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I propose a general, covariant way of defining when one region is “deeper in the bulk” than another. This
definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may
be applied to both points and surfaces, and it may be used to compare the depth of bulk points or surfaces
relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed
“light-cone cut” formalism, the comparative depth between two bulk points can be determined from the
singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal
wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore
matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-
defined holographic coordinate exists. In terms of holographic renormalization group flow, this new
definition of bulk depth makes contact with coarse graining over both large distances and long time scales.
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I. INTRODUCTION

One of the more mysterious aspects of the celebrated
AdS=CFT correspondence [1–3] is the emergence of the
holographic dimension. AdS=CFT, a particular realization
of the holographic principle [4–6], posits that the dynamics
of gravitational theories in a (dþ 1)-dimensional asymp-
totically anti–de Sitter (AdS) spacetime can be described by
a nongravitational quantum field theory (QFT) in d
dimensions.1 The name holography is itself derived from
the equivalence of a lower-dimensional theory to a higher-
dimensional one, although a precise understanding of the
way in which the additional holographic dimension is
described in the dual theory remains elusive.
Energy scale, and in particular renormalization group

(RG) flow, has been suggested as the responsible party for
the emergent holographic dimension (see e.g. Refs. [7–16]).
Under such a hypothesis, greater depth in the bulk
corresponds to coarse graining in the QFT. Of particular
note is the UV/IR correspondence: a UV cutoff Λ in the
field theory is dual in the bulk to a large “radial” cutoff
at r ¼ Λ.
More generally, the expectation is that geometry deep in

the bulk should in some sense be dual to the infrared
physics of the dual field theory. Deep bulk geometry is
usually reached by nonlocal observables across large
distances on the boundary (e.g. the entanglement entropy
of progressively larger boundary intervals is understood to
probe deeper in the bulk via the Ryu-Takayanagi prescrip-
tion [17,18]), in agreement with the expectation that points
deep in the bulk are sensitive to dual infrared energy scales.
A clear example may be constructed from holographic field

theories with a confinement/deconfinement phase transi-
tion (see e.g. Refs. [19–21]).
At this point, a natural question arises: How is “bulk

depth” defined? We shall be primarily concerned with the
comparative bulk depth between two points, but in order to
make contact with holographic RG flow, we will give a
definition that also encompasses the depths of surfaces.
A general asymptotically AdS spacetime does not have

a natural holographic coordinate. Even the Fefferman-
Graham expansion [22] fails to provide a unique coordi-
nate; additionally, the Fefferman-Graham expansion
often fails to converge away from the asymptotic region.
Furthermore, for those spacetimes in which the Fefferman-
Graham gauge is in fact well defined everywhere, a
coordinate-based definition is inherently unsatisfactory,
as it is not only gauge dependent but also not naturally
accessible from dual QFT data.
Progress was made recently towards a qualification of

bulk depth perception in Refs. [23–26] (see also Ref. [27]
for earlier work in spacetimes with timelike Killing
symmetry). The approach of Refs. [23,24] invokes the
inverse Radon transform; as the inverse Radon transform is
known only in AdS, we will pursue here a different line of
investigation. Our goal is to give a covariant definition of
bulk depth with minimal assumptions about the geometry.
The crux of our construction is causality, which has been
previously suggested as a key ingredient in the UV/IR
correspondence [27,28].
At a fundamental level, the question of comparing the

depth of two bulk points is itself ill-posed: the specification
of bulk points is not per se well defined from field theory
data. Fortunately, this potential pitfall has been addressed in
several different ways in the literature in the large-N, large-
λ limit (see e.g. Refs. [29–34], and most recently in the
context of quantum error correction, Refs. [35,36]). We
will take the approach of Ref. [34] (and earlier work
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Refs. [37–41]), and in particular its application in Ref. [42]:
a bulk point can be specified in terms of the intersection of
the boundary of its past and future with the asymptotic
boundary. The intersection of the past (future) light cone of
a point p with the asymptotic boundary is called the past
(future) light-cone cut of p [42,43]; this is illustrated in
Fig. 1. Any bulk point with both past and future causal
contact with the boundary may thus be uniquely identified
via the location of its light-cone cuts, which can themselves
be obtained from the singularities of time-ordered
Lorentzian correlators in the dual field theory [34]. This
procedure will be reviewed below in Sec. II.
Having settled on a covariant definition of a bulk point

from field theory data (at least for points within the causal
wedge of the boundary), we turn to obtaining a general,
covariant qualification of comparative bulk depth between
two points. Consider the following gedanken experiment:
Let Alice be a boundary observer; intuitively, Alice should
perceive a point p to be “deeper in the bulk” than a point q
if she finds that she is out of causal contact with p for a
longer proper time than with q. See Fig. 2. In particular, if,
in the time that it takes Alice to send and receive a null
curve from p, she can send and receive timelike curves
from q, then intuitively q is “closer” to Alice than p. In
other words, the subset of a boundary causal diamond that

is spacelike-separated from p is properly contained in the
subset of the same causal diamond that is spacelike-
separated from q.
This intuition raises a conundrum in spacetimeswhere the

entire bulk is in the causal wedge of the boundary (i.e., when
there is no event horizon): for almost any pair of spacelike-
separated bulk points, different boundary subregions
provide different answers to the extent of causal contact
they have with the points in question. This is illustrated in
Fig. 3(a) for the case of pure AdS, where the point p is

FIG. 1. The light cone cuts C�ðpÞ of a point p in some generic
asymptotically AdS geometry. The cuts are given by the
intersection of the boundary of the past and future of p with
the asymptotic boundary; this is simply the intersection of the
light cone of p with the asymptotic boundary, with generators
leaving the surface after intersections. The irregular shape of the
cones serves to illustrate the generic effects of gravitational
lensing on the light cone of a point.

