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Dyonic gaugings of four-dimensional supergravity typically exhibit a richer vacuum structure compared
to their purely electric counterparts, but their higher-dimensional origin often remains more mysterious. We
consider a class of dyonic gaugings with gauge groups of the type (SO(p, ¢) x SO(p’,¢')) x N with N
nilpotent. Using generalized Scherk-Schwarz reductions of exceptional field theory, we show how these
four-dimensional gaugings may be consistently embedded in type II supergravity upon compactification
around products of spheres and hyperboloids. As an application, we give the explicit uplift of the

N = 4 AdS, vacuum of the theory with gauge group (SO(6) x SO(1, 1)) x T'? into a supersymmetric

AdS, x Ms x S' S-fold solution of IIB supergravity. The internal space M5 is a squashed S3 preserving an

SO(4) c SO(6) subset of its isometries.
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I. INTRODUCTION

Ungauged supergravities in four spacetime dimensions
are defined up to a choice of the electric-magnetic sym-
plectic frame. Different frames yield physically equivalent
ungauged models, though described by inequivalent
Lagrangians. Things change when the theory is gauged,
namely when a suitable global symmetry group of the
ungauged Lagrangian is promoted to local symmetry
through the so-called “gauging procedure”. In the presence
of extended supersymmetry, only gauged supergravities, as
opposed to their ungauged counterparts, can have a scalar
potential, and thus a nontrivial vacuum structure. When
constructing these models through the gauging procedure,
the initial choice of the symplectic frame becomes physi-
cally relevant. This freedom can be taken into account by
allowing, in a fixed symplectic frame, for magnetic
components of the embedding tensor defining the gauge
algebra, namely by considering dyonic gaugings.1 Different
initial frames will in general yield different choices of the
gauge group and even gauging a same group in different
frames may yield physically distinct theories.

This feature was first exploited in A/ = 4 supergravity
[1]. In the maximal theory the freedom in the initial choice
of symplectic frame led to the discovery of new gaugings in
[2-5] and, more recently, in [6-9]. In [7,8], in particular,
one-parameter families of dyonic SO(p, ¢)-gaugings were
found in N' =8, D =4 supergravity, generalizing their
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All the gaugings we consider, including “dyonic” ones,
satisfy locality constraints. Namely, there always exists a choice
of symplectic frame in which the gauging is entirely electric.
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well-known electric counterparts [10,11]. These new mod-
els were constructed by gauging the same SO(p, g) group
in different frames, the choice of which is parametrized
by a continuous angular parameter w. They are known as
w-deformed models, where the value @ = 0 corresponds to
the original electric gaugings of [10,11]. The parameter  is
physical in that its value can not be offset by field
redefinitions or the action of the global symmetry group
G of the ungauged theory, and does affect the physics of
the model.

A different class of dyonic models, originally devised in
[6], are based on non-semisimple groups of the form

(1.1)

with p+ g+ p'+ ¢ <8 and N is a subgroup generated
by a nilpotent algebra whose properties are described later.
These gauge groups can be defined as different contractions
of the semisimple group SO(p + p’,8 — p — p’), general-
izing the CSO(p, ¢, r) gaugings of [11]. They are charac-
terized by a CSO(p, ¢,8 — p — ¢) subgroup gauged by the
electric vector fields and a CSO(p’, ¢, 8 — p’ — ¢') gauged
by the magnetic ones, with a subset of the nilpotent
generators gauged by a combination of the two fields.
As opposed to the w-deformed SO(p,q)-models, the
corresponding gauged theories, also known also as dyonic
CSO(p, g, r) models, do not depend on a continuous
parameter aside from an overall coupling constant. The
only exceptions are the SO(4)? x R!® gaugings and their
noncompact forms, which have a one-parameter family of
deformations corresponding to the ratio of gauge couplings
for the two semisimple factors [9].

Dyonic gaugings feature a richer vacuum structure than
their original electric counterparts. Of particular interest, for

(SO(p.q) xSO(p'.q')) x N,
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their application to the AdS/CFT correspondence, are the
anti-de Sitter vacua. In order to understand the general
features of the dual three-dimensional CFT, however, a UV
completion of the model within superstring or M-theory is
called for. The original SO(8)-gauged maximal supergravity
of [10] features a maximally supersymmetric AdS vacuum
and describes a consistent truncation of eleven-dimensional
supergravity compactified on a seven-sphere [12]. The CFT
dual to the maximally supersymmetric vacuum of the theory
is the ABJM model [13]. The electric CSO(p,q.r)-
gaugings, on the other hand, describe consistent truncations
of eleven-dimensional theories on backgrounds in which the
internal manifold has the form H”9 x R", HP'4 being a
hyperboloid [14,15]. As for the dyonic gaugings, while the
ten or eleven-dimensional origin of the @-deformed
SO(p, ¢) models is as yet elusive [16,17], some progress
has been made for the dyonic CSO(p, g, r)-supergravities:
Recently the dyonic ISO(7)-model was interpreted as a
consistent truncation of massive type ITA string theory
[18] on a background with topology of the form
AdS, x 8° [19-21]. In the present work we make further
progress in this direction by defining a ten-dimensional
origin for all the remaining dyonic CSO(p, ¢, r)-models. Of
special interest is the dyonic-model with gauge group
(SO(6) x SO(1,1)) x T'2, which features a characteristic
N =4 AdS vacuum [22] of which we give a ten-dimensional
description in the type IIB theory.

Exceptional field theory (EXFT) [15,23,24] has proven to
be a valuable framework to study the higher-dimensional
origin of D-dimensional maximal gauged theories. It
provides a formulation of maximal supergravities, including
the eleven and the ten-dimensional ones, which is mani-
festly covariant with respect to the on-shell global symmetry
group of the D-dimensional model. In our analysis, we are
interested in uplifting four-dimensional maximal gauged
supergravities [5] so we choose to work in the D =4
formulation of EXFT in which the manifest duality sym-
metry is the E7(7) on-shell invariance of the Cremmer-Julia
ungauged four-dimensional N = 8 theory [25]. In this
framework, the fields of the D = 4, N' = 8 supergravity
are described as formally depending, in addition to the four
spacetime coordinates x*, on 56 coordinates Y™ in the
fundamental representation of E;(;). This dependence is
strongly restricted by the so-called “section constraints”
[26,27]. Solutions to these constraints describe the eleven
and ten-dimensional massless maximal supergravities writ-
ten in terms of D = 4 fields, which only depend on specific
sets of seven and six internal coordinates, respectively. In
[28], a deformed version of EXFT was defined in order to
describe the massive type IIA theory and its consistent
truncations to D = 4.2

See [29] and [30] for corresponding results in the contexts of
double field theory and exceptional generalized geometry,
respectively.
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The embedding of a gauged four-dimensional model in
the eleven or ten-dimensional theories is effected through a
suitable Scherk-Schwarz Ansatz [15] in which the EXFT
fields depend on the internal coordinates through an
E;(7)-valued twist matrix Uy™(Y). This matrix encodes
the higher dimensional fields as well as the fluxes on a
certain background around which the four-dimensional
fields ought to describe fluctuations. For instance, the
Scherk-Schwarz Ansatz for the scalar fields of the ExFT
is written in terms of the characteristic symmetric sym-
plectic Ey(7)-matrix My (x,Y) as follows:

My (x,Y) = Uy* (V) U (Y)Mg, (x),  (1.2)
where Mg, (x) describes D = 4 scalar fluctuations about
the higher-dimensional background whose fields (metric,
form-fields and fluxes) are encoded in the matrix U,V (Y).
If certain conditions on the twist matrix are satisfied, the
dependence of the fields on the internal coordinates through
U(Y) factors out in the EXFT field equations, yielding the
field equations of gauged four-dimensional model in the
x*-dependent fields. The corresponding embedding tensor
is encoded in Uy, (Y). The section constraints restrict the
Y dependence of this matrix and thus the possible gauged
models which can be described as consistent truncations of
the ten- or eleven-dimensional theories.

In the present paper, the embedding of the dyonic
CSO(p, g, r) gaugings, with p + g > 2, r > 2, in the type
II theories is effected by writing the twist matrix U(Y) as

the product of two commuting matrices U(y’) and U (3a):

UK. 5a) = 00U (),
a=p-+gq,..

i=1,....,p+qg—1,
., 0. (1.3)

These two matrices separately define the electric
¢80(p,q,r) and the magnetic ¢8o(p’,q’,r’) subalgebras
and the corresponding sets of coordinates {y’} and {y,} are
chosen within distinct SL(8) representations satisfying a
suitable condition of mutual compatibility. The total twist
matrix satisfies the section constraints so that the corre-
sponding dyonic models can be embedded either in type
ITA (p + g odd) or in type IIB (p + g even) theories.
The dyonic model with p=6, ¢g=0, p'=¢' =1
mentioned earlier corresponds to a gauge group of the
form (SO(6) x SO(1, 1)) x T'2. It can be obtained from a
stepwise compactification of the type IIB theory as follows.
A first compactification of type IIB on AdSs x S° yields
five-dimensional supergravity with gauge group SO(6)
[31-33]. This model still features the SL(2,R) duality
symmetry of the type IIB theory, commuting with SO(6).
As a last step one can perform a Scherk-Schwarz reduction
down to D =4, choosing a twist matrix valued in an
SO(1,1) subgroup of SL(2,R). The resulting model
supports the above mentioned AdS, vacuum (not at the
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scalar origin, however) preserving N = 4 supersymmetries
of which we give a type IIB description. Its geometry is an
AdS, x M5 x S' S-fold with the internal space Ms given
by a deformation of the round sphere S° preserving an
SO(3) x SO(3) € SO(6) subset of its isometries.

