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We consider deformations of a conformal field theory that explicitly break some global symmetries of
the theory. If the deformed theory is still a conformal field theory, one can exploit the constraints put by
conformal symmetry to compute broken currents anomalous dimensions. We consider several instances of
this scenario, using field theory techniques and also holographic ones, where necessary. Field theoretical
methods suffice to discuss examples of symmetry-breaking deformations of the OðNÞ model in d ¼ 4 − ϵ
dimensions. Holography is instrumental, instead, for computing current anomalous dimensions in
β-deformed superconformal field theories and in a class of supersymmetric renormalization group flows
at large N.
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I. INTRODUCTION

Conformal field theories (CFTs) play a central role in
physics. Several physical phenomena are governed by
(approximate) CFTs, and in the theoretical understanding
of many others, they are key ingredients. In fact, the
extreme UV and IR dynamics of a generic quantum field
theory (QFT) are often governed by a CFT,1 so the latter are
also important to have control on QFT in general.
The basic data one needs to know to characterize a CFT

are the spectrum of primary operators and operator product
expansion coefficients, and different approaches can be
pursued to have control on them (e.g., the recent renewed
interest in the bootstrap program [1]).
Whenever two conformal field theories are connected by

some deformation, be it relevant or marginal, interesting
phenomena can arise. For instance, it can happen that a
primary operator of the undeformed CFT enjoying some
shortening condition merges with another primary, and the
two distinct conformal families recombine into a single,
longer one in the deformed CFT [2]. This phenomenon can
be used to understand properties of the deformed CFTonce
the original CFT and the corresponding deformation are
known. For instance, if the deformation is small, one can
compute the leading correction to the anomalous dimension
of operators which recombine just by doing computations
in the original CFT [3].
In this paper, we will focus on the phenomenon of

multiplet recombination, in particular of currentmultiplets.
The basic dynamics can be summarized as follows.

Consider a d-dimensional CFTwith some global symmetry
[think of a Uð1Þ symmetry, for definiteness]. The corre-
sponding current is conserved,

∂μJμ ¼ 0: ð1:1Þ

From the above equation, it follows that the CFT
operator Jμ is at the unitarity bound, its dimension being
ΔJ ¼ d − 1.
Suppose now we perturb the CFT by a deformation

triggered by some charged scalar operator and coupling g.
Such a deformation breaks the symmetry explicitly.
Suppose further that the deformed theory is still a CFT,
either because the deformation is (exactly) marginal or, if
the deformation is relevant, because the end point of the
renormalization group (RG) is still a CFT. At such a fixed
point, the current is not conserved anymore, that is

∂μJμ ¼ O; ð1:2Þ

with O an operator of the deformed CFT, itself related to a
scalar primary operator of the undeformed CFT.2 Note that
in the deformed CFT O is a descendant of the spin-1
current, so they belong to the same conformal family, while
in the original CFT, they do not; see Eq. (1.1).
Strictly speaking, this picture holds only when currents

are weakly broken. Namely, when the symmetry-breaking
CFT sits at small values of the coupling g, anomalous
dimensions are small and can be evaluated perturbatively
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1This is known to be true at least in d ¼ 2 and d ¼ 4

dimensions (and believed to be so for d ≤ 6). In this work, we
will be mostly concerned with four-dimensional QFTs.

2This primary operator is the one obtained by acting with a
symmetry transformation on the operator triggering the defor-
mation. We are assuming that for every local operator of the
deformed theory there exists one in the undeformed theory such
that correlation functions of the former reduce to those of the
latter for g ¼ 0.

PHYSICAL REVIEW D 95, 066011 (2017)

2470-0010=2017=95(6)=066011(14) 066011-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.066011
http://dx.doi.org/10.1103/PhysRevD.95.066011
http://dx.doi.org/10.1103/PhysRevD.95.066011
http://dx.doi.org/10.1103/PhysRevD.95.066011


in g. This is the case whenever the deformation is marginal,
since then g does not run and can be taken to be arbitrarily
small. For relevant deformations, instead, the coupling runs
and reaches some fixed value g�. In this case, there should
exist some parameter which lets one tune g� to small values;
i.e., it should be possible to make the RG flow arbitrarily
short in the space of couplings. For generic RG flows,
instead, g� cannot be tuned to zero, anomalous dimensions
can easily be order 1, and it is difficult to map conformal
families of the two CFTs. Still, it remains true that in
the deformed theory there is (at least) a spin-1 short
operator less and a spin-1 long operator more (with all
its descendants).3 Therefore, in the following, we will refer
to current multiplet recombination even for these more
intricate situations.
From Eq. (1.2), it follows that the scaling dimension of

the current in the deformed CFT is ΔJ > d − 1, meaning
that some (positive by unitarity) anomalous dimension has
been generated

ΔJ ¼ d − 1þ γ: ð1:3Þ

From the viewpoint of representations of the conformal
algebra, the multiplet where Jμ sits is a short multiplet in
the original CFT and a long multiplet in the deformed one.
As seen from the original CFT, the multiplet to which Jμ
belongs has recombined with that to which O does.
In this paper, we present several concrete realizations of

this scenario, triggered by exactly marginal and relevant
deformations, and compute anomalous dimensions of
broken currents.
If the undeformed CFT is a free theory and the

deformation can be made parametrically small, it turns
out that field theory techniques suffice to reach such a goal.
An example we will discuss in some detail is the OðNÞ
model in d ¼ 4 − ϵ dimensions, for which relevant,
symmetry-breaking deformations can be considered, and
IR fixed points are reached for parametrically small values
of the couplings.
For interacting, possibly strongly coupled CFT, instead,

we will turn to holography and compute γ using AdS=CFT
techniques. This will allow us to compute the anomalous
dimension of broken currents in a class of N ¼ 1 super-
conformal field theories (SCFTs) arising from D branes
at toric Calabi-Yau singularities which admit symmetry-
breaking exactly marginal deformations known as β defor-
mations [4,5]. Holography will also be instrumental in
discussing a class of RG flows connecting SCFT at strong
coupling. Here, the anomalous dimensions will be large,
but the possibility to have access to the entire flow allows

one to have control on how multiplets recombine and to
compute current anomalous dimensions.
In the next section, we explain the field theory and

holographic methods we use. We will be interested both in
deformations driven by relevant operators and by marginal
ones. Therefore, we will also review some basic results
regarding the possible existence of exactly marginal defor-
mations in conformal field theories. In Sec. III, we will
present examples in which the deformation is driven by
exactly marginal operators. We will start with a toy- model,
which can be described within field theory, and then
discuss β-deformed N ¼ 1 SCFT. In Sec. IV, we will
consider, instead, instances in which the symmetry-
breaking deformation is relevant. First, we discuss the
OðNÞ model, which can be treated using field theory
techniques, and then focus on a class of holographic
models describing RG flows between SCFTs at strong
coupling [6]. Section V contains our conclusions. Three
Appendixes contain some technical material we did not
include in the bulk of the paper.

