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It is well known that conformal embeddings can be used to construct nondiagonal modular invariants for
affine Lie algebras. This idea can be extended to construct infinite series of nondiagonal modular invariants
for coset conformal field theories (CFTs). In this paper, we systematically approach the problem of
identifying higher-spin bulk duals for these kind of nondiagonal invariants. In particular, for a special value
of the ’t Hooft coupling, there exist a class of partition functions that have enhanced supersymmetry, which
should be reflected in a bulk dual. As an illustration of this, we show that a partition function of an
orthogonal group coset CFT has anN ¼ 1 supersymmetric higher-spin bulk dual, in the ’t Hooft limit. We
also propose that two of the series of CFT partition functions, obtained from conformal embeddings,

are equal, generalizing the well-known dual interpretation of the three-state Potts model as a SUð2Þ3⊗SUð2Þ1
SUð2Þ4

and also as a SUð3Þ1⊗SUð3Þ1
SUð3Þ2 coset model.
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I. INTRODUCTION

The WN coset conformal field theory (CFT) and its
relation with three-dimensional higher-spin Vasiliev theory
[1] is a well-tested example of the AdS/CFT correspon-
dence. This work has been extended in many directions. As
of now, there is a plethora of coset CFTs with bulk duals.
The duality has been shown to hold in the ’t Hooft limit, as
N → ∞, as well as a semiclassical limit, where the central
charge c → ∞ [2]. Recent work on this duality addresses
the embedding of the higher-spin Vasiliev theory into string
theory and the structure of the unbroken symmetry algebra
of string theory [3].
In the context of the duality between a Vasiliev higher-

spin theory and a CFT, by and large, the duality maps a
diagonal invariant of the CFT to the partition function of
the bulk theory. However, a CFT often possesses a number
of modular invariants. These comewith varying spectra and
one can, therefore, expect that their bulk duals should also
be different. This is borne out by the few examples that
exist in the literature of a duality between a nondiagonal
CFT invariant and a higher-spin bulk theory [4–6].
However, so far, there has been no systematic attempt to
understand where different nondiagonal invariants of coset
CFTs fit in the duality picture. We propose to address this
question in this paper and Ref. [7].
For any coset CFT, it is a hard problem to classify all

modular-invariant partition functions [8,9]. Modular invar-
iants of a coset CFT are intimately related to modular
invariants of Wess-Zumino-Witten (WZW) models. Coset
CFTs are of the form Gs=Hx where the group H is
embedded in G, with s and x being the levels of the affine

groups G and H respectively. The character of this coset
model, also known as the branching function, is the
coefficient of the expansion of the character of the affine
group Gs into the characters of the affine group Hx:

χGμ ¼
X
α

bμαχHα : ð1Þ

Here, bμα, the branching function of the coset CFT, is a
function of the modular parameter τ and carries an index μ
labeling the primary fields of the Gs WZW model and an
index α labeling the primaries of the Hx WZW model. The
problem of classifying modular invariants of a coset CFT is,
therefore, a problem of classifying the modular invariants
of WZW models. However, although a complete classi-
fication of the modular invariants of WZWmodels remains
elusive, it is easy to identify distinct classes of modular
invariants. All WZW models have a diagonal invariant of
the form

X
α

jχαj2; ð2Þ

referred to in the literature as an “A”-type invariant. There is
an important class of invariants called “D”-type invariants
that can be constructed from the diagonal partition function
by modding out by a discrete symmetry of the WZW
model. We discuss them in more detail in Ref. [7]. The third
class consists of exceptional invariants or “E” type, con-
structed using a variety of methods. This class of invariants
is the one that is difficult to classify. However, there is a
subclass of E-type invariants that have a straightforward
origin. These are the E-type invariants that result from
conformal embeddings.
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An embedding Hx ⊂ Gr is conformal when the central
charges associated with the WZW models with gauge
groups Hx and Gr are equal. If Hx is conformally
embedded in Gr it implies that a character of Gr can be
expanded in terms of the characters of Hx with constant
coefficients. This means that in an expansion as in Eq. (1),
the bμα will be independent of τ. As a result of this relation
between their characters, a partition function of Gr will
result in a partition function of Hx. This idea has been
widely utilized [10] to construct exceptional partition
functions of many WZW models.
There is a well-known procedure to construct modular

invariants of a coset CFT once the modular invariants of
WZW models are known. We review this procedure in
Sec. II. Our aim is to study examples of modular invariants
of coset CFTs that can be constructed because a constituent
affine group of the coset is conformally embedded in a
larger group. All conformal embeddings are known. Some
conformal embeddings only appear for specific values of
the ranks of the groupsG andH, however, others appear for
generic values of the rank and specific values of the levels
in terms of the rank. We are interested in the second class of
embeddings because they result in infinite series of
partition functions. Getting a series of invariants is par-
ticularly useful from the point of view of the bulk dual
because it allows one to take a ’t Hooft limit. However,
since a conformal embedding always fixes the value of the
level (k) in terms of the rank (N) of the gauge group H, the
’t Hooft coupling given by λ ¼ N=ðN þ kÞ is fixed at a
particular value. In all examples that we look at in this
paper λ is fixed at 1=2 in the N, k → ∞ limit.
It also turns out that partition functions generated in this

way for different coset series are not always different. Some
of these coset series have the same central charges and by
using the method of “T equivalence” [11,12] one can find a
relation between their branching functions. In Sec. III we
give examples of such equivalences.
For identifying the bulk dual of these cosets, we need

to find the symmetry algebra of these partition functions.
In general, the symmetry algebra of a nondiagonal invariant
of a coset model is either the same as the symmetry algebra
of the diagonal invariant or an extension thereof. We show
in Sec. II that some of the partition functions constructed
using the conformal embedding technique can be inter-
preted as diagonal partition functions of a different coset
model. These partition functions, as a consequence, have a
larger symmetry algebra than the original partition func-
tions. In Sec. IV, we discuss a special case of this
phenomena, for the coset model

SOð2NÞ2N−2 ⊗ SOð2NÞ1
SOð2NÞ2N−1

: ð3Þ

Cosets with orthogonal gauge groups and their symmetry
algebras have been discussed in the literature before

[13–18], but this particular case is new. Its importance is
related to the fact that taking a nondiagonal invariant of this
coset model, the symmetry algebra is boosted from N ¼ 0

to N ¼ 1 supersymmetry. This mirrors what happens for

the SUðNÞN⊗SUðNÞ1
SUðNÞNþ1

coset [5] and is part of a more general

phenomena of enlarged supersymmetry at λ ¼ 1=2 for
particular nondiagonal invariants of coset models.
This paper is organized as follows. In Sec. II, we

construct exceptional-type nondiagonal modular invariants
of coset CFTs, and identify the type of bulk duals they can
have based on their symmetry algebras. In Sec. III, we
provide evidence that two a priori distinct series of modular
invariants are actually equal. Then in Sec. IV we study a
particular nondiagonal invariant and show that it has a bulk
dual with a higher-spin symmetry algebra consisting of
supermultiplets with spin (2kþ 3

2
, 2kþ 2), where

k ¼ 0; 1; 2;…. As mentioned before, this is an analog of
the duality between a nondiagonal invariant of the coset
SUðNÞN⊗SUðNÞ1

SUðNÞNþ1
and a higher-spin bulk with symmetry

algebra consisting of fields of spin (kþ 3
2
, kþ 2)—

however, the details of these dualities are different. In
Sec. V we summarize our work and list some open
problems related to it.

II. MODULAR INVARIANTS OF THE
COSET CFT FROM EMBEDDINGS

In this section, we construct nondiagonal modular
invariants of cosets of the form

Hx ⊗ Hy

Hxþy
; ð4Þ

where H denotes one of the classical Lie groups. The
“minimal model” coset

SUðNÞk ⊗ SUðNÞ1
SUðNÞkþ1

ð5Þ

is the most studied example of this class of cosets. We will
show in Sec. II A that a particular type of nondiagonal
invariant of the coset in Eq. (4) can be reinterpreted as a
diagonal invariant of a different coset model and this
interpretation determines its symmetry algebras, which
we discuss in Sec. II B.
Modular invariants for coset models of the kind in Eq. (4)

are built up from modular invariants of the affine group H.
A general partition function of the coset CFT, for which the
level y is fixed at one, can be written as

Z ¼ 1

l

X
μ;ν

bμνMðμ;μ0Þ;ðν;ν0Þb̄μ0ν0 : ð6Þ

Here, l denotes the order of the outer automorphism group
of the affine algebra of H. The matrix M is given by
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Mðμ;μ0Þ;ðν;ν0Þ ¼ mI
μ;μ0m

II
ν;ν0 ; ð7Þ

such that
P

μχμm
I
μ;μ0 χ̄μ0 and

P
νχνm

II
ν;ν0 χ̄ν0 are partition

functions of the WZW models Hx and Hxþy respectively.
For this paper, we are interested in those partition functions
for which at least one of mI or mII is not equal to the
identity matrix so that the resultant partition function in
Eq. (6) is nondiagonal.
As stated in the Introduction, it is customary to refer to

the diagonal partition function of a WZW model as an
A-type model, while the nondiagonal partition functions are
referred to as D- or E-type models depending on their
method of construction [9]. For the coset partition function,
the same notation is adapted. Thus, the diagonal partition
function of a coset, for which the matrices mI and mII are
both equal to the identity matrix, is denoted as the AA
partition function. A partition function for which mI is the
diagonal matrix but mII is a nondiagonal matrix corre-
sponding to an E-type invariant of a WZW model is
referred to as an AE partition function.
We will construct modular invariants for the coset model

that result from conformal embeddings. For this, we first
need to know the conformal embeddings for WZWmodels.
In Table I, we list all conformal embeddings for the groups
SUðNÞ, SOðNÞ and Spð2nÞ that are present for generic
values of the group rank. Each embedding in Table I gives
rise to partition functions for two different coset models:
one for which Hx can be chosen to be the embedded group
and the second for which the Hxþy can be chosen to be the
embedded group. For example, the embeddings in rows
two and three of Table I for the SUðNÞ group give rise to
nondiagonal partition functions of the coset models:

Series I∶
SUðNÞNþ1 ⊗ SUðNÞ1

SUðNÞNþ2

;

Series II∶
SUðN þ 1ÞN−1 ⊗ SUðN þ 1Þ1

SUðN þ 1ÞN
;

Series III∶
SUðNÞNþ2 ⊗ SUðNÞ1

SUðNÞNþ3

;

Series IV∶
SUðN þ 1ÞN−2 ⊗ SUðN þ 1Þ1

SUðN þ 1ÞN−1
: ð8Þ

Not all the partition functions obtained in this way are
distinct. The central charges for Series I and Series II are the
same, implying that there may exist a relation between the
branching functions of these cosets. In fact, we present
evidence in Sec. III that the partition functions obtained via
conformal embeddings for these two series are the same.
This kind of equivalence happens for other series of coset
models as well. The following two series,

Series V∶
SOðNÞN−2 ⊗ SOðNÞ1

SOðNÞN−1
;

Series VI∶
SOðN − 1ÞN ⊗ SOðN − 1Þ1

SOðN − 1ÞNþ1

; ð9Þ

also have identical central charges.