FIG. 2. A schematic illustrating an observer Alice (thick blue
line) propagating on the causal diamond of some boundary region
(pink). The points p and q live in the bulk; Alice first loses causal
contact with p, then with q. She regains causal contact with q
before regaining causal contact with p: Alice perceives p as
farther away than q.

(a) (b)

FIG. 3. (a) A constant time slice of pure AdS. The region A
perceives q as deeper in the bulk, while the region B perceives p
as deeper. (b) The light-cone cuts of p (purple) are “sandwiched”
by the light-cone cuts of q (orange) on the domain of dependence
of A (gray): a larger subset of the domain of dependence of A is
spacelike to q than is spacelike to p; thus q appears to be deeper
in the bulk relative to A.
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perceived as deeper in the bulk than q by the boundary
subregion A, with the opposite result for the subregion B.
In such spacetimes, there is no absolute definition of

comparative bulk depth for pairs of points: the only definition
with physical content is one which qualifies depth relative to
a fixed boundary subregion. Alternatively, in the absence of
an event horizon, it can be illuminating to consider the bulk
depth of surfaces. For instance, we would like to consider a
surface in pureAdS on some constant time slice and constant
radius to be “deeper in the bulk” than a surface on the same
time slice at larger radius. In this case, the intuition above
works well: null geodesics fired from the “deeper” surface
define a boundary slice to the future of those fired from the
surface closer to the boundary. See Fig. 4.
When an event horizon exists, the intuition changes: it

appears clear that points on the event horizon should be
defined as “deeper in the bulk” than any spacelike-
separated counterpart in the causal wedge of the boundary.
In the presence of an event horizon, moreover, points that
approach the event horizon are indeed spacelike-separated
from a strictly larger subset of the entire boundary than
points in the asymptotic region. See Fig. 5 for an
illustration.
We give a definition that allows for the comparison of

bulk depth between any two bulk regions (points or
surfaces) relative to a boundary region. The case where
some points are deeper in the bulk than others relative to the
entire boundary is simply a special case of our definition
where the boundary region in question is the entire
boundary. Our definition is simple: If, in some boundary
causal diamond D, the subset of D which is spacelike to
some bulk region S is properly contained in the subset
of D which is spacelike to some bulk region S0, then S0
is deeper in the bulk than S. This may be rephrased in terms
of the light-cone cuts of points and their analogues for

higher-dimensional surfaces: S0 is deeper than S relative to
D if the light-cone cuts of S0 “sandwich” the light-cone cuts
of S on D. Here, by the light-cone cuts of a surface, we
mean ∂J�½S� ∩ ∂M. See Fig. 4 for an illustration. This
definition is a partial ordering of spacelike-separated points
and surfaces by depth: certain bulk points will be located at
the same depth.
Besides applicability to comparative depth perception of

points and surfaces relative to a particular boundary
subregion and to the entire boundary, a good definition
of bulk depth must furthermore satisfy the following
requirements: it must (i) be covariant in a general bulk
geometry, (ii) agree with known examples in which an
obvious holographic coordinate exists and with general
intuition that a larger separation on the boundary corre-
sponds to a deeper region in the bulk, and (iii) have a well-
understood field theory dual with a connection to energy
scale.
The above definition is clearly covariant and general. It

turns out that motion along the holographic “r” coordinate
in a static, spherical, hyperbolic, or planar AdS black hole
agrees with our definition with motion deeper into the bulk:
in such geometries, nested constant-r surfaces correspond
to motion deeper in the bulk, in agreement with the UV/IR
correspondence.
We now turn to (iii): the location of light-cone cuts of

points may be determined from the singularity structure of
Lorentzian correlators, with some caveats. The procedure
for obtaining the cuts from bulk-point singularities as
outlined in Ref. [42] fails to construct the cuts outside
of the causal wedge, and also within the causal wedge for a
region near the black hole event horizon. A variant of the
procedure exists for reconstruction up to the event horizon
for black holes formed from collapse [44]. We will proceed
here under the assumption that we have obtained the

(a) (b)

FIG. 4. (a) A time slice of the bulk, where S (black) and S0
(blue) are two spacelike surfaces on the same Cauchy slice.
(b) The analogue of light-cone cuts for two surfaces S (gray) and
S0 (blue). The cuts of S0 are sandwiched by the cuts of S: a larger
boundary proper time passes between C�½S� than between
C�½S0�. S is thus deeper in the bulk than S0.

FIG. 5. In the presence of an event horizon, a point p can be
spacelike-separated from a larger subset of the entire boundary
than q is. The result is a “sandwich” of the cuts of q by the cuts of
p. p is deeper in the bulk relative to the entire boundary.
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light-cone cuts in some way or other even in eternal black
hole geometries. Given the light-cone cuts of points in the
causal wedge, there is an explicit procedure for obtaining
the bulk conformal metric. This allows us to construct the
light-cone cuts of surfaces, which may also be found by
taking the outer envelope of the light-cone cuts of their
constituent points.
Under the assumption that we have been able to recover

the light-cone cuts for the subset of the bulk of interest, the
definition has a clear interpretation in the dual field theory.
When a point p is deeper than a point q, the correlators of
interest are singular at longer time separations, which
corresponds to lower energies; we recover a precise version
of bulk point depth as a local probe of dual infrared physics.
A similar interpretation holds for bulk depth of surfaces.
Increasing time separation is perhaps a more unconven-

tional manifestation of reaching infrared physics than
increasing distance scales. It is natural to ask whether
the definition above reproduces the standard intuition that
larger spatial separations in the dual QFT correspond to
increasing bulk depth. We find that this is indeed the case: a
point p is deeper in the bulk than a point q if and only if
every causal wedge containing p also contains q. A similar
statement holds for the relative bulk depth criterion.
The paper is structured as follows: Section II reviews

the light-cone cut reconstruction; readers familiar with
Ref. [42] may wish to skip it. Section III formally
introduces the definition of comparative bulk depth, as
well as several useful constructs and a proposed measure of
bulk depth; we prove that event horizons are sufficient for
the global definition of comparative bulk depth to apply.
Section III A gives an example of comparative bulk depth
relative to a boundary subregion in pure AdS; Sec. III B
presents an argument that our definition of the bulk depth of
surfaces agrees with the holographic coordinate in AdS
black holes with certain symmetries. Section IV links our
definition with depth in the bulk as measured by the causal
wedges of boundary regions. We conclude in Sec. V with a
discussion of possible applications for future directions and
more speculative ideas.
Assumptions: Throughout this paper, we will assume

that the bulk ðM; gÞ is a (dþ 1)-dimensional manifold,
which is C2, AdS hyperbolic,2 asymptotically AdSdþ1,