II. METHODS: FIELD THEORY
AND HOLOGRAPHY

Computing operator anomalous dimensions exactly is, in
principle, very difficult. However, when these arise because
multiplets recombine in a CFT, Eq. (1.2), the constraints
from conformal symmetry help.
Let us first suppose that the breaking is weak. This

means that the CFT with broken symmetries can be made
parametrically near the symmetry-preserving one. To make
this manifest, let us rewrite Eq. (1.2) as

∂μJμ ¼ gO; ð2:1Þ

which is just to emphasize that at g ¼ 0 the current is
conserved. Here, we are considering either deformations
triggered by exactly marginal operators or by relevant ones.
In the latter case, g should be understood as g�, the value
of the coupling at the IR fixed point, which, as such, is
dimensionless.
In such a situation, as we will review below, one can

determine γ, to leading order in g, by computing the two-
point functions of O and Jμ in the unperturbed CFT [3,7]
(interesting recent works using a similar approach are
Refs. [2,8–10]). The basic idea goes as follows.
In a CFT, the structure of two-point functions of primary

operators is fixed, up to an overall normalization, by
conformal invariance. In particular, we have for the spin-1
current

hJμðxÞJνðyÞi ¼ CJ
Iμν

ð2πÞdðx − yÞ2ΔJ
;

Iμν ¼ δμν − 2
ðx − yÞμðx − yÞν

ðx − yÞ2 : ð2:2Þ

3This is true as long as there are no emergent symmetries in the
IR. The latter, however, would not affect the multiplet recombi-
nation we are discussing, and hence we do not consider such a
possibility.
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This equation holds independently of the current being or not
being conserved, so, in our case, both in the unperturbed
CFT and in the perturbed one. However, the operator
dimension ΔJ as well as CJ differ, since they depend on
g (in fact, on any coupling of the theory, in general).
Differentiating the correlator (2.2) twice, one gets

h∂μJμðxÞ∂νJνðyÞi ¼ CJ
2ð2ΔJ þ 2 − dÞðΔJ þ 1 − dÞ

ð2πÞdðx − yÞ2ΔJþ2
:

ð2:3Þ

By the operator identity (2.1), the same two-point function
is given by

h∂μJμðxÞ∂νJνðyÞi ¼ g2hOðxÞOðyÞi: ð2:4Þ

By taking the ratio with (2.2), using Eq. (1.3), one gets

g2ðx − yÞ2Iμν
hOðxÞOðyÞi
hJμðxÞJνðyÞi

¼ 2γðdþ 2γÞ: ð2:5Þ

The above equation shows that in computing current
anomalous dimension one needs to know the correlators
to one order less in perturbation theory. In particular, to
get γ to leading order in g, one needs the value of the two-
point functions of Jμ and of O at zeroth order, namely, in
the undeformed theory where O is a primary operator (cf.
the footnote 2) and its two-point function has the following
structure:

hOðxÞOðyÞi ¼ CO
1

ð2πÞdðx − yÞ2ΔO
: ð2:6Þ

Plugging this expression into Eq. (2.5) and using Eq. (2.2),
one gets, upon expanding in powers of the coupling g [note
that Eq. (2.1) implies that ΔO ¼ ΔJ þ 1],

γ ¼ 1

2d
g2

CO

CJ
þOðg4Þ; ð2:7Þ

with CJ and CO evaluated in the undeformed theory,
namely, at g ¼ 0.
This method is powerful because it allows one to get

information on the deformed CFT by just doing compu-
tations in the undeformed one. In practice, however,
there are two limitations. First, as already emphasized,
the perturbative expansion (2.7) makes sense only if the
symmetry is weakly broken. If this is not the case, the
above strategy cannot be applied, and one should resort
to some other method. Second, computing the two-point
functions of O and Jμ, and hence the exact proportionality
coefficient in Eq. (2.7), is straightforward only if the
undeformed CFT is a free theory. In such a case, one
has to deal with correlators at tree level, and there are no
issues of regularization and renormalization. A different

story is if the original CFT is an interacting, possibly
strongly coupled theory, e.g., emerging from some non-
trivial gauge theory dynamics. These are all situations in
which AdS=CFT techniques can come to the rescue (for
field theories with a holographic dual).
In AdS=CFT, QFT global currents are dual to gauge

fields in the bulk, the mass/dimension relation, in units of
the anti-de Sitter (AdS) radius, being

m2 ¼ d − 1þ ΔJðΔJ − dÞ: ð2:8Þ

From Eq. (2.8), it follows that massless gauge fields are
dual to conserved currents, and massive ones are dual to
nonconserved currents. Therefore, when two CFTs are
related by a symmetry-breaking deformation, the gauge
field dual to the (broken) current is massless in the vacuum
dual to the undeformed CFT and massive in that dual to the
deformed CFT. Indeed, as known since the early days of
the AdS=CFT correspondence, the breaking of a field
theory global symmetry (be it explicit, like in our case,
or spontaneous) corresponds to a Higgs mechanism in the
bulk, by which a massless vector eats up a scalar and
becomes massive. This is the bulk counterpart of the
dynamics which governs current multiplet recombination.4

Therefore, to compute current anomalous dimensions
holographically, one has to calculate the mass of the dual
gauge field and plug the result into Eq. (2.8). Note that this
provides the anomalous dimension at face value, so it also
applies to long RG flows, i.e., when g� cannot be tuned to
zero. In later sections, wewill discuss instances of this kind.
Another situation in which AdS=CFT techniques can help
is when the breaking is weak but the undeformed CFT is
itself at strong coupling, and therefore computing at g ¼ 0
is itself nontrivial. In this case, one can evaluate the two-
point functions hJμðxÞJνðyÞi and hOðxÞOðyÞi entering
Eq. (2.5) holographically. The β-deformed SCFTs we will
discuss later are one such example.

A. Exactly marginal deformations

Current multiplet recombination can be triggered by
relevant or by exactly marginal deformations. When the
deformation is relevant, an RG flow is induced. When the
deformation is marginal, instead, there is no RG flow.
One is moving along the conformal manifold, the space of
exactly marginal deformations Mc.
The existence of exactly marginal deformations is

difficult to establish, and for a generic CFT, they do not
exist, in general. However, as shown originally by Leigh
and Strassler [4] and further elaborated by, e.g.,

4See Ref. [11] for a holographic description of scalar multiplet
recombination and Refs. [12–18] for that of higher-spin currents.
These are both described by a Higgs-like mechanism in the bulk,
though of a different nature in the two cases.
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Refs. [5,19–21], four-dimensional N ¼ 1 SCFTs often
enjoy nontrivial conformal manifolds.
Suppose we have a SCFT with some global symmetry

group G and a bunch of marginal chiral operators Oi
carrying some nontrivial representation of G. Deforming
the theory by a G-breaking marginal superpotential
W ¼ P

ig
iOi, an RG flow is induced since, generically,

the operators Oi acquire an anomalous dimension.5 In fact,
marginal operators may either remain marginal or become
marginally irrelevant, but never marginally relevant [20].
A space of exactly marginal operators exists, in general,
and near the origin, namely, around gi ¼ 0, it is described
by the quotient

Mc ¼ fgijDa ¼ 0g=G with

Da ¼ giTa
ijḡ

j: ð2:9Þ

Equivalently, Mc ¼ fgig=GC, where GC is the complexi-
fied broken symmetry group.6 To summarize, the con-
formal manifold is parametrized by all uncharged operators
(which trivially satisfy the constraint Da ¼ 0 and are hence
exactly marginal by themselves) plus all G-inequivalent
linear combinations of charged, classically marginal oper-
ators Oi satisfying the constraint (2.9).
There can exist submanifolds of Mc where only a

subgroup H ⊂ G of the global symmetries is preserved.
Along such submanifolds, current multiplets belonging
to the complement of H in G recombine. These are the
submanifolds we will be interested in.

