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The quantum renormalization group (QRG) is a realization of holography through a coarse-graining
prescription that maps the beta functions of a quantum field theory thought to live on the “boundary” of
some space to holographic actions in the “bulk” of this space. A consistency condition will be proposed that
translates into general covariance of the gravitational theory in the Dþ 1 dimensional bulk. This emerges
from the application of the QRG on a planar matrix field theory living on theD dimensional boundary. This
will be a particular form of the Wess-Zumino consistency condition that the generating functional of the
boundary theory needs to satisfy. In the bulk, this condition forces the Poisson bracket algebra of the scalar
and vector constraints of the dual gravitational theory to close in a very specific manner, namely, the
manner in which the corresponding constraints of general relativity do. A number of features of the
gravitational theory will be fixed as a consequence of this form of the Poisson bracket algebra. In particular,
it will require the metric beta function to be of the gradient form.
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I. MOTIVATIONS AND INTRODUCTION

The quantum renormalization group (QRG) due to Lee
[1,2] is a constructive coarse-graining prescription used
for finding holographic dual descriptions of quantum field
theories. In this article, I propose a consistency condition
that this coarse-graining procedure needs to satisfy in order
for the holographically dual theory to possess general
covariance.
In order to focus on this feature of covariance in the

emergent dual theory, it will help tomake a specific choice of
the field theory on which the application of the QRG results
in the emergence of a semiclassical theory involving only a
dynamical metric tensor (or, in other words, pure gravity).
The rules of the effective field theory dictate that the problem
of picking out general relativity from the space of all possible
theories of a dynamical metric tensor reduces entirely to
ensuring diffeomorphism invariance and having two deriv-
atives in the action. From this perspective, these consistency
conditions, which are “dual” to general covariance, are a key
prerequisite that the hypothetical holographic dual to general
relativity, should such a theory exist, needs to satisfy.
First, some explanation is necessary about what the QRG

procedure entails and what theory to apply it to so that pure
gravity emerges in the bulk. The basic idea is to map the
renormalization group flow of a quantum field theory into
the dynamics of a dual theory living in one dimension
higher, where the additional direction is equated with the
energy scale of the quantum field theory. The RG flow
equations describe how coupling constants of operators in a
given quantum field theory run under a change of scale. If
these are to be equated with dynamical field equations, and
fields can vary as functions of space, then the couplings of

operators should be promoted to space-dependent sources.
This idea goes under the name of the local renormalization
group (LRG) and can be seen as the QRG’s precursor. Here
couplings all of operators (composite operators included) in
the action of the theory under consideration are upgraded to
space-dependent, background sources. The coarse-graining
transformations are implemented through local Weyl trans-
formations of the background metric, which too is now
arbitrary and space dependent. The LRG equations describe
the response of the effective action and correlation func-
tions to such transformations.
Then, the QRG is a prescription that assigns dynamics to

a suitable subset of these sources. The “evolution param-
eter” of these dynamical sources is the RG scale (or RG
time). The dependence of these sources on the RG time in
addition to the already present space dependence implies
that this dual theory lives in one higher dimension than the
field theory whose RG flow it encodes. This is how the
QRG realizes holography and how the emergent direction
of space is equated with the RG time. The limit in which the
dual theory becomes semiclassical will be of primary
interest in what is to follow.
Most quantum field theories of interest possess an

energy-momentum tensor, which is a composite operator
whose source is the background metric. The local renorm-
alization group idea of making all sources arbitrary and
space dependent, metric included, therefore requires put-
ting the theory on an arbitrary background geometry. If the
energy-momentum tensor is contained in the subset of
operators whose sources the QRG will assign dynamics to,
then the dual theory will involve a dynamical metric tensor.
Then to obtain pure gravity in the bulk, the quantum

renormalization group has to somehow focus only on the
energy-momentum tensor, so one assumes a limit where no
other operators are generated through quantum corrections.*vshyam@pitp.ca
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In other words, it must be assumed that only the energy-
momentum tensor of the theory possesses finite scaling
dimension. The existence of such a limit is not guaranteed
and is indeed an assumption. In order to be more concrete,
the field theory to which QRG and this limit are applied
must be specified.
The claim in Ref. [1] is that the application of QRG and

the aforementioned limit to a matrix field theory in the ’t
Hooft limit results in the emergence of a semiclassical
theory of pure gravity. The planarity of the matrix field
theory corresponds to taking the semiclassical limit of the
dual theory, and so the bulk theory is given in the low-
energy limit. The infinite gap in the spectrum of scaling
dimensions, i.e. the gap between the scaling dimension of
the energy-momentum tensor and that of all other oper-
ators, is responsible for the metric being the only source
rendered dynamical through the QRG. This specifies the
field content of the bulk theory. Then, covariance and
possessing two derivatives are the only remaining con-
ditions that need to be satisfied in order to force this low-
energy bulk theory to be general relativity.
In Refs. [1,2], it was shown that the bulk theory which

emerges from the application of QRG to the aforemen-
tioned theory has two derivatives in the emergent radial
direction. However, it possessed an arbitrary number of
spatial derivatives, i.e. derivatives along the directions of
the space in which the planar matrix field theory lives. It
was assumed then that there exists a long-wavelength limit
where the number of spatial gradients when arranged in a
gradient expansion could somehow be truncated in an
appropriate manner so that the theory is covariant to leading
order in this expansion. This theory would then be general
relativity. Any of the higher-order terms in the gradient
expansion would necessarily break general covariance.
The problem here is that demanding the suppression of

these noncovariant corrections beyond leading order in said
gradient expansion requires appealing to some notion of
strong coupling (which is described in Ref. [3], for instance)
in addition to the demand that the hypothetical dual theory
possess a large gap in the spectrum of anomalous dimen-
sions. This is poorly understood and perhaps too much to
demand even from a hypothetical theory. In this article, I will
make the case that the situation can be significantly improved
upon by considering the consistency conditions the local
renormalization group needs to satisfy. These are known as
the Wess-Zumino consistency conditions, and I will propose
a particular manner in which they need to be satisfied so that
the bulk theory obtained from the QRG procedure is
manifestly covariant. The aforementioned condition I am
proposing,which can be considered the “holographic”Wess-
Zumino consistency condition, takes the form

½Δσ;Δσ0 �W½g� ¼
Z

d3x
ffiffiffi
g

p
gμνðσ∂μσ

0 − σ0∂μσÞh∇ρT
ρ
νi:
ð1Þ

The left-hand side represents the commutator of local RG
transformations (denoted Δσ) acting on the generating func-
tionalW½g� of the dual theory, and Tμν on the right-hand side
is the energy-momentum tensor of the boundary field theory.
This is, in other words, an additional consistency condition
that the coarse-graining procedure itself must satisfy. The
nature of this condition is such that, in order to satisfy it, the
gradient expansion must be truncated in a manner that
respects general covariance.
This consistency condition will also fix the functional

dependence of the beta functions of the boundary matrix
field theory on the metric tensor. In particular, from it will
follow the gradient flow property of the metric beta
function, i.e.