3 and
obeys the achronal averaged null curvature condition:R
γ Rabkakb ≥ 0, where Rab is the Ricci tensor, and ka is
the null generator of an achronal, complete geodesic γ. The
symbol ∂M is used to refer exclusively to a connected
component of the conformal boundary. We do not assume

the null generic condition. All results below apply in the
large-N, large-λ limit. All conventions are as in Ref. [47]
unless otherwise stated.

II. REVIEW OF LIGHT-CONE CUT FORMALISM

This section gives a review of the relevant aspects of the
light-cone cut construction of Ref. [42]. Those readers who
are familiar with it may wish to skip to Sec. III.
We begin by reminding the reader of some useful

terminology: the causal future of a point p, denoted
JþðpÞ, is the collection of points that can be reached from
p by a timelike or null future-directed path. The causal past
of p, J−ðpÞ is simply the time-reversed definition.
The future light-cone cut, or “future cut” for short, of a

bulk point p, denoted CþðpÞ, is the set of the earliest points
on ∂M (as measured by an observer on ∂M) that can be
reached by null future-directed paths from p. The past
light-cone cut of p, denoted C−ðpÞ, is defined similarly, in
terms of null past-directed paths from p. Formally,

C�ðpÞ≡ ∂J�ðpÞ ∩ ∂M: ð1Þ

When a statement applies equally to past or future cuts,
we will write CðpÞ.
The light-cone cuts of bulk points obey several useful

properties, which we will use throughout this paper:
(1) C�ðpÞ is a complete spatial slice of ∂M.
(2) C�ðpÞ is a continuous set. C�ðpÞ is furthermore C1

everywhere, except on at most a measure zero
set [44].

(3) C�ðpÞ corresponds to a unique bulk point p; C�ðpÞ
and C�ðqÞ agree on an open set if and only if
C�ðpÞ ¼ C�ðqÞ, which is equivalent to p ¼ q.

(4) Certain configurations of light-cone cuts correspond
exclusively to spacelike-separated points.

Particular use will be made of property 4. There are two
specific configurations of the light-cone cuts of a pair of
bulk points fp; qg, which must correspond to spacelike-
separated points:
(1) Sandwich.—If CþðpÞ ⊂ Iþ½CþðqÞ� and C−ðpÞ ⊂

I−½C−ðqÞ�, then p and q are spacelike-separated.
The cuts of p are said to sandwich the cuts of q. See
Fig. 6(a).

(2) Crossing.—If CðpÞ intersects both Iþ½CðqÞ� and
I−½CðqÞ�, then p and q are spacelike-separated. The
cuts of p and q are said to cross. See Fig. 6(b).

The sandwich configuration is of primary interest: if the
cuts of p sandwich the cuts of q, then the subset of ∂M
which is spacelike to q is properly contained in the subset
of ∂M which is spacelike to p. That is, any boundary curve
will cease to have causal contact with p while still in causal
contact with q, and will regain causal contact with q before
regaining causal contact with p. The sandwich configura-
tion will be used in the next section to qualify when one

2See Ref. [45] for a definition.
3Most of the results below apply to asymptotically locally AdS

geometries with the choice of a standard conformal frame on the
boundary (as defined in Ref. [46]) and minor modifications, but
for simplicity, we have focused exclusively on asymptotically
AdS geometries.

NETTA ENGELHARDT PHYSICAL REVIEW D 95, 066005 (2017)

066005-4



bulk point is deeper than another relative to the entire
boundary.
Reference [42] gave an explicit procedure for recon-

structing the bulk conformal metric from light-cone cuts.4 If
we are given the cuts for some subset of the bulk, we may
therefore safely assume that the bulk conformal metric is
known data within that subset. This immediately grants
access to causal separation between points and surfaces; we
know when p and q are spacelike-separated, and we can
construct the entirety of their light cone within the causal
wedge—provided that we have been able to determine the
location of the light-cone cuts.
Next, we review a procedure of obtaining the light-cone

cuts from the dual field theory suggested by Ref. [42]. It is
possible other, more general ways of determining the cuts
exist. This particular procedure makes use of the singularity
structure of Lorentzian correlators in the dual field theory.
A time-ordered Lorentzian (dþ 3)-point correlator5

hOðx1Þ…Oðxdþ3Þi of some operator O is singular when
the points fx1;…xdþ3g are null-separated from a common
vertex and energy-momentum is conserved at the vertex. In
a holographic QFT dual to a semiclassical geometry, this
vertex may lie in the bulk. A singularity in the (dþ 3)-point
correlator that is not sourced by a boundary vertex thus
identifies a bulk point; such singularities are called bulk-
point singularities [34].
A bulk point p can then be identified with two time-

separated spatial slices on the boundary: the two spatial
boundary slices with the smallest time separation at which
the (dþ 3) correlators are singular due to a bulk vertex.
These slices are precisely the intersection C�ðpÞ ¼
∂J�ðpÞ ∩ ∂M.