III. MULTIPLET RECOMBINATION ALONG
CONFORMAL MANIFOLDS

As discussed above, the existence of exactly marginal
deformation, and in turn of a conformal manifold, is a
generic property of supersymmetric field theories. Hence,
in what follows, we will stick to four-dimensional N ¼ 1
SCFT. We will first present a toy model and then consider
a class of models which naturally arises in string theory,
namely, SCFT describing the dynamics of D3 branes at
toric Calabi-Yau singularities.

A. Abelian toy model

Let us consider a four-dimensional N ¼ 1 SCFT admit-
ting a Uð1Þ global symmetry and assume there exists n
chiral primary (classically) marginal operators Oi with
charge qi under Uð1Þ. A generic symmetry-breaking
deformation can be described by the action

S ¼ SSCFT þ
X
i

Z
d4xgiOi þ H:c:; ð3:1Þ

where Oi are the F-components of the chiral superfields Oi
and gi are complex couplings.
The submanifold ofMc along which theUð1Þ symmetry

is broken is described by the D-term-like equation

Xn
i;¼1

qigiḡi ¼ 0; ð3:2Þ

modulo Uð1Þ transformations. There exist n − 1 nontrivial
solutions of the above equation, in general. Let us dub O a
linear combination of operators Oi which solves Eq. (3.2),

O ¼ g1O1 þ g2O2 þ � � � þ gnOn: ð3:3Þ

This is an exactly marginal deformation. Hence, if per-
turbing the original SCFTwithW ¼ gO, one describes yet
another SCFT, which is parametrically near to the original
one as g → 0. In the deformed SCFT, theUð1Þ symmetry is
broken, and the Uð1Þ current is not conserved,

SCFT0∶ ∂μJμ ¼ 0; SCFTg∶ ∂μJμ ≠ 0: ð3:4Þ

The minimal number of marginal operators which can
provide nontrivial solutions of Eq. (3.2) is two. In the
following, we will then consider, for definiteness, i ¼ 1, 2.
In this case, there exists a one-dimensional subspace in
the space of couplings which corresponds to an exactly
marginal deformation, described by the equation

q1jg1j2 þ q2jg2j2 ¼ 0; ð3:5Þ

modulo Uð1Þ transformations. The general solution is
g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2=q1

p
eiϕg2 ≡ g, with ϕ an arbitrary phase.7

Within this set, we can choose a convenient representative.
Upon a Uð1Þ rotation,

O1 → eiq1αO1; O2 → eiq2αO2: ð3:6Þ

Choosing α ¼ ϕ=ðq2 − q1Þ, and fixing for definiteness
q1 ¼ −q2 ≡ q, we get for the representative

Oþ ≡O1 þO2; ð3:7Þ

and the symmetry-breaking SCFT is described by the
action

S0SCFT ¼ SSCFT þ
Z

d4xgOþ þ H:c: ð3:8Þ5In a SCFT, there do not exist marginal Kähler deformations
[20]. Therefore, marginal deformations are described by super-
potential deformations.

6For a discussion of the holographic counterpart of these
results, see Refs. [22–25].

7Note that from Eq. (3.5) it follows that q1 and q2 should have
opposite sign.
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Note that, once this parametrization is chosen, any
combinations of O1 and O2 not proportional to Oþ itself
will be marginally irrelevant (in particular, the operator
O− ≡O1 −O2).
By Noether method, one can compute the current (non)

conservation equation, which reads

∂μJμ ¼ iqgO− þ H:c: ð3:9Þ

The fact that O− is (marginally) irrelevant nicely agrees
with ΔJ being bigger than 3 whenever g ≠ 0.
To leading order in g, the anomalous dimension of the

current Jμ can be computed following the approach
reviewed in Sec. II. The result is

γ ¼ 1

4
q2jgj2 CO−

CJ
þOðg4Þ; ð3:10Þ

where CO−
is the normalization of the two-point function

hO−O†
−i.8 Here, CO− and CJ are to be evaluated at g ¼ 0,

and so are data of the undeformed SCFT.
For interacting CFTs, it may happen that the coupling λ

governing their dynamics is itself exactly marginal and the
free limit, λ ¼ 0, is part of the conformal manifold (this is
the case for N ¼ 4 Supersymmetric Yang Mills (SYM),
which we will consider later). If a holographic description
is available, one could then compute Eq. (3.10) for small
and large values of λ and compare. In general, one should
expect different answers for γ at small and large λ. A
simplification is that the coefficients entering Eq. (3.10)
are to be evaluated at g ¼ 0. At any λ, the symmetry is
preserved for g ¼ 0, and, for a conserved current, the
coefficient CJ of the two-point function does not renorm-
alize.9 On the contrary, nothing like this is expected to hold
for the operator O−, and therefore for CO−

, in principle. In
fact, supersymmetry can also protect CO−

, sometimes, as
we will see later.

B. β-deformed superconformal field theories

D3 branes at conical Calabi-Yau (CY) singularities, that
is, real cones over Sasaki-Einstein manifolds X5, provide a
large class ofN ¼ 1 SCFTwith holographic duals, the dual
geometry being AdS5 × X5. The most studied examples are
toric CY, which are CY for which X5 admits at least a
Uð1Þ3 isometry group. Of these three Abelian factors, one
(that associated to the Reeb vector) corresponds to the

superconformal R symmetry. The other two are flavor
symmetries of the dual field theory.
For any toric CY singularity, there always exists a

supersymmetric, exactly marginal deformation preserving
the Uð1Þ3 symmetry [5]. This is known as β deformation.
It may happen that X5 has an enlarged isometry group
H ⊃ Uð1Þ3. In this case, the β deformation triggers current
multiplet recombination since by β deforming the theory
the flavor group H is broken to Uð1ÞR ×Uð1Þ2 and several
currents are not conserved anymore.10 This is the class of
models of interest in our present analysis.
In what follows, we will discuss three such examples:

the β-deformed N ¼ 4 SYM, the β-deformed conifold
theory, and the β-deformed Yp;q theories. In the first
case, H ¼ Uð1ÞR × SUð3Þ.11 For the conifold theory,
H ¼ Uð1ÞR × SUð2Þ × SUð2Þ, while for Yp;q singularities,
H ¼ Uð1ÞR × SUð2Þ ×Uð1Þ.
These models share many similarities, but there is one

sharp difference: for N ¼ 4, the free theory is part of the
conformal manifold. For the conifold and Yp;q theories, it is
not [28]. Therefore, in the latter cases, the only available
tool to compute the current anomalous dimension is
AdS=CFT. In the β-deformed N ¼ 4 theory, instead,
one can compute current anomalous dimensions at both
weak and strong coupling.
In preparation for what we do next, let us recall some

basic results about the structure of the conformal manifold
for these theories.