The paper is organized as follows: In Sec. IT A, we recall
the main facts about the dyonic CSO(p, g, r) gaugings.
Section II B gives a brief review of the relevant ExFT. In
Secs. II C and II D, the Scherk-Schwarz Ansdtze defining
the type II embedding of the dyonic CSO(p, ¢, r) gaugings
are discussed in detail. Finally, in Sec. III, we focus on the
(SO(6) x SO(1,1)) x T'? gauged maximal supergravity
and work out, using the general EXFT description of type
IIB theory and the corresponding Scherk-Schwarz Ansatz,
its uplift into the IIB theory. In particular, we give the uplift
of the four-dimensional N =4 AdS vacuum into a IIB
S-fold solution. In Appendix C, we also prove that the
noncompact version of this ten-dimensional geometry (i.e.
before S-folding) falls in the class of Janus solutions found
in [34,35]. We end with some concluding remarks.

II. TYPE II ORIGIN OF DYONIC GAUGINGS
A. Dyonic gaugings

Gaugings of maximal D = 4 supergravity are conven-
iently described by the embedding tensor formalism
[3,5,36-38] (for reviews, see [39,40]).

All the information about the gauge couplings of the
theory is encoded into a tensor X,,y” transforming in the
912 representation of E7(7>, where indices M, N, ... corre-
spond to the 56 representation. In an appropriate symplectic
frame an SL(8) subgroup of E;(7) acts separately on electric
and magnetic vectors. We are interested in non-semisimple
gauge groups contained in SL(8, R) of the form

(SO(p.q) xSO(p'.4')) x N, (2.1)
with N a nilpotent factor which becomes abelian when
p+qg+p +q =8 [6] (see also [40] for a review). Its
generators in the fundamental of SL(8) are triangular
matrices with nonvanishing entries either in the first
p + g rows and last 8 — p — ¢ columns, or in the first
8 —p'—¢' columns and last p’ + ¢ rows. These two
sets of nilpotent generators overlap on a common
(p+q)(p' + ¢')-dimensional Abelian subalgebra. This
class of gaugings is described by two symmetric matrices
Nag> '8 corresponding to the 36’ and 36 irreps in the
decomposition of the 912 under SL(8), with A,B, ...
fundamental SL(8) indices. Up to SL(8) transformations
we can write’

’If we take instead 77, invertible and 748 « (i745)7", the
resulting gaugings are the families of w-deformed SO(p,q)
gauged maximal supergravities [7].
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such that 7,72 =0 in order to solve the embedding
tensor quadratic constraints [6]. The embedding tensor then
takes the form

Xap.cp™ = naicdpis"" = npicopia™’,

XAB  EF = —AlES . FIB 4 fBIES . FIA, (2.3)

where 56 E;(;) indices M, N, ... are decomposed into the
28 +28 of SL(8,R), described by upper and lower
antisymmetrized pairs of 8 indices.

Most of these gauged models are entirely specified by
their gauge group embedded in SL(8), with a few notable
exceptions [9]. When p + g = 7 we find ISO(p, ¢) gaug-
ings. In this case the gauge group is entirely specified by
nap and 78 only affects the gauge connection of the R’
subgroup. A nonvanishing 7#4% is identified with the
Romans mass in a IIA uplift of the gauging [19-21].
Moreover, when p + g = p’ + ¢’ = 4 the relative overall
normalization of 748 with respect to 74 cannot be
reabsorbed in any E;(;) transformation and thus determines
a one-parameter family of inequivalent gaugings sharing
the same gauge group.

Several of the dyonic CSO(p,q,r) models exhibit
interesting vacua. Maximally symmetric vacuum solutions
of the resulting gauged maximal supergravities are deter-
mined by extrema of the scalar potential [5]

V() = gy MU (X X g M(#) M () s

+ 7Xun®Xpo"), (2.4)

where M(¢),,y is a symmetric matrix parametrizing the
E;(7)/SU(8) nonlinear sigma model of the scalar fields,
and M(¢p)M" is its inverse. The deformed ISO(7) gauging
(i.e. with 77 # 0) has several supersymmetric and non-
supersymmetric AdS, solutions [6,22,41]. The (SO(4) x
SO(2,2)) x T'¢ gauging (with equal normalizations for
nap and 7*B) and the (SO(2) x SO(2)) x N, model are
part of a large class of theories exhibiting Minkowski vacua
connected through singular limits in their moduli spaces
[42]. In this paper we will focus in particular on the
(SO(6) x SO(1, 1)) x T'? gauging which is known to have
an N = 4 AdS, vacuum [22], in addition to other unstable
AdS, solutions [6].
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B. Scherk-Schwarz reduction
in exceptional field theory

Exceptional field theories are the manifestly duality
covariant reformulations of maximal supergravities.
Since our goal is a higher-dimensional embedding of
four-dimensional maximal supergravities, which are
obtained as gaugings [5] of the E;()-invariant Cremmer-
Julia theory [25], the proper framework for their higher-
dimensional embedding is the E;(7)-covariant exceptional
field theory constructed in [24]. This exceptional field
theory is formulated in terms of the fields of D = 4, N' = 8
supergravity which in addition to the 4 external coordinates
x* formally depend on 56 internal coordinates Y forming
the fundamental representation of E;(7). The latter depend-
ence is, however, severely restricted by the section con-
straints [26,27]

QYK (1,) N Oy OyA = 0,
QMK(I(I)KNaMAaNB = 07

QMNY,,ADyB = 0. (2.5)

Here, (1,)"V and Q"N denote the E;(;) generators and the
symplectic invariant antisymmetric matrix, respectively.
The section constraints (2.5) admit two inequivalent sol-
utions restricting the internal coordinate dependence to a
subset of coordinates, identified upon breaking E;7) down

to Gpa = GL(6) and Gy = GL(6) x SL(2), respectively,
11D/TIA: 56 — +6_,+15_ +15 , + 6/,
+ 1+3 + 6+4’
1IB: 56 —[(6/.1)_]+ (6.2)_, +
+(6',2) ,, +(6,1),

(20,1),
(2.6)

The former solution allows for the dependence of all fields
on 6 4 1 coordinates, upon which the field equations of
exceptional field theory reduce to those of D = 11 super-
gravity. In the latter solution, fields depend on a maximal
set of six coordinates which are singlet under the
SL(2) C Gyg. The resulting field equations thus exhibit
a global SL(2) symmetry and coincide with the equations
of IIB supergravity. The decomposition (2.6) shows that
Ga and Gy intersect on a common GL(5).

For the details of the E;7) exceptional field theory, in
particular its Lagrangian and field equations, we refer to
[24,43]. Here we just review its bosonic field content

{g/w’MMN1 ‘A/AM?B/MNZ’B;UJM}’ (27)

drawing on the field content of D =4 maximal super-
gravity. The matrices g,, and M,y represent the external
and internal metric, respectively, with the latter parametriz-
ing the E;(7/SU(8) coset space. The vectors .A," and
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two-forms {B,, o, B, } transform in the 56 and 133 @ 56
of Ey(7), respectively. In order to establish the equivalence
with IIA/IIB supergravity after solving the section con-
straint, the fields (2.7) are decomposed with respect to the
relevant Gy g defining (2.6). For example, the scalar
matrix M,y is parametrized as M = VVT in terms of the
group-valued vielbein V), parametrized in the triangular
gauge associated with the GL(1) C Gy g grading accord-
ing to [44]. In IIB parametrization, this takes the form of an
expansion,

Vi = exp [bata )]CXP [eklm"pqckl nl(+ 2)1711]

X exp [by, "1l V6 V2 exp [ty (2.8)
in which one recognizes the various IIB fields.* A similar
expansion holds for the IIA parametrization. The precise
dictionary between the ExXFT formulation and IIA/IIB
supergravity further requires redefinitions of all the form
fields originating from the higher-dimensional p forms in
the usual Kaluza-Klein manner, as well as a series of
dualization and nonlinear field redefinitions, cf.a [24,45].

Consistent truncations in exceptional field theory are
conveniently constructed via a generalized Scherk-Schwarz
reduction by the Ansatz [15]

G (%, Y) = p72(Y) g (x),
My (x,Y) = Uy " (Y)UN" (Y )M (%),
AM . Y) = p (VAN ) (UMY,
Buo(x.Y) = p(Y)UL(Y)B,5(x).
BWM(X’Y) —2p” ( (v I)S (Y)

x Oy UpR(Y)(1%)g SB;wa( )s (2.9)
for the bosonic fields (2.7). The dependence on the internal
coordinates is carried by an E;(7)-valued twist matrix U Y
and a scale factor p(Y), satisfying the first order differential
equations [46]

! 1 a
(U )" (U)NCOrU gy, = 7POum (ta)n".
O (U™ = 3p7 Onp(U)yN =208, (2.10)

with constant tensors ©,,% and 9;,. The latter can be
identified with the irreducible components of the embed-
ding tensor of the four-dimensional gauged supergravity [5]
to which the theory reduces after the generalized Scherk-
Schwarz Ansatz. In particular, the notation [-]g;, refers to
projection onto the irreducible 912 representation of Ey ).