A. Interpretation as a diagonal invariant

Of particular interest are nondiagonal partition functions
of Eq. (4) that are equal to diagonal partition functions of a
different coset model. This is possible if it is the group Hx
that is conformally embedded in another group Gr. In this
case, a specific partition function of Eq. (4) is equal to the
diagonal ðAAÞ partition function of the coset model:

Gr ⊗ Hy

Hxþy
: ð10Þ

This comes about in the following way. A conformal
embedding implies that the characters of Gr can be
expanded in the characters of Hx as

χGr
ξ ¼ cξμχ

Hx
μ ; ð11Þ

where the cξμ’s are constants independent of τ. The
characters are, in general, functions of τ and z where z
is in the Cartan subgroup of the associated group.
Therefore, the diagonal partition function of Gr,

ZG
diagonal ¼

X
ξ

χGr
ξ gχGr

ξ ; ð12Þ

results in a nondiagonal partition function of Hx:

ZH
nondiagonal ¼

X
ξ

jcξμχHx
μ j2: ð13Þ

The branching function Bξνθ for the coset model in Eq. (10)
obeys the following equation:

χGr
ξ χ

Hy

θ ¼
X
ν

Bξνθχ
Hxþy
ν : ð14Þ

Similarly, the branching function bμνθ of the coset model in
Eq. (4) obeys

TABLE I. Conformal embeddings that are present at generic
values of the rank for the classical Lie groups.

SOðNÞN−2 ⊂ SO
�
NðN−1Þ

2

�
1

SUðNÞN ⊂ SOðN2 − 1Þ1 Spð2NÞNþ1 ⊂ SO
�
Nð2Nþ1Þ

2

�
1

SUðNÞNþ2 ⊂ SU
�
NðNþ1Þ

2

�
1

SOðNÞNþ2 ⊂ SO
�
ðN−1ÞðNþ2Þ

2

�
1

SUðNÞN−2 ⊂ SU
�
NðN−1Þ

2

�
1

Spð2NÞN−1 ⊂ SO
�
ðN−1Þð2Nþ1Þ

2

�
1
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χHx
μ χ

Hy

θ ¼
X
ν

bμνθχ
Hxþy
ν : ð15Þ

Summing on both sides over the index μ after multiplying
each side with the coefficients cξμ gives

X
μ

cξμχ
Hx
μ χ

Hy

θ ¼
X
μ

X
ν

cξμbμνθχ
Hxþy
ν : ð16Þ

Using the relations in Eqs. (11) and (14) and the linear

independence of the characters χ
Hxþy
ν results in

Bξνθ ¼
X
μ

cξμbμνθ: ð17Þ

As for the WZWmodels, the above relation implies that the
AA diagonal partition function of the coset model in
Eq. (10) yields a nondiagonal partition function of the
coset model in Eq. (4).

B. Extended symmetry algebra

The currents of the coset model are those fields of the
Gr ⊗ Hy WZW model that commute with all fields of
Hxþy. To find the extended symmetries of the coset model
in Eq. (10), we use the method in Ref. [11]. Although this
method does not give all the currents associated with the
coset model, it allows us to quickly identify the type of
symmetry algebra associated with a model. For example, it
will allow us to determine whether the algebra is
supersymmetric.
Following the usual convention, we denote the algebra

associated with a affine group with lowercase letters, so e.g.
ĥx denotes the algebra associated with the group Hx. The
goal is to identify a field ϕ in the representations of ĝr that
commutes with all fields of ĥy. Such a field is denoted as an
“h scalar” and can be shown to extend the conformal
algebra. To identify such h scalars, it is convenient to
consider cases according to the integral part of the
conformal dimension Δϕ of the field ϕ. If the conformal
dimension of the field is between 0 and 1, then ϕ can just be
the vacuum state. For Δϕ to lie between 1 and 2, it is a
necessary condition that a field transforming in the adjoint
representation of ĥ exist in the decomposition of repre-
sentations associated with ĝr. If such a field exists, it has a
corresponding h scalar whose conformal weight is given by

Δϕ ¼ 1þ Qψ

Qψ þ 2y
; ð18Þ

where Qψ is the quadratic Casimir of the adjoint repre-
sentation of H. Using the above equation we can find the
dimension of the extra symmetry current for partition
functions associated with the conformal embeddings listed
in Table I. As mentioned above, for this symmetry current
to be present, one also needs to check that the adjoint
representation of ĥ appears in a decomposition of the
allowed representations of gr. In Table II, we list the
conformal embeddings that result in partition functions
having a current of spin 3=2. All the groups listed in
Table II are embedded in a group of the form SOðMÞ1
whose WZW model can be realized in terms of free
fermions.
Not all embeddings in Table I give rise to partition

functions with an extra symmetry current with conformal
dimension in the range of 1 to 2. While some of these
models have parafermionic currents at special values of the
rank N, these currents are not generic to the whole series.
Indeed, some of these partition functions may just have the
symmetry algebra of the original theory, without any
extension.

III. EQUIVALENT PARTITION FUNCTIONS

The central charges associated with Series I and Series II
are equal and given by

cN ¼ ðN − 1Þð3N þ 2Þ
4N þ 2

: ð19Þ

However, in general these two series are not isomorphic. The
branching functions associated with these series, and hence
e.g. the diagonal partition functions, are known to be
different. Our claim in this section is that a particular AE
partition function of series I corresponding to the conformal
embedding SUðNÞNþ2 ⊂ SUðNðN þ 1Þ=2Þ1 is equal to an
EA-type partition function of series II coming from con-
formal embedding SUðN þ 1ÞN−1 ⊂ SUðNðN þ 1Þ=2Þ1.
We also propose that a similar equivalence of partition
functions takes place for Series V and Series VI. For much
of this paper,wewill concentrate onSeriesVI, however, from
the point of view of equivalence of partition functions, Series
I and Series II present themore interesting case. Therefore, in
this section we will focus on these series.
The equivalence is well known for the first members of

the two series, i.e. for the N ¼ 2 case. The partition

function of coset SUð2Þ3⊗SUð2Þ1
SUð2Þ4 corresponding to the embed-

ding SUð2Þ4 ⊂ SUð3Þ1 is

ZI
AD ¼ ZI

AE ¼ jbI0 þ bI3j2 þ jbI2
5

þ bI7
5

j2 þ 2jbI2
3

j2 þ 2jbI1
15

j2:
ð20Þ

TABLE II. Conformal embeddings that give rise to super-
symmetric models.

SUðNÞN ⊂ SOðN2 − 1Þ1
SOðNÞN−2 ⊂ SO

�
NðN−1Þ

2

�
1

Spð2NÞNþ1 ⊂ SO
�
Nð2Nþ1Þ

2

�
1
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Here and subsequently, the partition function depends on
q ¼ expð2πiτÞ. The superscript I on the branching function
b indicates that it is a branching function of Series I. For
ease of notation, the branching functions in this case
are labeled by the conformal weight of the coset primary
field, rather than by the weights of the primaries of
the constituent WZW models. The partition function of
the coset SUð3Þ1⊗SUð3Þ1

SUð3Þ2 corresponding to the trivial embed-

ding SUð3Þ1 ⊂ SUð3Þ1 is simply the diagonal partition
function

ZII
AA ¼ ZII

EA ¼ jbII0 j2 þ jbII2
5

j2 þ 2jbII2
3

j2 þ 2jbII1
15

j2: ð21Þ

It can be shown that the branching functions of the two
coset models are related as

bII0 ¼ bI0 þ bI3; bII2
3

¼ bI2
3

;

bII2
5

¼ bI2
5

þ bI7
5

; bII1
15

¼ bI1
15

: ð22Þ

and, therefore, that ZI
AE ¼ ZII

EA. In this section, we propose
that this equivalence extends to thewhole series.Althoughwe
will not provide a complete proof of this, we provide several
pieces of evidence to support this proposal. First, we show in
Sec. III A that this equivalence holds forN ¼ 3, by explicitly
calculating the branching functions. Then in Sec. III B we
show that these coset series are dual or T equivalent [11,12].
T equivalence implies that there exist some relations
between the branching functions of the equivalent coset
models and that, therefore, a partition function of one can be
the same as a partition function of another. In Sec. III C we
provide an exact statement of the equivalence.

A. The N = 3 case

The AE partition function of the coset SUð3Þ4⊗SUð3Þ1
SUð3Þ5

corresponding to the conformal embedding SUð3Þ5 ⊂
SUð6Þ1 can be constructed using the general form in
Eq. (6) and the E-type partition function for the SUð3Þ5
partition function as given, for example, in [10]. The exact
form of the partition function is

ZI
AE ¼ jbI0 þ bI3j2 þ 2jbI3

28

þ bI87
28

j2 þ 2jbI5
84

þ bI173
84

j2 þ 2jbI2
21

þ bI65
21

j2 þ j2bI39
28

j2

þ jbI1
7

þ bI36
7

j2 þ 2jbI29
84

þ bI113
84

j2 þ jbI3
7

þ bI10
7

j2 þ 2jbI11
21
;þ þ bI32

21

j2 þ j2bI9
4

j2

þ 2jbI11
21
;− þ bI116

21

j2 þ j2bI19
28

j2 þ 2jbI65
84
;þ þ bI149

84

j2 þ 2jbI65
84
;− þ bI233

84

j2

þ 2jbI17
21

þ bI38
21

j2 þ 2jbI6
7

þ bI27
7

j2 þ 2jbI11
12

þ bI59
12

j2 þ 2jbI5
3

þ bI20
3

j2: ð23Þ

Here, again, we have labeled the fields solely by their coset
conformal dimension, except where we need to distinguish
the fields for the identities listed later in this section, in
which case we have included the W3 charge denoted by �.
The corresponding SUð3Þ4 and SUð3Þ5 weights for the
fields present in the partition function appear in Table III in
Appendix C.
The EA partition function of the coset SUð4Þ2⊗SUð4Þ1

SUð4Þ3
corresponding to the embedding SUð4Þ2 ⊂ SUð6Þ1 is

ZII
EA ¼ jbII0 þ bII3 j2 þ 2jbII3

28

þ bII59
28

j2 þ 2jbII5
84

j2 þ j2bII9
4

j2

þ 2jbII2
21

j2 þ jbII1
7

þ bII8
7

j2 þ 2jbII29
84

j2 þ jbII3
7

þ bII10
7

j2

þ 4jbII11
21

j2 þ j2bII19
28

j2 þ 4jbII65
84

j2 þ 2jbII17
21

j2 þ 2jbII6
7

þ bII13
7

j2 þ 2jbII11
12

j2 þ j2bII39
28

j2 þ 2jbII5
3

j2: ð24Þ

The corresponding SUð4Þ2 and SUð4Þ3 weights for the
fields in the partition function appear in Table IV.
The branching functions of the two coset models are

related by the following identities:

bII0 þbII3 ¼bI0þbI3; bII2
21

¼bI2
21

þbI65
21

; bII65
84

¼bI65
84
;þþbI149

84

;

bII3
28

þbII59
28

¼bI3
28

þbI87
28

; bII29
84

¼bI29
84

þbI113
84

; bII65
84

¼bI65
84
;−þbI233

84

;

bII1
7

þbII8
7

¼bI1
7

þbI36
7

; bII11
21

¼bI11
21
;−þbI116

21

; bII5
84

¼bI5
84

þbI173
84

;

bII3
7

þbII10
7

¼bI3
7

þbI10
7

; bII17
21

¼bI17
21

þbI38
21

; bII11
21

¼bI11
21
;þþbI32

21

;

bII6
7

þbII13
7

¼bI6
7

þbI27
7

; bII11
12

¼bI11
12

þbI59
12

; bII19
28

¼bI19
28

;

bII9
4

¼bI9
4

; bII5
3

¼bI5
3

þbI20
3

; bII39
28

¼bI39
28

: ð25Þ

We have derived these identities by computing the branch-
ing functions for both coset models. The q-series expan-
sions for these branching functions are given in Tables III
and IV. Using these identities, we conclude that
ZI

AE ¼ ZII
EA. Note that identities of this type can only

work if the minimum conformal dimension of fields
associated with branching functions appearing on the lhs
is the same as the minimum conformal dimension of field
associated with branching functions appearing on the rhs.
Further, all fields appearing in a identity should have
conformal dimensions differing by integers. This observa-
tion makes it easy to predict what identities can hold for the
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N > 3 cases. We have numerically checked the equivalence
of partition functions of the two coset series up till the
N ¼ 5 case.