βμνðgÞ ¼ Gμναβ
δc½g�
δgαβ

; ð2Þ

where the functional c½g� can be seen as the analogue of the
running central charge of the boundary field theory. The
tensor Gμναβ, known as the de Witt supermetric, is analo-
gous to the Osborn-Zamalodchikov metric on theory space.
This form of the beta function following from the Wess-
Zumino consistency conditions is exactly analogous to
what happens in studies of the local renormalization group
in the literature [4,5].

II. RENORMALIZATION GROUP FLOW AS
DYNAMICS ON THE PHASE SPACE OF SOURCES

This semiclassical limit of the dual theory obtained from
themapping theQRGprovides is a precise sense inwhich the
renormalization group flow of the boundary quantum field
theory can be seen as the dynamical evolution of the sources
in RG time. The renormalization group flow equations most
often encountered are those that define beta functions for the
quantum field theory under consideration, and these equa-
tions are first-order differential equations. If they are to be
recast as the equations of motion for some dynamical theory
of the sources, then the natural expectation is that these RG
flow equations are seen as Hamilton’s equations of the dual
theory, provided an appropriate identification of the phase
space and the conjugate variables on it is made. In other
words, the RG flow is identified with the flow generated by
some Hamiltonian on the appropriate phase space of the
theory of dynamical sources.

A. The case of the local renormalization group

Before delving into what variables ought to parameterize
the phase space mentioned in the introduction, it will help
to first review some rudimentary aspects of the local
renormalization group. For a more detailed pedagogical
introduction, see, for instance, Chapter 3 of Ref. [6]. The
central object of interest will be the renormalized generat-
ing functional given by the logarithm of the partition
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function in the presence of external sources (including
those which couple to composite operators). This object is
denoted W½J� and is given by1

e−W½JIðxÞ� ¼
Z

DΦe−S½Φ;JIðxÞ�; ð3Þ

where the sources fJIðxÞg couple to operators fOIðxÞg.
The definition of correlation functions of local composite
operators is given by taking functional derivatives of the
generating functional with respect to the appropriate
sources; for example, the one-point functions of local
operators can be computed via

hOIðxÞi ¼
δW

δJIðxÞ : ð4Þ

I will assume that there are not any intrinsic mass scales
in the theory. This means that scales are generated by
quantum effects alone. The coarse-graining method
employed in local RG involves performing local Weyl
transformations of the background metric

gμν → e2σðxÞgμν:

This is a geometrical generalization of Kadanoff’s blocking
transformations which are applicable in the real space
renormalization group applied to lattice models to con-
tinuum quantum field theories. The local renormalization
group is the study of the response of the generating
functional to such Weyl transformations.
More precisely, the local Callan-Symanzik equation is

given by

ΔσW½JIðxÞ�≡
Z

dDx
ffiffiffi
g

p
σðxÞ

�
gμν

δ

δgμν
− βIJðxÞ

δ

δJIðxÞ
�
W

¼ Aσ½J�: ð5Þ
This equation is valid in a neighborhood of the fixed point
of the renormalization group. The βIJðxÞ are beta functions
which encode the running of the space-dependent sources.
Note that this collection of sources includes the metric, so
there will be a term of the form βμν

δ
δgμν

such that the first

gμν δ
δgμν

term can be seen as the lowest order in derivative

part. The reason for it being stripped away from the other
terms in the metric beta function is that the above form of
the local Callan-Symanzik equations makes the geometri-
cal role of Δσ generating Weyl transformations clearer. The
term Aσ is the integrated conformal anomaly, smeared
against Weyl factor σðxÞ. The n-point functions of the field
theory under consideration can be computed through the
functional differentiation of the generating functional with
respect to sources. Then, the above local Callan-Symanzik

equation will dictate how these n-point functions ought to
run under a change of scale. The more traditional form of
these equations can be recovered by taking the limit where
the background geometry is flat. Now, the objective is to
gain intuition for how the above equations can be recast
into Hamilton’s equations and thereby identify what the
phase space for such Hamiltonian evolution ought to be.
Consider the limit of the above expression where the metric
is taken to be flat, and the local Weyl transformations are
replaced by global dilatations. The above equation in this
limit takes the form

∂W
∂ ln μ ¼ −βIhOIi: ð6Þ

The anomaly term depends on the derivatives of the metric
tensor at least to second order (except for a cosmological
constant term, which would play a role should we include
massive couplings in the theory), and hence it vanishes in
the aforementioned limit. Dolan in Ref. [7] proceeded to
posit that the sources fJIðxÞg can be seen as though they
were canonically conjugate to the vacuum expectation
values of the renormalized operators to which they couple
fhOIðxÞig≡ fpIðxÞg. The evolution parameter is the RG
time μ, which is the global remnant of σðxÞ. The generating
functional can be seen as Hamilton’s principal function, in
which case the Hamiltonian can be identified directly from
the global generalization of the local Callan-Symanzik
equations as

HRG ¼ pIβ
I
J: ð7Þ

Thus, solving every one of Hamilton’s equations will be
equivalent to solving all of the renormalization group flow
equations. This will not be a practical to do in the case of
strongly coupled field theories, where one would have to
solve an infinite number of such equations. Also notice that
this Hamiltonian is linear in the momentum, so the
evolution it generates is rather simple, as it is that of a
system whose kinetic energy is entirely quenched.2 If a
term that is quadratic at the very least in the momentum
could somehow be generated, then the situation would be
more similar to Hamiltonian evolution most often encoun-
tered in mechanics or even in field theories. The question
then would be what such evolution describes on the other
side of the duality. This is what the quantum renormaliza-
tion group addresses.

B. The semiclassical limit of the bulk theory in QRG

This subsection will present the quantum renormaliza-
tion group flow of the planar matrix field theory. This

1Indices such as I are internal indices. For simplicity, in this
section, I will deal with solely with spacetime scalar operators.

2There are sufficiently nontrivial contexts such as higher spin
holography where the RG Hamiltonian takes a form similar to
this; see [8].
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example will be of interest, because the QRG Hamiltonian
defined on the phase space of sources and their conjugate
vacuum expectation values, whose structure is dictated by
the form of quantum corrections to the seed action in one
step of RG, will be quadratic in the momenta. This was first
worked out in Ref. [2], and similar results were derived in
[9,10] under the name of the “planar Polchinski equation.”
The fundamental fields are Hermitian N × N matrix fields
ΦðxÞ (I will suppress the matrix indices for notational ease).
Assume also that the matrix model is a gauge under some
gauge group [UðNÞ, for instance]; this means that gauge-
invariant operators in the action are necessarily sums and
products of traces of monomials of the matrix fields and
their derivatives.
The simplest of such operators are the so-called single

trace operators, given by

Ofmg ¼
1

N
ffiffiffi
g

p
trðΦð∇μ1

1
…∇μ1p1

ΦÞ…ð∇μq
1
…∇μqpq

ΦÞÞ; ð8Þ

where the multi-index set fμipi
g is used to denote the fact

that there can be a varying number of derivatives and
arbitrary permutations of indices thereof in each term of the
product of derivatives in the above operator. For brevity, I
will use just a single latin letter index m to encapsulate the
multi-index set above. Multitrace operators are formed
from products and derivatives of products of single-trace
operators. The sources for single-trace operators will be
denoted as Jm and for multitrace operators as J m. These
sources have arbitrarily many indices, and, in particular, the
source for the term in the action with two derivatives can be
chosen to be the background metric.
The action reads