1. Conformal manifolds of toric
Calabi-Yau singularities

The space of exactly marginal deformations of N ¼ 4
SYM is three dimensional [4]. Besides the one associated
to the complex gauge coupling, which preserves all flavor
symmetries, there exist two N ¼ 1-preserving deforma-
tions: the β deformation, which preserves a Uð1Þ2 of the
flavor-symmetry group, and the so-called cubic deforma-
tion, which breaks the flavor-symmetry group fully. We
will be interested in the β deformation, which is generated
by the superpotential

Wβ ¼ λβTrðΦ1Φ2Φ3 þΦ1Φ3Φ2Þ; ð3:11Þ

where Φi are the three adjoint chiral superfields of the
N ¼ 4 vector multiplet and transform in the 3 of SUð3Þ.
The SCFT describing the dynamics of D3 branes at the

tip of the conifold (a CY with X5 ¼ T1;1 of which the
8The discrepancy in the numerical coefficient with Eq. (2.7) is

because the deformation considered here is complex; compare
Eq. (3.9) with Eq. (2.1).

9This is because in a SCFT the coefficient CJ of the two-point
function of a conserved non-R current is nothing but the cubic
’t Hooft anomaly between the superconformal R current and the
current TrðTRTJTJÞ itself [26,27]. As such, it does not depend
on λ.

10Note that exactly marginal deformations do not break
conformal symmetry and therefore always preserve the super-
conformal R current.

11From a N ¼ 1 perspective, the SUð4Þ R-symmetry group of
N ¼ 4 SYM should be seen as Uð1ÞR × SUð3Þ, with the Abelian
factor being the N ¼ 1 R symmetry and SUð3Þ a flavor
symmetry.
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topology is S3 × S2) [29] is a four-dimensional N ¼ 1
superconformal gauge theory with gauge group SUðNÞ×
SUðNÞ, a flavor-symmetry group SUð2Þ × SUð2Þ, bifun-
damental matter, and a quartic superpotential,

W ¼ λKWϵ
αβϵ _α _βTrðAαB _αAβB_βÞ; ð3:12Þ

where α and _α are flavor indices, corresponding to the
two SUð2Þ factors, respectively. The fields Aα transform in
the ð1

2
; 0Þ of the flavor-symmetry group SUð2Þ × SUð2Þ.

The B _α transform instead in the ð0; 1
2
Þ.

The conformal manifold of the conifold theory is a
five-dimensional space [5]. Two exactly marginal defor-
mations, parametrized by suitable functions of the super-
potential coupling λKW and the sum and difference of the
inverse gauge coupling squared [29], are invariant under
SUð2Þ × SUð2Þ. The other three break the flavor-symmetry
group. As already emphasized, an important difference
with respect to N ¼ 4 SYM is that the free theory,
g1 ¼ g2 ¼ 0, is not part of the conformal manifold [28].
This means that in computing Eq. (2.7) there is no regime in
which a field theory, perturbative analysis applies.
Holographically, each exactly marginal deformation is

associated to a massless excitation in the bulk. The dilaton
and the B2 flux over S2 are dual to the flavor-singlet
deformations. The flavor-breaking deformations are instead
associated to excitations of Kaluza-Klein modes. Of these,
the β deformation, which preserves a Uð1Þ2 flavor sym-
metry, corresponds to the following superpotential coupling:

Wβ ¼ λβTrðA1B_1A2B_2 þ A1B_2A2B_1Þ: ð3:13Þ

The conifold theory is in fact part of an infinite class
of N ¼ 1 SCFT, which arises by considering D3 branes at
CY singularities of which the bases are the so-called Yp;q

manifolds [30,31]. These are Sasaki-Einstein manifolds
with the same topology of the conifold (the conifold is
nothing but a real cone over Y1;0), but with different
properties for generic p, q; e.g., the R charges are irra-
tionals [32,33]. The flavor-symmetry group is SUð2Þ×
Uð1Þ; there are 2p SUðNÞ gauge groups and 4pþ 2q
bifundamental fields of four different types, Uα; Vα; Y,
and Z, with α an SUð2Þ flavor index. The properties of
these fields are summarized in Appendix A. Finally, there is
a superpotential with cubic and quartic couplings:

W ¼
Xq
i¼1

ϵαβTrðUα
i V

β
i Y2i−1 þ Vα

i U
β
iþ1Y2iÞ

þ
Xp
j¼qþ1

ϵαβTrðZjUα
jþ1Y2j−1U

β
j Þ: ð3:14Þ

The conformal manifold is three dimensional [5]. Two
exactly marginal deformations are flavor singlets and

correspond to the dilaton and the B2 flux, as for the
conifold. The third breaks the flavor group to Uð1Þ2 and
is described by the superpotential coupling

Wβ ¼ λβTr

�Xq
i¼1

σβ3αðUα
i ViβY2iþ2 þ Vα

i Uiþ1βY2iþ3Þ

þ
Xp
j¼qþ1

σβ3αZjUα
jþ1Y2jþ3Ujβ

�
; ð3:15Þ

where σ3 is a Pauli matrix. As for the conifold theory, the
free theory is not part of the conformal manifold.
By performing a β deformation in the N ¼ 4, conifold,

and Yp;q theories, several global currents acquire an
anomalous dimension. Our aim will be to compute the
leading correction to γ, Eq. (2.7), where g here is λβ and O
are chiral primaries obtained acting with a flavor-symmetry
transformation on the operators (3.11), (3.13), and (3.15),
at λβ ¼ 0. To this aim, we need to compute the two-point
functions of these scalar operators (actually of their F-
components) and of the corresponding broken currents at
λβ ¼ 0. For the conifold and the Yp;q series, this is a
computation inherently at strong coupling, and hence the
only available tool is AdS=CFT. For N ¼ 4 instead, one
could evaluate the current anomalous dimension at both
weak and strong coupling, since the free theory belongs
to the conformal manifold in this case. However, for
N ¼ 4, well-known nonrenormalization theorems ensure
that, as far as Eq. (2.7) is concerned, the weak and strong
coupling results are the same: the two-point function
one has to compute involves 1=2 Bogomolny-Prasad-
Soomerfeld (BPS) operators, and this is known not to
renormalize [34] (recall we have to evaluate at λβ ¼ 0).
Therefore, in what follows, we will treat all three cases
holographically.
The gravity dual of β-deformed N ¼ 4 SYM and more

general toric singularities, including the conifold and the
Yp;q series, was found in Ref. [35] (see also Ref. [36]). This
will allow us to treat the three different cases somewhat
together.

