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The aim of this work is to provide the details of a calculation summarized in the recent paper byMaltz and
Susskind which conjectured a potentially rigorous framework where the status of de Sitter space is the same
as that of a resonance in a scattering process. The conjecture is that transition amplitudes between certain
states with asymptotically supersymmetric flat vacua contain resonant poles characteristic metastable
intermediate states. A calculation employing constrained instantons is presented that illustrates this idea.
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I. INTRODUCTION AND MOTIVATIONS

String/M-theory is the leading candidate for a formalism
of quantum gravity [1–9], having had many successes in
providing an ultraviolet completion of gravitational
phenomena that are described to high experimental pre-
cision in the infrared by general relativity (GR) [10,11]:
Reproducing the spectrum of ten-dimensional supergravity
at low energies, providing controlled calculations of black
hole microstate counting [12], and introducing new notions
into physics such as holographic complementarity, matrix
model descriptions of gravity [13–15], and the AdS=CFT
correspondence (gauge/gravity duality) [16]. In describing
cosmological spacetimes, however, the theory is in a deep
morass and descriptions reduce to Jabberwocky.
Starting with supernova Ia measurements in 1987

[17–19] and concurrent cosmic microwave background
measurements [18,20,21] it has become apparent that the
Universe’s expansion is accelerating. Our explanation for
thiswithin theΛ-CDMmodel of cosmology is that themass-
energy density of the Universe is dominated by dark energy
in the form of a small cosmological constant (Λ) [22–26]
[27]. This second exponential expansion phase, separate
from the initial inflationary epoch [24,29] that occurred just
after the big bang [17,18,30,31], implies that our Universe is
best described as being asymptotically de Sitter (dS) [30–34]
from 10−33 s after the big bang until far into the future. If
string theory is going to directly address the issues of
cosmology it is necessary to formulate a quantum definition
of asymptotically dS spacetimes within string theory.
Computation of observable quantities in string theory

typically relies on computing asymptotic states on what has
been colloquially referred to asymptotically cold back-
grounds [35] such as symptotically anti–de Sitter (AdS) or
asymptotically flat spacetimes i.e. the energy density and
therefore fluctuations of the geometry go to 0 asymptoti-
cally or at the boundary where applicable, and gravity
decouples. Because of the exponential expansion of the

spacetime, dS spacetime possesses cosmological horizons.
This implies that only a portion of the spacetime is ever
accessible to any given observer and there is no asymp-
totically cold boundary region on which to define corre-
lation functions [36]. The region within the observer’s
horizon, referred to as the observer’s causal patch [36,37],
possesses a finite entropy and temperature [38,39]. The
finite entropy of the causal patch suggests that the causal
patch of dS spacetime does not support exact states on its
own and should be described by a large finite discreet
spectrum of states, which is incompatible with a continuum
CFT description [36] and the dS symmetries [36,40,41].
Finally, string/M-Theory possesses a vast set of vacuum

solutions known as the string theory landscape, with
estimates of ∼10500 vacua [40,60–66]. The most well-
understood subset of these solutions is referred to as the
moduli space of supersymmetric flat vacua (supermoduli
space), which are continuously connected to the five
perturbative string theories [40,60,67]. Vacua in super-
moduli space are supersymmetric preserving compactifi-
cations with VðφnÞ¼0, (Λ¼0). At low enough energies
these moduli can be approximated by massless scalar fields
that are under the influence of an effective potential VðφnÞ.
Vacua are local minima of VðφnÞ with Λ equal to the value
of the minima. Moving through moduli space means
varying the dynamical moduli of the compactification,
which changes the value of the effective fields φn [68].
Minima of the potential where VðφÞ ≠ 0 are obtained
nonperturbatively. dS vacua, those with positive Λ, are
in the landscape [69,70]; however, they are unstable to
vacuum decay via Coleman de Luccia (CDL) tunneling
[61,71–75] to flat or AdS vacua [76]. The CDL decay
complicates the structure of timelike future infinity
Iþ of dS spacetime, changing it to a history dependent
fractal structure of many different types of bubbles of
different cosmological constants [77,78] [79] in a quantum
superposition.
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The decay to hats, Friedmann-Robertson-Walker (FRW)
bubbles of vacua in the supermoduli space,Λ ¼ 0, provides
an opportunity to define a rigorous framework for dS
spacetime. This conjectured framework is known as FRW/
CFT [35,74,75,80–87].
In this work we provide the technical details of the

computation inspired by FRW/CFT and summarized in
[95] to define a transition amplitude between supersym-
metric flat vacua and show that resonant poles that we
associate with dS metastable states exist in its spectral
representation. To show this we consider a configuration
looking like a time-symmetric slice of the dS vacuum and
evolve the state in a time-symmetric manner to yield the past
and future infinity boundaries, which as previously stated
are fractal superpositions containing an infinite number of
hats as well as other vacua. Picking a past and future hat and
invoking the gauge choice that they nucleate at the spatial
center of a causal diamond, we define a transition amplitude
and compute a spectral representation for this transition.
This requires constructing a deformation of the CDL
spacetime, which we refer to as a constrained CDL instan-
ton. This spacetime, which is constructed via the Barrabès-
Israel null junctions conditions [96], has the status of a
constrained instanton [97–99] and is the result of the CDL
instanton equations with a constraint that the FRW regions
are separated in the dS region by a fixed proper time; see
Fig. 4. A regulated action is computed for this spacetime and
a path integral for the transition amplitude is performed
using the minisuperspace approximation in the thin-wall
limit. Here the path integral over all deformations of the
metric is constrained to only varying the time between the
bubbles. Fourier transforming this amplitudewith respect to
this time in order to get a spectral representation, we find that
the spectral representation contains resonant poles. We
associate these poles to dS intermediate states. The idea
that dS spacetime might be viewed as resonance has been
suggested before in [40,74,75]; however, there is to the
author’s knowledge no explicit calculation to establish dS
spacetime as a resonance or direct computation of the pole in
the literature. We present the details of one in this paper.
This paper is organized as follows: first in Sec. II we

introduce the dS and CDL instanton spacetime [74,75,100].
In Sec. III we define the transition amplitude and spectral
representation [101]. In Sec. IV we motivate the calculation
and action prescription. Sections V–VII contain the main
bulk of the paper where we first compute the amplitude in
1þ 1 Liouville gravity and 3þ 1 Einsteinian gravity in
order to establish the existence of the pole. 1þ 1 dimen-
sion, the Gauss-Bonnet theorem, implies that the boundary
contributions may be neglected and the regulation of the
action is simplified. In Sec. VI we compute the action in
3þ 1 Einsteinian gravity taking into account the boundary
terms. In the discussion we interpret this result and discuss
its implications as well as present our conclusions. In
Appendix A an explicit construction of the constrained

CDL spacetime employing the null junction conditions is
presented. In B, an argument justifying the proposed
integration region is presented. Finally in C we give some
useful relations for the geometry.

II. DE SITTER SPACE AND THE COLEMAN
DE LUCCIA AMPLITUDE

de Sitter space is a maximally symmetric solution of the
Einstein field equations [103–108],

Gμν ¼ Rμν þ
1

2
Rgμν þ Λgμν ¼ 0; ð1Þ

where the cosmological constant is given by Λ yielding

a dS radius of ldS ¼
ffiffiffi
3
Λ

q
; for our Universe Λ ≅

1.7 × 10−121 ∼ 1=tU ∼ 10−122 in Planck units [23,109,110].
Asymptotically dS spacetimes (cosmological space-

times) add to (1) a stress tensor to describe the matter
and radiation content of the Universe,

Gμν ¼ Rμν þ
1

2
Rgμν þ Λgμν ¼ κTμν: ð2Þ

Solving (1), the metric for dS spacetime, written in global
coordinates [111], is

ds2 ¼ −dt2 þ 3

Λ
cosh2

� ffiffiffiffi
Λ
3

r
t

�
ðdψ2 þ sin2ψdΩ2

2Þ: ð3Þ

Using the relation

tanh

� ffiffiffiffi
Λ
3

r
t
2

�
¼ tan

�
η

2

�
; ð4Þ

[112], we can reexpress (3) in conformal time coordinates

FIG. 1. Penrose diagram of de Sitter space. The north and south
poles of the S3 are at ψ ¼ 0 and ψ ¼ π, respectfully. Timelike
future infinity Iþ is the line at conformal time η ¼ π=2 and
similarly timelike past infinity I− is located at η ¼ −π=2. The
diagonal lines represent the horizons of the static patch. Note that
timelike observers can only access a portion of the space
irrespective of their starting point.

JONATHAN MALTZ PHYSICAL REVIEW D 95, 066006 (2017)

066006-2



ds2dS ¼
3

Λcos2η
f−dη2 þ dψ2 þ sin2ψdΩ2

2g; ð5Þ

with −π=2 ≤ η ≤ π=2 and 0 ≤ ψ ≤ π. These are the
coordinates generally used to label the Penrose diagram
for dS spacetime, shown in Fig. 1. Pure dS spacetime (3)
can be regarded as a four-dimensional hyperboloid,
−ðX0Þ2 þP

4
i¼1ðXiÞ2 ¼ l2dS, embedded in five-dimensional

Minkowski space ds2¼−ðdX0Þ2þP
4
i¼1ðdXiÞ2 [106–108].

