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Motivated by the recent unified approach to the Smarr-like relation of anti-de Sitter (AdS) planar
black holes in conjunction with the quasilocal formalism on conserved charges, we revisit the
quantum statistical and thermodynamic relations of hairy AdS planar black holes. By extending the
previous results, we identify the hairy contribution in the bulk and show that the holographic computation
can be improved so that it is consistent with the bulk computation. We argue that the first law can be
retained in its universal form and that the relation between the on-shell renormalized Euclidean action and
its free energy interpretation in gravity may also be undeformed even with the hairy contribution in hairy
AdS black holes.
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I. INTRODUCTION

It has been known that black holes behave just like
thermal objects after Bekenstein and Hawking’s pioneering
works on their physical properties [1,2]. This thermody-
namic behavior of black holes is regarded as a universal
nature of black holes reflecting the hidden physics of
black holes.
One of the universal formulas in black hole physics is the

expression of the first law of black hole thermodynamics.
For Kerr-Newman black holes of the mass M, the angular
momentum J, the Uð1Þ charge Q and the Bekenstein-
Hawking entropy S, the first law takes the following form,

dM ¼ THdS þ ΩdJ þ μdQ;

where TH, Ω and μ denote the Hawking temperature given
by the surface gravity, the angular velocity at the horizon
and the Uð1Þ chemical potential. It would be amusing to
recall that the no-hair theorem of black holes in the
asymptotically flat spacetime is consistent with the above
form of the first law. Based on the black hole uniqueness
theorem, the first law is established in Einstein gravity [3],
and then it is shown to hold in the generic covariant theory
of gravity [4,5]. Now, it is regarded that the first law in the
above form is the universal property of black holes. This
form of the first law has been checked in various black
holes even for the asymptotically nonflat spacetime, for
instance, for anti-de Sitter (AdS) or Lifshitz black holes.
Another interesting aspect of the thermodynamic relation

in black hole physics is the interpretation of the (renor-
malized) Euclideanized on-shell action value as the free
energy or thermodynamic potential in the (grand) canonical
ensemble. This relation, which is usually called the
quantum statistical relation, could be written as [6]

1

β
Ir ¼ M − THS − ΩJ − μQ;

where Ir denotes the on-shell action value and β is the
periodicity of the Euclideanized time coordinate and is
related to the Hawking temperature as TH ¼ 1=β. Though
this relation may be very plausible from the analogy
with the path integral formulation of finite temperature
quantum field theories in the flat spacetime, the validity
of the relation is not warranted partially because the
quantum formulation of gravity is not yet accomplished.
Nevertheless, one can establish the validity of the relation
for Kerr-Newman black holes in the asymptotically flat
spacetime. Moreover, the quantum statistical relation as
well as the first law are established rigorously even for the
asymptotically AdS rotating charged black holes [7,8].
Contrary to the asymptotically flat spacetime, it has been
known that hairy black holes exist in the asymptotically
AdS spacetime, and in fact these black holes are essential
ingredients to various AdS/CMT models. Especially, the
holographic superconductors utilize hairy black holes to
realize the Cooper pair condensate as the dual to the scalar
hair in the AdS black holes. These hairy configurations lead
us to pose the following question: Where are hairy
contributions in the above forms of the first law and/or
the quantum statistical relation?
In this paper, we would like to address this question and

show that various results on the thermodynamic relations in
the AdS/CMT models can be interpreted in such a way that
the hairy contribution appears as the deformation in the
expression of conserved charges, but not in the first law nor
in the quantum statistical relation. This interpretation turns
out to be consistent with the Smarr-like relation, which is
shown as a kind of other universal relation among charges
on the AdS planar black holes. We will present explicit
examples to show that various results on the planar black
holes in the AdS/CMT models can be understood in our
framework.
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II. REVIEW

As is well known [6], the path integral approach to
quantum mechanics tells us that the Euclidean action for
gravity corresponds to the thermodynamic potential in
the system under consideration by identifying the perio-
dicity β of the Euclidean time τ with the temperature T ¼ 1

β.
In the setup of the grand canonical ensemble, one may also
introduce various chemical potentials μi associated with
charges Ci, which are conserved in the sense that
½H;Ci� ¼ 0. The charge, qΨi , of the fieldΨmay be specified
as ½Ci;Ψ� ¼ iqΨi Ψ in the operator language. The field Ψ
should satisfy the appropriate twisted boundary condition

Ψðτ þ βÞ ¼ e
P

i
μiqΨi ΨðτÞ along the Euclidean time

direction.
Then, the (grand canonical) partition function Zðβ; μiÞ is

represented by the path integral as

Zðβ; μiÞ ¼ Tre−βðH−
P

i
μiCiÞ ¼

Z
DΨe−I½Ψ� ¼ e−Ir½Ψ� þ � � � ;

where Ir½Ψ� denotes the on-shell renormalized action.
By writing the thermodynamic potential, W ≡ − 1

β lnZ, in
terms of thermodynamic quantities as W ¼ M − TS−P

iμiCi, one may say that the leading contribution to the
thermodynamic potential W is related to the on-shell
renormalized action value as

W ¼ M − TS −
X
i

μiCi ¼
1

β
Ir½Ψ�: ð1Þ

The above argument for the on-shell action value seems to
be very plausible but is not self-evident, especially in the
theory of gravity. That is to say, the quantum statistical
relation should be taken with some caution, due to the fact
that the renormalization process has some intrinsic ambi-
guity unless we impose some renormalization condition.
Furthermore, in the context of gravity, the characteristics of
conserved charges are slightly different from those in field
theory partially because charges in gravity are defined by
the integration over the surface, not the integration over the
bulk. Even with these difficulties, the validity of the
quantum statistical relation has been shown in some
specific cases [7,8]. In Ref. [8], it was shown that