“Depending on the context, indices a, /3, ... represent either the
E;(7) adjoint representation or the SL(2) fundamental. This
should cause no confusion.
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Every solution to the system (2.10) defines a consistent
truncation of exceptional field theory down to a four-
dimensional gauged supergravity with all ¥ dependence
consistently factoring out from the field equations. If the
matrix Uy~ and the scale factor p(Y) satisfy the section
constraint (2.5), the dictionary with IIA/IIB supergravity
provides the explicit formulas for a geometrical uplift of the
resulting four-dimensional gauging into type II supergrav-
ity. In this paper, we will construct the twist matrices U,,"
that define the geometrical uplift of the dyonic gaugings
defined above.

C. Scherk-Schwarz twist matrices
for dyonic gaugings
The solutions to the consistency equations (2.10) con-
structed in [15] give rise to the embedding tensors associated
with the gaugings of SO(p,q) and CSO(p,q,r) and
provide a geometrical uplift of these theories via the
compactification on spheres and hyperboloids. To this
end, the 56 internal coordinates are decomposed in the
SL(8) frame
{YM} = {yYU8 vy, p},  AB=1,..8  (211)
into what we will refer to as “electric” and “magnetic”
coordinates. In [15], the physical coordinates are identified
among the electric Y5 as y? = YI8], corresponding to the
D = 11 solution (2.6) of the section constraint. In the SL(8)
frame (2.11), the latter takes the form

1
Oac @ IPC + 0P @ Oy = §5g<aCD QIP+PQ0dcp),

1
_ EF g §GH
eapcperou0”" ® 0

Oiap ® Ocp) = 2

(2.12)

The twist matrices U2 (y") associated to sphere and hyper-
boloid compactifications can then be constructed within the
subgroup SL(8) C Ey(7).

Here, we will generalize this result to twist matrices
U c SL(8) which depend on more general subsets
of coordinates (still satisfying the section constraint)
and take the form of products of the solutions found
in [15]. More precisely, let us consider a twist matrix of
the type

(2.13)

where U and U separately solve the Scherk-Schwarz
consistency equations, with embedding tensors denoted

° K s .
by Xy,n and X,,nX, respectively. We also assume that

PHYSICAL REVIEW D 95, 066020 (2017)
9 =9 =0. With this Ansatz, the first of the consistency

equations (2.10) for U reduces to

o_ A_1.°—1 A A 1 Pl 0
p (U 0) N XnpPlory + 27 U X ]

= const = X;p?. (2.14)
where X,,y® denotes the unprojected current
Xy = A_I(O_I)MP([AJ_I)NQaPUQK (2.15)
(such that [Xyn5los = Xyn™), and
U[)EMPQ] = (07" (O UK’K)%M’N’K” (2.16)

denotes the E;)-action of U on the embedding tensor

X MPQ. Let us further assume that the variables y’ and y,
are mutually compatible in the sense that

o_ °—1
GG "ol = Ouly

PO ow)5, = Ol (2.17)

i.e. that we have equality of the action of these differ-
ential operators on the coordinates y' and y,, respectively.
With this assumption, the lhs of equation (2.14)
reduces to

g 04 A1 =%..2 4%, 2

Xup® +p7 UXyp | = Xup® + Xup (2.18)
such that equation (2.14) is automatically satisfied with
the resulting embedding tensor given by

A ° Q
Xup? = Xup? + Xup - (2.19)

We can introduce a relative coupling constant between

X,p? and }ZMPQ by rescaling of the y, vs the !
coordinates. This allows us to capture the continuous
deformation parameter of the SO(4)? x T'® gaugings and

of their noncompact forms. Finally, the second
equation of (2.10) turns into

° -1 A Al ° -1
(U )Mo (O™, + (U7 on(U )N

=3p7 (070 ) M. (2.20)

which together with (2.17) and the respective equations
for p and p turns into an identity.
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In the following we will consider the product Ansatz

(2.13) with matrices U and U B chosen among the solutions
from [15], corresponding to gauge groups SO(p, g) and
SO(p', ¢'), respectively. In order to satisfy the compatibility
constraints (2.17) together with the section constraints
(2.12), we will choose the coordinates y' among the electric
and the y, among the magnetic coordinates from (2.11).
More precisely, we define coordinates {y’, y,}

PHYSICAL REVIEW D 95, 066020 (2017)
yi=Y®8, Yo=Y, i=1,..., p+qg-—1;
a=p+aq,....0, (2.21)

which provide a solution to the section constraints (2.12).

Moreover, the associated SL(8) matrices I/ and U commute,
satisfy the compatibility equations (2.17), and giverise to the
product (2.13)

v 0 0 pvo
°b o2 0
0 W pw 0
U—1),B = (pp~)'/? P . : 2.22
(U7 (0p~") 0 P, P (1 + uK (i, v)) 0 (222)
p*Vy 0 0 p*

which we present in the SL(8) basis {A} - {i,a,7,8}.
The various blocks are given by

Vil =8 + nyny*y' K (@, 0),
a ° 0 °
Wo = -3, W, =-n"5,K(u,v),
W, =, (2.23)

with #,;; and 7" defining the signatures of SO(p — 1, q)

and SO(p’ —1,¢’), respectively, and the functions p, p
given by

p=(1=0)"=(1—-yny),
p= =)= (1=3"5,)"" (2.24)

The functions K (#, ) and K(if, v) are determined by first
order differential equations and given explicitly in [15].
One may check explicitly that the matrix (2.22) solves the
consistency equations (2.10) and gives rise to the embed-
ding tensor (2.3) of the dyonic gaugings. We stress that
it is crucial for the consistency of the construction that
the coordinates y' and y, are chosen within distinct
SL(8) representations in (2.11), i.e. the y' and the y, are
embedded in the electric and magnetic coordinates,
respectively.

D. Type II origin

In the previous section, we have constructed the Scherk-
Schwarz twist matrices that give rise to the embedding
tensor of dyonic gaugings. Since we have identified the
coordinates {y’,y,} on which these matrices depend
directly in the SL(8) frame (2.11), it is not immediately
obvious if these coordinates in the GL(6) bases (2.6)

correspond to a IIA or IIB solution of the section con-
straints. We will determine their precise higher-dimensional
origin case by case according to the value of p + g.

1.p+q=6

In this case, the coordinates (2.21) are given by
{Y'8,y28 y3 y*¥ ¥38 Y }. Comparing this set to the
section constraint (2.12), it follows that fields can
depend on none of the other 50 internal coordinates
without violating the section constraint. We conclude
that exceptional field theory on this set of coordinates is
equivalent to IB supergravity. More specifically, we can
identify the SL(2);p under which these coordinates are
singlets as the subgroup of SL(8) whose generators are
given by

SL(2)yg = (T6', T7°, T7" = T¢°), (2.25)

where E;(;) generators are defined in Appendix B. The

GL(1)yp C G which provides the geometric grading of
coordinates (2.6) and fields is generated by

GL(t)s = (T =3 (T + 7). (229

Indeed, evaluating the charges of the various coordinates
under this GL(1), we find

{Y® Yer}: —4, {ye®,v,}: -2,
thus reproducing the IIB charges of (2.6).
2.p+q=5

In this case, the coordinates (2.21) are given by
{Y'8, Y28, y38 ¥®8 Y5, Yer }. Itis straightforward to verify
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that they can be extended by a seventh coordinate Ysg4
still satisfying the section constraints (2.11). The resulting
theory thus is type IIA supergravity (with possible
D =11 embedding). The GL(1);, which provides the
geometric grading of coordinates (2.6) and fields is
generated by

3 1
G = (310 =) =3 (15 4 16}, (229
giving rise to the charges

{Y®. Yor}: - {re}: =3,
{(Yi y® y,}: -1 ..

{y®. vy} -
(2.29)

for the coordinates, in accordance with (2.6).

3. p+q=4

In this case, the coordinates (2.21) are given by
{YB3, Y28 ¥8 Y47, Vs7. Y7} As for p+g=6, it is
straightforward to see that these coordinates cannot be
extended by any of the other 50 internal coordinates
without violating the section constraint. Again, the result-
ing theory thus is IIB. The SL(2);z under which these
coordinates are singlets is not entirely contained in SL(8)
but has generators given by

SL(Z)IIB = <(T88 + T44 + TS5 + T66)’ T45687 T1237>,
(2.30)

the latter two of which sit in the 70 = e;7)\8L(8) . The

GL(1),z which provides the geometric grading of coor-
dinates (2.6) and fields is generated by

3

GL(1)yp = <Z<T88 -T7)+—(T\' + T,> + T5°

Bl—=

T4 -Ts - T66)>, (2.31)
giving charges
{y®, yay: — {Y®, Y Y7, Y} —
{Y4, Y8 Yog, Yig}: 0, ..., (2.32)
for the coordinates, in accordance with (2.6).
4. p+q=3
In this case, the coordinates are given by

{Y'8, Y, Y37, Y47, Y57, Y7 }. Upon flipping Y*# < ¥ s,
this choice maps into the case of p + g = 5 above, it thus
corresponds to a ITA embedding of the theory.
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5.p+q=2
In this case, the coordinates are given by {Y'® Y,
Y37, Y47, Ys7, Y7} Upon flipping Y42 <> Y 4, this choice

maps into the case of p + g = 6 above, it thus corresponds
to a [IB embedding of the theory.