Instead of ∼10500 vacua let us follow [74] and consider a
far smaller landscape that possesses only two vacua as a

starting point for our construction. This effective potential
has only two minima, one corresponding to a positive Λ
and the other to 0. In [74], a OðD − 1Þ symmetric
spacetime resulting from the CDL nucleation process
was worked out; the Penrose diagram for it is given in
Fig. 2. For convenience we reproduce the solution from
[74] for D ¼ 4, which is the metric for region III in Fig. 2,

ds2 ¼ c2dy2 þ aðyÞ2½dα2 þ ðsin2αÞdβ2 − ðsin2αsin2βÞdt2�:
ð6Þ

Here 0≤y<π, 0≤α<π, 0≤β<2π, and −∞<t<∞; c is
a constant that depends onΛ. The solution (6) was obtained
by solving the Euclidean CDL equations [113]. The
solution is then continued to Lorentzian signature. The
metric for the other regions can be obtained by geodesically
completing (6) as is detailed in [74]. The spacetime consists
of an asymptotically dS spacetime with an open hyperbolic
Λ ¼ 0 FRW bubble inside it. The domain wall (green curve
in Fig. 2) is the transition region between the finite Λ and
Λ ¼ 0 regions; its position and thickness are dependent on
specifics of the potential barrier of V½φ� [114].
The analysis is simplified by taking the thin-wall limit

[74,116,117]—having the value of the potential barrier’s
maximum Vmax large compared to the value of positive
minima, i.e.,Λ ≪ Vmax. This makes the domain wall region
sharp and thin. In this limit the solution for φ is simplified;
outside of the domain wall, φ ¼ φ0 where the constant φ0 is
the position of the positive minimum V½φ0Þ ¼ Λ yielding a
classical dS region; inside the domain wall (within the open
FRW region), φ is at the position of the zero minimum, i.e.,
V½φ� ¼ 0. Surprisingly there is not a singularity caused by
the collapsing FRW geometry as can be seen from the
Euclidean geometry. The Lorentzian and Euclidean geom-
etries agree on the spacelike slice in the middle of Fig. 2 and
along this slice it is possible to construct a Hartle-Hawking

FIG. 3. Penrose diagrams of the CDL instanton with finite domain wall tension (left), the limit of the instanton at zero tension (center),
and the constrained CDL instanton (right).

FIG. 2. The Penrose diagram of the Lorentzian continuation of
CDL instanton solution [74,75,115]. Regions I and II are open
(k ¼ −1) FRW universes that are asymptotically flat. Regions IV
and V are asymptotically de Sitter. Σ is the conformal 2-sphere
defined by the intersection of the lightlike infinity of region I and
the spacelike infinity of region IV. The blue curves indicate orbits
of the SOð3; 1Þ symmetry, which act as the conformal group on Σ
[75]. The red lines between regions III–V represent the cosmo-
logical horizons in the dS spacetime of the observer at r ¼ 0. The
green curve in region III represents the domain wall between the
FRW and dS regions.
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state [74,75,118] to define states for a transition process
[119]. The position and shape of the domain wall is
determined by its tension σ, which is determined by the
width the potential barrier (which is set by the microphysics
of the string compactification). For finite σ the domain wall
is timelike; in taking the limit σ → 0 the throat of the FRW
region goes to zero size and the domain wall becomes
lightlike; see Fig. 3.

III. THE TRANSITION AMPLITUDE

The amplitude for the transition is computed as path
integral over all histories that connect the in and out states,
including all possible spacetime configurations, field con-
figurations, as well as configurations of the horizons that
would represent the information from the outside multi-
verse. We must determine the appropriate spacetime region
that contains all the information of dS spacetime (for
example, from a Hartle-Hawking state on a spacelike slice
in the middle or region III of Fig. 2). After picking
the gauge choice that a past and future hat are moved to
the spacial center of a causal patch, assume that on the
spacelike slice in the middle of the center of Fig. 2 we
construct a Hartle-Hawking state for the spacetime and
determine an out state. The information within the causal
patch is then all that is needed to capture all the information
if horizon complementarity is correct. Anything that passes
out of the causal patch (goes into region IV) will have a
complementary description in terms of the highly scrabbled
Hawking radiation, which will go into region I. Therefore
region I will contain all the information from the Hartle-
Hawking state in the middle of region III [122]. In the
FRW/CFT framework the spacelike slice is usually taken to
be a late time slice, which is an EAdS3 that is dual to the
CFT on Σ [124].
Let us consider the CDL instanton in this thin-wall

tensionless domain wall limit. We compute a spectral
representation of a transition amplitude between in and
out states, hOutjIni, and show that it contains a pole
characteristic to a dS intermediate state [125–127].
A resonance is an intermediate metastable state that can

occur between any initial and final states. Many can be used
to establish the existence of a resonance [129] and we only
need to compute one possible channel that leads to the dS
resonance to establish its existence. A mathematically
tractable although not a realistic channel, as it is entropi-
cally suppressed, is to construct the in and out channels in a
time-symmetric manner from a semiclassical slice in the
middle of region III.
This is not to suggest this channel could be the true

cosmological history of our Universe. We are proposing
that the existence of a pole in this Rube-Goldberg con-
struction of the channel provides a precise quantum
definition in the context of supersymmetric backgrounds
of a dS space [130]. This same logic applies to any
metastable state in quantum mechanics.

We define the transition amplitude as a path integral over
the histories of the causal patch containing the hats. We do
not try to justify this, but study this object’s spectral
representation and show that it possess a pole that we
associate with dS spacetime. This eliminates the need to
deal with the complicated fractal boundaries, Iþ and I− or
regions IV and V.
The full path integral over all histories contains all

fluctuations of the geometry including metric and field
configurations about the CDL instanton as well as non-
perturbative effects, such as further vacuum decay of the
regions outside the hats. In what follows we truncate this
path integral to only the η0 dependence. This minisuper-
space approximation focuses the discussion on the first
contribution of the transition amplitude, where the only
histories that are integrated over are those when no particle
content is excited. The “off shell” continuation of the CDL
instanton in the thin-wall tensionless domain wall limit
has the two FRW regions with their nucleation points
separated by a conformal coordinate time 2η0 In the limit
that η0 → 0 the on shell CDL instanton with zero tension
domain wall is restored; see the right diagram of Fig. 3.
This geometry is not a true solution of the CDL equations
and has the status of a constrained instanton solution
[97–99]. It must be created through cutting and pasting
employing the Barrabés-Israel junction conditions [96],
which are demonstrated in Appendix A. We refer to this off
shell continuation as the constrained CDL instanton.
Defining the proper time along the geodesic ψ ¼ 0 to be
2t0, employing (4), we can express the path integral (7) as
an integration over proper time between the bubbles t0.

hhout;φoutjhin;φini

¼
Z

hout;φout

hin;φin

DgDφeiS½g;φ�

∼N
Z

dt0eiS½t0�ð1þ Δfluc½δgμ;ν; δφ�…Þ

þ Δpert þ instanton=nonperturbative contribution:

ð7Þ
Here Δfluc½δgμ;ν; δφ� refers to perturbative fluctuations

about the constrained CDL and Δpert refers to all other
perturbative off shell history contributions to the path
integral. This expresses the amplitude as an integral over
the relative time between the initial and final hats. The
Fourier transform of the t0 dependence defines the spectral
representation of hOutjIni. The terms of the expansion are
weighted in powers of ldS, which control the expansion.

IV. REGULATION OF THE AMPLITUDE
AND η0 DEPENDENCE

In the limit and approximations that we are employing,
only the η0 dependence of the action contributes to the
amplitude. In order to compute the action for the causal
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region of the constrained CDL instanton (the region within
the red curve of Fig. 4), we must determine the relevant
contributions to the action.
The action contribution of the stress tensor of the domain

wall does not depend on η0 as can be seen from the boost
symmetries of dS spacetime. Consider a dS spacetime with
one hat on Iþ that nucleates at a time η0 in a particular
coordinate frame. Varying the nucleation time, changing η0,
is equivalent to boosting the frame in the dS spacetime. The
action contribution of the stress tensor is invariant under
these boosts as the action is diffeomorphism invariant. The
contribution of the stress tensor is just the stress energy
required to change the cosmological constant fromΛ to 0 as
one crosses the domain wall and does not depend on the
nucleation time in this limit [131]. Therefore we do not
need to include its contribution to the action in the time
reversal symmetric amplitude [132].
The hats of the constrained CDL instanton in the

approximation that there are no excited particles are
described by Milne universes [133], ds2FRW-Milne ¼ −dτ2þ
τ2ðdχ2 þ sinh2χdΩ2

2Þ, with 0 ≤ τ < ∞ and 0 ≤ χ < ∞.
Using the coordinate change t ¼ τ cosh χ and
r ¼ τ sinh χ, we can see that this is simply a portion of
Minkowski space, the interior of the forward light cone of
the origin, r ≤ t, with hyperbolic slicing. This means the
action contribution of these regions is also η0 independent
in the limits we are employing; in fact their bulk contri-
butions are semiclassically 0 in the limit of no particles as
R ¼ 0 in this case.
Therefore we only need to consider the action contri-

bution of the dS region of the causal patch (region III of
Fig. 4) in order to get η0 dependence of the transition
amplitude in this approximation.