2. Broken currents anomalous dimensions

In an N ¼ 1 SCFT with chiral superfields, Φi, the
coefficient CJ appearing in Eq. (2.2), can be computed
using the R charges and flavor quantum numbers of fermions
in the theory via the following ’t Hooft anomaly [26]:

CJ ¼ 36
X
i

ðdimRiÞð1 − riÞTriðTaTbÞ: ð3:16Þ

Here, ri are the R charges of the chiral superfields, and Ri is
the representation they transform under gauge-symmetry
transformations (R charges of chiral superfields are reported
in Appendix A). The values of CJ for the various theories are
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presented in Table I. The non-Abelian flavor-symmetry
generators are in the fundamental representation and are
normalized as TrðTaTbÞ ¼ 1

2
δab. Note that, consistently, the

result for Yp;q theories is positive definite, hence satisfying
unitarity, for p ≥ q ≥ 0, which is the range for which Yp;q

manifolds are defined.
Next, we turn to the calculation of CO. Since O and Wβ

lie in the same representation of the flavor group, up to a
group theory factor (which for all cases we consider turns
out to be 1), they have the same normalization. Therefore,
the value of CO is the same as the value of the correspond-
ing CWβ

(which is nothing but the component of the
Zamolodchikov metric along the corresponding modu-
lus).12 The two-point function for Wβ can be extracted
from the bulk effective action for the dual massless scalars
β, which is known to be [35]

S ¼ −
N2

16π2R3
E

Z
d5x

ffiffiffi
g

p �
C
∂μβ∂μβ̄

Imτ

�
; β ¼ γ − τσ;

ð3:17Þ

where τ is the axio-dilaton, RE is the radius of AdS, and the
normalization C depends on the geometry of the compact
manifold X5 and reads

C ¼ hg0;Ei
VolðS5Þ
VolðX5Þ

: ð3:18Þ

In the above expression, hg0;Ei is the average value of the
determinant of the metric on the internal 2-torus that
geometrically realizes the Uð1Þ ×Uð1Þ symmetry in the
dual field theory. The values of hg0;Ei in the three cases
are presented in Appendix B. The two-point function for
the marginal operator Wβ that one derives from (3.17) is

hWβðxÞW†
βð0Þi ¼

N2

ð2πÞ4
C
Imτ

4!

jxj8 ; ð3:19Þ

assuming a bulk/boundary coupling with unit normaliza-
tion,

R
d4xβWβ þ H:c:.13 This gives the value ofCWβ

and in
turn CO,

CO ¼ 24gsN2C: ð3:20Þ

In Table II, we list the value of CO for various theories
under consideration.
Plugging the value of CO and CJ in Eq. (2.7) (and

remembering that these deformations are complex), we
obtain the values of γ. Table III contains our results [to
express these anomalous dimensions in terms of the field
theory parameter λβ, one should take into account that,
following the conventions of Ref. [35], there is a ðgsÞ1=2
difference between λβ and β; therefore, the resulting
anomalous dimensions scale just with N].
The gs and N dependence of current anomalous dimen-

sions can be equivalently obtained from the mass of the
dual bulk gauge field. To see this, it is sufficient to look at
the μ − α component of Einstein’s equation. Schematically,
we have

Rμα ⊃ −
1

48

jG3j2
Imτ

gμα; ð3:21Þ

where the holomorphic 3-form flux in the β-deformed
geometry takes the form [35]

G3 ¼ −ðγ − τσÞR4
Edð12ω1∧dψ þ iGω2Þ; ð3:22Þ

where R4
E ¼ 4πN with α0 ¼ 1. The 2-forms ω1∧dψ ;ω2 and

the function G are different for different cases, but the form
(3.22) for G3 is the same for S5, T1;1, and Yp;q. This implies
that jG3j2 ∝ jγ − τσj2R8

ER
−6
E ¼ jγ − τσj2R2

E. The extra R
−6
E

comes from the metric used for contracting the indices in
jG3j2. The Maxwell operator is normalized with an addi-
tional factor of R−2

E . Therefore, after canonically normal-
izing the Maxwell operator, we see that the mass term is
proportional to

TABLE II. Normalization of two-point functions of the margin-
ally irrelevant operators.

Theory CO

N ¼ 4 SYM 24πgsN3

Conifold theory 45πgsN3=2
Yp;q theories 24πgsN3pð7pq2 − 8p3

þð4p2 − 2q2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
Þ=q4

TABLE I. Central charges for the nonanomalous global cur-
rents.

Theory Flavor group Current central charge: CJ

N ¼ 4 SYM SUð3Þ 6ðN2 − 1Þ
Conifold
theory

SUð2Þ × SUð2Þ 9N2

Yp;q theories SUð2Þ 6N2ð5pq2 − 4p3

þð2p2 − q2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
Þ=q2

Uð1Þ 48N2p2ð2p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
Þ=q2

12Here, Wβ is the F component of the superpotential Wβ.

13This is suggested by the fact that both parameters are
periodic with the same period [35].
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m2 ∝
jγ − τσj2R4

E

Imτ
¼ jγ − τσj24πNgs ≡ 4πgsNjβj2:

ð3:23Þ

It would be interesting to reproduce the exact coefficient
by analyzing the fluctuation equations for the gauge
fields in detail and see whether the result matches with
those in Table III. In the undeformed background, the
(massless) gauge fields dual to conserved currents are
degenerate and lie in the adjoint representation of the
isometry group of X5. When the β deformation is turned
on, the degeneracy is partially lifted, making some of the
gauge fields (those that belong to the non-Cartan ele-
ments) massive. The β deformation turns on modes that
have dependence on the X5 coordinates. If the explicit
form of vector spherical harmonics on X5 were known,
it would become possible to perform degenerate state
perturbation theory and obtain the mass splitting to
leading order in the deformation. In this sense, our results
for the anomalous dimensions in Table III give a pre-
diction for bulk gauge field masses in the deformed
background, to leading order in β.

IV. MULTIPLET RECOMBINATION BY
RELEVANT DEFORMATIONS

In this section, we consider instances of symmetry-
breaking relevant deformations. First, we describe
symmetry breaking in the OðNÞ model in d ¼ 4 − ϵ
dimensions. In the free phase, this theory admits a
OðNÞ global symmetry. One can add symmetry-breaking
relevant deformations, which induce a RG flow which
brings the theory to an IR fixed point of the Wilson-
Fischer type where current multiplets recombine. For
sufficiently small ϵ, the IR fixed point is parametrically
near to the UV free phase, and one can rely on pure
field theory techniques to compute current anomalous
dimensions. Later, we focus on a class of RG flows
interpolating between N ¼ 1 SCFTs at strong coupling.
These flows are described, holographically, by AdS-to-
AdS BPS domain-wall solutions of a simple N ¼ 2
gauged five-dimensional supergravity model, originally
discussed in Ref. [6].