1

β
Ir½Ψ� ¼ Q∞ðξÞ −QBðξÞ; ð2Þ

where QðξÞ denotes the charge for the Killing vector
ξ ¼ ∂t þΩ∂ϕ. See Lemma 5.1 in Ref. [8]. For the sta-
tionary black holes in the asymptotic AdS space, the above
equation becomes

1

β
Ir½Ψ� ¼ M − THS −ΩJ − μQ: ð3Þ

Furthermore, it was shown that the first law from the
holographic computation can be completely matched with
Wald’s bulk approach in the form of

dM ¼ THdS þ ΩdJ þ μdQ: ð4Þ
In this derivation of the quantum statistical relation, the
(relaxed) Dirichlet boundary condition is chosen, and when
the conformal anomaly function vanishes, the charge
Q∞ðξÞ is shown to be composed only of the metric and
gauge fields parts (see Eq. (4.31) in Ref. [8]):

Q∞ðξÞ ¼ Qg
∞ðξÞ þQA

∞ðξÞ:
Interestingly, this bulk result is also shown to be consistent
with the boundary stress tensor method in Ref. [8], when
the anomaly for the conformal symmetry is taken to vanish
under the (relaxed) Dirichlet boundary condition.
In contrast, it has been observed that the scalar hairy

contribution could enter the charge Q∞ðξÞ in some AdS/
Condensed Matter Theory(CMT) models [9–12] and the
corresponding hairy black holes [13–15]. Then, one may
presume that all the hairy contributions could be incorpo-
rated into the mass or the angular momentum of hairy
(planar) black holes and may retain the above quantum
statistical relation, Eq. (3), and the first law, Eq. (4).
However, there are various examples, which show the
explicit hairy contribution to the thermodynamic relations.
For instance, in Refs. [9,10], the hairy contribution enters in
the first law, and this modified first law is used to explain
the numerical results. These results invoke the questions as
to how we should improve the generic derivation of the
quantum statistical relation and the first law. In the
following section, we show that all these results can be
understood from the bulk side by using the appropriate
mass expression and modifying the general derivation
through the one-parameter path integration. Furthermore,
we confirm this result is consistent with the AdS/CFT
correspondence from the boundary computation by using
the improved boundary current.
Before going ahead, it would be better to clarify the

meaning of the scalar hairs and the boundary conditions of
scalar fields. In our setup, especially in the context of the
AdS/CMT correspondence, the scalar hairs correspond to
free parameters of black holes just like the mass or angular
momentum. Accordingly, we use the terminology of the
hairy contributions from scalar fields to stand for those
from normalizable modes, not from non-normalizable
modes which correspond to the fixed boundary values or
the sources on the boundary. In planar black holes, both
modes of the scalar fields in the asymptotic expansion of
the radial coordinate could be normalizable ones.
Therefore, our question about the scalar hairy contribution
corresponds to the role of these two modes in various
thermodynamic relations under the Dirichlet boundary
conditions.1

1Note that the hairy contribution corresponding to the multi-
trace deformation could also be analyzed by the mixed boundary
conditions [16].
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III. REVISIT TO THE ON-SHELL
RENORMALIZED ACTION

Though there is a rigorous derivation of the quantum
statistical relation of AdS black holes under the (relaxed)
Diriclet boundary conditions [8] (see Ref. [16] for the
approach in the case of the mixed boundary conditions), it
does not cover the class of hairy black hole models in the
AdS/CMT correspondence. In this section, we revisit
thermodynamic relations of those black holes in a generic
setup to clarify our claims and show that these cases could
be interpreted nicely with our construction. In the follow-
ing, we focus on the Dirichlet boudnary conditions, for
definiteness.

A. Case without the anomaly

The generic variation of the D-dimensional bulk action I
could be written as

δI½Ψ� ¼ 1

16πG

Z
dDxδð ffiffiffiffiffiffi

−g
p

LÞ

¼ 1

16πG

Z
dDx½ ffiffiffiffiffiffi

−g
p

EΨδΨþ ∂μΘμðδΨÞ�:

One may write the boundary action in terms of the surface
integral at η ¼ η0 as

IGH þ Ict ¼
1

16πG

Z
η¼η0

dD−1xμnμ
ffiffiffiffiffiffi
−γ

p ðLGH þ LctÞ;

where nμ denotes the outward normal vector to the
boundary surface at η ¼ η0. The on-shell Noether current
for the diffeomorphism parameter ζ of the bulk action I
could be introduced in the form of

JμðζÞ ¼ ζμ
ffiffiffiffiffiffi
−g

p
L − Θμð£ζΨÞ ¼ ∂νKμν; ð5Þ

where Kμν denotes the Noether potential and Θμ is the
surface term in the above action variation for the Lie
derivative variation as δΨ ¼ £ζΨ. The contribution of the
Gibbons-Hawking and counterterms near infinity may be
incorporated by modifying the Θ-term and the Noether
potential as

ΘμðδΨÞjη¼η0
→ ~ΘμðδΨÞjη¼η0

≡ ΘμðδΨÞjη¼η0
þ nμδ½ ffiffiffiffiffiffi

−γ
p ðLGH þ LctÞ�; ð6Þ

Kμνjη¼η0
→ ~Kμνjη¼η0

≡Kμνjη¼η0
þ 2ζ½μBn

ν� ffiffiffiffiffiffi
−γ

p ðLGH þLctÞ;
ð7Þ

where we have assumed that the generic variations do not
change nμ, ζμ and ζiB. One may note that the Noether
potential Kμν typically diverges in the asymptotic AdS
space, and the counterterms are introduced, by definition,
to render it finite. More precisely, the counterterms should
be considered as the essential ingredients to pose the

well-defined variational problem [8,16]. In the explicit
examples given in the following section, we adopt this
property to determine the counterterms explicitly.
Now, let us recall that the Abbott-Deser-Tekin (ADT)

potential [17–20] for the bulk action I is given by the
combination of the Noether potential and the Θ-term in the
form of

