sin2xÞ−3;

f82 ¼ 16h82
N1W2

N3
2

¼ cos8xð1þ 2sin2xÞð1þ 2cos2xÞ−3;

e−2Φ
0 ¼ N1

N2

¼ 3e4η
ð1þ 2sin2xÞ
ð1þ 2cos2xÞ : ðC23Þ

We also find that the two functions b1, b2 entering the
expression of the three-form field strengths are related to
the above functions as prescribed in [53]

b1 ¼ 2i
h1
N1

h1h2ð∂h1∂̄h2 − ∂̄h1∂h2Þ þ 2~h2

¼ 2
ffiffiffi
2

p
· 3−1=4e−η

1þ 2sin2x
sin3x;

b2 ¼ 2i
h2
N2

h1h2ð∂h1∂̄h2 − ∂̄h1∂h2Þ − 2~h1

¼ −
2
ffiffiffi
2

p
· 31=4eη

1þ 2cos2x
cos3x: ðC24Þ

Similarly, just as in the Janus solution, the function j1
entering the five-form field strength can be expressed as

j1 ¼ 3ðC þ C̄ −DÞ þ ih1h2
W

ð∂h1∂̄h2 − ∂h2∂̄h1Þ; ðC25Þ

where C satisfies the relation ∂C ¼ A1∂A2 −A2∂A1 and is
given by C ¼ z

16
, while D reads

D ¼ Ā1A2 þ Ā2A1 ¼ −
1

16
cosð2xÞ: ðC26Þ
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