A. OðNÞ model

The action of the free OðNÞ model in d dimensions is

S ¼ 1

2

XN
i¼1

Z
ddxð∂ϕiÞ2; ð4:1Þ

where ϕi are N real scalar fields. This theory possesses
a global OðNÞ symmetry, and the set of corresponding
currents reads

Jaμ ¼ −∂μϕiðTaÞijϕj; a ¼ 1;…;
NðN − 1Þ

2
; ð4:2Þ

where Ta are generators of OðNÞ [normalized here as
TrðTaTbÞ ¼ −2δab]. Using the scalar two-point function

hϕiðxÞϕjð0Þi ¼
δij

ð2πÞd=2jxjd−2 ; ð4:3Þ

we get the two-point function for the currents

hJaμðxÞJbνð0Þi ¼ 2ðd − 2Þδab Iμν
ð2πÞdjxj2d−2 ; ð4:4Þ

where Iμν is defined in Eq. (2.2). In d ¼ 4 − ϵ dimensions,
we see that CJ ¼ 4 − 2ϵ. We would like to deform this
theory via a relevant deformation such that the resulting
theory has a fixed point with (partially) broken global
symmetry. To this end, let us consider the following
deformation, which breaks OðNÞ to OðN − 1Þ

Sdef ¼
Z

ddx

�
g1
4!

ϕ4
1 þ

g2
4
ϕ2
1

XN
j¼2

ϕ2
j þ

g3
4!

�XN
j¼2

ϕ2
j

�
2
�
:

ð4:5Þ

Let us first choose g2 ¼ 0. In this case, we have two
decoupled sectors, a ϕ4 theory and an interactingOðN − 1Þ
model (which implies that g2 will not be generated quantum
mechanically either).
The RG flow resulting from this deformation ends up in

a weakly interacting IR fixed point of the Wilson-Fisher
type where the values of the couplings ðg1�; g3�Þ are

TABLE III. Anomalous dimensions for the broken currents belonging to the non-Cartan elements of the flavor
group.

Theory Broken flavor group Current anomalous dimension:γ

N ¼ 4 SYM SUð3Þ πgsNjβj2
Conifold theory SUð2Þ × SUð2Þ 5πgsNjβj2=8
Yp;q theories SUð2Þ

πgsNjβj2 p
q2

�
2q4−4p4þp2q2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2−3q2

p
ð2p3−pq2Þ

q4−4p4þ3p2q2

�
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g1� ¼
16π2

3
ϵþOðϵ2Þ; g3� ¼

48π2

N þ 7
ϵþOðϵ2Þ: ð4:6Þ

The deformation gives rise to the following anomalous
currents which were otherwise conserved:

∂μJaμ ¼ −
g1�
3!

ðTaÞ1jϕjϕ
3
1 þ

g3�
3!

ðTaÞ1j
XN
k¼2

ϕ1ϕjϕkϕk:

ð4:7Þ

In total, there are N − 1 broken currents. Computing the
two-point functions of operators on the right-hand side,
which provides the values of CO, one finally gets from
Eq. (2.7)

γJ ¼
�

1

108
þ N þ 1

4ðN þ 7Þ2
�
ϵ2 þOðϵ3Þ: ð4:8Þ

As shown in Appendix C, this is nothing but the sum of
the anomalous dimensions of constituent fields, ϕ1 and ϕj

(j ≠ 1). This is expected because for g2 ¼ 0 the broken
currents are composed of fields belonging to decoupled
sectors.
The symmetry-breaking pattern we discussed here is an

instance of the more general one OðNÞ → OðN −MÞ×
OðMÞ, which can be obtained by a straightforward gen-
eralization of the action (4.5)

Z
ddx

�
g1
4!

�XM
i¼1

ϕ2
i

�2

þ g2
4

XM
i¼1

ϕ2
i

XN
j¼Mþ1

ϕ2
j

þ g3
4!

� XN
j¼Mþ1

ϕ2
j

�2�
: ð4:9Þ

Again, for g2 ¼ 0, there are two decoupled sectors, and
current anomalous dimensions are given by the sum of
elementary fields anomalous dimensions. The computa-
tions one needs to do are basically the same we did before,
and we refrain from presenting them here.
Let us now consider a deformation with g2 ≠ 0.

Regardless of their tree-level values, quantummechanically
also g1 and g3 are generated now, so in this case one has to
confront the most general deformation. Looking at the β
functions of the three couplings, which we report in
Appendix C, one sees that for specific values of M and
N there exist new fixed points (but saddle points, hence
fine-tuned) having g2� ≠ 0. This implies that elementary
field sectors constituting the broken currents are no longer
decoupled and, in turn, that the current anomalous dimen-
sion is not just the sum of those of elementary fields. A
simple case to look at is N ¼ 2M. One finds that forM > 4
a fixed point exists where

g1� ¼
24π2ϵ

Mþ2
; g2� ¼

8π2
ffiffiffiffiffiffiffi
M−4
M

q
ϵ

Mþ2
; g3� ¼

24π2ϵ

Mþ2
; ð4:10Þ

with current anomalous dimensions

γJ ¼
ϵ2

4ðM þ 2Þ
�
M − 2

M
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 4

M

r �
: ð4:11Þ

More details can be found in Appendix C.

B. AdS-to-AdS domain walls

We would like now to consider symmetry-breaking
relevant deformations connecting N ¼ 1 SCFT at strong
coupling. This is outside the realm of (perturbative) QFT,
and hence we will rely on holography. Flows of this kind
are described by BPS solutions of five-dimensional N ¼ 2
supergravity with an AdS-to-AdS domain-wall metric and
one or more scalars having nontrivial profiles.
Note that in five-dimensional N ¼ 2 supergravity sca-

lars belong either to hypermultiplets or to vector multiplets.
The former are dual to chiral operators, and the latter are
dual to real linear multiplets (which contain the spin-1
currents). Therefore, flows triggered by superpotential
deformations imply that hypermultiplet scalars in general
run. If the chiral operators are charged under a given
symmetry, the corresponding bulk gauge fields undergo a
Higgs mechanism, and so, by supersymmetry, also the
vector multiplet scalars are expected to run.
For an illustrative example, we consider below one such

scenario. This corresponds to a SCFT with Uð1Þ ~R ×Uð1Þ
symmetry (the always-present superconformal R symmetry
and an Abelian flavor symmetry) perturbed by a charged,
relevant deformation O triggering a RG flow toward an
IR fixed point. If there are no emergent symmetries in the
IR, at such a fixed point, only a Uð1ÞR superconformal R
symmetry is preserved.14 The current associated to the
Uð1Þ symmetry recombines and acquires an anomalous
dimension.
A two-parameter family of N ¼ 2 supergravity theories

describing flows of this kind was derived long ago [6]. This
is N ¼ 2 supergravity coupled to a vector multiplet and a
hypermultiplet, with scalar manifold

M ¼ Oð1; 1Þ × SUð2; 1Þ
SUð2Þ ×Uð1Þ : ð4:12Þ

The first factor is parametrized by the vector multiplet real
scalar ρ, while the second factor is parametrized by the four