2
ffiffiffiffiffiffi
−g

p
Qμν

ADTðξÞ ¼ δKμνðξÞ − 2ξ½μΘν�ðδΨÞ; ð8Þ
which gives us an infinitesimal conserved charge for the
Killing vector ξ,

δQðξÞ ¼ 1

8πG

Z
dD−2xμν

ffiffiffiffiffiffi
−g

p
Qμν

ADTðξÞ: ð9Þ

Remarkably, this charge expression can also be obtained by
the covariant phase space method as the covariant
Hamiltonian [4,5]. The existence of the improvement
surface term of the form ξ½μΘν� is now rather well under-
stood and is important to establish the first law of black
holes through Stokes’s theorem.
As was emphasized in Refs. [21,22], the ADT approach

depends only on the bulk equations of motion. Henceforth,
the conserved charge expression should be independent of
the surface terms like the above Gibbons-Hawking, coun-
terterms or additional boundary terms required for boun-
dary conditions other than the Dirichlet ones. Indeed, by
using Eqs. (6) and (7), one can check explicitly that the
modified Noether potential ~Kμν- and ~Θ-terms lead to the
same ADT potential,

2
ffiffiffiffiffiffi
−g

p ~Qμν
ADTðξÞ ¼ δ ~KμνðξÞ − 2ξ½μ ~Θν�ðδΨÞ

¼ δKμνðξÞ − 2ξ½μΘν�ðδΨÞ
¼ 2

ffiffiffiffiffiffi
−g

p
Qμν

ADTðξÞ: ð10Þ
We would like to emphasize that the boundary conditions
are taken into account because the field variation in the
above expressions means the variation along the one-
parameter path in the solution space, which respects the
boundary conditions by construction.
Let us recapitulate the results in Ref. [8], which are

relevant in our contexts [23]. In Einstein gravity, it was
explicitly shown in Ref. [8] [see Eq. (3.46)] that the ~Θ-term
at η ¼ η0 becomes

~ΘμðδΨÞjη¼η0
¼ nμ

ffiffiffiffiffiffi
−γ

p ½Tij
Bδγij þ Πψδψ �η¼η0

: ð11Þ
By taking the conformal boundary condition such that the
variation at the boundary should be given by a Weyl
transformation δ → δσ [see Eq. (A3) in the Appendix], one
can see that ~ΘμðδσΨÞ ∼ nμAδσ, where A denotes the
unintegrated anomaly [8,24], and thus ~Θμ vanishes when
the unintegrated anomaly A vanishes.
Notice that the integrability condition to obtain finite

conserved charges is given in the form of [25]
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0 ¼
Z
∂Σ

dD−2xμνξ
½μ
Hðδ1 ~Θν�ðδ2ΨÞ − δ2 ~Θν�ðδ1ΨÞÞ; ð12Þ

which is satisfied automatically under the unintegrated
anomaly vanishing condition A ¼ 0. Therefore, under the
condition A ¼ 0, the finite integrated conserved charge
could be determined just by ~K as

QðξBÞ ¼
1

8πG

Z
dD−2dxμν ~K

μνðξBÞ

¼ 1

8πG

Z
dD−2dxμν½KμνðξBÞ

þ 2ξ½μBn
ν� ffiffiffiffiffiffi

−γ
p ðLGH þ LctÞ�:

Moreover, it is straightforward to infer from Eqs. (A2)
and (A5) that this expression gives us the same charge
expression from the boundary stress tensor Tij

B ,

QðξBÞ ¼
1

8πG

Z
dD−1xi

ffiffiffiffiffiffi
−γ

p
Tij
Bξ

B
j : ð13Þ

In this case, hence, our construction is completely con-
sistent with the results in Ref. [8]. In the Appendix, we
show that the improved boundary current gives us the same
results with the above bulk expressions.
Now, let us consider the relation between conserved

charges and the renormalized on-shell action value. First,
let us recapitulate the derivation of the quantum statistical
relation given in Ref. [8]. Recalling the relation given in
Eq. (5) between the on-shell Noether potential and the
Lagrangian value and using Eq. (6) with δ ¼ £ξ, it is
straightforward to obtain for the stationary Killing vector ξHZ

dD−1x
ffiffiffiffiffiffi
−g

p
Lþ

Z
dD−2xini

ffiffiffiffiffiffi
−γ

p ðLGH þ LctÞ

¼
�Z

∞
−
Z
B

�
dD−2xμν ~K

μνðξHÞ: ð14Þ

The left-hand side of this equality is nothing but the on-shell
renormalized Lagrangian integrated over the relevant
domain except the Euclidean time integration, and the
right-hand side corresponds to the conserved charges at
infinity and on the horizon, when the unintegrated trace
anomaly vanishes. If the gauge is chosen appropriately, the
conserved charge at infinity and on the horizon may be
identified, respectively, as

Q∞ðξHÞ ¼
1

16πG

Z
∞
dD−2xμν ~K

μνðξHÞ ¼ M −ΩJ − μQ;

QBðξHÞ ¼
1

16πG

Z
B
dD−2xμν ~K

μνðξHÞ ¼ THS;

where the conserved charge on the horizon is identified with
the black hole entropy à la Wald [4,5]. For the stationary
system in the adapted coordinates in such away that ξtH ¼ 1,
the Euclidean time integration can be performed simply by

multiplying its interval, and thus the above equality for the
Killing vector ξH leads to

1

β
Ir ¼ M −ΩJ − μQ − THS; ð15Þ

which is nothing but the statement of Lemma 5.1 i) in
Ref. [8]. In the following section, we would like to explore
the case where the unintegrated anomaly does not vanish.