B. T equivalence

In this section, we show that the Series I and Series II
cosets constitute a dual pair, following the method in
Refs. [11,12]. We use lowercase letters to denote the affine
algebra associated with a WZW group, for example, ĝ
denotes the affine algebra for the group Gx. Then, the two
cosets ĝ=ĥ and ĝ0=ĥ0 are said to be T equivalent or dual if
there exists an affine algebra ĝe such that ĝ ⊕ ĥ0 and ĝ0 ⊕ ĥ
are both conformally embedded in ĝe. Because of the
conformal embedding the stress-energy tensors of these
algebras are related as

Tĝe ¼ Tĝ þ Tĥ0 ¼ Tĝ0 þ Tĥ: ð26Þ

From this it follows that Tĝ=ĥ ¼ Tĝ0=ĥ0 . T-equivalent cosets,
therefore, have equivalent stress-energy tensors.
As an example, let us first show that Series V and Series

VI of Eq. (9) are T equivalent. For these two series we have

ĝ¼ soðNÞN−2⊕ soðNÞ1; ĝ0 ¼ soðN−1ÞN ⊕ soðN−1Þ1;
ĥ¼ soðNÞN−1; ĥ0 ¼ soðN−1ÞNþ1: ð27Þ

Using the embeddings

soðNÞN−2 ⊂ so

�
NðN − 1Þ

2

�
1

and

soðN − 1ÞNþ1 ⊂ so

�ðN − 2ÞðN þ 1Þ
2

�
1

; ð28Þ

listed in Table I, we find that

ĝ ⊕ ĥ0 ⊂ so

�
NðN − 1Þ

2

�
1

⊕ so

�ðN − 2ÞðN þ 1Þ
2

�
1

⊕ soðNÞ1: ð29Þ

Further using the conformal embedding soðMÞ1 ⊕
soðNÞ1 ⊂ soðM þ NÞ1 one can establish that

ĝ ⊕ ĥ0 ⊂ soðN2 − 1Þ1 ð30Þ

is also a conformal embedding. By a similar argument one
can see that

ĝ0 ⊕ ĥ ⊂ soðN2 − 1Þ1 ð31Þ

is also a conformal embedding. Therefore the two SO-coset
series of Eq. (9) are T equivalent.

TABLE III. Branching functions for the primary fields of the

AE partition function of the coset SUð3Þ4⊗SUð3Þ1
SUð3Þ5 .

Weight
ðα; δÞ

Conformal
weight Branching function bαδðqÞ

(1,1), (1,1) 0 q−
11
168ð1þ q2 þ 2q3 þ 3q4 þ 4q5 þ � � �Þ

(1,1), (3,3) 3 q
493
168ð1þ2qþ5q2þ8q3þ16q4þ26q5þ���Þ

(1,2), (1,3) 3
28 q

1
24ð1þqþ3q2þ5q3þ10q4þ16q5þ���Þ

(1,4), (1,4)
(1,2), (4,3) 87

28 q
73
24ð1þ2qþ5q2þ10q3þ18q4þ32q5þ���Þ

(1,4), (4,1)
(1,3), (1,3) 5

84 q−
1

168ð1þqþ3q2þ5q3þ10q4þ16q5þ���Þ
(1,3), (1,4)
(1,3), (4,1) 173

84 q
335
168ð1þ2qþ5q2þ9q3þ17q4þ29q5þ���Þ

(1,3), (4,3)
(2,2), (2,3) 2

21 q
5

168ð1þ2qþ5q2þ10q3þ19q4þ34q5þ���Þ
(2,2), (3,2)
(2,2), (1,6) 65

21 q
509
168ð1þ2qþ4q2þ7q3þ13q4þ21q5þ���Þ

(2,2), (6,1)
(1,3), (2,3) 1

7 q
13
168ð1þ2qþ4q2þ8q3þ15q4þ26q5þ���Þ

(1,3), (6,1) 36
7 q

853
168ð1þ2qþ5q2þ8q3þ16q4þ26q5þ���Þ

(2,2), (1,3) 29
84 q

47
168ð1þ2qþ4q2þ8q3þ15q4þ26q5þ���Þ

(2,2), (3,1)
(2,2), (3,4) 113

84 q
215
168ð1þ2qþ5q2þ9q3þ18q4þ31q5þ���Þ

(2,2), (4,3)
(2,2), (3,3) 3

7 q
61
168ð1þ2qþ5q2þ10q3þ20q4þ36q5þ���Þ

(2,2), (1,1) 10
7 q

229
168ð1þ2qþ3q2þ6q3þ10q4þ16q5þ���Þ

(1,2), (1,1) 11
21
;þ q

11
24ð1þqþ2q2þ3q3þ6q4þ9q5þ���Þ

(1,4), (1,6)
(1,2), (2,3) 11

21
;− q

11
24ð1þ2qþ4q2þ8q3þ15q4þ26q5þ���Þ

(1,4), (2,3)
(1,2), (3,3) 32

21 q
35
24ð1þ2qþ5q2þ9q3þ18q4þ31q5þ���Þ

(1,4), (3,2)
(1,2), (6,1) 116

21 q
131
24 ð1þ2qþ4q2þ8q3þ14q4þ24q5þ���Þ

(1,4), (6,1)
(1,2), (1,4) 65

84
;þ q

17
24ð1þqþ3q2þ5q3þ10q4þ16q5þ���Þ

(1,4), (1,3)
(1,2), (3,1) 65

84
;− q

17
24ð1þ2qþ4q2þ7q3þ13q4þ21q5þ���Þ

(1,4), (3,4)
(1,2), (4,1) 149

84 q
41
24ð1þ2qþ4q2þ8q3þ14q4þ24q5þ���Þ

(1,4), (4,3)
(1,2), (3,4) 233

84 q
65
24ð1þ2qþ5q2þ9q3þ17q4þ29q5þ���Þ

(1,4), (3,1)
(1,3), (3,2) 17

21 q
125
168ð1þ2qþ5q2þ9q3þ18q4þ31q5þ���Þ

(1,3), (3,3)
(1,3), (1,1) 38

21 q
293
168ð1þqþ3q2þ4q3þ8q4þ12q5þ���Þ

(1,3), (1,6)
(1,2), (3,2) 6

7 q
19
24ð1þ2qþ5q2þ9q3þ17q4þ29q5þ���Þ

(1,4), (3,3)
(1,2), (1,6) 27

7 q
91
24ð1þqþ3q2þ5q3þ9q4þ14q5þ���Þ

(1,4), (1,1)
(1,1), (1,3) 11

12 q
143
168ð1þqþ3q2þ4q3þ8q4þ12q5þ���Þ

(1,1), (3,1)
(1,1), (3,4) 59

12 q
815
168ð1þ2qþ5q2þ9q3þ17q4þ28q5þ���Þ

(1,1), (4,3)
(1,1), (2,3) 5

3 q
269
168ð1þ2qþ4q2þ7q3þ13q4þ21q5þ���Þ

(1,1), (3,2)

(Table continued)
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Series I and Series II of SU cosets given in Eq. (8) can be
shown to be T equivalent with an additional factor of
uð1Þ1. To be more precise, it can be shown that the two
cosets

suðNÞNþ1 ⊕ suðNÞ1 ⊕ uð1Þ1
suðNÞNþ2

and

suðN þ 1ÞN−1 ⊕ suðN þ 1Þ1 ⊕ uð1Þ1
suðN þ 1ÞN

ð32Þ

are T equivalent. For these two cosets we have

TABLE III. (Continued)

Weight
ðα; δÞ

Conformal
weight Branching function bαδðqÞ

(1,1), (1,6) 20
3 q

1109
168 ð1þqþ3q2þ5q3þ10q4þ15q5þ���Þ

(1,1), (6,1)
(2,2), (1,4) 19

28 q
103
168ð1þ2qþ4q2þ8q3þ15q4þ26q5þ���Þ

(2,2), (4,1)
(1,3), (3,1) 39

28 q
223
168ð1þ2qþ5q2þ8q3þ16q4þ26q5þ���Þ

(1,3), (3,4)
(1,1), (1,4) 9

4 q
367
168ð1þqþ3q2þ5q3þ9q4þ14q5þ���Þ

(1,1), (4,1)

TABLE IV. Branching functions of primary fields of the EA partition function for the coset SUð4Þ2⊗SUð4Þ1
SUð4Þ3 .