The action of region III is divergent due to the infinite
volume located at the blue dots in Fig. 4, and must be
properly regulated. This divergence is present for all values
of η0 and in all dimensions. The regulator must respect the
Lorentz and dS symmetries of the spacetime in order to
separate the divergence and η0 dependence of the action in
an invariant way [134]. Under boosts and rotations,
spacetime points move along surfaces of constant

r20 ¼ 3sin2ψ
Λcos2η. For D > 2, surfaces of constant r0 are those

of constant transverse sphere size. When r0 <
ffiffiffi
Λ
3

q
¼ ldS,

constant r0 surfaces are timelike and can be identified with
the r coordinate of the static patch metric of dS spacetime,

ds2static ¼ −ð1 − r2

l2dS
Þdt2 þ ð1 − r2

l2dS
Þ−1dr2 þ r2dΩ2

d. For r0 >ffiffiffi
Λ
3

q
the constant r0 surfaces are spacelike and can be

identified with the now timelike r coordinate of the future
triangle metric, which is identical in form to the static patch
metric except r > ldS and is hence timelike [108]. The
appropriate cutoff procedure is then to restrict the integra-
tion region to the portion of region III in Fig. 4 that is
between the spacelike surface of a fixed given r0 > ldS.
Region III is restored in the limit that the cutoff r0 → ∞.
One further regulator is added for convenience here but is
necessary in higher dimensions. The two null boundaries of
the causal patch intersect in the middle of region III at
ψ ¼ π − η0; we limit the integration range of ψ to only go
to ψ ¼ π − η0 − γ0, with γ0 being a small positive constant
that avoids the intersection of the null surfaces. In the limit
γ0 → 0 along with r0 → ∞ region III is restored. The

FIG. 4. Constrained CDL.

FIG. 5. Penrose diagram of the 1þ 1-dimensional constrained
instanton with the integration region shaded in blue. The slices of

constant r20 ¼ 3 sin2 ψ
Λ cos2 η are the curved surfaces intersecting the null

lines at ψ1¼arctan

"
cos½η0�

sinη0þ
ffiffiffiffiffi
3

Λr2
0

q
#

and ψ2¼π
2
−arctan

"
sinη0−

ffiffiffiffiffi
3

Λr2
0

q
cosη0

#

as well as their reflection about ψ ¼ 0. The null domain walls
dividing the dS and FRW regions intersect ψ ¼ 0 at conformal
time η ¼ η0 and η ¼ −η0. The regulated integration region, V, is
the volume enclosed by the red curve. Taking the cutoff r0 → ∞
restores the entire integration region.
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regulated integration region, V, is then regions enclosed by
the red curves in Fig. 5 in 1þ 1 dimensions and Fig. 6 in
higher dimensions.

V. THE 1þ 1-DIMENSIONAL ACTION IN
LIOUVILLE GRAVITY

We first compute the amplitude in the context of dS2
spacetime. This can be described by Lorentzian timelike
Liouville gravity [135–141], which contains dS2 spacetime
as a solution [142–145]. This dramatically simplifies the
calculation since in 1þ 1 dimensions the Gauss-bonnet
theorem implies that the contribution of the boundary of V
integrates to V’s Euler characteristic and is η0 independent.
In 1þ 1 dimensions we therefore only need to consider the
bulk contributions of the action.
The timelike Liouville action is then

SL ¼ −
1

16πb2

Z
V
d2ξðηab∂aϕc∂bϕc − 16λeϕcÞ: ð8Þ

Here the metric is put into conformal gauge
[85,138,144,146] gab ¼ eϕcηab and eϕc ¼ 3

Λ cos2 η. Via the

Liouville equation of motion we have

1

4
ηab∂a∂bϕc ¼ −2λeϕc ¼ −

2 · 3 · λ
Λcos2η

; ð9Þ

which gives λ ¼ Λ
3·4.

In D spacetime dimensions the regulated boundary—–
red curve in Figs. 5 and 6—is the surface described by the
following curves times the transverse SD−2,

η1 ¼ ψ þ η0 ψ ∈ ½0;ψ1� ð10Þ

η2 ¼ arccos

� ffiffiffiffi
3

Λ

r
sinψ
r0

�
ψ ∈ ½ψ1;ψ2� ð11Þ

η3 ¼ π − ðψ þ η0Þ ψ ∈ ½ψ2; π − η0 − γ0� ð12Þ

ψ4 ¼ π − γ0 − η0 η ∈ ½−γ0; γ0� ð13Þ

η5 ¼ −ðψ þ η0Þ ψ ∈ ½0;ψ1� ð14Þ

η6 ¼ − arccos

� ffiffiffiffi
3

Λ

r
sinψ
r0

�
ψ ∈ ½ψ1;ψ2� ð15Þ

η7 ¼ ðψ þ η0Þ − π ψ ∈ ½ψ2; π − η0 − γ0�: ð16Þ

Here ψ1 ¼ arctan

"
cos η0

sin η0þ
ffiffiffiffiffi
3

Λr2
0

q
#

and ψ2 ¼ π
2
−

arctan

"
sin η0−

ffiffiffiffiffi
3

Λr2
0

q
cos η0

#
are where the constant r0 surfaces

intersect the null boundaries. In 1þ 1 dimensions the
transverse sphere is an S0 that is just two points, leading
to the Penrose diagram in Fig. 5. Therefore, V in 1þ 1
dimensions is the region enclosed by (10)–(16) and its
reflection across ψ ¼ 0. Inserting this into (8) we have

SL ¼ 4

16πb2

Z
V
dψdη

�
1þ sin2η
cos2η

�

¼ 1

πb2

�Z
ψ1

0

dψ
Z

ψþη0

0

dη

�
1þ sin2η
cos2η

�

þ
Z

ψ2

ψ1

dψ
Z

arccos½
ffiffi
3
Λ

p
sinψ
r0

�

0

dη
1þ sin2η
cos2η

þ
Z

π−η0−γ0

ψ2

dψ
Z

π−ðψþη0Þ

0

dη

�
1þ sin2η
cos2η

��
: ð17Þ

After preforming the η integration in all three terms of
(17), we see that the integrand resulting from the second
term in (17) is bounded within its ψ integration range. In
the cutoff limit r0 → ∞, ψ1 → ψ2, therefore the middle
integral goes to 0 in the limit and can be ignored.
After computing (17) and taking the γ0 → 0 limit we can

Laurent expand (17) in w0 ¼ 1=r0 up to O½w0�, resulting in

SL ¼ −
1

πb2

�
4 log

				
ffiffiffiffi
3

Λ

r
w0

				 − 4þ π2

4
−
η20
2
þ 2 log cos η0

�
:

The − 4!μ
2Λ flog j

ffiffiffi
3
Λ

q
w0j − 4þ π2

4
g term is the divergent

contribution of the action that remains when η0 ¼ 0. This
divergence, resulting from the infinite volume of region III,
was to be expected and is just the action of the Lorentzian
tensionless domain wall CDL instanton, S0, in this limit.
When exponentiated it can be absorbed into the overall
normalization factor of (7).
Defining ~SL ¼ SL − S0 and reexpressing this in terms of

proper time t0 using (4) results in [147]

FIG. 6. V for the dþ 1 spacetime.
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~SL ¼ 2

πb2

�
arctan2

�
tanh

� ffiffiffiffi
Λ
3

r
t0

��
þ log cosh

� ffiffiffiffi
Λ
3

r
t0

��
¼ 4!μ

4Λ

�
arctan2

�
tanh

� ffiffiffiffi
Λ
3

r
t0

��
þ log cosh

� ffiffiffiffi
Λ
3

r
t0

��
: ð18Þ

The log cosh ½
ffiffiffi
Λ
3

q
t0� ¼

ffiffiffi
Λ
3

q
t0 þ log j1þ e−2

ffiffi
Λ
3

p
t0 j − log 2 term in (18) is the only t0 dependent term that is not bounded.

We see that for large values of t0 the action grows linearly with t0.
Treating the bounded term as a perturbation and Fourier transforming with respect to t0 yieldsZ

∞

0

dt0eið
~SL½t0�−ωt0Þ ¼

Z
∞

0

dt0e
ið2μ

ffiffi
3
λ

p
t0−ωt0Þ

�
1þ i

3 · 2μ
Λ

�
log

				 1þ e−2
ffiffi
Λ
3

p
t0

2

				þ arctan2
�
tanh

ffiffiffiffiffiffiffiffi
Λ
3
t0

r ��
þ � � �

�

¼ i

ω − 2μ
ffiffiffi
3
Λ

q þ ρ1½ω� þ � � � :; ð19Þ

thus revealing a pole in the spectral representation. One

notes that 2μ
ffiffiffi
3
Λ

q
is the energy of the static patch of dS

spacetime; we take the existence of this pole to be the
indication of an intermediate dS vacuum.
This indicates that the dS spacetime can be thought of as

a resonance in a transition amplitude.
The pole in (19) occurs at a real value of ω but this is an

approximation. When the metastable character of the dS
vacuum is accounted for the cosmological constant obtains
a small imaginary part determined by the CDL decay rate.
This shifts the pole by a slightly imaginary amount, which
is standard in the analysis of resonances [126,148].
ρ1½ω� is the contribution of the O½μΛ� term in (19). The

first term can be integrated employing 2F1 hypergeometric
functions and the Lebesgue dominant convergence theo-
rem; the second term is a bounded function of t0 and gives
further contributions to the spectral representation along
with the rest of the expansion.