S ¼ So½ΦðxÞ� þ N2
X
m

Z
d3x

ffiffiffi
g

p
JmðxÞOm|fflfflfflfflffl{zfflfflfflfflffl}
single−trace

þ
X
m

Z
d3x

ffiffiffi
g

p
Vm½Om;J m�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

multitrace

: ð9Þ

For reasons which will be made clear in the remainder of
this subsection, it will be of interest to study the renorm-
alization group trajectories starting from the subspace of
single-trace operators. The generating functional for a
theory on this subspace is given by

Z½Jm� ¼
Z

DΦ exp ifS½OmðΦÞ; Jm�g: ð10Þ

Wilsonian RG describes how the sources (and couplings)
change when the UV cutoff Λ is lowered by a factor3

σðxÞ≡ αðxÞδz:

Λ → eαðxÞδzΛ;

through the equations defining beta functions βm for
sources JmðxÞ. Solutions to those first-order ordinary
differential equations will determine a path in the space
of sources and couplings. As mentioned before, when the
theory is strongly coupled, there are, in general, infinitely
many such sources. In that case, solving all RG flow
equations becomes intractable.
Now, in the limit as N → ∞, the quantum corrections

to the single-trace action under one step of RG
(Λ → Λ − ΛδzαðxÞ) take the form4

δS½On;Jn�¼N2

Z
dDx

ffiffiffi
g

p
αðxÞδz

�
LCðJnðxÞÞ−βmðJnðxÞÞOm

þGmnfμgfνgðJnðxÞÞ
2

∇fμgOm∇fνgOn

�
þOðδz2Þ:

ð11Þ

Here, the term LCðJnðxÞÞ is the integrand within the
anomaly term denoted in the previous subsection as Aσ ,
i.e.

R
dDx

ffiffiffi
g

p
δzαðxÞðLCðJnðxÞÞ≡Aσ¼αðxÞδz.

The value of applying quantum RG to the matrix field
theory will become apparent here, because it cleverly
reorganizes the renormalization of this theory without
having to ever leave the subspace of single-trace operators.
The honest fixed point of the flow cannot be projected
down to this subspace due to the fact that multitrace
operators are generated by quantum corrections. QRG is
a method to nevertheless restrict the RG trajectory to this
subspace and thereby project down the fixed point, by
paying the price of promoting the sources in this subspace
to fluctuating quantum fields. This is why it is apt to call
this technique the quantum renormalization group. I will
flesh out what is meant by the above statement schemati-
cally in what follows.
The most important thing to notice about the quantum

corrections to the single-trace action is that to linear order in
δz, only double-trace operators are generated.

1. Toy integral example

Making precise the statement about the single-trace
sources being promoted to dynamical fields lies in the
observation that the multitrace operators (double trace in
the planar limit) can be removed by paying the price of
functional integration over auxiliary fields. To schemati-
cally describe this, I will take the example of an ordinary

3This infinitesimal “RG time step” δz is introduced to keep
track of how many iterations of infinitesimal local RG trans-
formations one performs.

4The indices in braces such as fμg, fνg, etc., of differential
operators and tensors denote multi-index sets distinct from those
incorporated into the indices m, n and will be used solely in
situations where a differential operator of arbitrarily high order is
involved. For instance, Amfμg∇fμg ≡Pkm

k¼0 A
mμ1…μk∇μ1…∇μk ,

and km could, in principle, be infinity.
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(as opposed to functional) integral over a single variable for
simplicity. The main idea will carry through into the case of
interest. Let the toy integrand to be transformed be of the
following exponential form:Z

dφeiJO¼ZðJÞ¼
Z

dφeifJOðφÞþαδzðβðJÞOðφÞþGðJÞO2ðφÞþlCÞg:

ð12Þ

Notice that each of these terms is analogous to the func-
tional integrand of the single-trace planar matrix field
theory. The variable φ now plays the role of the funda-
mental field, and the source for single-trace operatorsOðφÞ
is the variable J. The first term in the exponential is
analogous to the single-trace action, the second term is
analogous to the single-trace beta function term, and the
third to the double-trace term. The latter two terms are
generated by quantum corrections in one step of RG, in
addition to the renormalization of the coupling of the
identity or the “cosmological constant” term lC, and hence
a factor of αδz is retained as a reminder of this fact.
The goal is to remove the quadratic term in the exponent

in the integrand at the cost of introducing integration over a
new “field” pð1Þ:

eifJOðφÞþαδzðβðJÞOðφÞþGðJÞO2ðφÞþlCÞg

¼
Z

dpð1Þδðpð1Þ −OÞeif−Jpð1Þ−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞg:

ð13Þ

The delta function itself can be represented in integral form
over another variable jð1Þ:
Z

dpð1Þδðpð1Þ −OÞeif−Jpð1Þ−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞg

¼
Z
dpð1Þdjð1Þeiðpð1Þ−OÞjð1Þeif−Jpð1Þ−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞg

¼
Z

dpð1Þdjð1Þeipð1Þðjð1Þ−JÞeiðjð1ÞOÞ

× eif−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞg; ð14Þ

and if the pð1Þ integral were now performed, one would see
that the above expression is hiding a delta function
δðjð1Þ − JÞ, which becomes apparent if the above expres-
sion is written asZ

dpð1Þdjð1Þeipð1Þðjð1Þ−JÞeiðjð1ÞOÞeif−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞg:

The fields jð1Þ and pð1Þ are denoted in a manner which
suggests tentatively that they shall be related to the
fluctuating sources and their conjugate vacuum expectation
values on the RG phase space. The nature of this relation
will be made explicit in what follows.
So now the “partition function” can be written as

ZðJÞ ¼
Z

dpð1Þdjð1Þeipð1Þðjð1Þ−JÞ

× eif−αδzðβðJÞpð1Þ−pð1ÞGðJÞpð1ÞþlCÞgZðjð1ÞÞ; ð15Þ

where Zðjð1ÞÞ ¼ R
dφ exp ifjOg, and is thus the same as

ZðJÞ except that J is replaced by jð1Þ. The RG trans-
formations still involve coarse graining with respect to the
fundamental fields φ, and so, since the quantum corrections
have all been factored out into the integral in front of
Zðjð1ÞÞ, the second step of RG will proceed exactly the way
the first step did except that J is now replaced by the source
jð1Þ. Given this guarantee of maintenance of the form of the
quantum corrections, one once again may choose to
integrate in auxiliary fields ðpð2Þ; jð2ÞÞ to obtain a result
similar to the one above, i.e.