Weight ðβ; α0Þ Conformal weight Branching function bβα0 ðqÞ
(1,1,1), (1,1,1) 0 q−

11
168ð1þ q2 þ 2q3 þ 4q4 þ 5q5 þ � � �Þ

(1,3,1), (1,1,1) 3 q
493
168ð1þ qþ 4q2 þ 6q3 þ 12q4 þ 18q5 þ � � �Þ

(3,1,1), (3,1,1) 3
28 q

1
24ð1þ qþ 2q2 þ 4q3 þ 7q4 þ 12q5 þ � � �Þ

(1,1,3), (1,1,3)
(3,1,1), (1,1,3) 59

28 q
49
24ð1þ 2qþ 5q2 þ 9q3 þ 17q4 þ 28q5 þ � � �Þ

(1,1,3), (3,1,1)
(1,2,1), (1,3,1) 5

84 q−
1

168ð1þ qþ 4q2 þ 7q3 þ 15q4 þ 25q5 þ � � �Þ
(1,2,1), (1,3,1)
(1,2,1), (2,2,1) 2

21 q
5

168ð1þ 2qþ 5q2 þ 11q3 þ 21q4 þ 38q5 þ � � �Þ
(1,2,1), (2,2,1)
(1,3,1), (1,3,1) 1

7 q
13
168ð1þ qþ 3q2 þ 4q3 þ 9q4 þ 14q5 þ � � �Þ

(1,1,1), (1,3,1) 8
7 q

181
168ð1þ qþ 4q2 þ 6q3 þ 13q4 þ 21q5 þ � � �Þ

(2,1,2), (2,2,1) 29
84 q

47
168ð1þ 3qþ 6q2 þ 13q3 þ 24q4 þ 44q5 þ � � �Þ

(2,1,2), (2,2,1)
(3,1,1), (2,2,1) 3

7 q
61
168ð1þ 2qþ 4q2 þ 7q3 þ 14q4 þ 24q5 þ � � �Þ

(1,1,3), (2,2,1) 10
7 q

229
168ð1þ 3qþ 6q2 þ 12q3 þ 22q4 þ 37q5 þ � � �Þ

(2,1,2), (3,1,1) 11
21 q

11
24ð1þ 2qþ 4q2 þ 8q3 þ 15q4 þ 27q5 þ � � �Þ

(2,1,2), (3,1,1)
(2,1,2), (1,1,3)
(2,1,2), (1,1,3)
(1,3,1), (2,2,1) 19

28 q
103
168ð1þ 2qþ 4q2 þ 8q3 þ 15q4 þ 26q5 þ � � �Þ

(1,1,1), (2,2,1)
(1,2,1), (1,1,3) 65

84 q
17
24ð1þ 2qþ 5q2 þ 9q3 þ 18q4 þ 30q5 þ � � �Þ

(1,2,1), (1,1,3)
(1,2,1), (3,1,1)
(1,2,1), (3,1,1)
(2,1,2), (1,3,1) 17

21 q
125
168ð1þ 3qþ 6q2 þ 12q3 þ 22q4 þ 39q5 þ � � �Þ

(2,1,2), (1,3,1)
(1,1,1), (1,1,3) 6

7 q
19
24ð1þ qþ 3q2 þ 5q3 þ 10q4 þ 16q5 þ � � �Þ

(1,1,1), (3,1,1)
(1,3,1), (3,1,1) 13

7 q
43
24ð1þ 2qþ 5q2 þ 8q3 þ 16q4 þ 26q5 þ � � �Þ

(1,3,1), (1,1,3)
(1,2,1), (1,1,1) 11

12 q
143
168ð1þ qþ 3q2 þ 4q3 þ 9q4 þ 14q5 þ � � �Þ

(1,2,1), (1,1,1)
(1,1,3), (1,3,1) 39

28 q
223
168ð1þ 2qþ 5q2 þ 8q3 þ 16q4 þ 26q5 þ � � �Þ

(3,1,1), (1,3,1)
(2,1,2), (1,1,1) 5

3 q
269
168ð1þ 2qþ 4q2 þ 7q3 þ 13q4 þ 22q5 þ � � �Þ

(2,1,2), (1,1,1)
(3,1,1), (1,1,1) 9

4 q
367
168ð1þ qþ 3q2 þ 5q3 þ 9q4 þ 14q5 þ � � �Þ

(1,1,3), (1,1,1)
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ĝ ¼ suðNÞNþ1 ⊕ suðNÞ1 ⊕ uð1Þ1;
ĝ0 ¼ suðN þ 1ÞN−1 ⊕ suðN þ 1Þ1 ⊕ uð1Þ1;
ĥ ¼ suðNÞNþ2; ĥ0 ¼ suðN þ 1ÞN: ð33Þ

Making use of the conformal embeddings

suðNÞNþ1 ⊕ suðN þ 1ÞN ⊂ suðNðN þ 1ÞÞ1 and

suðNÞ1 ⊕ uð1Þ1 ⊂ suðN þ 1Þ1 ð34Þ

we see that

ĝ ⊕ ĥ0 ⊂ suðNðN þ 1ÞÞ1 ⊕ suðN þ 1Þ1 ð35Þ

is a conformal embedding. Similarly, using the conformal
embeddings

suðNÞNþ2 ⊂ suðNðN þ 1Þ=2Þ1;
suðN þ 1ÞN−1 ⊂ suðNðN þ 1Þ=2Þ1;
suðMÞ1 ⊕ suðNÞ1 ⊕ uð1Þ1 ⊂ suðM þ NÞ1 ð36Þ

we can see that

ĝ0 ⊕ ĥ ⊂ suðNðN þ 1ÞÞ1 ⊕ suðN þ 1Þ1 ð37Þ

is also a conformal embedding. Hence the Series I and
Series II coset models of Eq. (33) are T equivalent, albeit in
a weaker form than the Series V and Series VI cosets.

C. Proposition

The branching functions of T-equivalent coset models
are, in general, related in some way [11,12]. This can be
seen in the context of Series I and Series II coset models
as follows: as shown in the last section, combinations
of the constituent groups of the coset models are embedded
in SUðNðN þ 1ÞÞ1 ⊕ SUðN þ 1Þ1. A character of
suðNðN þ 1ÞÞ1 ⊕ suðN þ 1Þ1 can be expanded in terms
of the characters of ĝ and ĥ0 on one hand, and ĝ0 and ĥ on
the other, with ĝ, ĥ0, ĝ0, ĥ defined in Eq. (33). These
expansions results in a relation between the branching
functions of ĝ=ĥ and of ĝ0=ĥ0. To actually find the relation
between the branching function of the Series I and Series II
coset models using this procedure, one has to disentangle
the characters of the additional Uð1Þ from the equations
obtained. This is somewhat complex and we leave this to
future work. We note that the Series V and Series VI coset
models do not have this problem and hence it should be
straightforward to derive the relations between their
branching functions. Our aim in this section is to write
down the identities, involving the branching functions of
the Series I and Series II cosets, that we expect to be true
based on the numerical evidence for low-lying N values.

We first show that an exceptional-type partition function
of the SUðNÞNþ2 WZW model is equal to a partition
function of the SUðN þ 1ÞN−1 model. The character Xλ of

the SU
�
NðNþ1Þ

2

�
1
model, corresponding to a primary field

of weight λ, can be split in two ways:

Xλ ¼ cλδΦI
δ; ð38Þ

Xλ ¼ dλβΦII
β : ð39Þ

Here ΦI
δ is the SUðNÞNþ2 character while ΦII

β is the
SUðN þ 1ÞN−1 character, and a double index implies
summation. The coefficients cλδ and dλβ are independent
of τ. The above results in the character identities

cλδΦI
δ ¼ dλβΦII

β : ð40Þ

The number of these identities corresponds to the number

of characters Xλ of SU
�
NðNþ1Þ

2

�
1
, which is NðN þ 1Þ=2,

equal to the number of primary fields.

The diagonal partition function of the SU
�
NðNþ1Þ

2

�
1

model is XλX̄λ. Using the identities in Eq. (38), this results
in the exceptional-type partition function of SUðNÞ at level
N þ 2,

ZI
E ¼ cλδcλβΦI

δΦ̄I
β: ð41Þ

Similarly, there exists a partition function for SUðN þ 1Þ at
level N − 1, given by

ZII
E ¼ dλδdλβΦII

δ Φ̄II
β : ð42Þ

Because of the identities in Eq. (40), there exists the
corresponding identity

ZI
E ¼ ZII

E: ð43Þ

Based on the numerical evidence for N ¼ 3, 4, 5, our
claim is that the branching functions bIββ0 of Series I and b

II
δδ0

of Series II obey the following identities:

cλδbIδα ¼ dλ0βbIIα0β: ð44Þ

The coefficients cλδ and dλ0β that appear above are the same
as in Eq. (40). We propose that there is a one-to-one map
between the indices ðλ; αÞ appearing on the lhs and the
indices ðλ0; α0Þ appearing on the rhs. Below we show that
this statement is at least compatible with a counting of the
primary fields of the coset models that appear on either
side. The indices λ and λ0 both label the weights of

SU
�
NðNþ1Þ

2

�
1
. The index α labels a weight of SUðNÞNþ1

and the index α0 labels a weight of SUðN þ 1ÞN . Even
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though, the number of primary fields of these two WZW
models are different, a one-to-one map between them can
still exist in the coset context, because we also need to take
field identification into account. For an SUðMÞk WZW

model, the number of primary fields is given by ðkþM−1Þ!
k!ðM−1Þ! .

The number of primary fields of the WZW SUðNÞNþ1

model is, thus, ð2NÞ!
ðN−1Þ!ðNþ1Þ!. We can choose to restrict the set

of primary fields of the Series II coset such that we include
primary fields with no restriction on the weights of the
SUðNÞNþ2 factor, but only include 1=N of the weights of

the SUðNÞNþ1 factor. The index α then has count ð2NÞ!
ðNÞ!ðNþ1Þ!.

Similarly, for Series III, we can restrict the set of primaries
such that we keep fields with any weight of the
SUðN þ 1ÞN−1 factor but with 1=ðN þ 1Þ weights of the

SUðN þ 1ÞN factor. The index α0 again has count ð2NÞ!
ðNÞ!ðNþ1Þ!.

The total number of identities is ð2NÞ!
2ðN−1Þ!ðNÞ!. These concepts

are illustrated for the N ¼ 3 case in Appendix C.
Note the fact that the count of the index α is the same as

the count of the index α0 (at the coset level) is actually a
reflection of the level-rank duality between SUðNÞNþ1 and
SUðN þ 1ÞN . In fact, we can fix the set of elements α0,
given the set of elements α. For a representation α
of SUðNÞNþ1, the corresponding representation α0 of
SUðN þ 1ÞN can be determined by exchanging rows for
columns in the Young tableau for α [19]. For the N ¼ 3
case, for instance, this maps the set in Eq. (C2) to the set
in Eq. (C4).
The reason the index λ in Eq. (44) is not simply equal to

λ0 is because the identities at the coset level are dependent
on the conformal dimension of the coset primary fields as
stated at the end of Sec. III A. Formally, let us denote the
weights associated with the coset primary field with a
nonzero coefficient (that is, a nonzero cλδ and dλ0β) and
minimum conformal weight by ðλ; α; δminÞ on the lhs of
Eq. (44) and by ðλ0; α0; βminÞ on the rhs. Then, a identity of
the form in Eq. (44) can only work if the conformal
dimension of the fields labeled by these weights are equal,
that is,

h½ðλ; α; δminÞ� ¼ h½ðλ0;α0; βminÞ�: ð45Þ

The conformal dimension h depends on the weights of the
constituent WZW models as in Eq. (C8). It is not always
necessary that the weight βmin that solves the above
equation for fixed α and δmin is present in the branching
of the character of the specific representation λ into
representations of SUðN þ 1ÞN−1. This is again illustrated
in Appendix C.
The statement of equivalence of partition functions for

the Series I and Series II coset models is as follows. If the
identities in Eq. (44) are satisfied, it will imply that the AE
partition function of Series I given by

ZI
AE ¼ cλδcλβbIδαb̄

I
βα ð46Þ

and the EA partition function of Series II given by

ZII
EA ¼ dλδ0dλβ0bIIα0δ0 b̄

II
α0β0 ð47Þ

are equal. To complete the proof one needs to prove the
identities in Eq. (44).