B. Case with the anomaly

In this section, we would like to consider cases in which
the unintegrated anomaly A does not vanish under the
Drichlet boundary conditions. In fact, there is an approach
allowing the nonvanishing anomaly function which incor-
porates it into the conserved current [23]. Furthermore, the
equivalence of the bulk and boundary conserved charges is
established through Eqs. (54) and (55) in Ref. [23]. The
essential point in this construction is that the ambiguity in
the counterterms does not affect the holographic charges,
since the improved boundary currents are matched with the
bulk ADT potentials. Our suggestion in the case of a
nonvanishing anomaly is to use the improved boundary
current for the boundary conserved charge and to use the
conventional bulk expression or the ADT potential for the
bulk conserved charge. The equivalence of these two
computations is shown in Ref. [23], and thus it is
completely consistent with the AdS=CFT correspondence.
Concretely, one can define the infinitesimal conserved
charge as

δQðξBÞ ¼
1

8πG

Z
η¼η0

dD−2xμν
ffiffiffiffiffiffi
−g

p
Qμν

ADTðξÞ

¼ 1

8πG

Z
dD−2xi

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ ð16Þ

and then integrate this along the one-parameter path in the
solution space. In the next section, we apply this suggestion
to the specific models and confirm that the thermodynamic
relation may be explained consistently, and still the
renowned first law of black holes is retained without
any modification. Furthermore, the quantum statistical
relation could be retained in its form by taking the
counterterms appropriately.
Now, let us extend the derivation of the quantum

statistical relation when the unintegrated trace anomaly
does not vanish. The on-shell variation of the relation (14)
leads to

δ

�
1

β
Ir

�
¼ 1

16πG

�Z
∞
−
Z
B

�
dD−2xμνδ ~K

μνðξHÞ

¼ 1

8πG

�Z
∞
−
Z
B

�
dD−2xμν

ffiffiffiffiffiffi
−g

p
Qμν

ADT

þ 1

8πG

�Z
∞
−
Z
B

�
dD−2xμνξ

½μ
H
~Θν�ðδΨÞ;
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where we have used Eq. (10) to rewrite δ ~Kμν in terms of
Qμν

ADT and ~Θν. By using the infinitesimal form of conserved
charges given by Eq. (9) and using the property ξH → 0 on
the bifurcation horizon, we obtain the following result:

δ

�
1

β
Ir

�
¼ δQ∞ðξHÞ − δQBðξHÞ

þ 1

8πG

Z
∞
dD−2xμνξ

½μ
H
~Θν�ðδΨÞ: ð17Þ

As a result, one can see that additional terms may exist at
infinity such as the last term in the above equality. Since we
should take the specific one-parameter path in the solution
space for this on-shell variation and should define con-
served charges consistently, we need to impose the inte-
grability condition on the allowed configurations. Under
this assumption, one can integrate the last term and obtain
the following finite form of the quantum statistical relation,

1

β
Ir ¼ M −ΩJ − μQ − THS

þ 1

8πG

Z
∞
dD−2xμνξ

½μ
H
~Bν�ðδΨÞ; ð18Þ

where we have assumed that ξH does not change along the
one-parameter path and ~Bμ denotes the integrated expres-
sion of ~Θμ along the one-parameter path in the solution
space: ~Bμ ≡ R

ds ~ΘμðδsΨÞ. Since we are considering the
Dirichlet boundary conditions, the on-shell solutions or the
one-parameter path in the solution space should respect
these boundary conditions [8,16,26], which means that

lim
η0→∞

δsΨjDirichlet ¼ 0; ð19Þ

where η0 denotes the position of the boundary surface
which is sent to infinity at the end. By recalling the generic
expression of ~ΘμðδsΨÞ given in Eq. (11), which shows that
it depends linearly on δsΨ, its integrated form ~Bμ should
vanish as far as the integrability condition holds. As a
result, under the Dirichlet boundary conditions, we obtain

1

β
Ir ¼ M −ΩJ − μQ − THS; ð20Þ

which is our final result on the quantum statistical relation.
In the next section, we revisit the models in Refs. [9,10]

to illustrate the power of our formulation. In this class of
models, one can clearly see that the unintegrated anomaly
function does not vanish in general. Therefore, the generic
proofs for the quantum statistical relation and the first law in
Ref. [8], in which the vanishing of the anomaly function is
assumed, would be insufficient to cover this class of models.
Though there is an improved approach covering these hairy
models through the mixed boundary conditions [16], it
would be interesting to analyze these models by using the

Dirichlet boundary conditions just as in Refs. [9–11], where
the first law of black holes is modified appropriately, while
the quantum statistical relation is retained in its form. In
these references, the modification of the first law is given by
hand, rather than being based on a definite formalism, and
the relevant thermodynamic quantities are evaluated only
from the boundary side and are not matched with expres-
sions from the bulk computation.
One may guess that our bulk formulation and its

implementation to thermodynamic relations presented in
the above may be in conflict with Refs. [9,10]. However, as
will be shown explicitly in the next section, this does not
mean the conflict with the numerical results. The essential
modification resides in the on-shell renormalized action
value, which depends on the choice of counterterms. It just
gives the consistent reinterpretation of those results based
on a definite formalism without any ad hoc modification.
Moreover, we would like to emphasize that our formulation
is completely consistent with the modification of the
boundary stress tensor taken in the model for the boundary
vortices in Ref. [12] (see also Refs. [27–30]). In that work,
in order to overcome the nonconservation of the covariant
derivative of the boundary stress tensor, it was suggested to
use the boundary stress tensor modified by adding the
appropriate expression of the condensate, and then the
consistency was checked with the first law in the standard
form as given in Eq. (4). Our formulation gives the same
conclusion with this modification, as can be verified
straightforwardly.