Zðjð1ÞÞ ¼
Z

dpð2Þdjð2Þeipð2Þðjð2Þ−jð1ÞÞ

× eif−αð2Þδzðβðjð1ÞÞpð2Þ−pð2ÞGðjð1ÞÞpð2ÞþlCÞgZðjð2ÞÞ:
ð16Þ

Here, αð2Þ is the analogue of the Weyl factor chose at the
second step of RG, which is free to be chosen to be different
from α. Thus, a pattern emerges, and if so, the result of
iterating this procedure for k RG steps can be written as

ZðJÞ ¼
Z Yk

i¼0

½dαðiÞdpðiÞdjðiÞ�
�
ei
P

k
i¼0

kfδzðpðiÞðjðiÞ−jði−1ÞÞδz Þ−αðiÞðβðjði−1ÞÞpðiÞþpðiÞGðjði−1ÞÞpðiÞþlCÞgjðjð0Þ;pð0ÞÞ¼ðJ;OÞ

�
ZðjðkÞÞ: ð17Þ

Note that the different Weyl factors at each step of RG
denoted αðiÞ are also integrated over in order to “average”
over all possible RG paths. The consequences of the path
independence of this RG procedure will play a very
important role in the remainder of this article.
The continuum limit of the above product of integrals

can then be defined by sending δz → 0 and defining

z ¼ ϵ exp ðkδzÞ as the so-called “radial” time. Here, ϵ
denotes a short-distance cutoff. The integration variables
then become fαðiÞ; jðiÞ; pðiÞg → fαðzÞ; jðzÞ; pðzÞÞg. The
latter two parameterize the dynamical phase space
alluded to in earlier discussions. Then the set of
integrals over all RG steps can be recast as the func-
tional integral:

GENERAL COVARIANCE FROM THE QUANTUM … PHYSICAL REVIEW D 95, 066003 (2017)

066003-5



ZðJÞ ¼
Z

DαðzÞDjðzÞDpðzÞ

× ei
R

z¼z�
z¼0

dzðpðzÞdjðzÞdz −αðzÞHQRGÞjðjð0Þ;pð0ÞÞ¼ðJ;OÞZðjðz�ÞÞ:
ð18Þ

These “fields” now gaining additional dependence on
the RG time is the signature of the emergence of a new
direction of space or, in other words, of holography. The
field theory of these sources is holographically dual to
the original theory of the φ fields. The bound on the
integral z� denotes where the RG transformations are
truncated, which need not necessarily be infinity. The
function HQRG is then given by

HQRG ¼ βðjðzÞÞpðzÞ þ pðzÞGðjðzÞÞpðzÞ þ lC: ð19Þ

As promised, the Hamiltonian is now quadratic in the
“momenta” pðzÞ that are conjugate to the dynamical
source variables jðzÞ.

2. Back to the matrix field theory

Similarly, in the planar matrix field theory case, the
quantum renormalization promotes the sources JmðxÞ and
the vacuum expectation values of the single-trace operators
hOmðΦðxÞÞi to the dynamical fields ðjmðx; zÞ; pmðx; zÞÞ. In
the large N limit, these single-trace operators are equal to
their vacuum expectation values. These fact that they are
labeled by the RG time z in addition to the labels x is the
precise sense in which they live in one dimension higher
to the planar matrix fields. The Hamiltonian in that
case reads

Z½Jm� ¼
Z
Dαðx; zÞDjmðx; zÞDpmðx; zÞeiN

2
R
dDxdz

ffiffi
g

p ðpmðx;zÞdj
mðx;zÞ
dz −αðx;zÞHQRGðjmðx;zÞ;pmðx;zÞÞÞjðjmðx;z¼0Þ;pmðx;z¼0ÞÞ¼ðJmðxÞ;hOmðxÞiÞZ½jm�:

ð20Þ

The factor of N2 out in front of the integral in the exponent
plays the role of ℏ−1 for the partition function on the space
of sources.
The large N limit is the same as taking the semiclassical

limit of the bulk theory, which, in other words, allows the
functional integral to be performed in the saddle point
approximation. This saddle point corresponds to extrem-
izing the action SB ¼ R

dDxdzðpm
_jm − αðxÞHQRGÞ. The

Hamiltonian density takes the form

HQRGðjmðx; zÞ; pmðx; zÞÞ
¼ βmðjmðx; zÞÞpmðx; zÞ
þ Gmnfμgfνgðjmðx; zÞÞ∇fμgpmðx; zÞ∇fνgpnðx; zÞ
þ LCðjmðx; zÞÞ: ð21Þ

The truncation to the single-trace subspace is what leads to
the quadratic term in the momenta, and thus the truncation
itself is responsible for the nontrivial dynamics of these
fields. The potential for the bulk fields is given by the
generalization of the term which renormalizes the coupling
of the identity operator: LCðjmðx; zÞÞ.
In conclusion, the classical phase space in which QRG

flow takes place is thus parameterized by the conjugate

pairs ðjmðx; zÞ; pmðx; zÞÞ. This means that they satisfy the
fundamental Poisson bracket relation

fjmðx; zÞ; pnðy; zÞg ¼ δmn δðx; yÞ: ð22Þ

The Hamiltonian generating this QRG flow is
HQRGðjmðx; zÞ; pmðx; zÞÞ given by (21). The phase space
is thus a subspace (that of single-trace operators) of the one
identified in the previous section, but the Hamiltonian now
contains a term quadratic in the momentum.

C. Revealing the anomalous Ward identity
corresponding to violation of Weyl invariance

Before proceeding, the role of the QRG Hamiltonian and
the manner in which it encodes coarse graining requires
further clarification. In the previous subsection, I men-
tioned that the Weyl factor is integrated over as a means to
encode the summing over all possible RG paths. This also
serves to highlight the “path independence” of QRG flow,
which corresponds to the freedom to choose a different rate
of coarse graining in a space-dependent manner at every
RG step. In the QRG action, the Weyl factor appears as a
Lagrange multiplier, and the functional integral can for-
mally be performed to find

Z½Jm� ¼
Z

Djmðx; zÞDpmðx; zÞδðHQRGÞ × eiN
2
R

dDxdz
ffiffi
g

p
pmðx;zÞ _jmðx;zÞjðjmðx;z¼0Þ;pmðx;z¼0ÞÞ¼ðJmðxÞ;hOmðxÞiÞZ½jm�: ð23Þ
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This form of the QRG partition function is particularly
illuminating, because it highlights the role of the Hamil-
tonian in encoding the anomalous Ward identity corre-
sponding to broken Weyl invariance. The delta function in
the functional integral imposes this anomalous Ward
identity at each and every RG step.
Another way to see this is to note that, at the fixed point,

the beta functions vanish and the only term in the
Hamiltonian is the potential term, which is the conformal
anomaly appearing as a consequence of putting the
conformal field theory at the fixed point on an arbitrary
background. Away from criticality, the beta functions also
contribute to the failure of the theory to maintain Weyl
invariance and hence appear alongside the anomaly in the
QRG Hamiltonian. This is but a manifestation of the fact
that RG flows are triggered by the breaking of conformal
symmetry and the beta functions and the anomaly simply
measure the response of the effective action to the breaking
of this invariance. The anomaly, too, can be viewed as the
beta function encoding the running of the coupling to the
identity operator [7].
In principle, were there other Ward identities in the

theory, they too must be included in the QRG path integral
formula in an analogous manner.5 They should correspond
to constraints in the total QRG Hamiltonian, and the
Lagrange multipliers corresponding to these constraints
should be integrated over like the Weyl factor was. The
Hamiltonian is thus a total constraint, and this is very
reminiscent of the situation in general relativity.