III. UPLIFT OF THE A =

AN =

The (SO(6) x SO(1,1)) x T'? gauged maximal super-
gravity admits an ' = 4 AdS, vacuum preserving SO(4)
gauge symmetry [22]. This solution is part of a one-
parameter family of A =4 AdS vacua belonging to
inequivalent gauged maximal supergravities but exhibiting
similar physical properties. The other elements of this
family of solutions are vacua of the w-deformed SO(7, 1)
gauged supergravities, whose higher-dimensional origin is
unknown. However, at a singular point in the parameter
space of the family the gauging degenerates into
(SO(6) x SO(1, 1)) x T'2, for which we can now provide
an uplift to type IIB supergravity.

Using (2.22) for p=6, ¢g=0 and p’=¢’' =1, the Scherk-
Schwarz Ansatz (2.9) describes the consistent truncation of
type 1IB supergravity to (SO(6) x SO(1,1)) x T'? gauged
maximal D = 4 supergravity described by the embedding
tensor (2.3) with

4 AdS; VACUUM

4 AdS, vacuum in D =4 supergravity

_1’07 O? _1)’
~1,1,0).

Nap = dlag(—l, ceey

B — diag(0, ...,0, (3.1)

In order to uplift the N' =4 AdS, solution of [22] we
will need to reproduce the vacuum extremizing the scalar
potential (2.4) in terms of the scalar matrix

. M ap.cp MABCD 39
o MABCD MABCD )’ ()

Myn = (LLT)MN
expanded in the SL(8) basis (2.11). Here L is a coset
representative for E;7/SU(8). The N = 4 AdS, vacuum
is located in an SO(4) C SO(6) invariant subspace of the
scalar manifold, which turns out to be a GL(3)/SO(3)
subcoset space generated by [8]

t T+ T2 4T3 T, =TS —Tg8), 33
1 12\/*( 1 2 3 4 5 8) ( )
t T+ T2+ T3 +T4+TS
2 — 24\/—( 1 2 3 4 5
+ Tg® =376 - 37,7), (3.4)
b= — (1~ T)7) (3.5)
2 4\/6
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1 1

1
ty=—7=(T¢' +T,°), 15 Zmeé, te=

46
(3.6)

We normalize these generators so that Trsq(7;¢7) = 1 in the
fundamental of E;(7).

Actually only some of the fields associated with these
generators acquire a nontrivial value at the N' =4 AdS,
vacuum. We find that the vacuum solution is identified with
the coset representative

L =exp <—%log(3)tl> exp (+4V315 £ 4/315). (3.7)
Upon computation of the fermion shifts associated with this
extremum of the scalar potential, we explicitly recover the
solution of [22] up to an SU(8) transformation. The = signs
in the coset representative give different instances of
equivalent vacua. We will take both negative in the
following. We give the explicit form of the scalar matrix
M,y at the vacuum in Appendix A.

There are, of course, flat directions of the solution (3.7)
associated with the broken gauge symmetries. The flat
direction associated with the broken SO(1, 1) will be
relevant in the following. It corresponds to mapping
(3.7) into the gauge-equivalent solution

L — exp (&ty)L. (3.8)

Moreover, there are different instances of this vacuum
connected by discrete transformations. Beyond the signs
indicated above, also the outer automorphism of the
|

!
Mmm’ Mmm b
Mma " Mma,m'/)’
/
— B
MMN - anp,m’ anpm/
/
Mma,m’ Mma mp
M" Mmmp

The explicit form of these blocks is read off from expanding
the exponential series (2.8) and (after proper normalization)
gives rise to the following identification of the IIB fields

M = (;—l/ZGmn7
1
ana — EG—I/ZGmkbknﬁgﬂa’

1

1
Mma,nﬂ = E G_l/sznmaﬁ + 5 G_l/szlbmk}/bnlégaygﬁév

3
Mplmn = _ZG_I/Zka <Cklmn - gga[)’bk[labmn]ﬁ> : (312)

———Tr37.
4\/§ 1237
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residual SO(4) that exchanges its SO(3) factors generates
new instances of this vacuum in field space. These are
obtained by the following substitutions in (3.7):

t 11— —1,

t5,6 i t5T,6’ (39)

B. Uplift formulas from generalized
Scherk-Schwarz reduction

The explicit uplift formulas that provide the embedding
of the four-dimensional gauging into the IIB theory are
straightforwardly obtained by combining the Scherk-
Schwarz Ansatz (2.9) with the dictionary between the
IIB theory and E;(7) EXFT under the corresponding solution
of the section constraint. Here, we are interested in the
uplift of a special class of four-dimensional solutions, that
preserve the AdS, isometries. In the four-dimensional
theory, other than the external AdS, metric, only scalar
fields are excited and take constant values. Accordingly,
among the ExFT fields (2.7) only external and internal
metric g,,, M,y are nonvanishing. The match of the latter
with the IIB fields is found upon breaking Eq ) under the
GL(6) x SL(2) that defines the IIB coordinates (2.6).
Explicitly, we denote the decomposition of the 56 internal
coordinates as

{(YM} = (Y™, ¥, Y™ Y™ Y, ), (3.10)
with m =1,...,6 and a = 1, 2 labeling the fundamental
representations of SL(6) and SL(2), respectively.
Accordingly, the matrix M,y decomposes into blocks:

Mm,m’n’p’ Mm.m’ﬂ Mm m

MIE L MPE L A
anp,m/n’p’ anp,m’ﬁ anp m (311)
Mma,m’n’p’ Mmam’ﬂ Mma m

Mmm’n’p’ Mm m'p Mm,m’

For the uplift formulas, we need to evaluate the lhs
of these expressions via the Scherk-Schwarz Ansatz (2.9),

Myn(x,Y) = UMM(y)UNN(y)MMN(x)’ (3.13)

with the SL(8) valued twist matrix U from (2.22). In order
to reconcile the GL(6) x SL(2) decomposition of (3.11)
with the SL(8) form of the twist matrix, we have to break
both groups down to their common SL(5) x SL(2). For the
coordinates (3.10), this implies
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(VM) = {17 ¥ YV, 77,7, )
S (T T, Vi, Vg VK, 79U, 7l 75 7, T,

(3.14)

upon splitting {m} — {i,6}. Similarly, for the SL(8)

coordinates (2.11), and in accordance with (2.27), we

use the split of SL(8) indices,

{A} - {i,a}, with i={i8},i={l1,....5},

a={6,7}, (3.15)

in order to decompose the {Y" ¥,5}. We may then
identify the coordinates (3.14) among the SL(8) coordi-
nates (2.11) as

S 56 T ~ ik o6 Sia Sba O S

{YlaY ’Yi(n Y6aaYlj 7Yljv YlaaYav Yi’ Y6}
i Iy -

= {YlS, Y67? Yig’ga_bYQS,gUkl] Yl'/j” Ylj,

where according to (2.25) we identify {a} = {6,7} from
(3.15) with the SL(2) doublet indices {a} = {1,2}.

Let us now make the uplift formulas explicit. Combining
(3.12) with (3.13) and the form of the twist matrix (2.22),
we obtain

G—1/2Gij — Mij — 2Mi8.j8
= 20U P )
= 29K K, ME22 (), (3.17)
J

(1 +2r%)A87 — 3Ay'y/

G = ¢ (3-2r)A87 —3Ay'y/
—Ayiyj
G =0,  G%=(1-F)A,

with 2 = (y')2 4+ (y?)* + (y*)* < 1 and

A= ((1+2r%)(3=2r7))"14 (3.22)

In a similar way, we may obtain the uplift formulas
for the remaining IIB fields from (3.12). For the two-form,
we find that its only nonvanishing components are
given by

b;j* = 2G'*Gye® M8,
= 4G'2Gyet (U™ BU e MY,

= —2AGik}Cﬂk8jyﬂ€9dA4“Mﬂmc, (323)
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where MX:m1(x) refers to part of the lower right block of
the E;(7) matrix (3.2), and we have expressed the relevant

components of the twist matrix U in terms of the Killing
vectors on the round five-sphere

K" = Gijajy@yﬂ]’
Gij = §i _yiyj'

Vm = {y’} 2! —y"y"},

(3.18)

Similar calculation determines the remaining components
of the internal six-dimensional metric, such that together
we find

Gl = 2AK K, MEL (),
Gi6 = 2Ap°2K:ﬂlMﬂ§7(X>,

G% = 2Ap" Mg 57 (), (3.19)

with p from (2.24) and the scale factor A defined by

A = p*(detG)'/2. (3.20)