IV. A N = 1 EVEN-SPIN CFT ALGEBRA
AND ITS BULK DUAL

Out of the conformal embeddings listed in Table I, the
most interesting cases are the embeddings in the first row
which result in supersymmetric coset models. Of these,
the coset model corresponding to the case SUðNÞN ⊂
SOðN2 − 1Þ1 has already appeared in the literature [5].
In this section, we study the coset model

SOð2NÞ2N−2 ⊗ SOð2NÞ1
SOð2NÞ2N−1

; ð48Þ

which we refer to as theDN coset model at fixed level. This
coset model is a special case of a DN coset model at a
general level k:

SOð2NÞk ⊗ SOð2NÞ1
SOð2NÞkþ1

: ð49Þ

As stated earlier, the uniqueness of the coset model in
Eq. (48) stems from the fact that when the level
k ¼ 2N − 2, exceptional invariants with extended sym-
metry algebras appear.
We quickly review the coset model in Eq. (49) and its

corresponding bulk dual which is a higher-spin theory with
gauge group hseðλÞ. For details, the reader is referred to
[13]. The spectrum of the coset diagonal invariant consists
of representations specified by ðΛþ;Λ−Þ, where Λþ and Λ−
are highest weight representations of SOð2NÞk and
SOð2NÞkþ1 respectively. The vacuum sector of the theory
corresponds to both Λþ and Λ− being identity representa-
tions. For the diagonal invariant, the vacuum sector
determines the spin content of the symmetry algebra of
the coset model. This has been shown to be a bosonic
algebra containing currents of spin 2; 4; 6;…;∞, known as
We

∞ðλÞ, which is also equivalent to the asymptotic sym-
metry algebra of the bulk theory. CFT representations of the
form ðΛþ; 0Þ map to a real scalar in the bulk, while
representations of the form ð0;Λ−Þ map to conical defects
[2]. In the ’t Hooft limit, certain states decouple on the CFT
side and the resulting partition function is exactly equal to
the bulk thermal partition function.
Our goal in this section is to identify a bulk dual for the

EA invariant of the coset model in Eq. (48). For this
purpose, we first compute the exact symmetry algebra of
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this invariant in Sec. IVA. We propose the bulk dual in
Sec. IV B and show that its partition function agrees with
the CFT theory. This serves as a proof of concept for the
existence of the bulk dual of this coset model. We leave
the finer details of this duality, for example, matching the
nonvacuum sector of the CFT partition function with a
matter sector in the bulk, to future work.

A. The DN coset at a fixed level

As stated previously, the extended algebra for the coset
model in Eq. (48) is the algebra associated with the
diagonal invariant of the coset

SOðMÞ1 ⊗ SOð2NÞ1
SOð2NÞ2N−1

; ð50Þ

where M ¼ Nð2N − 1Þ. From the calculation in Sec. II B,
we expect this algebra to be supersymmetric. One way to
find the symmetry algebra of this coset model is to calculate
its vacuum branching function, which we denote by Bð0;0Þ,
directly. However, it is much easier to compute the
branching function of the coset model in Eq. (48) and
then sum over the relevant sectors to get Bð0;0Þ. To
determine which sectors go into the summation, we find
the branching rule for the vacuum sector of the coset model
in Eq. (50) in Sec. IVA 1. Then in Sec. IVA 2 we find the
symmetry algebra.

1. Branching rules

The diagonal partition function for the coset in Eq. (50)
can be rearranged in manifestly supersymmetric form. In
the following, we denote a representation of any coset
model as ðΛþ;Λ−Þ—we hope it is clear from context which
coset model it is a representation of. The vacuum sector
(0; 0) for the supersymmetric diagonal invariant is given by
a sum of the (0; 0) and ðv; 0Þ sectors of the coset model in
Eq. (50). These sectors, further, decompose into sectors of
the coset model in Eq. (48), according to the appropriate
branching rule.
The branching rule for the (0; 0) and ðv; 0Þ sectors of

the coset model in Eq. (50) is determined solely by the
branching rule of the 0 and v representations of the WZW
group SOðMÞ1 into representations of SOð2NÞ2N−2. Since
we are looking at a EA-type invariant, the representation
associated with the SOð2NÞ2N−1 group remains fixed on
both sides of the branching rule for the coset model, being
in this case the identity representation.
The branching rule for decomposing the SOðMÞ1 rep-

resentations into representations of SOð2NÞ2N−2 can be
worked out explicitly for small values of N, using the
method in Ref. [20]. For example, for N ¼ 3, the branching
rule for the vector and vacuum representations of SOð15Þ1
into representations of SOð6Þ4 is

ð07Þ → ð0; 0; 0Þ ⊕ ð1; 0; 2Þ ⊕ ð1; 2; 0Þ ⊕ ð4; 0; 0Þ; ð51Þ

ð1;06Þ→ ð0;0;4Þ⊕ ð0;1;1Þ⊕ ð0;4;0Þ⊕ ð2;1;1Þ: ð52Þ
As a general rule, it is a necessary (but not a sufficient)
condition that only those representations Λ can appear in
the branching of a representation Π, whose conformal
weight differs from the conformal weight of Π by integers.
The weights of the vacuum and vector representations of
SOðMÞ1 are 0 and 1

2
respectively. Therefore, to find the set

of weights of SOð2NÞ2N−2 that can appear in the branching
of these representations we need to find the set of weights
whose conformal dimension hL is an integer or a half
integer. In the large N limit, the conformal dimension of a
representation Λ of SOð2NÞ2N−2 is given by

hΛ ¼ CNðΛÞ
4N − 4

≅
BðΛÞ
4

þDðΛÞ þ BðΛÞ
2ð4N − 4Þ : ð53Þ

Here, BðΛÞ is the number of boxes in the Young tableaux of
the representation Λ and DðΛÞ is defined in Eq. (A9). For
hL to be an integer or a half integer, both the first and
second terms in Eq. (53) should be separately integer and
half integer. Therefore, the condition that a weight appear in
the branching of Bð0;0Þ, in the infinite N limit, is that B is an
even non-negative integer and that DðΛÞ þ BðΛÞ be a
multiple of 4N − 4 (including zero). However, since in the
large N limit we only include those weights in the partition
function whose number of boxes BðΛÞ is finite, and DðΛÞ
being of Oð1Þ, the second condition reduces to
DðΛÞ þ BðΛÞ ¼ 0. We now examine what Young tableau
satisfy these requirements. This is best seen in the
Frobenius notation for these diagrams, which is reviewed
in Appendix A. In the Frobenius notation, BðΛÞ and DðΛÞ
are given by Eqs. (A12) and (A13) respectively. Therefore,
the condition DðΛÞ þ BðΛÞ ¼ 0 becomes

Xd
i¼1

ðaiþbiþ1Þ¼
Xd
i¼1

�
biþ

1

2

�
2

−
Xd
i¼1

�
aiþ

1

2

�
2

: ð54Þ

It is easy to see that a representation with Frobenius
coordinates of the generic form

�
a1 a2 … ad

a1 þ 1 a2 þ 1 … ad þ 1

�
ð55Þ

will always satisfy the condition in Eq. (54) as well as the
condition that B ∈ 2Z≥0. We denote this set of Young
diagrams by Σ. Note that the identity representation also
belongs to this set Σ. In addition, there are some repre-
sentations that are not of the simple form in Eq. (55), but are
solutions of the Eq. (54). However, one can verify that they
do not appear in the branching of Bð0;0Þ at finite N and,
therefore, also do not appear in the infiniteN limit. It can be
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explicitly checked that the branching rule for the vacuum
sector of SOðMÞ1, denoted as Vac below, for small values
of N takes the following form in Frobenius notation:

Vac → Vacþ
�
1

2

�
þ
�
2 1

3 2

�
þ � � � ð56Þ

if we retain only the representations that appear in the
infinite N limit. The branching of the vector representation
takes a similar form.

2. The vacuum partition function

The vacuum branching function of the coset model in
Eq. (50) is given by

Bð0;0Þ ¼
X
Λþ∈Σ

bðΛþ;0Þ: ð57Þ

The branching function bðΛþ;0Þ of the coset in Eq. (48) is
worked out in Appendix B, in the ’t Hooft limit. In
the following, we denote the Young tableaux associated
with a representation Λ as YðΛÞ, with the transpose
denoted by YTðΛÞ. Then, the branching function can be
written as

bðΛþ;0ÞðqÞ ≅ q−
c
24MeðqÞPþ

YTðΛþÞðqÞ: ð58Þ

Here, MeðqÞ is the modified even MacMahon function:

MeðqÞ≡Y∞
s¼2
s even

Y∞
n¼s

1

1 − qn
: ð59Þ

The P�
YðΛÞðqÞ are the modified Schur functions

P�
YðΛÞðqÞ ¼ q�λ

2
BðYÞchΛðUhÞ; ð60Þ

where chΛðUhÞ is the Schur polynomial defined as

chΛðUhÞ ¼
X

T∈TabΛ

Y
i∈T

qhþi; ð61Þ

with Uh being a diagonal matrix having matrix elements
ðUhÞii ¼ qiþh. The sum is over a filling of the boxes of a
semistandard Young tableau of shape Λwith integers i ≥ 0.
When the level k ¼ 2N − 2, the coupling λ ¼ 1

2
. Using the

identity

q
1
4
BðYÞchΛðU1

2
Þ ¼ chΛðU3

4
Þ; ð62Þ

the branching function becomes

bðΛþ;0Þ ≅ q−
c
24MeðqÞchΛT ðU3

4
Þ: ð63Þ

To get the vacuum character of the supersymmetric theory
we sum over all representations that belong to the set Σ, as
stated in Eq. (57). The vacuum character is then

Bð0;0ÞðqÞ ¼
X
Λ∈Σ

q−
c
24MeðqÞchΛT ðU3

4
Þ: ð64Þ

To extract the higher-spin algebra from the vacuum
character, we make use of a Littlewood identity which
appears, for example, in [21,22]. [It is the identity in Eq. (4)
in Ref. [21].] The identity is

X
Λ∈ΣT

chΛðUhÞ ¼
Y
i≥j

ð1þ qiþjþ2hÞ; ð65Þ

where the variable j runs from 0 to∞. Here, ΣT is the set of
representations that are transposes of the representations in
Σ and in Frobenius notation are of the form

�
a1 þ 1 a2 þ 1 … ad þ 1

a1 a2 … ad

�
ð66Þ

and also include the identity representation. The vacuum
character then becomes

Bð0;0ÞðqÞ ¼ q−
c
24MeðqÞ

Y
i≥j

ð1þ qiþjþ3=2Þ

¼ q−
c
24MeðqÞ

Y∞
s¼1
s odd

Y∞
n¼s

ð1þ qnþ1
2Þ: ð67Þ

The spin content of the vacuum algebra is, therefore,

�
3

2
;2

�
;

�
7

2
;4

�
;

�
11

2
;6

�
;…;

�
2kþ3

2
;2kþ2

�
;…; ð68Þ

where k ¼ 0; 1; 2;…. This is a N ¼ 1 supersymmetric
algebra, which we denote by sWe

∞.