D. Emergent gravity from the quantum
renormalization group

The QRG procedure in the context of the matrix field
theory will also promote the source of the single-trace
energy-momentum tensor, i.e. the metric to a dynamical
field. As mentioned before, in order to study the pure
gravity limit in the bulk, a limit where the energy-
momentum tensor is the only operator in the theory with
finite scaling dimension needs to be considered. This can
happen if all operators acquire large anomalous dimen-
sions, but the energy-momentum tensor is protected by its
Ward identity. This implicitly also requires the strong
coupling on the planar matrix field theory’s side, although
the classicality of the bulk still requires the large N limit. It
must also be assumed that there are no other conserved
higher spin currents in the theory.
The phase space variables in this case will be the metric

and the vacuum expectation value of the energy-momentum
tensor ðπμνðx; zÞ; gμνðx; zÞÞ, satisfying fundamental Poisson
bracket relation

fπμνðx; zÞ; gαβðy; zÞg ¼ δðαμ δ
βÞ
ν δðx; yÞ: ð24Þ

The bulk RG Hamiltonian then takes the form

Z
d3x

ffiffiffi
g

p ðαðx; zÞHðπμν; gμνÞ þ ξμðx; zÞHμðπμν; gμνÞÞ

¼
Z
d3x

ffiffiffi
g

p
αðx; zÞ

�
VðgÞ þGμναβfηgfρgðgÞ

2
∇fηgπμν∇fρgπαβ

þ βμνðgÞπμν
�
þ
Z

d3x
ffiffiffi
g

p
ξμðx; zÞð∇νπμνÞ: ð25Þ

The first term is the RG Hamiltonian described in the
previous section, and it generates local RG transformations.
I will denote the Hamiltonian itself (as opposed to the
density) as

HðαÞ ¼
Z

d3x
ffiffiffi
g

p
αðx; zÞHðπμν; gμνÞ; ð26Þ

and, for reasons mentioned in the previous paragraph, this
is a constraint with the function α is the corresponding
Lagrange multiplier. Diffeomorphism invariance of the
matrix field theory arising due to being coupled to an
arbitrary background also needs to be taken into account.
This is captured by the Ward identity

h∇μTμνi ¼ 0 ð27Þ

that is imposed in the QRG as a constraint:

HμðξμÞ ¼
Z

d3x
ffiffiffi
g

p
ξμð∇νπμνÞ ¼ 0; ð28Þ

where the shift vector ξμ is the Lagrange multiplier
enforcing this constraint.
Thus, the phase space of the bulk theory is that of general

relativity in the Hamiltonian form [discovered by Arnowitt-
Deser and Misner (ADM) in Ref. [12]]. Of course, the
algebraic form of the scalar constraint is not quite that of
general relativity. The question I will address in the
remainder of the article is under what circumstances the
QRG scalar constraint becomes that of general relativity.
The functions VðgÞ, βμνðgÞ, and GμναβfηgfρgðgÞ are not

just functions of the metric but also its derivatives (i.e.
curvature tensors) to arbitrarily high orders, but they admit
a derivative expansion where the leading order terms are

VðgÞ¼−c0þc1Rþ��� ;
βμνðgÞ¼ βgμνþ�� � ; GμναβfηgfρgðgÞ¼ γ

g
Gμναβ

λ þ��� : ð29Þ

Here, Gμναβ
λ ¼ gμαgνβ þ gμβgνα − λgμνgαβ.

If one entertains the possibility of tuning the constants in
the gradient expansion, then it is conceivable that the ADM

5The holographic dictionary matches Ward identities in the
quantum field theory to constraints in the dual gravitational
theory, which was noticed in Ref. [11].
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scalar constraint can be obtained through the following
steps. The term linear in the momentum needs to be
removed somehow in order to even match the terms in
the ADM scalar constraint. Assuming this is done, if the
action were rewritten by truncating to the first few orders in
the derivative expansions shown, or, in other words, the
constants multiplying the higher-order terms are all set to
zero. Furthermore, if the relevant constants are tuned to
take the values λ ¼ 1 ¼ γ ¼ c1, c0 ¼ Λcc,

6 then the bulk
Hamiltonian will be a sum of the Hamiltonian and diffeo-
morphism constraints of general relativity, i.e.

Hðπμν; gμνÞ ¼
ffiffiffi
g

p ð−Λcc þ RÞ þ 1ffiffiffi
g

p Gμναβ
λ¼1 πμνπαβ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HADMðπμν;gμνÞ

þ � � � :

ð30Þ
The diffeomorphism constraint is the same as that of
general relativity. Note that including any of the terms
with spatial derivatives of higher order than those included
above in the Hamiltonian will lead to a breakdown of the
general covariance of the theory. The reason for this
breakdown lies in the mismatch between the number of
radial gradients hiding in the two powers of the momenta in
the kinetic term and the spatial gradients. One simple way
to see why the ADM Hamiltonian has just the right number
of these derivatives is to perform the Legendre transform to
find that the Lagrangian thus obtained can be written as a
scalar density of weight one formed from the spacetime
metric [12].
There is not any reason a priori to believe that the

aforementioned truncations follow from any of the limits
already imposed on the matrix field theory. What would be
more satisfying would be to find some additional criterion
that the coarse-graining mechanism needs to satisfy from
which the ADM form for the constraints follow.

III. CONSISTENCY CONDITIONS OF THE
RENORMALIZATION GROUP FLOW AND

HAMILTONIAN EVOLUTION

The geometerization of the renormalization group lies in
identifying the radial evolution of a constant “RG time”
hypersurface into the bulk with the local quantum renorm-
alization group flow of the boundary theory. This is strictly
true, however, only if the evolution is generated by normal
deformations of this hypersurface which satisfy a certain
commutator or Poisson bracket algebra. This algebra can be
seen as a consistency condition for the Hamiltonian
evolution, because satisfying this condition is necessary
for the Hamiltonian flow to not stray away from the
subspace of phase space where the constraints are satisfied.

And through QRG, it will also reflect the consistency of the
local renormalization group flow, in that it dictates how
LRG transformations are composed consistently.
The specific form of the structure functions of this algebra

is dictated by the diffeomorphism invariance of the Dþ 1
dimensional target space into which this hypersurface is
embedded. In other words, the property of the generators of
the deformations of hypersurfaces forming a certain com-
mutator or Poisson bracket algebra is a signature that these
hypersurfaces are embedded into a one-higher-dimensional
(here Euclidean) spacetime. This algebra is known as the
hypersurface deformation algebra or the Dirac algebra. This
is because it mirrors the Lie bracket algebra of components
of spacetime vector fields decomposed tangentially and
orthogonally to an embedded hypersurface [13].
In this section, the consequences of imposing the Dirac

algebra through the Wess-Zumino consistency condition
for the quantum renormalization group will be investigated.
From the field theory perspective, this will amount to
relating the anomalous Ward identity for broken Weyl or
scale invariance to the Ward identity corresponding to
diffeomorphism invariance of the boundary theory coupled
its background metric at every scale. This relation between
said Ward identities will then impose restrictions on the
algebraic form of the RG Hamiltonian, which is nothing but
the Hamiltonian of the dual gravity theory, and constrain it
to be that of general relativity.
The guarantee that the only representation of this algebra

on the gravitational phase space being the ADM constraints
follows from a theorem of Hojman, Kuchar, and Teitelboim
[14]. Furthermore, the gradient formula for the metric beta
function can also be shown to follow from this demand that
the constraint algebra close in a specific form. The key
result of interest from which this fact shall follow was first
proven by Kuchar in Ref. [15].