VI. THE AMPLITUDE COMPUTATION IN THE
CONTEXT OF 3þ 1 DIMENSIONS

Now that we have established that the spectral repre-
sentation of the 1þ 1-dimensional amplitude possesses
poles associated with dS spacetime, let us repeat this in
3þ 1 dimensions in the GR limit. Again we employ the

cutoff region to be V with the r20 ¼ 3 sin2 ψ
Λ cos2 η, which respects

the Lorentz and dS symmetries. Here surfaces of constant
r0 are surfaces of constant transverse S2. This implies that
the region of integration is V, which is the red curve in

Fig. 6. In order to properly compute the action we must
include the boundary contributions. Therefore we must
append to the Einstein-Hilbert action [149] the Gibbons-
Hawking-York (GHY) spacelike boundary term [150,151],
its null generalization [152,153], and the contribution of
corner terms [154–156]. This leads to the action

S¼ 1

2κ

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðR−2ΛÞ−
X

i¼2;4;6

1

2κ

Z
∂Vi

d3x2
ffiffiffiffiffiffiffi
hðiÞ

q
KðiÞ

þ
X

i¼1;3;5;7

1

2κ

Z
∂Vi

d2x
ffiffiffiffiffiffiffi
qðiÞ

p
Θþ

X5
j¼1

Scorner;ðjÞ: ð20Þ

Here the GHY term is composed of the extrinsic
curvature Kab ¼ eμaeνb∇νnμ;ðiÞ with i ¼ 2, 4, 6 referring
to the normals, (25), (27), and (29), and hab is the
intrinsic metric on the boundary. On the null boundaries
i ¼ 1, 3, 5, 7 with normals (24), (26), (28), and (30), the
null generalization consists of the metric of the transverse
S2, qAB, and the second fundamental form on the null
surface Θab ¼ qcaqdb∇cld, with resulting scalar Θ ¼
qabΘab ¼ 1

2
qABLlqAB ¼ 1ffiffi

q
p d

dψ
ffiffiffi
q

p
following the conven-

tions of [152,153].

A. Bulk action

The bulk integration in V is the region bounded by the
surfaces in (10)–(16); this makes the bulk action
contribution,

SBulk ¼
1

2κ

Z
V
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ¼ 2 · 4π · 2Λ
2κ

�Z
ψ1

0

dψ
Z

ψþη0

0

dη
�
3

Λ

�
2 sin2ψ
cos4η

þ
Z

ψ2

ψ1

dψ
Z arccos ½

ffiffiffiffiffi
3

Λr2
0

q
sinψ �

0

dη

�
3

Λ

�
2 sin2ψ
cos4η

þ
Z

π−η0−γ0

ψ2

dψ
Z

π−ðψþη0Þ

0

dη

�
3

Λ

�
2 sin2ψ
cos4η

�
: ð21Þ

DE SITTER HARMONIES: COSMOLOGICAL SPACETIMES … PHYSICAL REVIEW D 95, 066006 (2017)

066006-7



When integrated this yields

SBulk ¼
4π4!

2κΛ

��
2 − 2 log j cos η0 þ ψ j þ sin2η0

cos2½ψ þ η0�
− cos ½2ψ �tan2½ψ þ η0�

�				ψ1

0

þ 1

12
ffiffiffi
3

p
�
−2r30Λ3=2arctanh

� ffiffiffi
2

p
Λr0 cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Λr20 þ 3 cos ½2ψ � − 3
p �

− 3 cosψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20Λþ 6 cos ½2ψ � − 6

q

þ 6
ffiffiffi
3

p
log

				
ffiffiffi
6

p
cosψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r20Λþ 3 cos ½2ψ � − 3

p
ffiffiffiffi
Λ

p
r0

				
�				ψ2

ψ1

þ 1

4

�
−2þ 2 log j cos η0 þ ψ j

−
sin2η0

cos2½ψ þ η0�
þ cos ½2ψ �tan2½ψ þ η0�

�				π−η0−γ0
ψ2

�
: ð22Þ

Taking the cutoff limit r0 → ∞ and γ0 → 0 makes V into region III. If we express (22) as a Laurent expansion of w0 ¼ 1
r0

after taking the γ0 → 0, combining terms, and exploiting trigonometric identities, we finally get to O½ω0�,

SBulk ¼
4π4!

2κΛ

�
Λ
2w2

0

þ 1

2
log

Λ
3w2

0

þ 5

24
þ 1

8
cos ½2η0� −

1

2
log j cos η0j

�
: ð23Þ

B. Boundary action

The boundary contributions of the action (20) depend on
the normals of the boundaries detailed in (24)–(30).
The outward [157] directed normal one-forms and their

associated vectors are

nð1Þα ¼ ðδηα − δψα Þ nαð1Þ ¼ −
Λcos2ðψ þ η0Þ

3
ðδαη þ δαψÞ;

ð24Þ

nð2Þα ¼
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3sin2ψ

p
cos η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3

p
×

�
δαη þ

ffiffiffi
3

p
cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3sin2ψ
p δαψ

�
;

nαð2Þ ¼
ffiffiffiffi
Λ
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3sin2ψ

p
cos ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3
p

×

�
−δαη þ

ffiffiffi
3

p
cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3sin2ψ
p δαψ

�
; ð25Þ

nð3Þα ¼ ðδηα þ δψα Þ nαð3Þ ¼
Λcos2ðψ þ η0Þ

3
ð−δαη þ δαψÞ;

ð26Þ

nð4Þα ¼
ffiffiffiffi
3

Λ

r
1

cos η
δψα nαð4Þ ¼

ffiffiffiffi
Λ
3

r
cos ηδαψ ; ð27Þ

nð5Þα ¼ ð−δηα þ δψα Þ nαð5Þ ¼
Λcos2ðψ þ η0Þ

3
ðδαη þ δαψÞ;

ð28Þ

nð6Þα ¼
ffiffiffiffi
3

Λ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3sin2ψ

p
cos η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3

p
×

�
−δαη þ

ffiffiffi
3

p
cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3sin2ψ
p δαψ

�
;

nαð6Þ ¼
ffiffiffiffi
Λ
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20 − 3sin2ψ

p
cos ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3
p

×

�
δαη þ

ffiffiffi
3

p
cosψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λr20 − 3sin2ψ
p δαψ

�
; ð29Þ

nð7Þα ¼ ð−δηα − δψα Þ nαð7Þ ¼
Λcos2ðψ þ η0Þ

3
ðδαη − δαψ Þ:

ð30Þ

With the scalar extrinsic curvature defined as K ¼
−∇αnα we have

Θð1Þ ¼
1ffiffiffiffiffiffiffiffiqð1Þ

p d
dψ

ffiffiffiffiffiffiffiffi
qð1Þ

p
;

Kð2Þ ¼
cosψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6cos ½2ψ � þ 4Λr20− 6

p
− 3

ffiffiffi
3

p
cos ½2ψ �− ffiffiffi

3
p

2r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λr20− 3

p ;

Θð3Þ ¼
1ffiffiffiffiffiffiffiffiqð3Þ

p d
dψ

ffiffiffiffiffiffiffiffi
qð3Þ

p
;

Kð4Þ ¼−2
ffiffiffiffi
Λ
3

r
cot ½π− η0 − γ0�cosη:
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This makes the boundary action

SBoundary ¼ −
X

i¼2;4;6

1

2κ

Z
∂Vi

d3x2
ffiffiffiffiffiffiffi
hðiÞ

q
KðiÞ

þ
X

i¼1;3;5;7

1

2κ

Z
∂Vi

d2x
ffiffiffiffiffiffiffi
qðiÞ

p
ΘðiÞ ð31Þ

equal to

SBoundary ¼
4 · 4π
2κ

�Z
ψ1

0

dψ
2

∂
∂ψ

�
3sin2ψ

Λcos2½ψ þ η0�
�

−
Z

ψ2

ψ1

�
3sin3ψ

Λcos2½
ffiffiffi
3
Λ

q
sinψ
r0
�

�
3=2

Kð2Þ

þ
Z

π−η0−γ0

ψ2

dψ
2

∂
∂ψ

�
3sin2ψ

Λcos2½ψ þ η0�
�

þ
Z

0

γ0

dη

�
3

Λcos2η

�
3=2

sin2½π − η0 − γ0�Kð4Þ

�
:

ð32Þ

In the cutoff limit r0 → ∞, ψ1 → ψ2, and Kð2Þ → 0.
Therefore, the second term in (32) does not contribute.
Upon integration (32) yields

SBoundary ¼
4!4π

2κΛ

�
Λr20

3 · 2 · 2
þ 3Λsin2η0

2 · 2 · 3Λ
−

Λr20
2 · 2 · 3

−
3Λ · 2
3 · 2Λ

log 4sin2η0

�

¼ 4!4π

2κΛ

�
1

4
− log 4

�
sin2η0: ð33Þ

C. Corner terms

Finally we must speak of the contributions of the
corner terms. I argue that with the exception of the corner
term on the waist of the dS hyperboloid, the action
contributions of corner terms are independent of η0. The
action contribution of the corner resulting from two
intersecting hypersurfaces depends on the boost angle
and the area of the S2 at the intersection point [154,156].
In our setup there are six corner contributions: the
intersection of the constant r0 surface with the null walls
at ψ1 and ψ2 and two at the waist. For the four nonwaist
contributions the corner is on the curve of constant S2

radius r0, which is independent of η0 (r0 can be varied
without changing η0). The boost angle at these four points
while infinite is independent of η0; this can be seen by
treating the null surface as the limit of a sequence of
spacelike surfaces that emanate from the nucleation point

of the respective hat and intersect the constant r0 surface
at a point in between ψ1 and ψ2; see Fig. 7. The boost
angle for this corner term is finite and is independent of
η0 as the intersection point can be varied without moving
η0. In the limit that the spacelike surfaces become null,
the corner contributions become infinite but remain η0
independent and can be absorbed in the divergent η0
independent action term that comes from the original
CDL instanton. Hence the only troublesome point is the
corner terms at the waist, which have infinite boost angles
times an η0 dependent finite S2 size. For paths close to the
CDL instanton, t0 → 0, this term vanishes exponentially.
In the large t0 limit the derivative of this term with respect
to t0 goes to 0 implying that this term becomes constant
in the large t0 limit. This term is not well understood and
relates to the specification of microstates of the horizon
and requires a better understanding of the horizon degrees
of freedom perhaps employing some stretched horizon
analysis. The calculation employed here in 2þ 1
dimensions is closely related to wick rotations of those
in [154–156,158], which relate complexity and action.
This term also appears in their analysis of the null and
corner terms, and an analysis of it was carried out
employing the spacelike cutoffs in Fig. 8.