B. Bulk dual

In this section, we show that there exists a consistent
higher-spin theory in the bulk with algebra corresponding
to the spectrum in Eq. (68). An algebra of this form first
appeared in Ref. [23], for bulk dimension D ¼ 4. In that
paper, the authors showed that the N ¼ 1 supersymmetric
shsρð1Þ algebra, where ρ is a parameter with values either 0
or 1, contains subalgebras with fields having spin

s ¼ 2kþ 2 and s ¼ 2kþ 3

2
þ α; ð69Þ

where α is either 0 or 1. These algebras are denoted as
shsð1jαÞ≡ shsρð1jαÞ, since they are independent of ρ. For
both values of α, these algebras are superalgebras, but the
α ¼ 1 case is not supersymmetric. Subsequently, in
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Refs. [24] and [25], it was shown that the same structure
exists in D ¼ 3. Note that the field content of the shsð1j0Þ
algebra coincides with that of Eq. (68).
The general higher-spin theory in the bulk is a N ¼ 2

supersymmetric theory which has a free parameter μ related
to the masses of the matter fields. This is known as the
Prokushkin-Vasiliev theory and has a gauge group corre-
sponding to an algebra known as shsðμÞ, with the asymp-
totic symmetry algebra of the theory being sW∞. In
Sec. IV B 1, we list possible truncations of the shsðμÞ
algebra, from the viewpoint of the higher-spin algebra
being a wedge algebra of the N ¼ 2 sW∞ algebra and
show that the shsð1j0Þ algebra is an allowed truncation. In
Sec. IV B 1 we show that there exists a truncation of the full
N ¼ 2 Prokushkin-Vasiliev theory associated with this
algebra, following Ref. [26].

1. Truncation of shsðμÞ algebra
In this section we sketch how the shsð1j0Þ algebra can be

constructed as a subalgebra of the N ¼ 2 shsðμÞ algebra
when μ ¼ 1=2. In fact, at this special point, the N ¼ 2
shsðμÞ algebra has a number of subalgebras [27].
For a general μ, the standard method to construct the

shsðμÞ algebra is to factor the universal enveloping algebra
of ospð1; 2Þ by an ideal. In detail,

shsðμÞ ⊕ C ¼ Uðospð1; 2ÞÞ
hCospð1;2Þ − 1

4
μðμ − 1Þ1i ; ð70Þ

where Cospð1;2Þ is the quadratic Casimir of ospð1; 2Þ. The
generators of the shsðμÞ algebra can be constructed [5,27]

in terms of VðsÞ�
m defined as

VðsÞ�
m ¼ ~yðα1��� ~yαnÞð1�QÞ; ð71Þ

where the operators yα obey the algebra

½~yα; ~yβ� ¼ 2iϵαβf1þð2μ−1ÞQg; fQ; ~yαg¼ 0; Q2¼ 1:

ð72Þ

Changing the basis to

WðsÞþ
m ≡ VðsÞþ

m þ VðsÞ−
m ; ð73Þ

the bosonic generators of ospð1; 2Þ, which is a subalgebra
of shsðμÞ, can be written as follows:

L0 ¼
i
8
ðWð2Þþ

0 Þ; Lþ1 ¼
i
4
ðWð2Þþ

þ1 Þ; L−1 ¼
i
4
ðWð2Þþ

−1 Þ:
ð74Þ

The fermionic generators are

Gþ1
2
¼ 1

4
e−

iπ
4

�
W

ð3
2
Þþ

þ1
2

�
; G−1

2
¼ 1

4
e−

iπ
4

�
W

ð3
2
Þþ

−1
2

�
: ð75Þ

As is apparent, there is a second set of bosonic and

fermionic generators that can be constructed as WðsÞ−
m ≡

VðsÞþ
m − VðsÞ−

m . In fact, the shsðμÞ algebra can also be
constructed as a quotient of the universal enveloping
algebra of ospð2j2Þ. The algebra is, therefore, a N ¼ 2
supersymmetric algebra with field content:

�
1;
3

2
;
3

2
;2

�
;

�
2;
5

2
;
5

2
;3

�
;

�
3;
7

2
;
7

2
;4

�
� � � : ð76Þ

The shsðμÞ algebra is the wedge algebra of theN ¼ 2 sW∞
algebra in the c → ∞ limit. The generators of the sW∞

algebra are Lð~sÞ�
n and Gð~sÞ�

n , where ~s is a integer obeying

~s ≥ 2, and Lð1Þ−
n . The spin of the operator Lð~sÞ�

n is s ¼ ~s

while the spin of Gð~sÞ�
n is s ¼ ~s − 1

2
. Therefore, the algebra

consists of the supermultiplets ð~s; ~s − 1
2
Þ corresponding to

the generators ðLð~sÞ�
n ; Gð~sÞ�

n Þ. For this algebra one can
implement an automorphism [27], such that the generators
transform as follows:

Lð~sÞ�
μ →�ð−1Þ~s−1Lð~sÞ�

1−μ ; Gð~sÞ�
μ → ið−1Þ~s−1Gð~sÞ�

1−μ : ð77Þ

Note that when μ takes the value 1=2, any generator maps
to itself. The structure constants of this algebra take the
form

fustðμÞ ¼ Fu
stðμÞ þ ð−1Þ½−u�þ4ðsþuÞðtþuÞFu

stð1 − μÞ; ð78Þ

where Fu
stðμÞ is a function of μ and the spins s, t, u and

½u�≡
�
u if u ∈ Z;

u − 1=2 if u ∈ Zþ 1=2
: ð79Þ

For μ ¼ 1=2, many of the structure constants vanish and the
algebra closes for a reduced set of generators. It can be
shown, using, for example, Eq. (78), that the algebra can be

consistently truncated to retain the generators Lð~sÞþ
μ with ~s

even, Lð~sÞ−
μ with ~s odd and the generatorsGð~sÞ�

μ with ~s either

even or odd. If one retains the Gð~sÞ�
μ with an odd ~s, one gets

an algebra with no supersymmetry with the following field
content:

1; 2;
5

2
;
5

2
; 3; 4;

9

2
;
9

2
� � � : ð80Þ

On the other hand, retaining the Gð~sÞ�
μ with an even ~s

preserves the N ¼ 2 symmetry of the original theory, with
the field content
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�
1;
3

2
;
3

2
; 2

�
;

�
3;
7

2
;
7

2
; 4

�
� � � : ð81Þ

Restricting the above W algebra to its wedge modes, one
should get a N ¼ 2 supersymmetric higher-spin algebra
which we denote by shsð2j0Þ. As for the W algebra, for

the shs algebra, we can retain the generators WðsÞþ
m with

s ¼ 2kþ 2 and s ¼ 2kþ 3
2
and the generators WðsÞ−

m with
s ¼ 2kþ 1 and s ¼ 2kþ 3

2
, where k ∈ 0; 1; 2; � � �.

Other truncations of the shsðμÞ algebra are possible. In
Eq. (72), for μ ¼ 1=2, the commutators of the ~yα become
independent of Q. As a consequence, one can choose only
to retain the WðsÞþ generators [5]. In this case, the
supersymmetry reduces from N ¼ 2 to N ¼ 1 and this
algebra is known as the shsð1j2Þ algebra. The automor-
phism in Eq. (77) still applies, and as for the N ¼ 2

case, only the generators WðsÞþ
m with s ¼ 2kþ 2 and

s ¼ 2kþ 3
2
can be retained to give the truncated algebra

shsð1j0Þ.

2. Truncation of Prokushkin-Vasiliev theory

We now show that this shsð1j0Þ algebra is associated
with a truncation of the N ¼ 2 higher-spin Prokushkin-
Vasiliev theory. This construction appears in Ref. [26] and
we review the salient features here.
The field equations of the higher-spin theory are written

in terms of the functions Wμ, a space-time 1-form, and B
and Sα, which are space-time 0-forms, with α a spinor index
taking values 1,2. These are generating functions, with Wμ

being the generator of the higher-spin gauge fields, B the
generator of matter fields, while Sα is for auxiliary fields.
These generators are functions of the space-time coordi-
nates xμ and the auxiliary variables ðzα; yα;ψ1;2; Q; ρÞ.
Here, zα, yα are commuting bosonic twistor variables,
while the ðψ1;ψ2Þ and ðQ; ρÞ are two sets of Clifford
elements. The generating functions are expanded as

Aðz;y;ψ1;2;Q;ρjxÞ¼
X1

B;C;D;E¼0

X∞
m;n¼0

ABCDE
α1;…;αm;β1;…;βn

×QBρCψD
1 ψ

E
2 z

α1…zαmyβ1…yβn : ð82Þ

The coefficients ABCDE
α1;…;αm;β1;…;βn

carry spin s ¼ ðnþmÞ=
2þ 1 and commute with the generating elements
zα; yα;ψ1;2; Q; ρ. These generating functions obey a system
of equations and we will work with a vacuum solution of
these equations. We choose a zero-order vacuum solution
for the matter field: B ¼ ν, where ν is a constant.
Simultaneously, Sα can be chosen to equal Ssymα;0 , which
is defined in Ref. [26]. For this choice of B, the vacuum
solution W ¼ W0 can be shown to depend only on
ð~yα;ψ1; QÞ, where ~yα is called the “deformed oscillator”
and is equal to ~ysymα of Ref. [26]. The variables ~yα can be

shown to obey the same form of commutation relations as
the undeformed oscillators yα:

½~yα; ~yβ� ¼ 2iϵαβð1þ νQÞ; f~yα; Qg ¼ 0: ð83Þ

By incorporating the variable ψ1 into projection operators,
physical fields A, ~A can be defined as functions of ð~yα;QÞ
only. Defining A, ~A as

W0 ¼ −
1þ ψ1

2
A −

1 − ψ1

2
~A; ð84Þ

we have the expansions

Að~y;QÞ ¼
X1
B¼0

X∞
m¼0

AB
α1;α2;…;αmQ

B ~yα1⋆~yα2…⋆~yαm; ð85Þ

where ⋆ denotes the Moyal star product. Note that the
commutators in Eq. (83) are the same as in Eq. (72), with ν
identified as 2μ − 1. In fact, the bulk theory is a Chern-
Simons theory for the algebra generated by Q and ~yα,
which is the shsðμÞ algebra of the previous section.
We now look at the symmetries of the Prokushkin-

Vasiliev theory. We define a map σ by

σ½Aðz; y;ψ1;2; Q; ρÞ� ¼ Arevð−iz; iy;ψ1;2; Q; ρÞ; ð86Þ

where the order of all generating elements is reversed in
Arev. At the level of the expansion in Eq. (85), this translates
to reversing the order of Q and ~yα. Also, the action of the
map σ on the vacuum solution Ssymα;0 is

σ½Ssymα;0 � ¼ −iSsymα;0 ; ð87Þ

while

σ½~yα� ¼ i~yα: ð88Þ

There is a Grassmann parity π associated with coefficients
ABCDE
α1���αmβ1���βn in the expansion in Eq. (82). This is determined

by the number of spinor indices as follows:

πðWα1;…;αm;β1;…;βnÞ ¼
1

2
ð1 − ð−1ÞjmþnjÞ;

πðBα1;…;αm;β1;…;βnÞ ¼
1

2
ð1 − ð−1ÞjmþnjÞ;