A. The Wess-Zumino consistency condition
as the holographic dual to the hypersurface

deformation algebra

The Wess-Zumino consistency condition for the local
renormalization group is simply a statement of the fact that
Weyl transformations commute. This means that when two
local RG transformations are composed, it does not really
matter which of these transformations is performed first
and which is performed second. Consider the generating
functional and focus on its dependence on the metric:
W½gμν�≡ lnZ½gμν�. The statement of the commutativity of
the local RG transformations reads

½ΔαðxÞδz;Δα0ðxÞδz�W½gμνðxÞ� ¼ 0: ð31Þ

Even for a conformal field theory on a curved back-
ground, this condition imposes nontrivial constraints on the
form of the conformal anomaly:

6Here, Λcc denotes the cosmological constant and should not
be confused with the UV cutoff Λ.
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½ΔσðxÞ;Δσ0ðxÞ�WCFT ½gμν� ¼ ΔσAσ0 − Δσ0Aσ ¼ 0: ð32Þ

Away from the fixed point, when conformal invariance is
broken, these consistency conditions necessarily also lead
to nontrivial relations the beta functions need to satisfy, in
addition to the anomaly terms.
In the QRG, the beta functions are coded into terms in

the Hamiltonian, so the nontrivial relations the consistency
conditions impose on the beta functions will thus translate
into restrictions on the form of the Hamiltonian. In order to
see this more concretely, the evaluation of the left-hand side
of the Wess-Zumino conditions in the QRG context reads

½Δσ;Δσ0 �W½gμν� ¼ h½HðσÞ; Hðσ0Þ�i →
N→∞

hfHðσÞ; Hðσ0Þgi;
ð33Þ

the vanishing of this is how the Wess-Zumino consistency
conditions are encoded in the QRG. The diffeomorphism
Ward identity does, however, allow for the possibility that
the right-hand side of the action of the commutator of the
generators of Weyl transformations vanish as a conse-
quence of being proportional to the covariant divergence of
the energy-momentum tensor. From the QRG perspective,
this means that the right-hand side of the bracket between
HðσÞ and itself (smeared with a different lapse multiplier)
can, in principle, be proportional to the constraint Hμ with
some smearing perhaps containing the derivatives of the
lapse multipliers. This means that the Poisson algebra of the
constraints, particularly a specific form of said algebra, is
the holographic dual to the Wess-Zumino consistency
conditions.
I conjecture that the anomalous Ward identity corre-

sponding to the broken Weyl or scale invariance of the
theory which the Wess-Zumino consistency conditions
pertain is, in a specific way, related to the Ward identity
corresponding to the diffeomorphism invariance of the
theory.7 This means that the relationship between these
Ward identities implies a specific form of the Poisson
algebra of the corresponding dual constraints. This form of
the Poisson algebra, given other assumptions I will further
mention, will be sufficiently strong to fix the algebraic form
of the scalar Hamiltonian constraint to be identical to that of
general relativity.

1. Kinematics of hypersurface deformations

To start, it will help to describe the hypersurface
deformation algebra at the kinematical level. Consider an
infinitesimal spacetime diffeomorphism generated by the
vector field va,8 i.e. ya → ya þ va; it can be decomposed

into components tangential and orthogonal to any given
hypersurface as

va ¼ σna þ va∥; ð34Þ

where σ ¼ nava and va∥ ¼ −ðncvcÞna þ va. Note that this
vector is purely tangential to the hypersurface, because
nava∥ ¼ 0, so I will denote it as vμ∥ in what follows. The
vector na is the normal to a codimension-one hypersurface
Σ. The deformation of the hypersurface generated by the
vector field va is given through the action of the operator

XðvÞ ¼
Z
Σ
dDx

ffiffiffi
g

p
va

δ

δya
; ð35Þ

which satisfies the commutation relations

½XðvÞ; XðwÞ� ¼ Xð½v; w�Þ: ð36Þ

Here ½v; w� is the Lie bracket of the vector fields va, wa.
Then a foliation-dependent decomposition of the above
operator can be introduced as follows:

Nσ ¼
Z
Σ
dDx

ffiffiffi
g

p
σna

δ

δya
; ð37Þ

Tv∥ ¼
Z
Σ
dDx

ffiffiffi
g

p
vμ∥∂μya

δ

δya
: ð38Þ

The algebra of these deformations is given by

½Nσ; Nσ0 � ¼ −Tfðσ;σ0Þ; ½Tv∥ ; Nσ� ¼ −Nvμ∥∂μσ;

½Tv∥ ; Tw∥
� ¼ T ½v∥;w∥�: ð39Þ

Here fνðσ; σ0Þ ¼ gμνðσ0∂μσ − σ∂μσ
0Þ.

It is interesting to see that the above Lie bracket algebra
is not a Lie algebra, because the analogues of the structure
constants are now replaced by phase-space-dependent
functions, i.e. the vector fνðσ; σ0Þ. It is still analogous to
a Lie algebra in the sense that the commutator of these
deformation generators closes to other deformation gen-
erators. Also, the structure functions of the above defor-
mation algebra are fixed by the demand that, when the
normal and tangential deformations are combined to form
the overall deformation XðvÞ, it satisfied the algebra of
spacetime diffeomorphisms (35). In other words, the
specific form of the structure functions of this algebra
are fixed by the demand for full diffeomorphism invariance
of the spacetime into which the hypersurface is embedded.
This algebra must be mirrored by the Poisson algebra of the
constraints on the phase space of any dynamical theory
which respects full diffeomorphism invariance. This fact
that spacetime structure is reflected in the algebra of
constraints was described in Ref. [13].

7The mathematical statement of which is the covariant con-
servation of the energy-momentum tensor’s vacuum expectation
value.

8I will use lowercase latin letters such as a; b;… for Dþ 1
dimensional spacetime tensors, which will run from 0 to D.
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2. Implications for gravity

The result of key importance in the context of the phase
space of general relativity is that of Hojman, Kuchar, and
Teitelboim (HKT) in Ref. [14]. They prove that the unique
representation of the algebra of hypersurface deformations
(39) on the phase space spanned by the metric on a
hypersurface and its conjugate momentum is given by
the following constraints:

Nσ →
Z
Σ
dDxσðxÞ

�
1ffiffiffi
g

p
�
πμνπ

μν −
1

D − 1
trπ2

�

−
ffiffiffi
g

p ðΛcc − RÞ
�
;