While (3.19) represent the uplift formulas for generic
solutions of the four-dimensional theory, in the vacuum
(3.7) we are interested in lifting, the matrix My (x) is
constant, and these formulas further reduce to

i,je{l1,2,3}
i,j€ {4,506} ,
ie{l1,2,3},j€{4,5,6}
(3.21)

|
where as above we identify {a} = {6,7} from (3.15) with
the SL(2) doublet indices {a} = {1,2}, and M¥,, is given
in (A2). The SL(2) matrix A,% is read off as

o - ~2 s
A= (pz Ve )_ \/1+y6 Yo
a ~ o ~ - ’
Yo p(14752) 5o 4/1+32

(3.24)

from the (6, 7) block of (2.22), using that K=1 in
this case.
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Next, the IIB dilaton/axion matrix is obtained from
(3.12) as

1
maﬁ = gG(anMma,nﬂ - 4MnkaMkn/3), (325)

which when put together with (3.13) in our vacuum yields

2
m =

w=3 A2ymyﬂ Sm.@,qg(w Aéﬁ’)gaa,gﬂﬁ,’ (3.26)

with the matrix A, from (3.24) and

1
Sl = 2 MPSIL - 9l (M 1gMEEE + M2 M),

(3.27)

With the explicit values (A1)—(A6) of M,y in our vacuum,
this expression reduces to

Myp = (A‘lMA_T)aﬂ,

A2 (3 +2r2 47 )
Mab =7 ’
- V3\ —4r2 3422

and it comes as a nontrivial consistency check, that with the
expression (3.22) for the scale factor A, this matrix indeed
has determinant 1.

Finally, the expression for the only nonvanishing com-
ponents of the IIB four-form follows from

(3.28)

) | 1 . .
i _ i8,j'k _ i —1 k' A gkl,mn
M jki _EM / Eiklj K —Epgjklj’k”cﬂ (U )@j M=

1 PN 1 . N ,
= ﬂﬂzG” Ciuir — §ﬂ2p 20w K’ V7 IC, < MELE,
(3.29)

with C; i defined as giving rise to the S background flux:

Sa[i’éijkl] = Wpjju = ﬁ_zgi’zjkl- (3.30)

Together, the expression for the IIB four-form is given as
A 1 N At ’
Cijkl :Cijkl +ZA}Cﬂme[iwﬂd]j!k!v] Kmk 1‘4ﬂ’M (331)

We have thus obtained all the nonvanishing IIB fields as
functions of the S° Killing vectors and sphere harmonics.
Let us note that the expansion (2.8) also carries some
components b, = e"mipy, .. of the dual six-form of
the IIB theory which, however, vanish identically in our
vacuum.

C. The supersymmetric IIB AdS, x M5 x S' solution

In this section, we calculate the field strengths and
present the IIB solution in its most compact form. The
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vacuum (3.7) of the four-dimensional theory preserves
N = 4 supersymmetry and, accordingly, a global SO(4) =
SO(3) x SO(3) symmetry that shows up as the internal
isometry group of the IIB solution. In order to make these
isometries manifest, we split the S sphere harmonics into

{yﬂ} — {:)}P7 ZP = :)}P+3}’
VPYP =1 - ZP2P =2,

p - 15 23 37
(3.32)

In terms of these harmonics, the ten-dimensional IIB metric
is given by

ds? = N3((3 = 2r2)5P9 4 8YPY4)dYP dY*
+ A3(1 +2r2)dZPdZP

1
+ A™! (dndn + EdsidSJ . (3.33)
with the warp factor given by (3.22) as
A= ((1+2r)(3=2r))"14, (3.34)

and the AdS, radius fixed to rpqg = 1. With respect to the
previous sections, we have also changed coordinates ys =
sinh ; along the S' direction. The internal five-dimensional
space is a deformation of the round metric on $° which
preserves an SO(3) x SO(3) € SO(6) of the isometry
group. Indeed, the harmonics Y?, ZP can be regarded as
embedding coordinates for two S spheres of radii r and
V1 —r?, respectively. The S° geometry is parametrized in
terms of these two spheres fibered over the interval
r€(0,1), and at the points » =0, 1 one of the $%’s
shrinks smoothly to zero size. Denoting dQf , the round
metrics of unit radius on the $2’s, an explicit expression for
(3.33) is

ds* = A3(3 = 2r%)r2dQ3 + A3(1 +277)(1 — 12)dQ3

dr? 1
+A7! <d,72 + — 4 Edsids4>-

(3.35)

The SL(2) matrix of IIB supergravity,

1 < |t]>  —Rer
My =—o
%" Imr \ —Rer 1

>, t=Cy+ie™®, (3.36)
describing the dilaton and axion is given by (3.28) as
Moy = (A‘IMA‘T)aﬁ, (3.37)

as a product of the SL(2) matrices

066020-10



TYPE I SUPERGRAVITY ORIGIN OF DYONIC GAUGINGS

A2 (3 +2r2  —4p7 >
M(lﬁ = — R
V3 —4r2 34277
cosh sinh
Af = ( oS ”). (3.38)
sinhn coshy

The three-form field strength is obtained by the exterior
derivative of (3.23) and takes the form

(VA
3 zmemrdyp/\dyq/\
WA
3-272 7
52
N (5-2r%)
3(3-2r%)

(3+2r?)

2 )

dzZP NdZ1

dz’+ Z’dn> , (3.39)

with the matrix A from (3.38) and the vectors

Ve = {3E1/4 13514, (3.40)

Finally, the self-dual IIB five-form field strength is given by

1
H5 =dc— g&’aﬁba VAN db/}

= 67A4zpdyp AdYVIANAY" ANdZIAdZT
8(1—1r?)
+3A4ZPYPaYe A dYTN A dZ9 A dZT A dy
1
16

A (dn - %‘ypdyp).

|9l€upodxt A dx¥ A dxP A dx®

(3.41)

We have explicitly verified, that this solution satisfies all
the field equations of the IIB theory, including the Einstein
equations.

D. Interpretation, S-folds and supersymmetry

The uplift provided in the previous section is in principle
on a warped S°> x R internal space, where R is the 7
direction. In fact, d/0n is an isometry of the solution and
although the n dependence is present in the fluxes, it only
appears through the SL(2) matrix A(n) of (3.38). Indeed,
the flat direction (3.8) lifts to constant shifts of #. This
means that we can make # periodic, 7 =1 + T, at the price
of introducing an SL(2) monodromy of the fields along the
resulting S':

Mg =A(n)'A(n +T). (3.42)
Being A(7) an element of a noncompact subgroup of SL(2),
there is no choice of the period 7" such that Mg = 1, which
would make the solution globally geometric. Instead, the
solution is locally geometric and globally an S-fold.

PHYSICAL REVIEW D 95, 066020 (2017)

The periodicity in # is restricted if we require that the
resulting monodromy belongs to SL(2, Z). For instance, to
obtain the representatives of the infinite sequence of
hyperbolic SL(2, Z) conjugacy classes (see e.g. [47])

n 1

m(n):<_1 o)’ neN, n>3, (343)

we must set 7 = log1 (n + V/n? — 4) and redefine A(y) in
all expressions (including the Scherk—Schwarz matrix
(2.22) as follows”:

(n2—4)!/4 0
V2
A(n) = Aln)g.  g= ; (3.44)
\/5(112—4)]/4 (n2—4)1/4
This results in the monodromy matching (3.43):
Mg — g ' Mg g = M(n). (3.45)

Notice that this redefinition does not affect the embedding
tensor resulting from Scherk-Schwarz-reduction. Indeed,
the D = 4 gauged supergravity obtained upon truncation is
blind to the choice of SL(2,Z) conjugacy class of the
monodromy.

Interestingly, the fact that M is in the hyperbolic
conjugacy class of SL(2) also means that we can find a
global parametrization of the SL(2)/SO(2) axio-dilaton
coset representatives such that no compensating local
SO(2) transformation on the IIB fermions is induced by
the action of M. The standard parametrization of m in
(3.36) can be obtained for instance from the SL(2)/SO(2)
coset representative £(Cy, @) as
-®/2 _ e<1>/2C0

e
— T —
maﬂ_(ff )aﬂ’ f(co7¢): < 0 eq>/2

), (3.46)

while in order to avoid SO(2) compensating transforma-
tions under M we may for instance change parametriza-
tion to

maﬂ = (f/f/r)ozﬂ7 == g_l

% (i _11>f()(0»¢)’
(3.47)

where an expression for the axio-dilaton in terms of y, ¢
can be easily constructed. This is still a global choice of
coset representative and SO(2) gauge, and now It acts as

Note that g is not unique, it can be redefined by ¢ —
exp(LlogMgi)g for any . Also note that conjugacy classes
with n < —3 cannot be obtained from our initial monodromy
martrix.
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a shift of the field ¢ without inducing local SO(2)
transformations.

The importance of this observation lies in the fact that
under a Scherk-Schwarz reduction of ExXFT fermions
behave as scalar densities, at least for a certain SU(S8)
gauge choice [15]. Hence, their dependence on internal
coordinates is entirely encoded in the function p of (2.13).
This also applies to the uplift of the gauged supergravity
residual Killing spinors at the vacuum. Because we can find
an SO(2) gauge such that the S' monodromy does not
require compensating gauge transformations on the fer-
mions, we can conclude that the A" = 4 Killing spinors of
the AdS, solution described above uplift to globally well-
defined Killing spinors of type IIB. This means that the
S-fold solution above preserves 16 supercharges which are
single-valued and, in fact,  independent at least in an
appropriate gauge.