FIG. 7. The four divergent corner terms that occur are
independent of η0. The corner contribution is dependent on
the boost angle and S2 area, neither of which depend on η0. This
can be seen as r0 can be varied independently of η0, implying that
the S2 area is independent of η0. The boost angle is also η0
independent; this can be seen by deforming the boundaries
of V to spacelike curves (red curves), which intersect the r0
surface at finite η0 independent boost angle. In the limit that this
spacelike parametrically becomes null the integration region V is
restored.
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VII. TOTAL ACTION AND THE POLE

Combining the terms (23) and (33) we have the total
action, which after Laurent expanding in w0 ¼ 1

r0
up to

O½w0� results in

S ¼ 4π4!

2κΛ

�
−
1

2
log j cos η0j þ

�
1

4
− log 4

�
sin2η0

þ 1

8
cos ½2η0� þ

Λ
2w2

0

þ 1

2
log

Λ
3w2

0

þ 5

24

�
þ Scorner;

reexpressing S in terms of the proper time t0 using (4) and
renaming the divergent t0 independent constant in (34) to
S0, we can define ~S ¼ S − S0 resulting in

~S ¼ 4π4!

2κΛ

�
1

8

�1 − sinh2½
ffiffiffi
Λ
3

q
t0�

cosh2½
ffiffiffi
Λ
3

q
t0�

�

þ 1

2
log

				 cosh
� ffiffiffiffi

Λ
3

r
t0

�				
þ
�
1

4
− log 4

�
tanh2

� ffiffiffiffi
Λ
3

r
t0

��
; ð34Þ

with S0 ¼ 4π4!
2κΛ f Λ

2w2
0

þ 1
2
log Λ

3w2
0

þ 5
24
g þ Scorner. Apart from

the log cosh½
ffiffiffiffiffiffiffi
Λ
3
t0

q
� term the t0 dependent terms of (34) are

bounded and monotonic for t0 > 0.

~S ¼ 4π4!

2κΛ

�
1

2
log

				 cosh
� ffiffiffiffi

Λ
3

r
t0

�				þ 1 − sinh2½
ffiffiffi
Λ
3

q
t0�

8cosh2½
ffiffiffi
Λ
3

q
t0�

þ
�
1

4
− log 4

�
tanh2

� ffiffiffiffi
Λ
3

r
t0

��
;

~S ¼ 4π4!

2κΛ

�
1

2
log

				 1þ e−2
ffiffi
Λ
3

p
t0

2

				þ 1 − sinh2½
ffiffiffi
Λ
3

q
t0�

8cosh2½
ffiffiffi
Λ
3

q
t0�

þ 1

2

ffiffiffiffi
Λ
3

r
t0 þ

�
1

4
− log 4

�
tanh2

� ffiffiffiffi
Λ
3

r
t0

��
: ð35Þ

Fourier transforming the amplitude with ~S ¼ S − S0 and
employing a similar expansion as (19) reveals the pole
again,Z

∞

0

dt0eið
~S½t0�−ωt0Þ

¼
Z

∞

0

dt0e
ið24πκ

ffiffi
3
λ

p
t0−ωt0Þ

�
1þ i

3 · 2
Λ

4π

κ

×

�
log

				 1þ e−2
ffiffi
Λ
3

p
t0

2

				þ 1 − sinh2½
ffiffiffi
Λ
3

q
t0�

8cosh2½
ffiffiffi
Λ
3

q
t0�

þ
�
1

4
− log 4

�
tanh2

� ffiffiffiffi
Λ
3

r
t0

��
þ � � �

�

¼ i

ω − 2 4π
κ

ffiffiffi
3
Λ

q þ ρ1½ω� þ � � � : ð36Þ

Again we have a pole in the spectral representation at the

energy of the static patch, 2 4π
κ

ffiffiffi
3
Λ

q
. This term is present in

dþ 1 dimensions. The pole in (36) occurs again at a real
value of ω but this is an approximation. This pole is also
shifted by a slightly imaginary amount, which is standard in
the analysis of resonances [126,148]. To the order we are
studying here the rate is just that of the standard CDL
instanton [74,75,100].

VIII. DISCUSSIONS AND CONCLUSIONS

In this paper we presented the technical details of the
computations summarized in [95]. The main implication of
this is the following: There exist transition amplitudes
between excited states of supersymmetric flat vacua
employed in string theory that possess dS vacua as
resonances. Although we have not mentioned it a given
dS vacuum contains an exponentially large number of
almost degenerate states and in a real quantum theory we
would expect a correspondingly dense collection of poles.
This is analogous to the idea of a black hole as a collection
of resonances. Deforming the CDL instanton of [74] to a

FIG. 8. If the integration region V is deformed to the spacelike
surfaces, red curves, the divergence of the remaining corner term
can be analyzed. In 2þ 1 dimensions the wick rotation of this
analysis was carried out in [155,158].
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constrained CDL instanton solution allowed us to restrict
the path integral over all histories of a transition amplitude
between supersymmtric flat vacua to histories were only
the time between the nucleation points was integrated over.
The spectral representation of this amplitude possesses a
pole indicative of dS resonances forD ¼ 2, 4. In fact as the
pole comes from the linear t0 growth of the action
contribution of the bulk volume of the causal patch, it is
likely that the pole occurs in dSD. The deformation of the
original CDL instanton respects an OðD − 2Þ subgroup of
the instanton’s OðD − 1Þ symmetry as the volume deter-
minate factorizes into a t0 dependent piece and the trans-
verse SD−2; therefore, barring technical issues the same
analysis can be carried out in D dimensions such as
D ¼ 10; 11D.
None of this should be taken to mean that ordinary

scattering amplitudes for finite numbers of particles contain
dS spacetime [159]. The jIni and jOuti states we are
discussing are open (k ¼ −1) FRW cosmologies that
contain an infinite number of particles. The particles are
uniformly distributed on hyperbolic surfaces and, in par-
ticular, there exists an infinite number of particles on Σ of
Fig. 3 (left). This suggests that states of this type form a
superselection sector in which the dS resonances are found.
Since these states contain an infinite number of particles but
their entropy must not exceed the finite dS entropy of the
causal patch, they must be infinitely fine-tuned. Such states
would be the bulk states of the FRW/CFT framework
[35,74,75,81] or a similar string theory construction that
possesses dS spacetime as an intermediate configuration.
One should also point out that the superselection sector of
states of this type may not be continuously connected as in
standard S-matrix amplitudes. If an off shell history in the
transition amplitude is not in the superselection sector
proposed here it is very likely that it will cause a crunch as
opposed to a dS [160–162] or some other unknown
configuration that is not a small perturbation of the semi-
classical spacetime. In the analysis we employed here, we
assume we have restricted to states that do not crunch. The
infinitely fine-tuned nature of these states suggests there is
a large but finite number of them, essentially the expo-
nential of the dS entropy, ∼e10120 . Choosing in and out
states that do not crunch is just one more criterion for
selecting appropriate states that lead to a dS spacetime as
opposed to another spacetime and more analysis is needed
on this point.
It has been asked how recent work on complexity and

relations between geometry and entanglement apply in a
cosmological setting. In 2þ 1 dimensions the action
calculation when continued to AdS spacetime is similar
to wick rotated calculations relating complexity to action in
the AdS BTZ black hole [155,158]; see Fig. 8. In the
continuation V replaces the Wheeler–de Witt patch of
[155,158]. In both cases the action grows linearly with time
t0, which in the dS case leads to the resonant pole found; in

the AdS version it represents the linear growth in complex-
ity. It is possible that in cosmology the exponential
expansion of space may also represent a growth in com-
plexity. This is analogous to the growth of complexity
being related to the lengthening of nontraversable worm-
hole throats in the AdS BTZ Black Hole setting. Further
study in this direction is demanded.
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APPENDIX A: JUNCTION CONDITIONS
AND THE CONSTRAINED GEOMETRY

In this appendix we construct the constrained CDL
instanton geometry. For a given value of η0 the constrained
CDL can be viewed as an off shell path of the path integral
(7). The constrained CDL in the limit of going “on shell”
(η0 → 0) becomes the CDL instanton with a zero tension
domain wall; off shell the domain walls are null; see Fig. 4.
With the gauge choice that the separated bubbles are
centered on the de Sitter coordinate ψ ¼ 0 with the future
bubble nucleation at η0 and the past bubble ending at the
time reversed −η0.
To do this within the context of GR we employ the