The light-cone cuts determine the bulk geometry only
up to an overall function.6 If we wish to adhere purely to
this formalism without assuming that we know the bulk
geometry, this may prima facie appear to be an insur-
mountable hurdle. Fortunately, our goal is determine
whether p is deeper in the bulk than q; we do not attempt
to give a measure of precisely how deep p is, although a
potential approach to this problem is discussed in Sec. III.
Such an approach works under the assumption that the bulk
conformal factor has been determined in some way. For a
comparison of relative depth between two points, the
conformal factor is unnecessary.

III. BULK DEPTH FROM LIGHT-CONE CUTS

We will now use the light-cone cut formalism described
in the previous section to precisely define when one bulk
point is deeper than another. Before we proceed, let us first
remind the reader of a few standard definitions:
(1) Let A be a (d − 1)-dimensional spacelike boundary

region. The domain of dependence of A on the
boundary is defined as D∂ ½A� ¼ Dþ

∂ ½A�∪D−∂ ½A�,
where Dþ

∂ ½A� (D−∂ ½A�) is the set of all points p
such that every boundary-contained past-directed
(future-directed) causal curve through p passes
through A.

(2) The causal wedge of A, denoted CW ½A�, is defined
as the set of bulk points which can send both
past- and future-directed causal curves to D∂ ½A�:
CW ½A�≡ J−½D∂ ½A�� ∩ Jþ½D∂ ½A�� [48,49].7

(3) The causal surface ofA, denoted C½A�, is defined as
C½A�≡ ∂J−½D∂ ½A�� ∩ ∂Jþ½D∂ ½A�� [49].

We look for a definition of bulk depth that captures the
idea that observers on the boundary spend a longer proper
time out of causal contact with points that are deeper in the
bulk. As noted above, such a definition should be adaptable
to both global depth, where any boundary observer must
spend longer out of causal contact with a point, and relative
depth, where this holds only for boundary observers in a
certain causal diamond.
To qualify bulk depth between surfaces, we extend the

terminology of light-cone cuts to extended objects. Let S be
a spacelike bulk surface. The union of the future (past)
light-cone cuts of all points in S defines a d-dimensional
boundary region. The outer envelope of that region—i.e.,
the past (future) boundary of that region—is the future
(past) light-cone cut of S:

(a) (b)

FIG. 6. Reproduced from Ref. [42]. (a) The sandwich con-
figuration: The light-cone cuts of p (purple) are sandwiched by
the light-cone cuts of q (orange). (b) The crossing configuration:
At least one of C�ðpÞ intersects the corresponding cut of q.

4The bulk conformal metric is the equivalence class of metrics
in the bulk, which are all related by an overall rescaling: Ω2g ∼ g.

5In Ref. [34], (dþ 2)-point correlators were considered; the
additional point is required for the construction of Ref. [42].
Since in this work we will be using the latter, we focus on
(dþ 3)-point correlators.

6See Ref. [44] for extensions that include bulk spacetimes
where the Einstein tensor is traceless.

7The causal wedge is sometimes defined in the literature in
terms of the chronological past and future I�½D∂ ½A��. We find it
more convenient here to use the causal past and future J�½D∂ ½A��.
All results quoted in this text about the causal wedge apply for
either definition under our list of assumptions.

EXPLORING THE BULK IN AdS=CFT: A COVARIANT … PHYSICAL REVIEW D 95, 066005 (2017)

066005-5



Cþ½S� ¼ ∂Jþ½S� ∩ ∂M; ð2Þ

C−½S� ¼ ∂J−½S� ∩ ∂M: ð3Þ
The definitions of the sandwich and crossing configura-
tions for the light-cone cuts of surfaces are identical to
those for the light-cone cuts of points.
We are now ready to state the definition of comparative

bulk depth between two bulk surfaces:
Comparativebulkdepth.—LetAbea (d − 1)-dimensional

spacelike boundary subregion (where A is not a complete
spacelike sliceof∂M). The regionS is said tobedeeper in the
bulk relative to A than the region S0 if on D∂ ½A�, the cuts
C�½S� sandwich C�½S0�. More precisely, this is the case if
both of the following conditions are satisfied:

Cþ½S� ∩ D∂ ½A� ⊂ Iþ½Cþ½S0�� ∩ D∂ ½A�; ð4Þ
C−½S� ∩ D∂ ½A� ⊂ I−½C−½S0�� ∩ D∂ ½A�; ð5Þ

with the additional provision that, if the cuts of S0 intersect
D∂ ½A� and J�½S� ∩ D∂ ½A� ¼ ∅ (so D∂ ½A� is spacelike to S
everywhere), then S is deeper than S0 relative to A.
This is illustrated in Fig. 3(b). Note that S, S0 can be

spacelike surfaces of any dimension; in particular, S and S0
can be points.
To determine whether S is deeper than S0 relative to a

boundary region A, we must therefore construct the boun-
dary domain of dependence ofA, and find the location of the
light-cone cuts of p and q on this domain of dependence.
The above definition captures precisely the notion that a

larger component of the boundary or boundary subregion is
spacelike to a point (or surface) which is deeper in the bulk.
As illustrated in Fig. 7, points on the bifurcation surface of