Tv∥ →
Z
Σ
dDx

ffiffiffi
g

p
vν∥ðxÞð∇μπ

μ
νÞ: ð40Þ

The Poisson algebra of these constraints mirrors the
algebra of hypersurface deformations. These constraint
functions are easily recognised as the ADM scalar and
diffeomorphism constraints, where the lapse Lagrange
multiplier is identified with σðxÞ and the shift multiplier
is identified with vμ∥ðxÞ. Thus, the following Poisson
algebra being satisfied by the constraints:

fHðσÞ; Hðσ0Þg ¼ −Hμðfμðσ; σ0ÞÞ;
fHμðξμÞ; HðσÞg ¼ Hðξμ∂μσÞ;

fHμðξμÞ; HνðζνÞg ¼ Hμð½ξ; ζ�μÞ; ð41Þ

is a necessary and sufficient condition for these constraints
to take the ADM form.
The third of the above Poisson bracket relations is a

representation of the algebra of spatial diffeomorphism
algebra. The second bracket is entirely a consequence
of the fact that the scalar constraint density is a tensor
density of weight one. In a sense, these brackets pertain
to just kinematics, as far as QRG is concerned. This is
because the diffeomorphism constraint in the total QRG
Hamiltonian is already of the same algebraic form as the
diffeomorphism constraint of general relativity and, hence,
necessarily satisfies the same Poisson algebra. Also, the
tentative scalar constraint density being a tensor density of
weight one only instructs where factors of

ffiffiffi
g

p
ought to

appear in each of its terms, but it does not fix the functional
dependence of the functions themselves on the phase space
variables. The first Poisson bracket relation, however, does
indeed pertain to dynamics. For it to be satisfied, the forms
of various functions in the scalar constraint are fixed.
Going back to the quantum renormalization group, there

is now the potential to impose a condition on the very
coarse-graining scheme itself, the satisfaction of which will
force the RG Hamiltonian to take the ADM form. This
condition is the holographic dual to the hypersurface
deformation algebra. It is given by

½Δσ;Δσ0 �W½gμν� ¼
Z

d3x
ffiffiffi
g

p
fμðσ; σ0Þh∇ρT

ρ
μi; ð42Þ

which, as mentioned before, is but a particular manner in
which the Wess-Zumino consistency condition is satisfied
(because h∇ρT

ρ
μi ¼ 0).

I will now describe how the functions in the QRG
Hamiltonian can be fixed by demanding this particular
form of the consistency condition, starting with the
kinetic term.

B. The kinetic term

The tentative kinetic term is one which is quadratic in the
momentum, but only the first term in the gradient expan-
sion is ultralocal in the metric and momenta. The QRG
scalar constraint in this case takes the form

HðσÞ ¼
Z
Σ
dDxαðx; zÞ

�
1ffiffiffi
g

p
�
πμνπ

μν −
1

D − 1
trπ2

�

þ Fðg; πÞ − βμνðgÞπμν þ
ffiffiffi
g

p
VðgÞ

�
: ð43Þ

The function Fðg; πÞ stands for the rest of the terms in
the gradient expansion of the quadratic in momentum
term. This is a function which consists of an arbitrary
number of derivatives of the metric and the two powers
of momenta. The key Poisson bracket relation to use
in order to fix the form of the remaining functions in
this constraint is the bracket between two scalar
constraints, i.e.

fHðαÞ; Hðα0Þg ¼ Hμðfμðα; α0ÞÞ; ð44Þ

where, leaving aside the specific form of fμðα; α0Þ, a lot
can be gained from just noticing the fact that the right-
hand side of the above bracket is linear in the momentum.
In order to exploit this feature, it is useful first to recall that
the Poisson brackets between two phase space functions
reduce the total polynomial order in the momenta by one
and maintain the order of spatial derivatives. The bracket
between two scalar constraints breaks up into a sum of
several terms which can be ordered based on the total
polynomial order of the momenta. The highest-order term
from this counting would be the bracket between the
kinetic term and itself:

�Z
Σ
dDxαðx; zÞ

�
1ffiffiffi
g

p Gμναβπμνπαβ þ Fðg; πÞ
�
;

Z
Σ
dDyα0ðy; zÞ

�
1ffiffiffi
g

p Gμναβπμνπαβ þ Fðg; πÞ
��

− ðα ↔ α0Þ: ð45Þ

This will split up again into three terms, the first being
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�Z
Σ
dDx

αðx; zÞffiffiffi
g

p Gμναβπμνπαβ;
Z
Σ
dDy

α0ðy; zÞffiffiffi
g

p Gμναβπμνπαβ

�

− ðα ↔ α0Þ; ð46Þ

which vanishes because of the ultralocality of the resulting
expression and subsequent antisymmetrization of the
smearing functions. The second and third terms of the
form

�Z
Σ
dDx

αðx; zÞffiffiffi
g

p Gμναβπμνπαβ;
Z
Σ
dDyα0ðy; zÞFðg; πÞ

�

− ðα ↔ α0Þ; ð47Þ
�Z

Σ
dDxαðx; zÞFðg; πÞ;

Z
Σ
dDyα0ðy; zÞFðg; πÞ

�

− ðα ↔ α0Þ; ð48Þ

do not, however, identically vanish due to the presence of
spatial gradients and thus lead to a set of terms genuinely
cubic in the momenta. These terms vanish if and only if
Fðg; πÞ ¼ 0. The study of such terms is the subject of
Ref. [16]. In that work, the demand that the structure
functions be independent of the momenta even is not
imposed, but still, the constraint algebra does not remain
first class under a wide class of such modifications of the
kinetic term. This eliminates the potentially cubic term in
the result of this Poisson bracket relation.
Thus, from just positing this holographic version of the

Wess-Zumino consistency condition, it follows that

Gμναβfηgfρg →
1ffiffiffi
g

p Gμναβ ¼ 1ffiffiffi
g

p ðgμðαgβÞν − gμνgαβÞ: ð49Þ

Thus, the double-trace beta function is an ultralocal
function of the metric known as the de Witt supermetric.
This also implies that the kinetic term of the Hamiltonian is
ultralocal in both the metric and the momenta. This is a
canonically normalized kinetic term, akin to that which is
encountered in most field theories.
The supermetric, being a metric on the space of metrics,

is used to define an inner product on field space, which in
turn is necessary to define the functional integral over
geometries in the quantum theory. Paraphrasing from a
discussion in Ref. [17], allowing this inner product to be
taken with respect to a supermetric containing derivatives
of the metric would have the effect of defining a different
set of dynamical fields in the theory. So the specification of
an ultralocal supermetric can also be seen as a manifes-
tation of the fact that the metric is taken to be the
fundamental field variable and that the presence of deriv-
atives of it in the action is the cause for dynamics.
Furthermore, the ultralocality of the kinetic term in both

the metric and the momenta will ensure the invertibility of
the relationship between the canonical momenta and the

extrinsic curvature tensor. The extrinsic curvature tensor is
defined as

Kμν ¼ −
1

2
Lngμν; ð50Þ

where nμ is the vector normal to the hypersurface. The
relationship between this tensor and the canonical momen-
tum given the ultralocal kinetic term is

Kμν ¼
1ffiffiffi
g

p
�
πμν −

1

D − 1
trπgμν

�
: ð51Þ

The simple algebraic nature of the relationship between the
canonical momenta and the extrinsic curvature is one of the
many necessary conditions to find a Lagrangian that can be
rewritten in the form of the Einstein Hilbert action which is
manifestly covariant in Dþ 1 dimensions after performing
the Legendre transform.
The HKT result also seems to demand that the metric

beta function ought to simply vanish in order for the algebra
of constraints to be satisfied, and, also, the potential term
should be truncated to just the first two terms in its
derivative expansion. There is a subtlety here regarding
the fate of the term linear in the momentum and the
potential term, and it will be elucidated and addressed in the
subsection to follow.