14The IR R symmetry is different from the UVone; i.e., it is a
combination of the original R symmetry and the (broken) flavor
symmetry. Indeed, a relevant deformation breaks explicitly
conformal invariance and in turn the superconformal UV R
symmetry Uð1Þ ~R.
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scalars belonging to the hypermultiplet, qX ¼ ðV; σ; θ; τÞ.
The two gauge fields, the graviphoton AM and the one
sitting in the vector multiplet BM, gauge a Uð1Þ ×Uð1Þ
subgroup of the isometry group of the hyperscalar mani-
fold. The graviphoton is dual to the R symmetry, and the
gauge field BM is dual to the Uð1Þ flavor symmetry.
This theory admits different classes of solutions, depend-

ing on the gauging. For instance, there exist (1) domain-
wall solutions which provide a holographic version [37]
of the so-called τUconjecture, originally proposed in
Ref. [38], (2) non-supersymmetric solutions which have
been used to construct models of (holographic) gauge
mediation [39]. We will focus, instead, on supersymmetric
AdS-to-AdS solutions.
This model has been widely studied, and we refer to

Ref. [6] for any technical detail. In what follows, we just
summarize the results we need for our analysis.
What we are interested in is supersymmetric solutions

admitting a critical point (i.e., an AdS stationary point of
the gravity superpotential), which preserves a Uð1Þ ×Uð1Þ
symmetry, and a second critical point preserving a Uð1Þ
symmetry. As discussed in Ref. [6] (see also Ref. [37]), the
existence of such fixed points selects a subclass of gaug-
ings, parametrized by two real parameters, β and γ, subject
to the condition

ðβ− 1Þð1− 2ζÞ > 0 ∩ ζ > 0 where ζ ¼ 1− β

2γ − 1
: ð4:13Þ

The UV and IR fixed points sit at

PUV∶ qX ¼ ð1; 0; 0; 0Þ; ρ ¼ 1 ð4:14Þ

PIR∶ qX¼ð1−ξ2;0;ξcosφ;ξsinφÞ; ρ¼ð2ζÞ1=6; ð4:15Þ
in field space, with

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 4ζ

3β − 1 − 4ζ

s
; φ ∈ ½0; 2π�: ð4:16Þ

Note that PIR is in fact a circle of stationary points,
parametrized by φ. This is an exactly marginal deformation
of the IR SCFT, which does not play any role for what we
want to do next.
For any value of β and γ satisfying the constraint (4.13),

there exists a smooth domain-wall (numerical) solution
interpolating between PUV and PIR [6,37]. Since PUV
and PIR preserve different symmetries, these domain walls
describe, holographically, RG flows along which current
multiplets recombine. Note that, as advertised, both the
hyperscalars and the real scalar ρ run (they have different
values at PUV and PIR).
To read the gauge field masses, the relevant part of the

N ¼ 2 Lagrangian is

−
1

4
aIJFI

μνFJμν −
1

2
ðg2gXYKX

I K
Y
J ÞAI

μAμI; ð4:17Þ

where aIJ is a function of the vector scalar multiplet ρ, g
controls the value of the cosmological constant, and gXY is
the metric on the hyperscalar manifold. The Killing vectors
are functions of the scalar fields, and hence the gauge
symmetry can be Higgsed or exactly realized depending
on the scalar profiles. All flows interpolating between
PUV and PIR admit a vanishing Killing vector [6] and
hence a massless gauge field and, correspondingly, a
preserved Uð1Þ symmetry (which can be shown to be an
R symmetry [6,37]). This reduces to the superconformal R
symmetry Uð1Þ ~R in the UV and to the superconformal
R symmetry Uð1ÞR in the IR. The second Killing vector,
associated to the gauge field BM, instead, vanishes at PUV,
only. This implies that BM is massless at the UV fixed point
and massive elsewhere. Evaluating (4.17) on the IR end
point of the flow, one finds, in units of the IR AdS radius
LIR ¼ ðgWIRÞ−1 (where WIR is the value of the super-
gravity superpotential at PIR),

m2
A ¼ 0;

m2
B ¼ 3

4

�ð2β þ 2γ − 3Þð6βγ þ β − 2γ − 3Þ
ð2γ − 1Þ4=3ð1 − βÞ2=3

�
: ð4:18Þ

Plugging the above formula into the mass/dimension
relation (2.8), one gets the holographic prediction for the
Uð1Þ flavor current anomalous dimension.
For a consistency check, one can evaluate (4.18) for

β ¼ −1; γ ¼ 3
2
, which, as shown in Ref. [6], corresponds to

the FGPW flow [40]. This is known to describe, holo-
graphically, the N ¼ 1� mass deformation of N ¼ 4

theory. One gets m2
B ¼ 6 and in turn Δ ¼ 2þ ffiffiffi

7
p

, in
agreement with expectations [6,40].
The supergravity model we have considered is a proto-

type of more general ones. It is amusing to see how
holography lets one have control on how multiplets
recombine even in RG flows which might be extremely
intricate from a field theory perspective and how it makes
the description of, in principle, very complicated UV/IR
operator maps so transparent.

V. CONCLUSIONS

Current multiplet recombination puts severe con-
straints on CFT parameters. For example, we have
seen that for marginal deformations anomalous dimen-
sions of weakly broken currents are fixed, to leading
order, by the Zamolodchikov metric on the conformal
manifold and by a global current central charge in the
undeformed CFT.
We have considered deformations triggered by marginal

as well as relevant deformations and shown that in all cases
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one can compute the anomalous dimension of broken
currents. For theories with a holographic dual description,
one can also have control on symmetry-breaking flows
which are not parametrically short in the space of coupling,
and anomalous dimensions can hence be large.
The techniques we have used can be applied to several

other examples. Besides the β deformation, the conformal
manifold of N ¼ 4 SYM admits another symmetry-
breaking deformation, which breaks the flavor-symmetry
group fully and which can be investigated field theoreti-
cally using perturbation theory. Note, also, that at generic
points of the conformal manifold of N ¼ 4 SYM super-
symmetry is (partially) broken. The corresponding super-
symmetry current operators acquire anomalous dimensions
which one could also compute. Also, the conifold theory,
besides the β deformation, admits two other exactly
marginal deformations with different symmetry-breaking
patterns.
We focused our attention on four-dimensional theories,

but there exist marginal deformations for, e.g., theories
in three dimensions. An example is the β deformation of
the N ¼ 6 ABJM theory [41], which breaks the SUð2Þ ×
SUð2Þ flavor symmetry down to Uð1Þ2 [42] (and here, too,
supersymmetry is partially broken).
In Sec. IV B, we discussed one instance in which the

breaking is not weak, but there exist many others which
can be treated in a similar manner. Here, too, the most
interesting direction would be to look for nonsupersym-
metric flows, or flows along which supersymmetry gets
partially or even fully broken.
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APPENDIX A: β DEFORMATIONS: MATTER
FIELDS QUANTUM NUMBERS

In this Appendix, we report the quantum numbers of
matter fields of the N ¼ 4 SYM, conifold theory and Yp;q

theories:
(1) N ¼ 4 SYM: When written in theN ¼ 1 language,

N ¼ 4 SYM theory contains three chiral superfields
Φi that transform in the fundamental representation
of SUð3Þ. The R charges of each of these is 2=3, as is
evident from the N ¼ 4 superpotential.