Schwarzschild-AdS are acausal to all boundary points at
finite boundary time, marking the bifurcation surface as the
deepest surface in the causal wedge of ∂M.
It is instructive to restate the definition in the special case

when we are interested in global depth comparison:
determining when S is deeper than S0 relative to the entire
boundary. We further break the definition down into points
and surfaces:
Global depth of points.—Let p and q be two spacelike-

separated bulk points in the causal wedge of the entire
boundary. The point p is said to be deeper in the bulk than
the point q if the cuts of p sandwich the cuts of q, as
defined in Sec. II. See Fig. 6(a).
Global depth of surfaces.—Let S, S0 be two bulk

surfaces on the same Cauchy slice of M. S is deeper in
the bulk than S0 if Cþ½S� is in the future of Cþ½S0� and C−½S�
is in the past of C−½S0� ∩ ∂M. See Fig. 4 for an illustration.
Recast in this form, the definition clearly has the desired

consequence that, if S ⊂ Int½S0� (where the interior here is
defined on some Cauchy surface), then S by this definition
lies deeper in the bulk than S0, when both surfaces live
entirely within the causal wedge of ∂M.
Existence of sandwiches: The reader may at this point

protest that the sandwich cut configuration is one of several
possible cut configurations for spacelike-separated bulk
points. When is there a guarantee that the sandwich
configuration exists? We have claimed that the sandwich
is a natural configuration in black hole geometries. Indeed,
the existence of an event horizon is sufficient for the
sandwich configuration to exist.
Theorem: There exist pairs of bulk points fp; qgwhose

light-cone cuts form a sandwich whenever CW ½∂M�⊊M.
Proof.—To show this, it is sufficient to construct a pair of

points whose light-cone cuts form a sandwich in a
spacetime with an event horizon, i.e. when CW ½∂M�⊊M.
Assume without loss of generality that the connected

component Hþ ¼ ∂J−½∂M� is nonempty, so there is a
future event horizon; the arguments below apply equally
well to past horizons under time reversal. Generators of
∂J−½∂M� do not intersect ∂M once they have entered the
bulk, by the Gao-Wald theorem [50] and because ∂J−½∂M�
is achronal, and as assumed above, ∂M is a single
connected component of the boundary.
Let p be a point onHþ, so thatCþðpÞ is formally at future

infinity in theboundaryspacetime,whileC−ðpÞ isgenerallyat
some finite time; see Fig. 8 [the arguments below apply
equallywell ifp lieson thebifurcation surface, andC−ðpÞ is at
infinitepast time in theboundary].Let t0 be the largestvalueof
the boundary time coordinate (in the Einstein static universe
frame) on C−ðpÞ, and consider firing a future-directed null
geodesic γ into thebulk at finite boundary time t > t0 þ π.Let
qbeanypointon γ in theboundary causalwedgeCW ½∂M�. By
construction, there are future-directed paths fromq to ∂JþðpÞ
and past-directed paths fromq to ∂J−ðpÞ, which immediately
implies that q and p are spacelike-separated.

FIG. 7. In Schwarzschild-AdS, points near the bifurcation
surface are deeper in the bulk than points in the asymptotic
region. More precisely, points at a smaller radial coordinate r
(outside of the horizon) are deeper in the bulk. Formally, the light-
cone cuts of points on the bifurcation surface are at past and
future infinity on the boundary in the static cylinder frame.
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If γ is achronal from q to ∂M, then γ is a generator of
∂J−ðqÞ; if γ is chronal from ∂M to q, then γ ∩ ∂M lies in
the past of C−ðqÞ. See Fig. 8. Either way, C−ðqÞ has points
at t > t0 þ π; because Δt ¼ π is the light crossing time on
the boundary, this means that every point on C−ðpÞ is
timelike-separated from C−ðqÞ: C−ðpÞ ⊂ I−½C−ðqÞ�. Since
q is by construction spacelike-separated from p and within
the interior of the causal wedge, CþðqÞ lies at finite
boundary coordinate time. Formally, the cuts of q are
sandwiched between the cuts of p. To get a sandwich for
two points, both with cuts at finite boundary time, we can
also deform p into CW ½∂M�. Because I� is an open set,
sufficiently small deformations will leave the sandwich
structure intact.
Intuitively, it is possible that the existence of an event

horizon, or at the very least null geodesics that do not reach
∂M, could also be a necessary condition for the sandwich
configuration: this configuration captures the notion of
progressively fewer light-cone generators reaching the
boundary when the point is moved in a spacelike direction.
This intuition is discussed further in Sec. IV.
Efficient curves: The discussion above has focused on

determining whether and when one of two bulk points can
be qualified as living deeper in the bulk. We have thus far
ignored the question of the measurement of such depth.
Is there a natural object that measures the depth

between two points? Certainly, the proper time elapsed on
the boundary between cuts is a possible candidate; however, it
changes with different choices of a boundary conformal
frame. We propose instead to use distinguished bulk curves
we term efficient curves. The shortest such efficient curve
between twopoints,when it exists, provides a naturalmeasure
of the comparative depth between a point p ∈ S and q ∈ S0.
Efficient curve.—Let p and q be two spacelike-separated

regions or points inM, and let p be deeper than q (globally

or relative to a subregion A). If there exists a spacelike bulk
curve γðsÞ between p and q, γð1Þ ¼ p and γð0Þ ¼ q, such
that any point γðs1Þ is deeper (globally or relative toA) than
γðs2Þ when 1 > s1 > s2 > 0, then we say such a curve γ is
an efficient curve. See Fig. 9 for an illustration.We define the
relative depth between p and q as the length of the minimal
efficient curve between them (which is always finite).
The intuition behind the definition of the efficient curve

is that locally it is the most efficient way to move deeper
into the bulk, since it moves deeper monotonically. It is
possible that there is a shorter distance curve between p and
q than the minimal-length efficient curve between them, but
it will not move into the bulk in a locally efficient way. Note
that the existence of an efficient curve between two surfaces
S and S0, where S is deeper than S0, implies that there is a
point on S that is deeper than (or at the same depth as) any
other point on S.
It is not clear that efficient curves always exist; it will be

shown below, however, that radial geodesics from the
boundary are efficient curves in static AdS black holes
with isotropic spatial slices. Moreover, radial geodesics in
black holes with such symmetries are, in fact, efficient
curves. Generically, efficient curves need not be geodesics;
an efficient curve is defined using only light-cone cuts,
which are conformal invariants of the bulk geometry.
Spacelike geodesics are not conformal invariants, so while
an efficient curve may be a geodesic with one choice of
bulk conformal factor, it will generically not be a geodesic
with a different choice.
Finally, we note a quick caveat: in order to measure the

lengths of efficient curves, we must have access to the full
bulk geometry in the causal wedge. That is, both the

FIG. 8. Proof of sufficiency of the event horizon for the
existence of sandwich configurations. If γ is chronal, C−ðqÞ lies
farther in the future than illustrated here.