IV. HOLOGRAPHIC MODELS

In this section, we focus on a specific model and present
detailed expressions to illustrate the general arguments
given in the previous section. We will see that all the
seemingly conflicting results in the literature are resolved
naturally in our formulation. We consider the model for the
holographic superconductor embedded in M-theory [9]. It
contains the nonminimally coupled complex scalar and the
Uð1Þ gauge fields of which the action is given by

I½g;A;φ� ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

4
F μνF μν

þ 1

ð1− 1
2
jφj2Þ2

�
−jDμφj2þ24

�
1−

2

3
jφj2

���
;

ð21Þ

whereDμφ≡ ∂μφ − 2iAμφ. The metric, the complex scalar
and the Uð1Þ gauge fields ansatz are taken as

ds2 ¼ −e2AðrÞfðrÞdt2 þ dr2

fðrÞ þ r2dx2; ð22Þ

φ ¼ σðrÞ ∈ R; A ¼ AtðrÞdt: ð23Þ
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The asymptotic expansions of those fields are given by

AðrÞ ¼ −
βa
2
−
σ1

2

4r2
−
2σ1σ2
3r3

� � � ;

fðrÞ ¼ 4r2 þ 2σ1
2 −

m − 4σ1σ2
r

þ � � � ;

σðrÞ ¼ σ1
r
þ σ2

r2
þ � � � ; AtðrÞ ¼ e−βa=2

�
μ −

q
r

�
þ � � � :

ð24Þ
By using the symmetry of solutions, one can take βa ¼ 0
without loss of generality. (See Eqs. (5.6) and (5.7) in
Ref. [10].) In the following, we take βa ¼ 0 for the standard
normalization of the metric. In order to preserve the
asymptotic AdS structure, we need to take the relation
between two asymptotic scalar values as

σ2 ¼ νσ21; ð25Þ
where ν denotes a dimensionless constant [13]. Though this
relation may be regarded as the relation between the
boundary value and its momentum value in the context
of the mixed boundary approach to the hairy contribution,
we would like to take this just as the relation between two
free parameters since both of σ1=r and σ2=r2 correspond to
the normalizable modes.
As alluded to in the previous section, the appropriate

choice of counterterms is essential to obtain the well-
defined variational problem under the Dirichlet boundary
condition. Explicitly, we impose the following condition
for the variation of the on-shell action in order to obtain a
well-posed variational problem under the Dirichlet boun-
dary conditions,

δIr½Ψ�jDirichlet ¼ 0; Ir ¼ I þ IGH þ Ict; ð26Þ
where IGH denotes the Gibbons-Hawking term and Ict does
the counterterm. Note that the conventional choice of
counterterm for the scalar field, Ict½σ� ∼ σ2, in Refs. [9,10]
is not compatiblewith the above condition. Our choice of the
counterterm for the scalar field σ which satisfies the above
condition is2

Ict½σ� ¼
1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
−2σ2 −

4ν

3
σ3
�
: ð27Þ

A. Revisit to thermodynamic relations: Bulk side

Now, let us compute the mass of these black holes by
using the quasilocal formalism [21,22,31–33], which is

completely equivalent to the covariant phase space
method [4,5]. By using the formula for conserved charges
given in Eq. (9), the infinitesimal expression of the black
hole mass, corresponding to the Killing vector ξ ¼ ∂t, can
be obtained as

δMjr→∞ ¼ V2

8πG

�
−eArδf −

eAr2fσ0

ð1 − 1
2
σ2Þ2 δσ

�
r→∞

¼ V2

8πG
½δmþ 4σ2δσ1�; ð28Þ

where V2 denotes the two-dimensional volume element.
By integrating over the parameters m and σ1 along with
the relation (25), the finite bulk expression of the mass is
given by

M ¼ V2

8πG

�
mþ 4

3
νσ31

�
¼ V2

8πG

�
mþ 4

3
σ1σ2

�
: ð29Þ

The temperature, the black hole entropy and the Uð1Þ
charge are given by the surface gravity κ, by the area law or
by the Wald formula and by a conventional form, respec-
tively, as

TH ≡ κ

2π
¼ 1

4π
eAðrHÞf0ðrHÞ; S ≡ V2ŝ

8πG
¼ r2HV2

4G
;

Q ¼ qV2

8πG
: ð30Þ

By using the above mass expression, one can see that the
first law takes the form

dM ¼ THdS þ μdQ; ð31Þ
which is irrespective of the explicit form of counterterms,
while the quantum statistical relation is given by

1

β
Ir ¼ M − THS − μQ; ð32Þ

for the above chosen counterterms in Eq. (27). By using the
mass expression given in Eq. (29), one can see that

1

β
Ir ¼

V2

8πG

�
mþ 4

3
σ1σ2 − THŝ − μq

�
; ð33Þ

which is different from Refs. [9,10] just by the finite
piece. That is to say, the difference in counterterms gives us
just the finite difference between our expression and
Refs. [9,10].
One can generalize the relation between two modes of

the scalar field as in Refs. [13,34,35]. In order to assure that
the integrability condition in Eq. (12) holds, let us take

σ2 ¼ Hðσ1Þ
and assume that the log mode does not appear in this
expansion. We should be careful in choosing the counter-
terms in order to respect the Dirichlet boundary conditions.

2Note that either the conventional choice, Ict½σ� ∼ σ2 or our
choice of counterterms gives us the finite renormalized action up
to the finite difference. Therefore, the finiteness of the renor-
malized action is not sufficient to choose the counterterms
completely in this case (see also Ref. [26]).
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A simple computation reveals that the appropriate counter-
term for the scalar field is given by LctðσÞ ¼ −2σ2−
4
3σ2

1

Hðσ1Þσ3. For this choice of counterterms, one can easily

verify our claim that

~ΘηðδσÞη0→∞ ¼ 0: ð34Þ
Then, one obtains immediately the following expression:

1

8πG

Z
∞
d2xμνξ

½μ
H
~Bν�ðδΨÞ ¼ 0: ð35Þ

In Refs. [13,15], it was shown that the asymptotic AdS
algebra structure is preserved only when the two modes are
related by the dimensionless parameter ν as Hðσ1Þ ¼ νσ1