As an aside, it is interesting to note that choosing a
different A(n) taking values in the SO(2) or R subgroups of
SL(2) one arrives at an S-fold interpretation of the reduction
Ansatz (2.22) for the (SO(6) x SO(2)) x T'? and (SO(6) x
R) x T'? gaugings, respectively. The (SO(6) x R) x T'?
case has a second interesting interpretation: the R valued
A(n) matrix can be interpreted as inducing F; = dCj, flux
along S', while S3 is supported by F's. If we T-dualize along
n, F; goes into the Romans mass F, and F'5 goes into Fjg
filling S5 x S'. The reduction Ansatz can then be reinter-
preted as type IIA on S x S! with Fy and F, flux, where
A(n) € R generates the Romans mass in terms of a linear
dependence of C; on the winding coordinate n = Yg; (the
physical coordinate would be Y®®). This is analogous to [29]
and in fact the A(n) part of such an Ansarz matches one of the
nongeometric twist-matrices that generate the Romans mass
provided in [28]. One can alternatively implement the
Romans mass directly in ten dimensions in terms of a
deformation of the exceptional field theory/generalized
geometry [28,30], and use the CSO(6, 0, 2) Ansatz based
on (p, U) alone to implement a geometric reduction of
massive IIA to (SO(6) x R) x T'? gauged supergravity.

IV. DISCUSSION

In this paper, we have constructed the twist matrices that
define the consistent truncation of E;;) exceptional field
theory down to the D =4 dyonic gaugings with gauge
group (SO(p, q) x SO(p’,q')) x N. The twist matrix sat-
isfies the section constraints so that the corresponding
dyonic models can be embedded either in type IIA (p + ¢
odd) or in type IIB (p + ¢ even) theories. Using the
dictionary between exceptional field theory and IIB super-
gravity, we have worked out the explicit uplift formulas for
the (SO(6) x SO(1, 1)) x T'? gauging and given the uplift
of the four-dimensional AdS, N = 4 vacuum [22] into a
supersymmetric AdS, x Ms x S' S-fold solution of IIB
supergravity. The internal space M5 is a deformation of the
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round sphere preserving an SO(4) C SO(6) subset of its
isometries.

Before compactification of the # direction, the solution
we construct in section III C has the same topology as
AdSs x §°. The parametrization we give is in the form of a
warped product AdS, x S? x §? x X, where X is an infinite
strip parametrized by # and r. At the boundary of the strip
(r = 0, 1) one of the two S? smoothly shrinks to zero size,
reproducing the S° topology. Another important observa-
tion is that with a constant SL(2, R) rotation the axion can
be set to vanish, while the dilaton runs along the # and r

directions as
0O e~ (3 —2p2\ /2
V3 U422

This strongly suggests that our solution be part of the class
of Janus solutions with 16 supercharges of [34,35]. This is
indeed proven in Appendix C. More specifically, it corre-
sponds to a smooth solution without NS5 or D5 sources,
with the dilaton varying from —oo to +o0 along the infinite
stripe. This differs from the regular Janus solution of
[34,35], where the dilaton varies between finite boundary
values. Janus configurations and their relation with inter-
face NV = 4 super Yang-Mills have been largely studied in
the literature [48—51]. It would be interesting to understand
whether the S-fold compactified AdS, solution we find
upon imposing periodicity in 5 is also part of other
constructions relating supersymmetric Janus solutions to
three-dimensional A = 4 conformal field theories [52—55].
In fact, imposing periodicity in 5 corresponds to compac-
tifying the infinite strip Z to a finite cylinder, which seems
analogous to the construction in [54].

There has also been some recent activity on S-folds in the
context of D = 4 N = 3 conformal field theories [56-58].
In those cases a generalization of the O3 orientifold
projections is introduced, that acts with a Z, C SL(2, Z)
on the type IIB fields and on the stack of D3 branes
defining the CFT (k=2, 3, 4, 6). No dimensional
reduction is performed, and the theories obtained from
D3 branes on top of such background are either N” = 4 or
genuinely A/ = 3. Only the elliptic subgroups of SL(2, Z)
are used in that case, as there must be a fixed valued of the
complex coupling z, so that the projection is by a symmetry
of the original theory.

A distinguished property of our solution is that it arises
from a consistent truncation of type IIB supergravity to
D =4, (SO(6) x SO(1, 1)) x T'? gauged maximal super-
gravity. Thanks to the Scherk-Schwarz Ansarz (2.9), we have
access to the full configuration space of the consistent
truncation, which is part of the configuration space of 1IB
supergravity, also away from the solution with 16 super-
charges. In the holographic context, this gives access also on
the field theory side to a consistent truncation to a subset of
operators. On the gravity side, this can be used to generate

(4.1)
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other interesting solutions. For instance, other vacua of the
gauged supergravity may have N < 3 supersymmetry6 and
lift to less supersymmetric Janus solutions and their com-
pactifications. All types of solutions of this gauged super-
gravity (domain walls, black holes, etc.) now also admit a
type IIB embedding. It would thus be very interesting to
further clarify the relation of (SO(6) x SO(1,1)) x T!?
gauged maximal supergravity to Janus solutions with
(SL(2) duality twists), and thus their relation to interface
N =4 super Yang-Mills and V' =4, D = 3 conformal
field theories.
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Appendix A: THE N =4 VACUUM
IN MODULI SPACE

The nonvanishing entries of M,y at the vacuum (3.7) are

3siksl i j=1,2,3
MU = My =< 358 i, j=4,58 (Al
silksl otherwise
y =374k jk=1,23(e'"P =+1)
M k“:{ at121/4 ijk _ 458 (A2)
(—)at131/4elh i j k=4,58(e"8=+1)
k {_31/46% i.j.k=1.23(e'*=+1) (A3)
Mka . — T
(_)g+l3—l/4€yk i’l,k:4a5’8(€458:+1)
V35,160 ij=1,2.3
Miqjp = { . (A4)
o 2\/‘ J(55ab 4o'lgb) LJ]= 4,5,8
. <0U(56% +401") ij=1.2.3
M — {zf S (AS)
751_/5@ i,j=4,5,8
Mgr67 = 8767 — = 6077 = 1/2. (A6)

®Some unstable vacua are known [6].
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Appendix B: E;; GENERATORS

1
= 45568 — = 5852, (B1)

TBD
T4%]c .

[Er B) F|
[T B] N_ 25[c[TA ]D] (BZ)
[E A IF]

€
ABCDEFGH ) ) (B3)

[TABCD]MN <
4055

Appendix C: RELATION TO THE
N =4 JANUS SOLUTION

In this appendix, we show that the solution discussed in
Section III C, upon suitable redefinitions and an S-duality
rotation, coincides with the N = 4 supersymmetric Janus
solution of [53].

Let us define the S? x S? sphere harmonics as

V= Me=o—mz ()
such that VY Y7 =1 = YFV? . Then,
dy? = rdV} + Vidr,
dzr = /1 - r2dy? - \/_rypdr (C2)
Let us also set
r = sinx, (C3)

with 0 < x < x/2. We shall define on the surface T
parametrized by 5, x the complex coordinate z =#n — i
with Imz = x € [0,%]. Upon these redefinitions, the ten-
dimensional IIB metric (3.33) has the form

ds* = Adsin®x(1 + 2cos?x)dY)dY
+ A3 (1 + 2sin’x)cos’xdYs dY5

1
A~Y(dxdx + dndn) + 3 A~lds3ys,, (C4)
with the warp factor given by
A = ((1 4+ 2sin®x)(1 +2cos?x))~"4,  (C5)

and the AdS, radius fixed to rpgg = 1.
Comparing to the notation of [53], in which the metric is
written as

ds? = fidskes, + 15} + £35% +4pdzdz,  (C6)
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we can make the following identifications:

1

i = —A = 16( + 2sin’x) (1 + 2cos?x),
1= A3sm x(1 + 2cos?x),

5 = A3(1 + 2sin’x)cos’x,

4p? = AL (C7)

As explained in Sec. III D, in order to match our solution
with that of [53], the following S-duality transformation has
to be performed on the SL(2)-covariant fields:

—® 0
>m. =808, — €
maﬂ may_ a Op mo‘}/_ o )’

0 e
Hf — HY = S7' 2 HY, (C8)
where
1 /1 -1
We then find
Sin-=x 1/2
\/-'62}7 11122(30[152)( 12 O
Meyp = s (ClO)
0 1 -2y (14+2cos?x)'/2
V3 ¢ (1+2sin%x) /2
from which we read off
2 — 3t (L 280 5) (C11)
(1 + 2cos? x)
The three-form field strengths take the form
/237 V4 e sin?x .
= Ty ST A A
3 + 2sin?
(% cos xdx — sin xdn>
sin“x
= C()S} A\ dbl
/234 encosix .
B = ey w2V Vs
3 4 2cos?
(H_—i_ziszx sin xdx — cos xdn)
COS~x
= wg A db?, C12
SZ
where
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bl — 2+/23 /4 e=gin3x 2:/23/4¢Mcos3x
N 1 + 2sin%x 1 4 2cos2x
(C13)

p =

Finally, the self-dual IIB five-form field strength is
given by

9 r
Hs = Alsin*xcos’xY; YAyt A aV) A dyi A d;

4 .