FIG. 9. An efficient curve γ (blue) moves continuously through
points with bulk depth, increasing monotonically along γ.
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conformal metric and the conformal factor must be known.
Knowledge of the locations of light-cone cuts is not
sufficient except in certain special cases. Assuming that
the full bulk metric is known, we are free to measure
lengths along curves in the bulk.

A. Example: Pure AdS

For simplicity, we consider AdS3, although the calcu-
lation below can easily be adapted to higher dimensions. It
is useful to work in global coordinates:

ds2 ¼ −ð1þ r2Þdt2 þ dr2

1þ r2
þ r2dθ2; ð6Þ

where the AdS length scale has been set to 1. We fix the
boundary conformal frame to the Einstein static universe:

ds2∂ ¼ −dt2∂ þ dθ2∂ ; ð7Þ
where the subscripts on the coordinates serve as a reminder
that these are boundary coordinates.
The light-cone cuts of pure AdS (in any dimension) can

be obtained simply from symmetry considerations. In terms
of boundary coordinates, the light-cone cuts of a bulk point
at t ¼ t0, r ¼ r0, θ ¼ θ0 are [42]

tanðt∂ − t0Þ ¼ � 1

r0 cosðθ∂ − θ0Þ
½1þ r20sin

2ðθ∂ − θ0Þ�1=2:

ð8Þ
Consider two bulk points p and q at t0 ¼ 0 and the same

radius r0 ¼ 1, and at different angular positions: θ0 ¼ 0
and θ0 ¼ π=4, respectively. The light-cone cuts of p and q
are illustrated in Fig. 10. As is clear from the figure, the
light-cone cuts of p and q cross. In fact, the light-cone cuts
of any two spacelike-separated points in pure AdS must
cross [42], in agreement with the idea that there is no notion
of absolute depth of points in pure AdS (and as noted above
more generally, we might expect the same in any causally
trivial spacetime).
It is simple to identify boundary subregions that perceive

cuts of q as sandwiching the cuts of p or vice versa. To wit,
we have illustrated the boundary domain of dependence of a
region that perceives q (θ0 ¼ π=4) as deeper in the bulk than
p (θ0 ¼ 0). For a region A at t∂ ¼ 0, θ∂ ∈ ½−a; a�, D∂ ½A�
intersects C�ðpÞ when a > π=4; between a ¼ π=4 and
a ¼ π=3, D∂ ½A� intersects C�ðpÞ and not C�ðqÞ. For

a ∈ ðπ=3; π=8þ tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
2

pp
ÞÞ, the cuts of q sand-

wich the cuts of p. This is illustrated in Fig. 10. At

a ¼ π=8þ tan−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
2

pp
Þ, D∂ ½A� includes an intersec-

tion between the cuts of p and the cuts of q: at that point the
regionA perceives neither q nor p as deeper in the bulk. We
can similarly obtain a region that perceives p as deeper in the
bulk than q by rotating A above on the boundary sphere.
The depth of surfaces, however, is another matter. In

order to make contact with the UV/IR correspondence as it

is usually formulated, a constant-r, constant-t surface
should be deeper in the bulk than a surface at the same
time slice and a larger value of r; this is illustrated in Fig. 4.
It is easy to see that this is the case in pure AdS. Let Sðr0Þ
be a surface at constant r ¼ r0 and constant time. Since
radial, future-directed geodesics in AdS are the future-
directed geodesics to reach the boundary at the smallest
coordinate time t∂ , the future light-cone cut of S is
generated by radial geodesics. The elapsed coordinate time
along such geodesics is

Δt ¼
Z

∞

r0

dr
r2 þ 1

¼ π

2
− tan−1ðr0Þ: ð9Þ

The light-cone cuts of S are therefore located at
t∂ ¼ t0 � ðπ=2 − tan−1ðr0ÞÞ. Because tan−1ðr0Þ increases
as r0 increases, reaching π=2 as r0 reaches infinity, the cuts
C�ðr0Þ are sandwiched between the cuts of C�ðr1Þ when-
ever r1 < r0.

B. Example: Black holes with symmetry

Most of the intuition concerning bulk depth is a result of
work in spacetimes with well-defined holographic coor-
dinates. We would like to check that our covariant
definition above agrees with the idea of bulk depth in
such spacetimes.
In any static, asymptotically AdS black hole spacetime

whose preferred spatial slices are isotropic, the metric
outside of an event horizon can be written as follows:

FIG. 10. The light-cone cuts of ðt0; θ0; r0Þ ¼ ð0; 0; 1Þ and
ð0; π=4; 1Þ in pure AdS3, drawn with the domain of dependence
of the boundary region t∂ ¼ 0, θ ∈ ½−π=3; π=3�. Relative to this
region, C�ðqÞ sandwich C�ðpÞ: q is deeper in the bulk.
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ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2; ð10Þ

where dΣ2 is the line element of a (d − 1)-dimensional
symmetric space (e.g. sphere, hyperboloid, plane), and in
particular it is independent of r; fðrÞ vanishes at the event
horizon. We have set the AdS radius to 1. In such space-
times, it is natural to think of the r direction as the
“holographic direction.” We would like our definition to
qualify surfaces at larger values of r as deeper in the bulk
than surfaces at smaller values of r.
Let S be a spacelike surface at t ¼ 0 and r ¼ r0. Because

radial geodesics are the earliest to reach the boundary, the
light-cone cut of S is generated by radial geodesics. If a
radial geodesic starting at r ¼ r0 takes timeΔt1 to reach the
boundary, then a radial geodesic starting at r < r0 takes a
timeΔt2 > Δt1 to reach the boundary. This follows from the
isotropy of the spatial slices: starting at r > r0, we may
simply follow the radial null geodesic to r ¼ r0; let the time
elapsed to reach r0 beΔt0. From r0, it takes the geodesicΔt1
to reach the boundary; it therefore immediately follows that
Δt2 ¼ Δt0 þ Δt1 > Δt1. Time-reversal symmetry allows us
to apply the same argument to past and future cuts.
We therefore find that surfaces at constant values of r

must correspond to cuts in a sandwich configuration. This
geometry thus admits efficient curves at constant θ and
constant t; these are precisely radial spacelike geodesics at
constant t.