Barrabés-Israel null junction conditions [96,163]. The de
Sitter metric in conformal coordinates is

ds2dS ¼
3

Λcos2η
f−dη2 þ dψ2 þ sin2ψdΩ2

2g; ðA1Þ

where Λ is the cosmological constant related to lds by

ldS ¼
ffiffiffi
3
Λ

q
. The coordinates − π

2
≤ η ≤ π

2
and 0 ≤ ψ ≤ π

along with the sphere’s coordinates cover the entire de
Sitter spacetime.
An open hyperbolic FRW universe with Λ ¼ 0 hat with

no matter has the metric

ds2FRW-Milne ¼ −dτ2 þ τ2ðdχ2 þ sinh2χdΩ2
2Þ; ðA2Þ

with 0 ≤ τ < ∞ and 0 ≤ χ < ∞.
This spacetime is also known as the Milne universe

[133]. It is just the interior of the forward light cone of the
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origin in Minkowski space, as can be seen via the
coordinate change t ¼ τ cosh χ, r ¼ τ sinh χ resulting in

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
2 ðA3Þ

with r ≤ t. For later convenience we perform the change of

variables r ¼
ffiffiffi
3
Λ

q
sinψ

cos ½ψþη0�, which results in the S2 of both

the hat and the de Sitter spacetimes having the same radial
coordinate,

ds2hat ¼ −dt2 þ 3cos2η0
Λcos4½ψ þ η0�

dψ2 þ 3sin2ψ
Λcos4½ψ þ η0�

dΩ2
2:

We employ this form of the metric while stitching to de
Sitter spacetime. In these coordinates there is not a
coordinate singularity along the stitching surface

t ¼ r ¼
ffiffiffi
3
Λ

q
sinψ

cos2 ðψþη0Þ, which in (A2) is the line coordinate

singularity τ ¼ 0.
For a nice review on how to use the junction conditions

to stitch together spacetime on null surfaces the reader is
encouraged to look at [96,167]. The future FRW hat, which
we refer to as region I, to keep in line with the notation of
[75,168], is connected to the dS spacetime on the null line,
t − r ¼ 0 in the hat, and 0 ¼ −ψ þ η − η0 in the dS
spacetime. This is referred to as the future null boundary
(F.B.); see Fig. 4.
Following the junction conditions [96], we decompose

the metric into

gμν ¼ −~ηðnμNν þ nνNμÞ þ eAμeBν σAB

¼ −~ηðnμNν þ nνNμÞ þ eaμebνhab ðA4Þ

with the null normal (surface gradient) nμ ¼ α−1∂μΦ and
null auxiliary vector Nμ. ~η−1 is not the coordinate η but a
real constant. In order to form a complete basis for the
metric we must also enforce the condition that n · N ¼ ~η−1

across the boundary as well as n · eA ¼ 0 andN · eA ¼ 0 on
the boundary. Φ½x� is a scalar function of the coordinates
and Φ½xμ� ¼ 0 defines the null surface that we are joining
the metrics along. The projection of the auxiliary vector to
the surface Na ¼ Nμe

μ
a must be continuous across the

boundary. Enforcing n · N ¼ ~η−1 across the boundary
determines α [169]. nμ ¼ α−1∂μΦ with α ¼ −1 in region

III (dS region) results in α ¼ −
ffiffiffi
3
Λ

q
1

cos η0
in regions I and II.

For the F.B., we have Φþ ¼ t −
ffiffiffi
3
Λ

q
sinψ

cos2½ψþη0� in the hat

coordinates and Φþ ¼ −ψ þ ðη − η0Þ in the dS coordi-
nates. The null auxiliary vector is defined by
Nμnμ ¼ ~η−1 ¼ −1.

Region I∶

nμ∂μ ¼ −
ffiffiffiffi
Λ
3

r
cos η0

�
∂t −

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0
∂ψ

�

nμdxμ ¼ −
ffiffiffiffi
Λ
3

r
cos η0

�
−dt −

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0

�

Nμ∂μ ¼ −
ffiffiffiffi
3

Λ

r
1

cos η0

�
1

2
∂τ þ

1

2

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0
∂ψ

�

Nμdxμ ¼ −
ffiffiffiffi
3

Λ

r
1

cos η0

�
1

2
dtþ 1

2

ffiffiffiffi
3

Λ

r
cos η0

cos2½ψ þ η0�
�
:

ðA5Þ

F:B: of region III∶

nμ∂μ ¼
Λ
3
cos2½ψ þ η0�∂η þ

Λ
3
cos2½ψ þ η0�∂ψ

nμdxμ ¼ −dηþ dψ

Nμ∂μ ¼
1

2
∂η −

1

2
∂ψ

Nμdxμ ¼
−3dη

2Λcos2½ψ þ η0�
þ −3dψ
2Λcos2½ψ þ η0�

: ðA6Þ

We employ ξa ¼ ðψ ; θ;ϕÞ as the intrinsic coordinates on
the null surface and express nμ in the basis of null
generators [96] nμ ¼ laeμa as follows,

F:B: la ¼
�
Λ
3
cos2½ψ þ η0�; 0; 0

�
; ðA7Þ

with eμ ¼ ∂xμ
∂ξa and xμ being the coordinates of the spacetime

regions on either side of the boundary.
This choice of la allows us to define hab� , which satisfies

the following relation with the surface’s degenerate three
metric [96], hab,

hac� hbc ¼ δab þ ~ηlaNμe
μ
b; ðA8Þ

resulting in the degenerate three metric hab and hab� being of
the block diagonal form

hab ¼
�
0 0

0 σAB

�
hab� ¼

�
0 0

0 σAB

�
ðA9Þ

with σAB, A;B ¼ ðθ;ϕÞ being the metric of S2 with radius

r ¼
ffiffiffi
3
Λ

q
sinψ

cos2 ðψþη0Þ ,

ds2 ¼ σABdθAdθB ¼ 3sin2ψ
Λcos4ðψ þ η0Þ

dΩ2
2; ðA10Þ

yielding hab ¼ eAaeBbσAB, h
ab� ¼ eaAe

b
Bσ

AB [170].
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Similarly the past hat is stitched onto the surface Φ− ¼
tþ r ¼ 0 in the hat coordinates Φ− ¼ ψ þ ðηþ η0Þ ¼ 0 in
the dS coordinates [171]. For completeness we give the nμ,
Nμ, and la for the past hat.

P:B: of region III∶

nμ∂μ ¼
Λ
3
cos2½ψ þ η0�∂η −

Λ
3
cos2½ψ þ η0�∂ψ

nμdxμ ¼ −dη − dψ

Nμ∂μ ¼
1

2
∂η þ

1

2
∂ψ

Nμdxμ ¼
−3dη

2Λcos2½ψ þ η0�
þ 3dψ
2Λcos2½ψ þ η0�

:

Region II∶

nμ∂μ ¼ −
ffiffiffiffi
Λ
3

r
cos η0

�
−∂t þ

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0
∂ψ

�

nμdxμ ¼ −
ffiffiffiffi
Λ
3

r
cos η0

�
dtþ

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0

�

Nμ∂μ ¼
ffiffiffiffi
3

Λ

r
1

cos η0

�
1

2
∂τ þ

1

2

ffiffiffiffi
Λ
3

r
cos2½ψ þ η0�

cos η0
∂ψ

�

Nμdxμ ¼ −
ffiffiffiffi
3

Λ

r
1

cos η0

�
1

2
dt −

1

2

ffiffiffiffi
3

Λ

r
cos η0

cos2½ψ þ η0�
�
:

ðA11Þ

P:B: la ¼
�
−
Λ
3
cos2½ψ þ η0�; 0; 0

�
: ðA12Þ

Since these are null shells, the junction conditions
require us to compute the discontinuity in the transverse
extrinsic curvature Kab ¼ −Nμeνb∇νe

μ
a ¼ Kba to determine

the stress tensor required to support this geometry [172],
defining the symbol γab ¼ Kabjþ −Kabj− to be the differ-
ence of Kab on both sides of the stitching surface evaluated
at the surface, in their respective coordinate charts. We can
define the surface stress tensor Sab, which has the following
relation on null shells [96,173],

−16πSab ¼ ðgac� lbld þ gbd� lalc

− gab� lcld − gcd� lalbÞγcd: ðA13Þ

Employing (A5)–(A13) we have

Sab ¼ −
1

8π

�
sinψ

cos η0 cos ðψ þ η0Þ
�
lalb: ðA14Þ

The full stress tensor is Tμν ¼ αeμaeνbS
abδðΦÞ in each

region, which has different representations in each region
dependent on the coordinates employed there. We state the
stress tensor here in all regions for clarity.