πðSα1;…;αm;β1;…;βnÞ ¼
1

2
ð1 − ð−1Þjmþnþ1jÞ: ð89Þ

It can be shown that the transformation

ηðWμÞ ¼ −iπðWÞσðWμÞ; ηðBÞ ¼ iπðBÞσðBÞ;
ηðSαÞ ¼ iπðSÞþ1σðSαÞ ð90Þ
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is a symmetry of the field equations. Applying this trans-
formation to the expansion in Eq. (82), and keeping only
the terms that are invariant results in the following gen-
erators: all terms with even spin survive corresponding to
generators of the form ~yα1…~yαn and Q~yα1…~yαn where
n ∈ 4Zþ − 2. A single set of fermionic generators survive
corresponding to terms of the form ~yα1…~yαn when
n ∈ 4Zþ − 3 and Q~yα1…~yαn when n ∈ 4Zþ − 1. This
results in a N ¼ 1 supersymmetric theory, which is related
to a CFT dual in Ref. [16].
For the case ν ¼ 0, additional symmetries appear. In this

case, there is an involutive symmetry

ζ½WðQÞ� ¼ Wð−QÞ; ζ½SαðQÞ� ¼ Sαð−QÞ;
ζ½BðQÞ� ¼ −Bð−QÞ ð91Þ

of the field equations of the higher-spin theory. Under this
map, it is clear that only the set of generators of the N ¼ 2
theory that are independent of Q will survive, reducing the
symmetry again from N ¼ 2 to N ¼ 1. This is the theory
with algebra shsð1j2Þ. However, one can further truncate
the system using the transformation in Eq. (90). The
reduced set of generators will be of the form ~yα1…~yαn
where n ∈ 4Zþ − 2 or n ∈ 4Zþ − 3, since the symmetry in
Eq. (91) has already removed the Q-dependent generators.
This is the algebra shsð1j0Þ of the previous section.
A non-Abelian version of this theory first appeared
in Ref. [24].
For completeness we add that applying the transforma-

tions in Eqs. (90) and (91) simultaneously, and keeping
only the generators invariant under these transformations,
results in a bulk theory with an algebra having fields with
spins listed in Eq. (81).

V. DISCUSSION

The main result of this paper is the proposal of a new
duality between an EA-type exceptional invariant of the
orthogonal coset of Eq. (48) and a N ¼ 1 higher-spin bulk
theory that arises as a truncation of a N ¼ 2 supersym-
metric Vasiliev theory for the value of μ ¼ 1=2. This
duality can also be thought of as being between the
diagonal invariant of the coset in Eq. (50) and the bulk
theory. As evidence for this proposal, we found the vacuum
partition function of this coset CFTand demonstrated that it
agrees with the bulk spectrum, in the ’t Hooft limit.
To put this proposal on a firmer footing, there is more

work that can be done. In particular, we have not shown that
the nonvacuum sector of the CFT partition function maps to
the matter sector of the bulk theory. Further, we have not
checked that theN ¼ 1 sWe

∞ algebra can be independently
constructed by imposing the Jacobi identities. It would also
be nice to verify that this algebra truncates to a finite
algebra when the central charge is equal to the coset central
charge at a given value of N. One can also explicitly check

whether the bosonic We
∞ algebra is a subalgebra of sWe

∞
and whether, in turn, sWe

∞ is a subalgebra of other
algebras.
The CFT modular invariant of Eq. (48) belongs to a class

of invariants that have enhanced supersymmetry linked
with the fact that they arise from conformal embeddings.
The CFT invariant discussed in this paper and the non-
diagonal invariant of Ref. [5] both belong to this class.
Besides these, as we showed in Sec. II, one can also
construct similar nondiagonal invariants for cosets with
constituent groups of the BN andCN series. In this paper we
have studied the DN coset exclusively, but cosets of the BN
and CN series can also have bulk duals. We expect them to
behave as N ¼ 1 supersymmetric counterparts of the
cosets studied in Ref. [15].
Although in this paper we only discussed cases which

have N ¼ 1 supersymmetry, there is no reason why the
same procedure cannot work to boost the supersymmetry of
coset CFTs from N ¼ 1 to N ¼ 2 and from N ¼ 2 to
N ¼ 3. Indeed, on the bulk side at μ ¼ 1=2, as discussed in
Sec. IV B, the N ¼ 2 theory has a number of truncations
which either retain the N ¼ 2 supersymmetry or reduce it
to N ¼ 1. At the same time, it has a number of extensions
with enhanced supersymmetry [26]. Clearly the μ ¼ 1=2
value is special in this regard. An open problem is the bulk
dual for the Vasiliev theory with algebra N ¼ 2 shsð2j0Þ.
This theory only exists for ν ¼ 0 or μ ¼ 1=2, so it follows
that the dual coset theory should be at a fixed level. Another
question of interest concerns the coset

SOð2N þ 1Þk ⊗ SOð2NÞ1
SOð2NÞkþ1

; ð92Þ

which was studied in Ref. [16] and whose diagonal
invariant is dual to a bulk theory with N ¼ 1 supersym-
metry, existing for all values of ν. It would be interesting to
check whether this coset has an invariant with enhanced
supersymmetry for the value of level k at which the
SOð2N þ 1Þk group is conformally embedded in a group
of the form SOðMÞ1. Finally, on the bulk side there also
exist non-Abelian counterparts of the truncated theories. It
would be aesthetically satisfying to have CFT duals for
these theories, on the lines of Refs. [6,28].
From the perspective of the CFT at a fixed λ ¼ 1=2, as

we did in Sec. II, one can construct all possible series of
coset invariants that result from conformal embeddings and
look for bulk duals for these. As we demonstrated in
Sec. III, the set of distinct CFT partition functions is smaller
than the set of all possible partition functions because
partition functions of different coset models turn out to be
related. It would be good to have a complete proof of this
equivalence. In this paper, we have focused on CFT
modular invariants that have enhanced symmetry as com-
pared to the diagonal modular invariant. However, coset
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CFT theories typically also have nondiagonal modular
invariants which do not have such an enhanced symmetry.
Often, these invariants exist for all ranks and, for example,
even values of the level k, which means a well-defined
’t Hooft limit exists. It would be interesting to look at bulk
duals for these kind of nondiagonal invariants, as well.
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APPENDIX A: NOTATION FOR SOð2NÞ
In this appendix, we state our notation for the SOð2NÞ

group. We will work in an orthonormal basis: ε1;…; εN . In
this basis the simple roots of SOð2NÞ are

αi ¼ εi − εiþ1 for 1 ≤ i ≤ N − 1;

αN ¼ εN−1 þ εN: ðA1Þ

The fundamental weights are

λi ¼ ε1 þ ε2 þ � � � þ εi for 1 ≤ i ≤ N − 2;

λN−1 ¼
1

2
ðε1 þ ε2 þ � � � þ εN−1 − εNÞ;

λN ¼ 1

2
ðε1 þ ε2 þ � � � þ εN−1 þ εNÞ: ðA2Þ

The Weyl vector ρ is given by

ρ ¼
XN
i¼1

λi ¼
XN
i¼1

ðN − iÞεi: ðA3Þ

In terms of the fundamental weights, the weight Λ of a
highest weight representation (hwr) is

Λ ¼
XN
p¼1

Λpλp; ðA4Þ

where Λp ≥ 0 are the Dynkin labels of Λ. In terms of the
orthonormal basis Λ can be expanded as

Λ ¼
XN
p¼1

liεi: ðA5Þ

These expansion coefficients li can be expressed in terms of
the Dynkin labels:

li ¼
XN−2

p¼i

Λp þ
1

2
ðΛN−1 þ ΛNÞ for 1 ≤ i ≤ N − 2

lN−1 ¼
1

2
ðΛN−1 þ ΛNÞ; lN ¼ 1

2
ðΛN − ΛN−1Þ: ðA6Þ

For a highest weight representation Λ, the quadratic
Casimir is

CNðΛÞ ¼
1

2
hΛ;Λþ 2ρi ¼ 1

2

XN
i¼1

l2i þ
XN
i¼1

liðN − iÞ: ðA7Þ

Since we are working in the large N limit, we need only
work with representations for which the quadratic Casimir
grows linearly with N. These representations satisfy
ΛN−1 ¼ ΛN ¼ 0. From Eq. (A6), we can see that these
representations can be labeled by li, with li ≥ liþ1 for
i ¼ 1;…; N − 2, and lN−1 ¼ lN ¼ 0. Since the li are non-
negative ordered integers, we can interpret them as the
number of boxes in the ith row of a Young tableaux. Let cj
denote the number of boxes in the jth column of such a
Young tableaux. Then the quadratic Casimir of a weight Λ
corresponding to this Young diagram is

CNðΛÞ ¼
1

2
hΛ;Λþ 2ρi ¼ 1

2

XN
i¼1

l2i þ
XN
i¼1

liðN − iÞ

¼ BðΛÞ
�
N −

1

2

�
þ 1

2
DðΛÞ; ðA8Þ

where

BðΛÞ ¼
XN
i¼1

li; DðΛÞ ¼
XN
i¼1

l2i −
XN
i¼1

c2i : ðA9Þ

1. Frobenius notation

In this paper we use the Frobenius notation for Young
diagrams. In any Young diagram, let d represent the
number of boxes in the main diagonal. The Young diagram
is, then, labeled by two sets of integers ai and bi, where i
goes from 1 to d. For the ith box on the diagonal, ai is the
number of boxes to the right while bi is the number of
boxes below. This is usually represented by a 2 × d array of
integers, with the integers ai in the top row and the integers
bi in the bottom row. For example, for the Young diagram
in Fig. 1, the array is
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�
4 1 0

4 2 0

�
: ðA10Þ

For a representation Λ, for which the ith row has li boxes
and the ith column has ci boxes, the corresponding
Frobenius coordinates ai and bi are

ai ¼ li − i; bi ¼ ci − i where i ¼ 1 to d: ðA11Þ

The quadratic Casimir is given by Eq. (A8), where BðΛÞ is

BðΛÞ ¼
Xd
i¼1

ðai þ bi þ 1Þ ðA12Þ

and DðΛÞ is

DðΛÞ ¼
Xd
i¼1

�
ai þ

1

2

�
2

−
Xd
i¼1

�
bi þ

1

2

�
2

: ðA13Þ

APPENDIX B: BRANCHING FUNCTION
OF THE DN COSET

For completeness, we write down the branching function
of the coset in Eq. (50), in the large N limit. For details, the
reader is referred to [13]. For the diagonal coset
SOð2NÞk⊗SOð2NÞ1