2.
Interestingly, the quantum statistical relation and the first
law could hold in the usual forms under the generalized
relation between σ1 and σ2.
Now, some comments are in order. In the above example,

one may think that the first law of black holes given in
Eq. (31) is the simple rewriting of the corresponding
expressions in Refs. [9,10] just by redefining the mass
expression. To avoid such an impression, we would like to
emphasize our main points as follows. The mass expression
given in the above is not an ad hoc redefinition but is the
consequence of the quasilocal ADT formalism or the
covariant phase space approach for conserved charges,
which are well established in the bulk gravity side.
Furthermore, in the following section, we will show that
the same mass expression can be obtained from the
improved boundary current in the framework of the holo-
graphic renormalization. At the level of a generic model,
our construction and the resultant expression reveal how to
generalize the derivation of the quantum statistical relation
and the first law given in Ref. [8], even with the non-
vanishing unintegrated trace anomaly in the boundary by
using the Dirichlet boundary conditions. Our results would
be consistent with the analysis by using the mixed
boundary conditions [16]. Moreover, for planar AdS black
holes, we will show that the Smarr-like relation could be
obtained consistently with our claimed quantum statistical
relation and the first law.

B. Revisit to thermodynamic relations: Boundary side

We would like to summarize the interesting properties of
our improved boundary current given in the Appendix.
First, one can see that the first and the second terms in
Eq. (A2) are conserved separately, and so this current could
be used to define conserved charges for the boundary
Killing vector ξB. One may recall that the first term or its
integrated version is adopted in the conventional holo-
graphic computation, while the second term for the Weyl
transformation corresponds to the anomaly function on the
boundary that should be taken to vanish to preserve the
conformal symmetry. Even for the nonvanishing conformal
anomaly function under the Dirichlet boundary conditions,

the second term in Eq. (A2) could vanish. Then, it should
be dropped from the expression. However, we need to
choose the counterterms given in Eq. (27) in order to
achieve this goal. The power of the improved current
construction resides in the fact that it is equivalent to the
bulk ADT potentials, which allows us to use these currents
even for the conventional counterterm Lct ¼ −2σ2. In the
following, we present some explicit computations to verify
these claims.
By using the improved boundary current given in the

Appendix, one can compute the infinitesimal mass expres-
sion as

δM ¼ δQðξTBÞ ¼
1

8πG

Z
d2xni

ffiffiffiffiffiffi
−g

p
J i

B

¼ 1

8πG

Z
d2xni

�
−δð ffiffiffiffiffiffi

−γ
p

Ti
Bjξ

j
BÞ

þ 1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ
�
: ð36Þ

Here, we need adopt the Fefferman-Graham expansion for
the complete consistency with the bulk results:

ds2 ¼ dη2 þ γijdxidxj; ð37Þ

γtt ¼ 4e4η
�
−1þ σ1

2

4
e−4η þmþ 4σ1σ2

6
e−6η þ � � �

�
; ð38Þ

γxx ¼ γyy ¼ e4η
�
1 −

σ1
2

4
e−4η þm − 4σ1σ2

12
e−6η þ � � �

�
:

ð39Þ
The explicit computation with the proper counterterms for
the model in Eq. (27) shows us that each term for the
boundary current is

1

8πG

Z
d2xni½−δð

ffiffiffiffiffiffi
−γ

p
Ti
Bjξ

j
BÞ� ¼

V2

8πG
½δmþ 4σ2δσ1�;

ð40Þ
1

8πG

Z
d2xni

�
1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ
�
¼ 0: ð41Þ

By using the relation (25), one can integrate the above
expression to obtain

M ¼ V2

8πG

�
mþ 4

3
σ1σ2

�
;

which is the same as the bulk expression.
Now, let us choose counterterms as Lct ¼ −2σ2, which

gives us

1

8πG

Z
d2xni½−δð

ffiffiffiffiffiffi
−γ

p
Ti
Bjξ

j
BÞ� ¼

V2

8πG
δm; ð42Þ
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1

8πG

Z
d2xni

�
1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ
�
¼ V2

8πG
4σ2δσ1:

ð43Þ
Indeed, one can see that the mass expression becomes
identical with the one above.

C. Smarr-like relation

In the case of the Kerr-AdS black holes, it was known [7]
that the Smarr(-Gibbs-Duhem) relation does not hold in
general, while the first law of black holes holds in its
universal form. However, it has been shown [36] that the
Smarr-like relation can be obtained in the asymptotic AdS
planar black holes model independently.
Our starting point is to use the ansatz (22) to obtain the

reduced action

Ired½ ~Ψ� ¼
1

16πG

Z
dtdx

Z
drLredðr; ~ΨÞ; ð44Þ

where ~Ψ denotes collectively all the functions of the radial
coordinate r ¼ eη appearing in the ansatz of all the fields.
The corresponding reduced Lagrangian for our model is
given by

Lred ¼ −eAð2rfÞ0 þ 1

2
r2e−AA0

t
2

þ r2½−eAfσ02 þ 4e−Af−1σ2At
2 þ 24eAð1 − 2

3
σ2Þ�

ð1 − 1
2
σ2Þ2 ;

ð45Þ
where 0 denotes the derivativewith respect to the coordinate
r. As has been shown in Refs. [36–38], the reduced action
has the off-shell scaling symmetry under the rescaling of the
radial coordinate r, if we assign the reduced fields ~Ψ to
transform appropriately, with the definite weight, under the
transformation. One can apply the standard Noether method
to obtain the associated charge as [36–38]

cðrÞ ¼ V2

16πG

�
2eArðrf0 − 2fÞ − 2e−Ar2AtA0

t

þ 2eAr3fσ02 þ 8e−Ar3f−1σ2At
2

ð1 − 1
2
σ2Þ2

�
: ð46Þ

Note that the charge c is invariant along radial direction. It
seems natural to expect that its expression at the asymptotic
infinity would be related to those of physical quantities
defined at the asymptotic infinity. Indeed, it is given by

c ¼ cðr → ∞Þ ¼ V2

8πG
½3mþ 4σ1σ2 − μq� ¼ 3M − 2μQ:

ð47Þ
On the other hand, the expression of the charge can be
computed on the horizon as

c ¼ cðr ¼ rHÞ ¼
r2HV2

8πG
eAðrHÞf0ðrHÞ ¼ 2THS: ð48Þ

Thus, we obtain the Smarr-like relation:

c ¼ 2THS ¼ 3M − 2μQ: ð49Þ
Note that there is no hairy contribution in this relation,
and this is completely consistent with the first law and the
quantum statistical relation. Since we are considering
the homogeneous system in the dual field theory side, the
pressure of the dual system is simply given by the thermo-
dynamic potential in the grand canonical ensemble.
Combining the quantum statistical relation given in (29)
with the above Smarr-like relation, one can see that the
pressure of the dual system is given by

THIr ¼ −P ¼ M − THS − μQ ¼ −
1

2
M: ð50Þ

Then, this pressure could also be rewritten in the form of

P ¼ V2

8πG

�
1

2
mþ 2

3
σ1σ2

�

¼ −
V2

8πG

�
mþ 4

3
σ1σ2 − μq − THŝ

�
;

which is consistent with the first law and the quantum
statistical relation.

V. CONCLUSION

In asymptotic AdS space, black holes could have non-
trivial hairs which have an interesting interpretation in the
context of the AdS/CMT correspondence. Specifically,
the existence of nontrivial scalar hairs is deeply related
to the holographic realization of the superconductors or
superfluids. More concretely, double trace deformations in
the dual field theory are related to the turning on of two
kinds of normalizable modes in the bulk. In the context of
the AdS/CMTmodels, the simultaneous turning on of those
two modes implies the condensate in the dual field theory.
In this situation, the unintegrated trace anomaly cannot
vanish. Hence, the thermodynamic relations may be modi-
fied from the standard form. Indeed, various AdS/CMT
models have been constructed to reveal such a modifica-
tion, but the interpretation of the modification does not
seem to have a consensus.
In this paper, we have revisited the thermodynamic

relations in the hairy AdS planar black holes. Because
of nontrivial scalar hairs, one may guess that the standard
form of the quantum statistical relation and the first law
cannot hold simultaneously. Based on the consistent bulk/
boundary formalism, we have shown that one can retain the
first law as its universal form given in Eq. (4), and the
quantum statistical relation is not modified as given in
Eq. (18). In summary, the first law, the quantum statistical
relation and the Smarr-Gibbs-Duhem relation do not
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contain the explicit hairy contribution but have the implicit
contribution hidden in the conserved charges. It was
noticed byWald [4,5,25] that the existence of the additional
term beyond the Komar integrand in the expression of
conserved charges is crucial for resolving the factor 2
difference between the mass and angular momentum
expression of black holes and to establish the first law
of black holes. As shown in this paper, the additional term
to the boundary current gives us the results independent of
counterterms, which is natural from its matching with the
bulk side expressions. We have shown that the seemingly
clashing expressions in the boundary computation could be
improved by using the improved boundary current in the
framework of the holographic renormalization.
By revisiting the explicit examples and taking the

Dirchlet boundary conditions, we have checked our for-
mulation and shown the consistency of our interpretation.
We have also commented on the integrability issues to
define conserved charges. Concretely, it has been well
known that the integrability issue exists in the covariant
phase space approach to define conserved charges in the
bulk perspective. It is natural to anticipate in the context of
the AdS/CFT correspondence that the same issue would
appear in the boundary computation if holographic charges
can be completely identified with those from the covariant
phase space approach. Interestingly, this issue could be
ignored when the unintegrated trace anomaly vanishes.
However, as is evident in the various AdS/CMT models,
there are consistent models with the nonvanishing unin-
tegrated anomaly. Hence, the integrability issue should
appear in the boundary computation if we try to identify
holographic charges with bulk charges in the covariant
phase space approach. Indeed, we have verified that this is
the case and the modified boundary current contains such
information. One may recall that Kerr-AdS black holes are
other examples [32] showing the similar phenomenon for
the complete identification between the bulk and the
boundary charges.
It would be interesting to investigate other examples to

check our claims and to see the meaning of the non-
vanishing unintegrated anomaly in other contexts.
Specifically, it would be interesting to consider rotating
hairy black holes to see their thermodynamic relations. It
would be very interesting to see whether the thermody-
namic (in)stability criterion would be changed or not by our
thermodynamic relations. Since some part of conformal
symmetry would be broken in the nonvanishing anomaly, it
would be interesting to see how much the AdS/CFT or
AdS/CMT correspondence tells us the matching between
the bulk and boundary quantities.
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APPENDIX: IMPROVED BOUNDARY CURRENTS
AND CONSERVED CHARGES

In this Appendix, we summarize the improved boundary
current and its relation to the bulk ADT potential. Though
we have shown in the main text through the bulk compu-
tation that the hairy contribution to black holes may be
incorporated into conserved charges, while the quantum
statistical relation, the first law of black holes and the Smarr-
like relations hold in the usual forms, it would be more
satisfactory that the same conclusion could be achieved
consistently in the framework of the holographic renorm-
alization. Since the relevant formulation for this improved
boundary current is already given in Refs. [23,32], we
present the summary of relevant stuffs in the following for
the completeness. As is alluded to in the main text, the
additional term in the improved boundary current could
vanishwith the appropriate counterterms under theDirichlet
boundary conditions, while the existence of the additional
term in the boundary currents allows us to use those even
with the usually adopted form of counterterms.
Before going into some details, it would be better to