Region I∶

Tμν∂μ ⊗ ∂ν ¼
1

8π

� ffiffiffiffi
Λ
3

r
sinψ

cos½ψ þ η0�
∂τ ⊗ ∂τ þ

Λ cos½ψ þ η0� sinψ
3 cos η0

ð∂τ ⊗ ∂ψ þ ∂ψ ⊗ ∂τÞ

þ
�
Λ
3

�
3=2 cos3½ψ þ η0� sinψ

cos3η0
∂ψ ⊗ ∂ψ

�
δ

�
τ −

ffiffiffiffi
3

Λ

r
sinψ

cos½ψ þ η0�
�
: ðA15Þ

Region III∶

Tμν∂μ ⊗ ∂ν ¼
1

8π

�
Λ
3

�
2 cos3½ψ þ η0� sinψ

cos η0
ð∂η ⊗ ∂η þ ∂η ⊗ ∂ψ þ ∂ψ ⊗ ∂η þ ∂ψ ⊗ ∂ψÞ

× δðη − η0 − ψÞ þ 1

8π

�
Λ
3

�
2 cos3½ψ þ η0� sinψ

cos η0
ð∂η ⊗ ∂η

− ∂η ⊗ ∂ψ − ∂ψ ⊗ ∂η þ ∂ψ ⊗ ∂ψÞδ½ηþ η0 þ ψ � − Λ
8π

gμνdS∂μ ⊗ ∂ν: ðA16Þ

Region II∶

Tμν∂μ ⊗ ∂ν ¼
1

8π

� ffiffiffiffi
Λ
3

r
sinψ

cos½ψ þ η0�
∂τ ⊗ ∂τ −

Λ cos½ψ þ η0� sinψ
3 cos η0

ð∂τ ⊗ ∂ψ þ ∂ψ ⊗ ∂τÞ

þ
�
Λ
3

�
3=2 cos3½ψ þ η0� sinψ

cos3η0
∂ψ ⊗ ∂ψ

�
δ

�
τ þ

ffiffiffiffi
3

Λ

r
sinψ

cos½ψ þ η0�
�
: ðA17Þ
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As was argued in the main text, while the stress tensor in
this coordinate representation does depend on the time η0,
the boost invariance of the geometry implies that the action
contribution from the stress tensor should not depend on the
time η0.
We can now define the off shell Coleman-De Luccia

geometry as

gμν ¼ gðRegion IÞ
μ;ν Θ½Φþ� þ gðRegion IIIÞ

μ;ν Θ½−Φþ�Θ½Φ−�
þ gðRegion IIÞ

μ;ν Θ½−Φ−�: ðA18Þ

Here gμν is expressed as a distribution employing Θ½x�,
which is the Heaviside theta function with Θ½x� ¼ 1 for
x > 0,Θ½x� ¼ 0 for x < 0 and Θ½0� ¼ 1=2. (A18) along
with the stress tensor (A15)–(A17) represents the
spacetime.

APPENDIX B: JUSTIFICATION FOR THE
INTEGRATION REGION

In this section, we argue that in the approximations we
have made the integration region used is the only one
necessary to calculate the action of the causal patch. To

begin assume that we have a global coordinate chart for the
entire constrained CDL spacetime. Such a chart exists
because the stitched spacetime foliated by S2s is topologi-
cally simple. One can construct such a chart system by
using skew-Gaussian coordinates attached to geodesics that
reach into all three regions and are maximally smooth [96].
The metric for this entire spacetime can then be written as a
Dirac distribution treating the domain walls as thin shells,

gαβ ¼ gð1ÞαβΘ½Φ1� þ gð2ÞαβΘ½−Φ1�Θ½Φ2� þ gð3ÞαβΘ½−Φ2�: ðB1Þ

Here Θ½x� is the Heaviside theta function with Θ½x� ¼ 1
for x > 0,Θ½x� ¼ 0 for x < 0 and Θ½0� ¼ 1=2. The super-
scripts 1,2,3 refer to the future hat, de Sitter, and past hat
regions, respectfully [174] and Φ1ð2Þ are the scalar equa-
tions that vanish on the domain walls of the future and past
hat regions, respectfully. They are the analog of Φþ ¼
η − ðψ þ η0Þ and Φ− ¼ ηþ ðψ þ η0Þ that were employed
in the main text.
Following the formulation of the junction conditions in

[96] we can construct the distributions for Christoffel
symbols,

2Γσαβ ¼ ∂αgβσ þ ∂βgσα − ∂σgαβ

¼ ð∂αg
ð1Þ
βσ þ ∂βg

ð1Þ
σα − ∂σg

ð1Þ
αβ ÞΘ½Φ1� þ ð∂αg

ð2Þ
βσ þ ∂βg

ð2Þ
σα − ∂σg

ð2Þ
αβ ÞΘ½−Φ1�Θ½Φ2�

þ ð∂αg
ð3Þ
βσ þ ∂βg

ð3Þ
σα − ∂σg

ð3Þ
αβ ÞΘ½−Φ2� þ gð1Þαβ ∂αΘ½Φ1� þ gð1Þαβ ∂αΘ½Φ1�

− gð1Þαβ ∂αΘ½Φ1� þ gð2Þαβ ∂αðΘ½−Φ1�Θ½Φ2�Þ þ gð2Þαβ ∂αðΘ½−Φ1�Θ½Φ2�Þ
− gð2Þαβ ∂αðΘ½−Φ1�Θ½Φ2�Þ þ gð2Þαβ ∂αΘ½−Φ2� þ gð2Þαβ ∂αΘ½−Φ2� − gð3Þαβ ∂αΘ½−Φ2�

¼ 2Γð1Þ
σαβΘ½Φ1� þ 2Γð2Þ

σαβΘ½−Φ1�Θ½Φ2� þ 2Γð3Þ
σαβΘ½−Φ2�

þ gð1Þβσ δ½Φ1�∂αΦ1 − gð2Þβσ δ½−Φ1�Θ½Φ2�∂αΦ1 þ gð2Þβσ Θ½−Φ1�δ½Φ2�∂αΦ2 − gð3Þβσ Θ½−Φ2�∂αΦ2

þ gð1Þσα δ½Φ1�∂βΦ1 − gð2Þσα δ½−Φ1�Θ½Φ2�∂βΦ1 þ gð2ÞσαΘ½−Φ1�δ½Φ2�∂βΦ2 − gð3ÞσαΘ½−Φ2�∂βΦ2

þ gð1Þαβ δ½Φ1�∂σΦ1 − gð2Þαβ δ½−Φ1�Θ½Φ2�∂σΦ1 þ gð2ÞαβΘ½−Φ1�δ½Φ2�∂σΦ2 − gð3ÞαβΘ½−Φ2�∂σΦ2: ðB2Þ

Because of the time orderingΘ½Φ2� ¼ 1whenΦ1 ¼ 0 (the past hat boundary is in the past of the future hat boundary), terms

of the form gð1Þβσ δ½Φ1�∂αΦ1 − gð2Þβσ δ½−Φ1�Θ½Φ2�∂αΦ1 ¼ δ½Φ1�∂αΦ1ðgð1Þβσ − gð2Þβσ Þ. This allows us to rewrite (B2) as

2Γσαβ ¼ 2Γð1Þ
σαβΘ½Φ1� þ 2Γð2Þ

σαβΘ½−Φ1�Θ½Φ2� þ 2Γð3Þ
σαβΘ½−Φ2� þ δ½Φ1�∂αΦ1ðgð1Þβσ − gð2Þβσ Þ þ δ½Φ2�∂αΦ2ðgð2Þβσ − gð3Þβσ Þ

þ δ½Φ1�∂βΦ1ðgð1Þσα − gð2Þσα Þ þ δ½Φ2�∂βΦ2ðgð2Þσα − gð3Þσα Þ − δ½Φ1�∂σΦ1ðgð1Þαβ − gð2Þαβ Þ − δ½Φ2�∂σΦ2ðgð2Þαβ − gð3Þαβ Þ: ðB3Þ

In this coordinate system terms of the form ðgð1Þαβ − gð2Þαβ ÞjΦ1
¼ 0, since we have made a global coordinate chart that covers

the entire spacetime [175]. (B3) is then reduced to
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Γσαβ ¼ Γð1Þ
σαβΘ½Φ1� þ Γð2Þ

σαβΘ½−Φ1�Θ½Φ2� þ Γð3Þ
σαβΘ½−Φ2�

Γρ
αβ ¼ gρσΓσαβ

¼ Γð1Þρ
αβ Θ½Φ1� þ Γð2Þρ

αβ Θ½−Φ1�Θ½Φ2� þ Γð3Þρ
αβ Θ½−Φ2�;

ðB4Þ

where in the second line we have used the identities
ðΘ½x�Þ2 ¼ Θ½x� for x ≠ 0 and Θ½x�Θ½−x� ¼ 0 for x ≠ 0.
The Ricci tensor is defined as