(2) Conifold theory: The theory contains two kinds of
bifundamental matter fields Aα; B _α. They share

the same R charge R ¼ 1=2 and, correspondingly,
the same scaling dimension Δ ¼ 3=4. The fields
Aα transform in the ð1

2
; 0Þ of the flavor-symmetry

group SUð2Þ × SUð2Þ. The B _α transform instead in
the ð0; 1

2
Þ.

(3) N ¼ 1 Yp;q theories: The theory contains four
different kinds of bifundamental matter fields
which are either singlets or doublets under the
SUð2Þ flavor symmetry. There are p doublets
labelled Uα, q doublets labelled Vα, p − q singlets
labelled Z, and pþ q singlets labelled Y. Under
the Uð1Þ flavor (non-R) symmetry, these fields
have charges 0, 1, −1,and 1, respectively, whereas
under the Uð1Þ R symmetry, they have the
following charges:

rU ¼ 2

3
pq−2

�
2p −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
;

rV ¼ 1

3
q−1

�
3q − 2pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
;

rZ ¼ 1

3
q−2

�
−4p2 þ 3q2 þ 2pq

þ ð2p − qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
;

rY ¼ 1

3
q−2

�
−4p2 þ 3q2 − 2pq

þ ð2p − qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
: ðA1Þ

APPENDIX B: VOLUMES OF X5
AND THE 2-TORUS

In this Appendix, we give the expressions for
VolðS5Þ=VolðX5Þ and hg0;Ei which were needed to derive
CO in Sec. III B 2. The ratios of the volumes defined in
Eq. (3.18) are (see Ref. [35] and references therein for
details)

VolðS5Þ
VolðT1;1Þ ¼

27

16
;

VolðS5Þ
VolðYp;qÞ ¼

3p2ð3q2 − 2p2 þ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
Þ

q2ð2pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
Þ

: ðB1Þ

The average value of the determinant of the internal 2-torus
hg0;Ei can be computed from the corresponding metrics
given in Ref. [35]. We summarize them below:
(1) S5: The 2-torus in Eq. (3.12) of Ref. [35] is para-

metrized by the coordinates ðφ1;φ2Þ. The average
volume is hg0;Ei ¼ πN

(2) T1;1: This case is slightly subtle. The 2-torus in this
case is parametrized by the coordinates φ1;2 ¼ ϕ1�ϕ2

2
,

where ϕ1;2 are the coordinates appearing in the
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standard line element (Eq. (A.18) of [35]) of T1;1.
Taking this into account, one finds15 hg0;Ei ¼ 5π

9
N.

(3) Yp;q: Here, the 2-torus in Eq. (A.24) of Ref. [35] is
parametrized by ðα;ϕÞ. We have hg0;Ei ¼ hg0iR4

E,
where the determinant g0 and the AdS5 radius RE
have been defined in Appendix A.2 of Ref. [35].
Upon computing the average, we find

hg0;Ei ¼
7p2 − 6q2 − p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

p
9pðp2 − q2Þ πN: ðB2Þ

In computing hg0i, we have used the relation

a ¼ 1

2
−
p2 − 3q2

4p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q
ðB3Þ

for a, and the integration over the y coordinate is in
the range ðy1; y2Þ,

y1 ¼
1

4p

�
2p − 3q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
;

y2 ¼
1

4p

�
2pþ 3q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 − 3q2

q �
: ðB4Þ

APPENDIX C: FIXED POINTS OF THE
DEFORMED OðNÞ MODEL

The most general deformation of the OðNÞ model that
breaks the OðNÞ symmetry to OðMÞ ×OðN −MÞ is

Z
ddx

�
g1
4!

�XM
i¼1

ϕ2
i

�2

þ g2
4

XM
i¼1

ϕ2
i

XN
j¼Mþ1

ϕ2
j

þ g3
4!

� XN
j¼Mþ1

ϕ2
j

�2�
: ðC1Þ

In this case, the anomalous dimension of broken currents is
given by

γJ ¼
1

ð4πÞ4
�
ðM þ 2Þ

�
g1
3!

−
g2
2

�
2

þ ðN −M þ 2Þ
�
g3
3!

−
g2
2

�
2
�
; ðC2Þ

while that of elementary fields is given by

γϕi
¼ 1

ð4πÞ4
�
ðM þ 2Þ

�
g1
3!

�
2

þ ðN −MÞ
�
g2
2

�
2
�
;

i ¼ 1;…;M ðC3Þ

γϕi
¼ 1

ð4πÞ4
�
ðN −M þ 2Þ

�
g3
3!

�
2

þM

�
g2
2

�
2
�
;

i ¼ M þ 1;…; N: ðC4Þ
In agreement with general expectations, from the above
equations and Eq. (4.2), it follows that whenever g2 ¼ 0 the
anomalous dimension of broken currents equals the sum of
anomalous dimensions of constituents elementary fields,
but it does not otherwise.
The one-loop β functions of the couplings gi in

d ¼ 4 − ϵ dimensions read

βg1 ¼ −g1ϵþ
1

16π2

�
g21
3
ðM þ 8Þ þ 3g22ðN −MÞ

�
;

βg2 ¼ −g2ϵþ
g2

48π2
ðg1ðM þ 2Þ þ g3ðN −M þ 2ÞÞ;

βg3 ¼ −g3ϵþ
1

16π2

�
g23
3
ðN −M þ 8Þ þ 3g22M

�
: ðC5Þ

Besides the (fully stable) fixed points with g2� ¼ 0, for
specific values ofM andN, there exist others. By computing
derivatives of the β functions, one can see that the latter are
partially unstable (they are saddle points), so they could be
reached only by some fine-tuning of the tree-level values for
the couplings. Here, we present a few of the many possible
fixed points and specify their nature, i.e., whether they are
IR/UV stable or unstable (note that, regardless of their nature,
current multiplet recombination occurs at these fixed points,
and one can then compute anomalous dimensions of broken
currents through the method described in Sec. II):
(1) M ¼ 1: This case was discussed in the main text

with the coupling g2 switched off. In the presence of
the coupling, a new fixed point exists for N ≥ 12.
However, this fixed point is unstable.

(2) N ¼ 2M: For this case, we find that for M > 4
there exist the following real zeros of the β-function
equations:

g1� ¼
48π2ϵ

M þ 8
; g2� ¼ 0;

g3� ¼
48π2ϵ

M þ 8
; ðIR stable fixed pointÞ; ðC6Þ

g1� ¼
24π2ϵ

M þ 2
; g2� ¼

8π2
ffiffiffiffiffiffiffi
M−4
M

q
ϵ

M þ 2
;

g3� ¼
24π2ϵ

M þ 2
; ðunstable pointÞ: ðC7Þ

For the latter case, the anomalous dimension has the
form

γJ ¼
ϵ2

4ðM þ 2Þ
�
M − 2

M
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M − 4

M

r �
: ðC8Þ15The last equality of Eq. (4.6) in Ref. [35] has a typo. We

thank O. Lunin for a discussion on this point.
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