IV. RELATION TO THE CAUSAL WEDGE

One approach towards probing deeper into the bulk is via
the use of nonlocal boundary observables at progressively
larger spatial separation. A particularly natural object to
consider in light of the importance of causality to our
definition is the causal holographic information of a
boundary region A. This object is defined as the area of
the causal surface of A [49]. It was shown in Ref. [51] (see
also Refs. [52,53] for earlier work) on the subject that the
causal wedges of nested boundary regions are themselves
nested, so that increasing the size of the boundary region
results in correspondingly larger causal wedges. Any
reasonable definition of bulk depth should therefore con-
sistently qualify points in the causal wedge of a regionA as
deeper in the bulk than those in the causal wedge of a
region A0 whenever A0 is a proper subset of A.
As expected, our definition above is compatible with the

above requirement: a point p is deeper in the bulk than a
point q by our definition if and only if every causal wedge
containing p also contains q. A similar result can be shown
for relative depth. These results rely on two lemmata:
Lemma 1: If A and B are spacelike-separated, then

CW ½A� andCW ½B� are spacelike-separated (with no overlap).
This was proved in Ref. [51]. In particular, it implies

that if A ¼ ⋃iAi is the disjoint union of connected,
closed, spacelike-separated, spacelike componentsAi, then

p ∈ CW ½A� implies that p ∈ CW ½Ai� for one of the Ai’s.
We will therefore assume for the rest of this section that A
is connected, with the understanding that when it is not, we
are working with one of its connected components.
Lemma 2: Let p be a bulk point in the causal wedge of

∂M. Then p ∈ CW ½A� if and only if both of the following
hold:

CþðpÞ ∩ D∂ ½A� ≠ ∅; ð11Þ

C−ðpÞ ∩ D∂ ½A� ≠ ∅: ð12Þ

Proof.—1. If p ∈ CW ½A�, then C�ðpÞ ∩ D∂ ½A� ≠ ∅. By
assumption, there are both past- and future-directed causal
bulk curves from p toD∂ ½A�. By AdS hyperbolicity, future-
directed bulk curves from p cannot intersect or come
arbitrarily close to intersecting past-directed bulk curves
from p. So X ≡ J�ðpÞ ∩ D∂ ½A� ≠ ∅, and D∂ ½A� − X is
also not empty: i.e., there is a nonempty subset of D∂ ½A�
which receives no causal curves from p. This immediately
implies ∂J�ðpÞ ∩ D∂ ½A� ≠ ∅, and therefore C�ðpÞ ∩
D∂ ½A� ≠ ∅.
2. If C�ðpÞ ∩ D∂ ½A� ≠ ∅, then p ∈ CW ½A�. This is

trivial: by assumption, there exist both past- and future-
directed causal curves from D∂ ½A�, so p ∈ CW ½A�. □

The two lemmata above are sufficient for the construc-
tion of a proof relating the depth between two points and
the causal wedges containing them. The theorems below
are presented separately: the first applicable when one point
is deeper than another globally (i.e., relative to the entire
boundary), and the second applicable when one point is
deeper than another relative to a particular boundary
subregion. The second theorem may be thought of as a
generalization of the first, but we present and prove them
separately for pedagogical reasons.
Global causal wedge inclusion: Let p and q be two

spacelike-separated bulk points; p is deeper in the bulk if
and only if any causal wedge containing p also contains q.
Proof.—1. If p is deeper in the bulk than q, then any

causal wedge containing p also contains q. Let p ∈ CW ½A�,
where A is a codimension-1 spacelike (acausal) surface,
which we take to be connected by Lemma 1. By the Gao-
Wald theorem [50],8 there exists a causal boundary curve
from every point x− ∈ C−ðpÞ to every point xþ ∈ CþðpÞ.
We define A�ðpÞ≡ C�ðpÞ ∩ D∂ ½A�, which is nonempty
by Lemma 2. This immediately implies that there exists a

8Strictly speaking, the Gao-Wald theorem is a statement that
bulk curves experience positive gravitational time delay relative
to the boundary when the null generic condition is assumed.
Away from such an assumption, a weaker version of the Gao-
Wald theorem holds, which states that bulk curves experience a
non-negative gravitational time delay relative to boundary curves.
As we do not assume the generic condition, we make use only of
the weaker version of the theorem, which is sufficient for our
proof.
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causal boundary curve from every point on AþðpÞ to every
point on A−ðpÞ. Let γ be one such causal curve from AþðpÞ
to A−ðpÞ; then γ ∈ D∂ ½A�. Because C�ðqÞ are sandwiched
by C�ðpÞ, any causal curve from CþðpÞ to C−ðpÞ must
intersect both CþðqÞ and C−ðqÞ. So C�ðqÞ ∩ D∂ ½A� ≠ ∅.
By Lemma 2, q ∈ CW ½A�. This proves one direction.
2. If any causal wedge containing p also contains q, then

p is deeper in the bulk than q.
By contradiction.—Suppose that for any A ∈ ∂M, p ∈

CW ½A� implies q ∈ CW ½∂A�, but there exists a boundary
subregion on which C�ðpÞ do not sandwich C�ðqÞ. Then
there exists a boundary causal curve γ from xþ ∈ CþðpÞ to
x− ∈ C−ðpÞ, where γ does not intersect at least one of the cuts
of q. Define a boundary domain of dependence using the x�:

D∂ ½A�≡ Jþðx−Þ ∩ J−ðxþÞ: ð13Þ

By construction, p ∈ CW ½A� (p actually lies on the causal
surfaceofA).Soq ∈ CW ½A� aswell.Againbyconstruction, γ
doesnot intersect at leastoneofC�ðqÞ.Because theC�ðqÞ are
complete spatial slices (by assumption, q is not a boundary
point), they can each at most intersectD∂ ½A� on a spatial slice
(or, in the degenerate case, on x�). However, since γ does
not intersect at least one of C�ðqÞ anywhere, C�ðqÞ ∩
D∂ ½A� ¼ ∅. By Lemma 2, q ∉ CW ½A�, and we have arrived
at a contradiction. □

This theorem agrees with the intuitive idea that the
existence of null geodesics that do not reach ∂M may be
necessary for a realization of the sandwich cut configura-
tion; put differently, the existence of bulk regions which can
only be causally accessed by nesting larger boundary
regions is likely to require that some null geodesics never
reach ∂M.9

The relative version of the theorem may be proven with
few modifications:
Relative causal wedge inclusion: Let p and q be

spacelike-separated bulk points in the causal wedge of ∂M.
Let A ⊂ ∂M be an acausal, closed, (d − 1)-dimensional
subregion. Then p is deeper than q relative to A only
for any A0 such that D∂ ½A0� ⊂ D∂ ½A�, p ∈ CW ½A0� ⇒
q ∈ CW ½A0�.
Proof.—1. If p is deeper than q relative to A, then for

any A0 as above, p ∈ CW ½A0� ⇒ q ∈ CW ½A0�. The proof
follows that of the global theorem mutatis mutandis. Let
p ∈ CW ½A0�, and define A0�ðpÞ as above. By definition,
there exists a causal curve γ from A0þðpÞ to A0−ðpÞ on
D∂ ½A0�. Therefore, onD∂ ½A�, the C�ðqÞ are sandwiched by
the C�ðpÞ. By the same logic as above, γ intersects C�ðqÞ
onA, but since γ ⊂ Dþ

∂ ½A0�, we find that γ intersects C�ðqÞ
on Dþ

∂ ½A0�, which immediately implies that q ∈ CW ½A0�.
2. If for any A0, p ∈ CW ½A0� ⇒ q ∈ CW ½A0�, then p is

deeper than q relative to A.

By contradiction.—By assumption, there exists a causal
curve γ on D∂ ½A� from CþðpÞ to C−ðpÞ such that γ does
not intersect C�ðqÞ. Consider now the domain of depend-
ence D∂ ½A0� constructed by bringing γ’s endpoints slightly
into γ. Then D∂ ½A0� ⊂ D∂ ½A�, but C�ðqÞ ∩ D∂ ½A0� ¼ ∅ by
the reasoning in the proof of the global theorem. So
q ∉ CW ½A0�: a contradiction. □

V. DISCUSSION

We have given a covariant definition qualifying the
comparative depth of bulk points in terms of light-cone
cuts, and more generally in terms of causal access to the
boundary. This partial ordering of bulk points accommo-
dates depth perception both relative to the entire boundary,
and relative to a particularly boundary subregion. The
definition in question also reduces to depth as measured by
a usual notion of a standard holographic coordinate in pure
AdS and static AdS black holes with isotropic spatial slices.
Efficient curves, which locally minimize travel distance
deeper in the bulk, can be used (when they exist) as a
measure of comparative bulk depth. Finally, the intuition in
which larger subregions on the boundary should corre-
spond to deeper bulk regions is realized in our definition in
the context of the causal wedge.
This definition of bulk depth relates deeper bulk points to

(1) the singularity structure of (dþ 3)-point Lorentzian
correlators at longer time separation, and (2) the nesting
structure of causal wedges at progressively larger distance
scales. We therefore gain an understanding of how points
deep in the bulk are sensitive to infrared phenomena in the
dual field theory. Since flowing from the UV to the IR is
considered a coarse-graining procedure, points deep in the
bulk can beviewed as related to boundary points via a coarse-
graining mechanism (e.g. Ref. [10]). This was realized
precisely in entanglement renormalization tensor network
schemes, starting with Ref. [54], on constant time slices of
AdS3. On a speculative level, it is interesting to ask if our
qualification of one bulk point being deeper than another can
be used in a similarway to constructmoregeneral bulk tensor
networks, with bulk depth corresponding to coarse graining.
On a less speculative level, it would be interesting to

further develop the connection between nonlocal observ-
ables and our local definition of bulk depth. In particular,
what is the relation between the entanglement wedges
containing points at different depths? When do boundary-
anchored efficient curves exist, and when are they geo-
desics? Does the length of boundary-anchored efficient
curves have information theoretic interpretation in the dual
field theory?
Other interesting directions include an extension of our

definition to the entire boundary domain of influence.
While there is no procedure that yields these light-cone cuts
from field theory data, we may ask how to appropriately
define bulk depth under the assumption that the light-cone
cuts have been recovered in some way. Finally, an event9I thank S. Fischetti for calling my attention to this point.
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horizon is sufficient for the existence of sandwiched cuts,
and therefore for a global definition of bulk depth to apply;
it would be valuable to also understand the necessary
conditions for the sandwich cut configuration to exist.
We close with a comment on quantum corrections: since

bulk-point singularities are robust against perturbative 1=N
corrections, we expect that the definition of bulk depth
given here is valid to Planck-sized neighborhoods in
perturbatively quantum bulk spacetimes. As we have only
assumed the achronal averaged null curvature condition,
we expect that our proofs on the causal wedge inclusion as

well as the existence of the sandwich configuration will
hold under the inclusion of perturbative quantum effects
as well.
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