A (dx + 3 sin x cos xdn)

1

- m \/Hg;wfmdxﬂ A dx¥ N dxP N dx®
4 .

A <d’7 — 3 sinxcos xdx>

3 4
=3 A4sin2xcos2xw5{ A @g1 A (dx + 3 sin x cos xdn)

3 4
~ 5. 400 A <d77 —gsinxcosxdx>, (C14)
where we used the property
P
Wayt ady) = 3¢ ws. (C15)

To compare the solution to the Janus one, it is useful to
write Hs in the form
f f2w51 AN a)Sl AN (*2f>

f40)0122 ANF, (Cl6)

where %, is the Hodge duality operation on the disk
spanned by # and x, and

1
fiF =dj,, 1 E§(37]+COS(2X)) (C17)
so that
3 4 .
fj]-‘:§ (dy]—gcosxmnxdx), (C18)
and
2 10 3 \din2 2 4 i
fif3 *2}":§A SIN“Xcos“x dx+§COSXSIHXd’1 (C19)

1. Reconstruct the solution from the
harmonic functions A, A,

To show the matching of the above solution with that in
[53], we need to prove that all the functions describing it
can be expressed, through appropriate relations given in the
same reference, in terms of only two harmonic functions
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A, A, on the surface X spanned by #, x, or, equivalently,
by the complex coordinate z =  — ix. This readily follows
from the identification

31/4 3—1/4
A = —=¢%, A, = — e’*, C20
1 4\/§ 2 4\/§ ( )

in terms of which we define the harmonic functions A, &,
and their duals Ay, h;:

_ 31/4
hy =—-i(A; — A)) = ———=e¢"sinx,
1 ( 1 1) 2\/§
_ —1/4
hy=A, + A, = — e cos x, C21
2 2 2 22 ( )
_ 1/4
h=A+A4A = e cos x,
1 1 1 A
~ _ 3—1/4
hy =i(Ay — Ay) = e sin x. Cc22
2 ( 2 2) 2\/-2‘ ( )

It is then straightforward to show that the functions entering
the solution satisfy the following relations characterizing
the solution of [53]:

= = 1
W = 0h0h, + Oh,0h, = —gsinxcosx,
Nl - 2h1h2|8h1|2 - h%W

3
= £ %1 sin x cos x(1 + 2sin’x),

128
N2 — 2h1h2|8h2|2 - h%W
1 2
= e 2 gin x cos x(1 + 2cosZx),
V3128 ( )
NN 1
f=16—2=—A"
14 w2 16
NN, W?2
(4p2)* = 256 ——>— = A4,

hih
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N,W?
13 = 16h3 IZV? = sindx(1 + 2cosx)(1 + 2sin’x) 3,
N, W?
3 =16h3 ]]V% = cos®x(1 + 2sin’x)(1 + 2cos’x) 3,
-2
o2 — & = 364”(1LSH12X). (C23)
N, (1 + 2cos*x)

We also find that the two functions b;, b, entering the
expression of the three-form field strengths are related to
the above functions as prescribed in [53]

h _ _ -
by = 2iN—1h1h2(8h18h2 — Oh,0hy) + 2h,
1

2237 Ve
14 2sin’x
h _ _ -
b2 = ZLN—2h1h2(8h18h2 - 8[’118/’12) - 2]11
2

22 - 31/4en o
1 + 2cos?x

sin’x,

$3x. (C24)

Similarly, just as in the Janus solution, the function j,
entering the five-form field strength can be expressed as

ihyhy

j1=3C+C-D)+ W

(Ohy0hy — OhyOhy),

(C25)

where C satisfies the relation 0C = A;0A, — A,0A; and is

given by C = %, while D reads

D=A A+ LA = —%cos(Zx). (C26)

[1] M. de Roo and P. Wagemans, Gauge matter coupling in
N = 4 supergravity, Nucl. Phys. B262, 644 (1985).

[2] L. Andrianopoli, R. D’Auria, S. Ferrara, and M. A. Lledo,
Gauging of flat groups in four dimensional supergravity,
J. High Energy Phys. 07 (2002) 010.

[3] B. de Wit, H. Samtleben, and M. Trigiante, On Lagrangians
and gaugings of maximal supergravities, Nucl. Phys. B655,
93 (2003).

[4] C.M. Hull New gauged N =8, D =4 supergravities,
Classical Quantum Gravity 20, 5407 (2003).

[5] B. de Wit, H. Samtleben, and M. Trigiante, The maximal
D = 4 supergravities, J. High Energy Phys. 06 (2007) 049.

[6] G.Dall’ Agataand G. Inverso, On the vacua of N = 8 gauged
supergravity in 4 dimensions, Nucl. Phys. B859, 70 (2012).

[7]1 G. Dall’ Agata, G. Inverso, and M. Trigiante, Evidence for a
family of SO(8) gauged supergravity theories, Phys. Rev.
Lett. 109, 201301 (2012).

[8] G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8§
supergravity and slow-roll conditions, Phys. Lett. B 718,
1132 (2013).

066020-15


https://doi.org/10.1016/0550-3213(85)90509-7
https://doi.org/10.1088/1126-6708/2002/07/010
https://doi.org/10.1016/S0550-3213(03)00059-2
https://doi.org/10.1016/S0550-3213(03)00059-2
https://doi.org/10.1088/0264-9381/20/24/013
https://doi.org/10.1088/1126-6708/2007/06/049
https://doi.org/10.1016/j.nuclphysb.2012.01.023
https://doi.org/10.1103/PhysRevLett.109.201301
https://doi.org/10.1103/PhysRevLett.109.201301
https://doi.org/10.1016/j.physletb.2012.11.062
https://doi.org/10.1016/j.physletb.2012.11.062

INVERSO, SAMTLEBEN, and TRIGIANTE

[9] G. Dall’Agata, G. Inverso, and A. Marrani, Symplectic
deformations of gauged maximal supergravity, J. High
Energy Phys. 07 (2014) 133.

[10] B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.
B208, 323 (1982).

[11] C.M. Hull, Noncompact gaugings of N = 8 supergravity,
Phys. Lett. B 142, 39 (1984).

[12] B. de Wit and H. Nicolai, The consistency of the S’
truncation in D = 11 supergravity, Nucl. Phys. B281, 211
(1987).

[13] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,
N =6 superconformal Chern-Simons-matter theories,
M2-branes and their gravity duals, J. High Energy Phys.
10 (2008) 091.

[14] C.M. Hull and N.P. Warner, Noncompact gaugings from
higher dimensions, Classical Quantum Gravity 5, 1517
(1988).

[15] O. Hohm and H. Samtleben, Consistent Kaluza-Klein
truncations via exceptional field theory, J. High Energy
Phys. 01 (2015) 131.

[16] B. de Wit and H. Nicolai, Deformations of gauged SO(8)
supergravity and supergravity in eleven dimensions, J. High
Energy Phys. 05 (2013) 077.

[17] K. Lee, C. Strickland-Constable, and D. Waldram, New
gaugings and non-geometry, arXiv:1506.03457.

[18] L.J. Romans, Massive N = 2a supergravity in ten-
dimensions, Phys. Lett. 169B, 374 (1986) .

[19] A. Guarino, D.L. Jafferis, and O. Varela, String theory
origin of dyonic N = 8 supergravity and its Chern-Simons
duals, Phys. Rev. Lett. 115, 091601 (2015).

[20] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and
the duality hierarchy, J. High Energy Phys. 02 (2016)
079.

[21] A. Guarino and O. Varela, Consistent A/ = 8§ truncation
of massive ITA on S°, J. High Energy Phys. 12 (2015)
020.

[22] A. Gallerati, H. Samtleben, and M. Trigiante, The N > 2
supersymmetric AdS vacua in maximal supergravity,
J. High Energy Phys. 12 (2014) 174.

[23] O. Hohm and H. Samtleben, Exceptional form of D = 11
supergravity, Phys. Rev. Lett. 111, 231601 (2013).

[24] O. Hohm and H. Samtleben, Exceptional field theory II:
E;(7), Phys. Rev. D 89, 066017 (2014).

[25] E. Cremmer and B. Julia, The SO(8) supergravity, Nucl.
Phys. B159, 141 (1979).

[26] A. Coimbra, C. Strickland-Constable, and D. Waldram,
Eq) % R* generalised geometry, connections and M
theory, J. High Energy Phys. 02 (2014) 054.

[27] D.S. Berman, M. Cederwall, A. Kleinschmidt, and D. C.
Thompson, The gauge structure of generalised diffeomor-
phisms, J. High Energy Phys. 01 (2013) 064.

[28] F. Ciceri, A. Guarino, and G. Inverso, The exceptional
story of massive IIA supergravity, J. High Energy Phys. 08
(2016) 154.