Rμν ¼ Rρ
μρν ¼ ∂ρΓ

ρ
νμ − ∂νΓ

ρ
ρμ þ Γρ

ρλΓλ
νμ − Γρ

νλΓλ
ρμ; ðB5Þ

which with (B4) yields the following Dirac distribution,

Rμν ¼ ð∂ρΓ
ð1Þρ
νμ − ∂νΓ

ð1Þρ
ρμ ÞΘ½Φ1� þ ð∂ρΓ

ð2Þρ
νμ − ∂νΓ

ð2Þρ
ρμ ÞΘ½−Φ1�Θ½Φ2�

þ ð∂ρΓ
ð3Þρ
νμ − ∂νΓ

ð3Þρ
ρμ ÞΘ½−Φ2� þ ðΓð1Þρ

ρλ Γð1Þλ
νμ − Γð1Þρ

νλ Γð1Þλ
ρμ ÞΘ½Φ1�

þ ðΓð2Þρ
ρλ Γð2Þλ

νμ − Γð2Þρ
νλ Γð2Þλ

ρμ ÞΘ½−Φ1�Θ½Φ2� þ ðΓð3Þρ
ρλ Γð3Þλ

νμ − Γð3Þρ
νλ Γð3Þλ

ρμ ÞΘ½−Φ2�
þ ðΓð1Þρ

νμ δ½Φ1�∂ρΦ1 − Γð1Þρ
ρμ δ½Φ1�∂νΦ1Þ − ðΓð2Þρ

νμ δ½−Φ1�Θ½Φ2�∂ρΦ1

− Γð2Þρ
ρμ δ½−Φ1�Θ½Φ2�∂νΦ1Þ þ ðΓð2Þρ

νμ δ½Φ2�Θ½−Φ1�∂ρΦ2 − Γð2Þρ
ρμ δ½Φ2�Θ½−Φ1�∂νΦ2Þ

− ðΓð3Þρ
νμ δ½−Φ2�∂ρΦ2 − Γð3Þρ

ρμ δ½−Φ2�∂νΦ2Þ: ðB6Þ

Using the definition (B5) we can combine the terms in (B6) to yield

Rμν ¼ Rð1Þ
μν Θ½Φ1� þ Rð2Þ

μν Θ½−Φ1�Θ½Φ2� þ Rð3Þ
μν Θ½−Φ2� þ fðΓð1Þρ

νμ − Γð2Þρ
νμ Þ∂ρΦ1 − ðΓð1Þρ

ρμ − Γð2Þρ
ρμ Þ∂νΦ1gδ½Φ1�

þ fðΓð2Þρ
νμ − Γð3Þρ

νμ Þ∂ρΦ2 − ðΓð2Þρ
ρμ − Γð3Þρ

ρμ Þ∂νΦ2gδ½Φ2�; ðB7Þ

R ¼ gμνRμν ¼ Rð1ÞΘ½Φ1� þ Rð2ÞΘ½−Φ1�Θ½Φ2� þ Rð3ÞΘ½−Φ2�
þ fgð1ÞμνΘ½Φ1� þ gð2ÞμνΘ½−Φ1�Θ½Φ2�gfðΓð1Þρ

νμ − Γð2Þρ
νμ Þ∂ρΦ1 − ðΓð1Þρ

ρμ − Γð2Þρ
ρμ Þ∂νΦ1gδ½Φ1�

þ fgð2ÞμνΘ½−Φ1�Θ½Φ2� þ gð3ÞμνΘ½−Φ2�gfðΓð2Þρ
νμ − Γð3Þρ

νμ Þ∂ρΦ2 − ðΓð2Þρ
ρμ − Γð3Þρ

ρμ Þ∂νΦ2gδ½Φ2�: ðB8Þ

We see that the Ricci tensor and Ricci scalar separate into the Ricci tensor and scalar associated with the three regions as
well as terms containing delta function singularities occurring at the stitching surfaces [176]. One thing to note is that care
should be taken with two boundary terms. For simplicity we relabel the surface terms

Δð1Þ
μν δ½Φ1� ¼ fðΓð1Þρ

νμ − Γð2Þρ
νμ Þ∂ρΦ1 − ðΓð1Þρ

ρμ − Γð2Þρ
ρμ Þ∂νΦ1gδ½Φ1�

Δð2Þ
μν δ½Φ2� ¼ fðΓð2Þρ

νμ − Γð3Þρ
νμ Þ∂ρΦ2 − ðΓð2Þρ

ρμ − Γð3Þρ
ρμ Þ∂νΦ2gδ½Φ2�

Δð1Þδ½Φ1� ¼ fgð1ÞμνΘ½Φ1� þ gð2ÞμνΘ½−Φ1�Θ½Φ2�gfðΓð1Þρ
νμ − Γð2Þρ

νμ Þ∂ρΦ1 − ðΓð1Þρ
ρμ − Γð2Þρ

ρμ Þ∂νΦ1gδ½Φ1�
Δð2Þδ½Φ2� ¼ fgð2ÞμνΘ½−Φ1�Θ½Φ2� þ gð3ÞμνΘ½−Φ2�gfðΓð2Þρ

νμ − Γð3Þρ
νμ Þ∂ρΦ2 − ðΓð2Þρ

ρμ − Γð3Þρ
ρμ Þ∂νΦ2gδ½Φ2�: ðB9Þ

The Einstein tensor Gμν ¼ Rμν − 1
2
Rgμν can be written as

Gμν ¼ Rð1Þ
μν Θ½Φ1� þ Rð2Þ

μν Θ½−Φ1�Θ½Φ2� þ Rð3Þ
μν Θ½−Φ2� þ Δð1Þ

μν δ½Φ1� þ Δð2Þ
μν δ½Φ2� −

1

2
fRð1ÞΘ½Φ1� þ Rð2ÞΘ½−Φ1�Θ½Φ2�

þ Rð3ÞΘ½−Φ2� þ Δð1Þδ½Φ1� þ Δð2Þδ½Φ2�gðgð1Þμν Θ½Φ1� þ g2ÞμνΘ½−Φ1�Θ½Φ2� þ gð3Þμν Θ½−Φ2�Þ
¼ Gð1Þ

μν Θ½Φ1� þGð2Þ
μν Θ½−Φ1�Θ½Φ2� þ Gð3Þ

μν Θ½−Φ2� þ Δð1Þ
μν δ½Φ1� þ Δð2Þ

μν δ½Φ2� þ fgð1Þμν Θ½Φ1� þ gð2Þμν Θ½−Φ1�gΔð1Þδ½Φ1�
þ fgð2Þμν Θ½Φ2� þ gð3Þμν Θ½−Φ2�gΔð2Þδ½Φ2�: ðB10Þ

We see that because of this the Einstein tensor and Ricci scalar break up into their respective values for their regions of

spacetime, i.e., Gð1Þ
μν ¼ Gð3Þ

μν ¼ 0, and Gð2Þ
μν ¼ Λgð2Þμν ; similarly Rð1Þ ¼ Rð3Þ ¼ 0 and Rð2Þ ¼ 4Λ.
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This yields the field equations

Gμν ¼ Gð2Þ
μν Θ½−Φ1�Θ½Φ2� þ

1

2
Λgð2Þμν Θ½−Φ1�Θ½Φ2�

þ fΔð1Þ
μν þ Δð1Þðgð1Þμν Θ½Φ1� þ gð2Þμν Θ½−Φ1�Þgδ½Φ1�

þ fΔð1Þ
μν þ Δð1Þðgð1Þμν Θ½Φ2� þ gð2Þμν Θ½−Φ2�Þgδ½Φ2�:

ðB11Þ

The Einstein-Hilbert action that produces this Equation
of Motion is

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffiffi
gð2Þ

q
ðRð2Þ − 2ΛÞΘ½−Φ1�Θ½Φ2�

þ SΔ þ Sboundary; ðB12Þ

as was argued in the main text. Here, the stress-tensor
contributions of the domain wall [the second and third lines
of (B11)] come from the SΔ, which we argued is indepen-
dent of η0 even though the expression of Tμν might have η0
dependence depending on the coordinate system.

APPENDIX C: GEODESICS AND
CHRISTOFFELLS

For reference the geodesic equations of dS spacetime in
conformal coordinates are

∂2η

∂σ2 þ tan η

�∂η
∂σ

�
2

þ tan η

��∂ψ
∂σ

�
2

þ sin2ψ

��∂θ
∂σ

�
2

þ sin2θ

�∂ϕ
∂σ

�
2
��

¼ 0; ðC1Þ

∂2ψ

∂σ2 þ 2 tan η
∂η
∂σ

∂ψ
∂σ − sinψ cosψ

��∂θ
∂σ

�
2

þ sin2θ

�∂ϕ
∂σ

�
2
�
¼ 0; ðC2Þ

∂2θ

∂σ2 þ 2 tan η
∂η
∂σ

∂θ
∂σ þ 2 cotψ

∂ψ
∂σ

∂θ
∂σ

− sin θ cos θ
�∂ϕ
∂σ

�
2

¼ 0; ðC3Þ

∂2ϕ

∂σ2 þ 2 tan η
∂η
∂σ

∂ϕ
∂σ þ 2 cotψ

∂ψ
∂σ

∂ϕ
∂σ

þ 2 cot θ
∂θ
∂σ

∂ϕ
∂σ ¼ 0: ðC4Þ

The geodesic equations for the hats (Milne universe) in
the coordinates used in (A4) are

∂2τ

∂σ2 ¼ 0; ðC5Þ

∂2ψ

∂σ2 þ 2 tan½ψ þ η0�
�∂ψ
∂σ

�
2

−
cos½ψ þ η0� sinψ

cos η0

×

��∂θ
∂σ

�
2

þ sin2θ

�∂ϕ
∂σ

�
2
�
¼ 0; ðC6Þ

∂2θ

∂σ2 þ
2 cos η0

sinψ cos ½ψ þ η0�
∂ψ
∂σ

∂θ
∂σ − sin θ cos θ

�∂ϕ
∂σ

�
2

¼ 0;

ðC7Þ

∂2ϕ

∂σ2 þ
2 cos η0

sinψ cos ½ψ þ η0�
∂ψ
∂σ

∂ϕ
∂σ þ 2 cot θ

∂θ
∂σ

∂ϕ
∂σ ¼ 0:

ðC8Þ
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