mention our motivation to construct the improved boundary
current. At the superficial level, the bulk expression for
conserved charges in the quasilocal ADT formulation or the
covariant phase space approach could be defined com-
pletely independent of the boundary terms, while the
conventional holographic expressions for conserved
charges depend, at least weakly, on the chosen counter-
terms. In order to avoid such a mismatch and to warrant the
complete match between bulk and boundary expressions,
we have proposed in Ref. [23] improving the current
expression for boundary conserved charges, while keeping
the conventional bulk expression for bulk conserved
charges in the covariant phase space approach or equiv-
alently in the quasilocal ADT formalism.
From the bulk perspective, the vanishing unintegrated

anomaly is not an essential requirement in order to define
conserved charges for Killing vectors. Rather than the
anomaly issue, the integrability of infinitesimal conserved
charges along the on-shell parameter space is more relevant
issue in defining well-defined conserved charges (see, for
instance, Ref. [25]). In other words, the vanishing anomaly
condition is consistent but not mandatory in the bulk side,
as can be inferred from the fact that the vanishing
unintegrated anomaly implies the integrability of infini-
tesimal bulk charges but not vice versa. Therefore, one may
consider relaxing the condition that the unintegrated trace
anomaly vanishes at the boundary even under the Dirichlet
boundary conditions (see Ref. [16] for a different
approach). Furthermore, some models in the AdS/CMT
correspondence realize such cases. In fact, it was already
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noticed in Ref. [8] that conserved charges could be defined
for Killing vectors (but not conformal Killing ones), even
when the unintegrated anomaly does not vanish. In this
case, one may introduce the improved boundary current in
the context of the AdS/CFT correspondence, which is
suitable for relaxing the condition that the unintegrated
trace anomaly vanishes at the boundary. Then, one can
obtain the completely consistent bulk/boundary conserved
charges.
In the following, we adopt the definition of conserved

charges through the covariant phase space approach or
equivalently the quasilocal ADT method in the bulk. At the
boundary, we use the charge expression obtained by using
the improved boundary current, not just the conventional
holographic current expression which is constructed
through the boundary stress tensor by contracting it with
the boundary Killing vector. It turns out that various
thermodynamic relations can be interpreted consistently
for various models of the nonvanishing unintegrated trace
anomaly under the Dirichlet boundary conditions.
To introduce the modified boundary current, let us

consider the following Fefferman-Graham expansion for
the asymptotically AdS spacetime,

ds2 ¼ dη2 þ γijdxidxj;

where the timelike boundary of the AdS space is taken at
η ¼ η0 → ∞. In asymptotically AdS space, the renormal-
ized on-shell action can be written by introducing the
counterterm as

Ir ¼ I þ IGH þ Ict;

where IGH denotes the Gibbons-Hawking term. For the
renormalized on-shell action Ir½γ;ψ �, which is the function
of boundary fields γ, ψ , one can introduce the boundary
stress tensor, Tij

B , and the boundary momentum, Πψ , of the
field ψ as

δIr½γ;ψ � ¼
1

16πG

Z
ddx

ffiffiffiffiffiffi
−γ

p ðTij
Bδγij þ ΠψδψÞ; ðA1Þ

where they are finite by construction. One may note the
identity on the boundary for the boundary diffeomorphism
parameter ζi,

−2ζj∇iT
ij
B þ Πψ£ζψ ¼ ∇jðZij

BζjÞ;

where Zij
B is a certain combination of the appropriate

product of Πψ and the field ψ .
Now, let us introduce the boundary current3 for the

boundary Killing vector ξB as

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ ¼ −δð ffiffiffiffiffiffi
−γ

p
Ti
Bjξ

j
BÞ

þ 1

2

ffiffiffiffiffiffi
−γ

p
ξiBðTkl

B δγkl þ ΠψδψÞ; ðA2Þ

where the improved boundary stress tensor is defined by

Tij
B ≡ Tij

B þ 1

2
Zij

B :

This improved boundary stress tensor is the same as the
one given in Ref. [8]. Here, the boundary Killing vector
is assumed to be unchanged under the variation as
δξjB ¼ 0. It would be interesting to note that the second
term in Eq. (A2) becomes the so-called unintegrated
trace anomaly A≡ 2Tkl

B γkl þ ωΠψψ, when the variation
is taken to be the Weyl scaling transformation at the
boundary as

δσγij ¼ 2γijδσ; δσψ ¼ ωψδσ; ðA3Þ
where ω denotes the Weyl weight of the field ψ . Using
the above current, one can define the infinitesimal
conserved charge as

δQBðξBÞ≡ 1

8πG

Z
dd−1xi

ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ: ðA4Þ

As in the bulk, the finite charge expression could be
obtained along the integrable one-parameter path in the
solution space.
It is useful to recall that the bulk conserved charge for the

Killing vector ξ can be obtained by the codimension-2
surface integral through the ADT potential Qμν

ADT as

δQðξÞ≡ 1

8πG

Z
dD−2xμν

ffiffiffiffiffiffi
−g

p
Qμν

ADTðξÞ:

Now, the equivalence of conserved charge expressions
from the bulk and the boundary sides can be shown [23]
through the equivalence between the ADT potential and the
boundary current in the form of

ffiffiffiffiffiffi
−g

p
Qηi

ADTðξÞjη→∞ ¼ ffiffiffiffiffiffi
−γ

p
J i

BðξBÞ; ðA5Þ
where the boundary Killing vector ξB is the boundary limit
of the bulk Killing vector ξ. This result tells us that
conserved charges defined in this way should always give
us the same expressions from the bulk and the boundary. In
other words, our improved boundary current gives us the
expression consistent with the bulk one which is indepen-
dent of the scheme in the holographic renormalization
process. Furthermore, the integrability issue to obtain the
finite charge expression persists even in the boundary side.
To retain the AdS=CFT correspondence precisely in con-
served charges, this equivalence is the satisfactory feature
of our construction.

3This construction is analogous to the off-shell bulk
ADT current construction in the quasilocal formalism for
charges [32].
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