[29] O. Hohm and S. K. Kwak, Massive type II in double field
theory, J. High Energy Phys. 11 (2011) 086.

[30] D. Cassani, O. de Felice, M. Petrini, C. Strickland-
Constable, and D. Waldram, Exceptional generalised geom-
etry for massive IIA and consistent reductions, J. High
Energy Phys. 08 (2016) 074.

PHYSICAL REVIEW D 95, 066020 (2017)

[31] M. Giinaydin, L.J. Romans, and N.P. Warner, Compact
and noncompact gauged supergravity theories in five-
dimensions, Nucl. Phys. B272, 598 (1986).

[32] M. Pernici, K. Pilch, and P. van Nieuwenhuizen,
Gauged N = 8D = 5 supergravity, Nucl. Phys. B259, 460
(1985).

[33] A.Baguet, O. Hohm, and H. Samtleben, Consistent type IIB
reductions to maximal 5D supergravity, Phys. Rev. D 92,
065004 (2015).

[34] E. D’Hoker, J. Estes, and M. Gutperle, Exact half-BPS type
1IB interface solutions. I. Local solution and supersymmet-
ric Janus, J. High Energy Phys. 06 (2007) 021.

[35] E. D’Hoker, J. Estes, and M. Gutperle, Exact half-BPS type
IIB interface solutions. II. Flux solutions and multi-Janus,
J. High Energy Phys. 06 (2007) 022.

[36] F. Cordaro, P. Fré, L. Gualtieri, P. Termonia, and M.
Trigiante, N = 8 gaugings revisited: An exhaustive classi-
fication, Nucl. Phys. B532, 245 (1998).

[37] H. Nicolai and H. Samtleben, Maximal gauged supergravity
in three dimensions, Phys. Rev. Lett. 86, 1686 (2001).

[38] B. de Wit, H. Samtleben, and M. Trigiante, Magnetic
charges in local field theory, J. High Energy Phys. 09 (2005)
016.

[39] H. Samtleben, Lectures on gauged supergravity and flux
compactifications, Classical Quantum Gravity 25, 214002
(2008).

[40] M. Trigiante, Gauged supergravities, arXiv:1609.09745.

[41] A. Borghese, A. Guarino, and D. Roest, All G, invariant
critical points of maximal supergravity, J. High Energy
Phys. 12 (2012) 108.

[42] F. Catino, G. Dall’ Agata, G. Inverso, and F. Zwirner, On the
moduli space of spontaneously broken N = 8 supergravity,
J. High Energy Phys. 09 (2013) 040.

[43] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and H.
Samtleben, Supersymmetric E;(7) exceptional field theory,
J. High Energy Phys. 09 (2014) 044.

[44] E. Cremmer, B. Julia, H. Lu, and C. N. Pope, Dualisation of
dualities. I, Nucl. Phys. B523, 73 (1998).

[45] O.Hohm and H. Samtleben, Exceptional field theory I: E¢g)
covariant form of M-theory and type IIB, Phys. Rev. D 89,
066016 (2014).

[46] G. Aldazabal, M. Grafia, D. Marqués, and J. Rosabal,
Extended geometry and gauged maximal supergravity,
J. High Energy Phys. 06 (2013) 046.

[47] A. Dabholkar and C. Hull, Duality twists, orbifolds, and
fluxes, J. High Energy Phys. 09 (2003) 054.

[48] A.B. Clark, D.Z. Freedman, A. Karch, and M. Schnabl,
Dual of the Janus solution: An interface conformal field
theory, Phys. Rev. D 71, 066003 (2005).

[49] A. Clark and A. Karch, Super Janus, J. High Energy Phys.
10 (2005) 094.

[50] E. D’Hoker, J. Estes, and M. Gutperle, Interface Yang-
Mills, supersymmetry, and Janus, Nucl. Phys. B753, 16
(2006).

[51] D. Gaiotto and E. Witten, Janus configurations, Chern-
Simons couplings, and the §-angle in N' = 4 super Yang-
Mills theory, J. High Energy Phys. 06 (2010) 097.

[52] D. Gaiotto and E. Witten, S-duality of boundary conditions
in A/ = 4 super Yang-Mills theory, Adv. Theor. Math. Phys.
13, 721 (2009).

066020-16


https://doi.org/10.1007/JHEP07(2014)133
https://doi.org/10.1007/JHEP07(2014)133
https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0370-2693(84)91131-6
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/0264-9381/5/12/005
https://doi.org/10.1088/0264-9381/5/12/005
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP05(2013)077
https://doi.org/10.1007/JHEP05(2013)077
http://arXiv.org/abs/1506.03457
https://doi.org/10.1016/0370-2693(86)90375-8
https://doi.org/10.1103/PhysRevLett.115.091601
https://doi.org/10.1007/JHEP02(2016)079
https://doi.org/10.1007/JHEP02(2016)079
https://doi.org/10.1007/JHEP12(2015)020
https://doi.org/10.1007/JHEP12(2015)020
https://doi.org/10.1007/JHEP12(2014)174
https://doi.org/10.1103/PhysRevLett.111.231601
https://doi.org/10.1103/PhysRevD.89.066017
https://doi.org/10.1016/0550-3213(79)90331-6
https://doi.org/10.1016/0550-3213(79)90331-6
https://doi.org/10.1007/JHEP02(2014)054
https://doi.org/10.1007/JHEP01(2013)064
https://doi.org/10.1007/JHEP08(2016)154
https://doi.org/10.1007/JHEP08(2016)154
https://doi.org/10.1007/JHEP11(2011)086
https://doi.org/10.1007/JHEP08(2016)074
https://doi.org/10.1007/JHEP08(2016)074
https://doi.org/10.1016/0550-3213(86)90237-3
https://doi.org/10.1016/0550-3213(85)90645-5
https://doi.org/10.1016/0550-3213(85)90645-5
https://doi.org/10.1103/PhysRevD.92.065004
https://doi.org/10.1103/PhysRevD.92.065004
https://doi.org/10.1088/1126-6708/2007/06/021
https://doi.org/10.1088/1126-6708/2007/06/022
https://doi.org/10.1016/S0550-3213(98)00449-0
https://doi.org/10.1103/PhysRevLett.86.1686
https://doi.org/10.1088/1126-6708/2005/09/016
https://doi.org/10.1088/1126-6708/2005/09/016
https://doi.org/10.1088/0264-9381/25/21/214002
https://doi.org/10.1088/0264-9381/25/21/214002
http://arXiv.org/abs/1609.09745
https://doi.org/10.1007/JHEP12(2012)108
https://doi.org/10.1007/JHEP12(2012)108
https://doi.org/10.1007/JHEP09(2013)040
https://doi.org/10.1007/JHEP09(2014)044
https://doi.org/10.1016/S0550-3213(98)00136-9
https://doi.org/10.1103/PhysRevD.89.066016
https://doi.org/10.1103/PhysRevD.89.066016
https://doi.org/10.1007/JHEP06(2013)046
https://doi.org/10.1088/1126-6708/2003/09/054
https://doi.org/10.1103/PhysRevD.71.066003
https://doi.org/10.1088/1126-6708/2005/10/094
https://doi.org/10.1088/1126-6708/2005/10/094
https://doi.org/10.1016/j.nuclphysb.2006.07.001
https://doi.org/10.1016/j.nuclphysb.2006.07.001
https://doi.org/10.1007/JHEP06(2010)097
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://doi.org/10.4310/ATMP.2009.v13.n3.a5

TYPE II SUPERGRAVITY ORIGIN OF DYONIC GAUGINGS

[53] B. Assel, C. Bachas, J. Estes, and J. Gomis, Holographic
duals of D =3,N =4 superconformal field theories,
J. High Energy Phys. 08 (2011) 087.

[54] B. Assel, C. Bachas, J. Estes, and J. Gomis, IIB duals of D=3
N =4 circular quivers, J. High Energy Phys. 12 (2012) 044.

[55] O.J. Ganor, N.P. Moore, H.-Y. Sun, and N.R. Torres-
Chicon, Janus configurations with SL(2, Z)-duality twists,
strings on mapping tori and a tridiagonal determinant
formula, J. High Energy Phys. 07 (2014) 010.

PHYSICAL REVIEW D 95, 066020 (2017)

[56] O. Aharony and M. Evtikhiev, On four dimensional N = 3
superconformal theories, J. High Energy Phys. 04 (2016)
040.

[57] 1. Garcia-Etxebarria and D. Regalado, N = 3 four dimen-
sional field theories, J. High Energy Phys. 03 (2016)
083.

[58] O. Aharony and Y. Tachikawa, S-folds and 4d N =3
superconformal field theories, J. High Energy Phys. 06
(2016) 044.

066020-17


https://doi.org/10.1007/JHEP08(2011)087
https://doi.org/10.1007/JHEP12(2012)044
https://doi.org/10.1007/JHEP07(2014)010
https://doi.org/10.1007/JHEP04(2016)040
https://doi.org/10.1007/JHEP04(2016)040
https://doi.org/10.1007/JHEP03(2016)083
https://doi.org/10.1007/JHEP03(2016)083
https://doi.org/10.1007/JHEP06(2016)044
https://doi.org/10.1007/JHEP06(2016)044