SOð2NÞkþ1
, let Λþ and Λ− denote the hwr of

SOð2NÞk and SOð2NÞkþ1 respectively. Then the corre-
sponding branching function bðΛþ;Λ−Þ is [29]

bðΛþ;Λ−ÞðqÞ ¼
1

ηðqÞN
X
w∈W

X
ni∈Z

i¼1;…;N

ϵðwÞq 1
2pðpþ1Þjðpþ1ÞðwðΛþþρÞþp

P
N
i¼1

niα∨i Þ−pðΛ−þρÞj2 ; ðB1Þ

where ρ is the Weyl vector of SOð2NÞ, α∨i are the coroots, W is the Weyl group and p≡ kþ h where h ¼ 2N − 2. In the
limit of large N, we can neglect the sum over the coroot lattice as the contribution of corresponding terms is exponentially
suppressed. Therefore, we are left with

bðΛþ;Λ−ÞðqÞ ≅
1

ηðqÞN
X
w∈W

ϵðwÞq 1
2pðpþ1Þjðpþ1ÞwðΛþþρÞ−pðΛ−þρÞj2 : ðB2Þ

For the special case of k ¼ 2N − 2 and in the large N limit the term in the exponential can be written as

CðΛþÞ þ CðΛ−Þ þ
1

4
BðΛþÞ −

1

4
BðΛ−Þ þ

�
1þ 1

2pðpþ 1Þ
�
ρ2 − hwðΛþ þ ρÞ;Λ− þ ρi; ðB3Þ

where CðΛÞ ¼ 1
2
hΛ;Λþ 2ρi. The branching function becomes

bðΛþ;Λ−ÞðqÞ ≅
qð1þ

1
2pðpþ1ÞÞρ2

ηðτÞN qCðΛþÞþCðΛ−Þq1
4
BðΛþÞ−1

4
BðΛ−Þ

X
w∈W

ϵðwÞq−hwðΛþþρÞ;Λ−þρi: ðB4Þ

This can be rearranged to

bðΛþ;Λ−ÞðqÞ ¼ q
1
4
BðΛþÞ−1

4
BðΛ−Þ

X
w∈W

ϵðwÞq−hwðρÞ;ρi qρ
2−c=24Q∞

n¼1ð1 − qnÞN ×
X
Λ
qCðΛÞNΛ

ΛþΛ−

P
w∈WϵðwÞq−hwðΛþρÞ;ρiP
w∈WϵðwÞq−hwðρÞ;ρi

; ðB5Þ

FIG. 1. Young diagram with Frobenius coordinates given by the
matrix in Eq. (A10). The shaded boxes represent the main
diagonal.
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where we have used c ¼ N − 12
pðpþ1Þ ρ

2. The NΛ
ΛþΛ−

denote
the Clebsch-Gordan coefficients for SOð2NÞ. By the Weyl
denominator formula

X
w∈W

ϵðwÞq−hwðΛþρÞ;ρi ¼ q−ρ
2−hΛ;ρi YN

i¼2

Yi−1
j¼1

ð1 − qlj−liþi−jÞ

× ð1 − qljþliþ2N−i−jÞ; ðB6Þ

where the li’s are lengths of the rows of the Young tableau
corresponding to the weight Λ. In the large N limit

P
w∈WϵðwÞq−hwðΛþρÞ;ρiP
w∈WϵðwÞq−hwðρÞ;ρi

≅
q−hΛ;ρi

Q
N
i¼2

Q
i−1
j¼1ð1−qlj−liþi−jÞQ

N
i¼2

Q
i−1
j¼1ð1−qi−jÞ :

ðB7Þ

Also,

Y∞
n¼1

ð1 − qnÞ−N
X
w∈W

ϵðwÞq−hwðρÞ;ρi

¼ q−ρ
2
Y∞
s¼2
s even

Y∞
n¼s

1

1 − qn
¼ q−ρ

2

MeðqÞ: ðB8Þ

Here, MeðqÞ is the modified MacMahon function
defined in Eq. (59). In the large N limit, we should include
those Λ in the summation over Λ in Eq. (B5) for which
BðΛÞ ¼ BðΛþÞ þ BðΛ−Þ. The branching function then
becomes

bðΛþ;Λ−ÞðqÞ ¼ q−
c
24MeðqÞPþ

YT ðΛþÞðqÞP
−
YTðΛ−ÞðqÞ; ðB9Þ

where P�
YT ðΛ�ÞðqÞ are the modified Schur functions defined

in Eq. (60) with λ ¼ 1=2.

APPENDIX C: BRANCHING RULES
AND SERIES EXPANSIONS

In this appendix, we construct the AE and EA partition
functions for the Series I and Series II coset models for the
N ¼ 3 case by determining the fields that should appear in
the partition functions. We also write down the q-series
expansions for the associated branching functions of these
fields and clarify the relation between the WZW weights of
the fields that appear in the AE and EA partitions. The
SUð3Þ5 and SUð4Þ2 WZW groups are both embedded in
SUð6Þ1. The SUð6Þ1 WZW model has six primary fields.
The branching rules for the weights of the primary fields of
the SUð6Þ1 model, denoted by λ in Sec. III C, into the
weights of the primary fields of the SUð3Þ5 model, denoted
by δ, are as follows:

λ∶ ð1; 1; 1; 1; 1Þ → ð1; 1Þ þ ð3; 3Þ;
λ∶ ð2; 1; 1; 1; 1Þ → ð3; 1Þ þ ð3; 4Þ;
λ∶ ð1; 2; 1; 1; 1Þ → ð1; 6Þ þ ð3; 2Þ;
λ∶ ð1; 1; 2; 1; 1Þ → ð1; 4Þ þ ð4; 1Þ;
λ∶ ð1; 1; 1; 2; 1Þ → ð6; 1Þ þ ð2; 3Þ;
λ∶ ð1; 1; 1; 1; 2Þ → ð1; 3Þ þ ð4; 3Þ: ðC1Þ

To get the weights of the primary fields that constitute the
AE partition function for the Series I coset, the weights
appearing on the right-hand side in the above equations
need to be paired with the weights of SUð3Þ4, which are
denoted by α. However, not all pairs of weights ðα; δÞ
will appear in the partition function—only pairs that
are distinct after field identification. We can choose the
pairs in such a way that we keep all the weights δ but
restrict the weights α when using field identification.
Then, the number of distinct weights of SUð3Þ4 appearing
in the partition function is 5 and one choice for these
weights is

α ∈ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ; ð1; 4Þ; ð2; 2Þg: ðC2Þ
In Table III we list the weights ðα; δÞ of the fields that arise
in the AE partition for the N ¼ 3 Series I coset along with
their q-series expansions. Note that there is an associated
value of λ with each row that can be read off from Eq. (C1)
by matching the δ value for a particular row with the δ value
appearing in the rhs of Eq. (C1). To match with the partition
function in Eq. (23), we have included the conformal
dimension of the fields: the fields listed in Table III are in
one-to-one correspondence with those appearing in
Eq. (23). For the cases where fields with the same
conformal dimension have differing q-series expansions,
we have also included the W3 charge.
The branching rules for the weights of the primary fields

of the SUð6Þ1 model, now denoted by λ0, into the weights of
the primary fields of the SUð4Þ2 model, denoted by β, are as
follows:

λ0∶ ð1; 1; 1; 1; 1Þ → ð1; 1; 1Þ þ ð1; 3; 1Þ;
λ0∶ ð2; 1; 1; 1; 1Þ → ð1; 2; 1Þ;
λ0∶ ð1; 2; 1; 1; 1Þ → ð2; 1; 2Þ;
λ0∶ ð1; 1; 2; 1; 1Þ → ð3; 1; 1Þ þ ð1; 1; 3Þ;
λ0∶ ð1; 1; 1; 2; 1Þ → ð2; 1; 2Þ;
λ0∶ ð1; 1; 1; 1; 2Þ → ð1; 2; 1Þ: ðC3Þ

To get the primary fields that constitute the EA partition
function for the Series II coset, we pair the weights
appearing on the right-hand side of the above equation
with the weights of SUð4Þ3, denoted by α0. As for the
previous case, we can again choose the pairs in such a way
that the weight β is unrestricted but the weight α0 is

CONFORMAL EMBEDDINGS AND HIGHER-SPIN BULK DUALS PHYSICAL REVIEW D 95, 066015 (2017)

066015-17



restricted by field identification. This constraint is auto-
matically satisfied if we choose the weights of SUð4Þ3 that
are related to the SUð3Þ4 weights in Eq. (C2) by the level-
rank duality map: that is, transpose rows of the Young
tableau for α into columns. The weights α0 are then

α0 ∈ fð1;1;1Þ; ð3;1;1Þ; ð1;3;1Þ;ð1;1;3Þ; ð2;2;1Þg: ðC4Þ

In Table IV we list the weights ðβ; α0Þ of the fields that arise
in the AE partition for Series II along with their q-series
expansions. The associated λ0 value can be read off from
Eq. (C3). These weights are in one-to-one correspondence
with those appearing in Eq. (24). Because some SUð4Þ2
weights appear twice on the rhs of the equations in (C3),
Table IV has some degeneracies.
As noted below Eq. (44), there is a one-to-one map from

the set of weights ðλ; αÞ to the set of weights ðλ0; α0Þ. The
corresponding branching function identities for the N ¼ 3
case are given in Eq. (25). Note that, in general, λ and λ0 are
not equal. We clarify this by giving some examples. We can
read the map for the identity bII1

7

þ bII8
7

¼ bI1
7

þ bI36
7

from

Tables III and IV and Eqs. (C1) and (C3). It is given by

ðλ; αÞ∶ fð1; 1; 1; 2; 1Þ; ð1; 3Þg →

ðλ0; α0Þ∶ fð1; 1; 1; 1; 1Þ; ð1; 3; 1Þg: ðC5Þ

The identity bII3
28

þ bII59
28

¼ bI3
28

þ bI87
28

is two distinct identities

in terms of the WZW labels of the primary fields and
corresponds to the following two maps:

ðλ; αÞ∶ fð1; 1; 1; 1; 2Þ; ð1; 2Þg →

ðλ0; α0Þ∶ fð1; 1; 2; 1; 1Þ; ð3; 1; 1Þg;
ðλ; αÞ∶ fð1; 1; 2; 1; 1Þ; ð1; 4Þg →

ðλ0; α0Þ∶ fð1; 1; 2; 1; 1Þ; ð1; 1; 3Þg: ðC6Þ

Similarly, the identity bII5
84

¼ bI5
84

þ bI173
84

is also two distinct

identities corresponding, for example, to the maps

ðλ; αÞ∶ fð1; 1; 1; 1; 2Þ; ð1; 3Þg →

ðλ0; α0Þ∶ fð1; 1; 1; 1; 2Þ; ð1; 3; 1Þg;
ðλ; αÞ∶ fð1; 1; 2; 1; 1Þ; ð1; 3Þg →

ðλ0; α0Þ∶ fð2; 1; 1; 1; 1Þ; ð1; 3; 1Þg: ðC7Þ

As can be seen above, the indices λ and λ0 are not always
equal. This is because as stated in Sec. III C, the identities
depend on the conformal dimensions of the fields involved.
The conformal dimension of a coset primary in terms of the
generic weights ðΛþ;Λ−Þ of the constituent WZW models
is given by

hðΛþ;Λ−Þ ¼
1

2rðrþ 1Þ ðjðrþ 1ÞðΛþ þ ρ̂Þ

− rðΛ− þ ρ̂Þj2 − ρ̂2Þ; ðC8Þ

where r ¼ N þ k and ρ̂ and is the Weyl vector for SUðNÞ.
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