C. Gradient flow formula for the metric beta function
and canonical transformations

The constraint algebra enforced through the holographic
Wess-Zumino consistency conditions also has implications
for the form of the beta function and potential term in the
RG Hamiltonian.
In the last section, it was deduced that the kinetic term

should be ultralocal in both the metric and the momenta in
order to satisfy the hypersurface deformation algebra.
Assuming only this, the scalar constraint is given by

HðαÞ ¼
Z
Σ
dDxαðx; zÞ

�
1ffiffiffi
g

p
�
πμνπ

μν −
1

D − 1
trπ2

�

− βμνðgÞπμν þ
ffiffiffi
g

p
VðgÞ

�
: ð52Þ

I will now sketch the derivation of the result showing that
the demand that the hypersurface deformation algebra be
satisfied will translate into the so-called “gradient formula”
for the metric beta function. For more detailed computa-
tions proceeding along this line of reasoning to derive this
result, see [16]. The original derivation of this result came
from an effort to formulate the HKT theorem in the
Lagrangian framework by Kuchar in Ref. [15].
Given that the vanishing of the cubic resulting

from the Poisson brackets has been established, the
next-to-higher-order term will be a quadratic in momentum
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expression which comes from the bracket between the
kinetic term and the term linear in the momentum:

�Z
Σ
dDx

αðx; zÞffiffiffi
g

p Gμναβπμνπαβ;
Z
Σ
dDyα0ðy; zÞβμνðgÞπμν

�

− ðα ↔ α0Þ: ð53Þ

The function βμνðgÞ depends on the metric and its
momenta, and the above expression will not identically
vanish despite the antisymmetrization of the smearing
functions. In order to satisfy the hypersurface deformation
algebra, however, this expression must strongly vanish, by
virtue of the fact that there is no term on the right-hand side
of (44) that is quadratic in the momenta.
It can be shown9 that the vanishing of the above

quadratic in momentum term will imply that

δðGαγμνβαγÞðxÞ
δgρηðyÞ

−
δðGδκρηβδκÞðyÞ

δgμνðxÞ
¼ 0: ð54Þ

Following similar logic, a term generated by the Poisson
bracket calculation that is momentum independent should
also vanish. The relevant piece of the bracket here will be

�Z
Σ
dDxαðx; zÞβμνðgÞπμν;

Z
Σ
dDy

ffiffiffi
g

p
α0ðy; zÞVðgÞ

�

− ðα ↔ α0Þ; ð55Þ

which produces a term that is independent of the momenta
and can be split up into a sum of terms ordered by the
number of spatial gradients. The first nontrivial order
of derivatives will be the second order, the vanishing of
which is

∇γðGαγμνβμνÞ ¼ 0: ð56Þ

The conditions (54) and (56) then imply that the function
βμνðgÞ10 has to take the form

βμνðgÞ ¼ Gμνρη
δc½g�
δgρη

; ð57Þ

where c½g� is a functional of the metric and its derivatives.
From the quantum field theory perspective, Eq. (57) is

the so-called gradient formula for the metric beta function.
This result was arrived at solely through considerations of
the (“holographic”) Wess-Zumino consistency conditions
much akin to how such a formula is derived in the
traditional local RG literature, for instance, in
Refs. [4,5]. Such a formula was also derived from

considerations of entanglement entropy in holographic
theories in Ref. [18], in the case where c½g� takes the form
of the Einstein Hilbert action.
Coming back to the dual gravitational theory, consider-

ing just the kinetic term and the term linear in the
momentum, the sum of which can be manipulated as
follows:

1ffiffiffi
g

p Gμνρηπ
μνπρη − Gμνρη

δc½g�
δgρη

πμν

¼ 1ffiffiffi
g

p Gμνρη

�
πμν −

1

2

δc½g�
δgμν

��
πρη −

1

2

δc½g�
δgρη

�

−
1

4
Gμνρη

δc½g�
δgμν

δc½g�
δgρη

: ð58Þ

This manipulation makes the possibility for the follow-
ing canonical transformation:

πμν → πμν −
1

2

δc½g�
δgμν

;

apparent. This is a canonical transformation, because it
preserves the canonical Poisson brackets of the theory and
subsequently comes at the cost of adding a total derivative
term to the action. The role of such canonical trans-
formations in holographic RG was discussed in detail in
Ref. [19]. It follows from this canonical transformation that

Z
dz

Z
Σ
dDx

ffiffiffi
g

p
πμν _gμν

→
Z

dz
Z
Σ
dDx

ffiffiffi
g

p
πμν _gμν þ

Z
dz

Z
Σ
dDx

ffiffiffi
g

p 1

2

δc½g�
δgμν

_gμν

¼>
Z

dz
Z
Σ
dDx

ffiffiffi
g

p
πμν _gμν þ c½g�jz¼z�

z¼0 : ð59Þ

This is just the statement of the fact that c½g� is the
generating functional of the aforementioned canonical
transformation.
This effectively removes the linear term in the scalar

constraint, leaving only the ultralocal, canonical kinetic
term. The last term in the Hamiltonian constraint whose
form has not yet been fixed in the above discussion from
the demand of satisfaction of the hypersurface deformation
algebra is the momentum-independent potential term. It,
too, gets modified as a consequence of the canonical
transformation mentioned above, i.e.

VðgÞ → VðgÞ − 1

4
Gμνρηβ

μνðgÞβρηðgÞ≡UðgÞ: ð60Þ

Now, the form of the Hamiltonian constraint density after
the canonical transformation is

9See Sec. 5 of [16].
10For a sketch of the proof of this statement, see [15] and

references therein.
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1ffiffiffi
g

p Gμνρηπ
μνπρη þ UðgÞ;

and the HKT result will lead to the condition

UðgÞ ¼ VðgÞ − 1

4
Gμνρηβ

μνðgÞβρηðgÞ ¼ ffiffiffi
g

p ð−Λcc þ RÞ:
ð61Þ

This difference between the potential term and the square
of the beta function being exactly the potential term in the
ADM Hamiltonian constraint is also related to the vanish-
ing of the difference between the a and c anomaly
coefficients in AdS/CFT as was discussed in Ref. [3].11

I wish to emphasize that the above subsection provides a
derivation of the gradient condition for the metric beta
function which was so far assumed in discussions relating
to the quantum renormalization group. The additional
input, however, was the holographic Wess-Zumino con-
sistency conditions. On the gravity side of the duality, these
conditions translate into closure of the constraint algebra in
a very specific manner, which is a stronger condition than
just the demand for closure of the constraint algebra which
was already presented in Ref. [2].

D. The realm of possibilities

Despite the many arguments made in the previous
sections to justify the conjectured form of the Wess-
Zumino consistency conditions, one can nevertheless ask
what other consistent choices could have been made on the
gravity side for these conditions to be satisfied. A con-
sistent choice of the way in which the Wess-Zumino
conditions are satisfied translates through the duality into
a manner in which the Poisson algebra of constraints can
close. Then, the most general condition one can impose on
the bracket between two scalar constraints is just closure,
i.e. to require

fHðσÞ; Hðσ0Þg ≈ 0: ð62Þ

The symbol ≈ denotes “weak equality,” which means
equality when the constraints are satisfied. That would
leave the possibility for the Poisson brackets to result
in terms proportional to both the scalar and vector con-
straint with arbitrary structure functions, whose phase
space dependence is made explicit with the notation
~fμðg; π; σ; σ0Þ, ~hðg; π; σ; σ0Þ:

fHðσÞ; Hðσ0Þg ¼ Hð ~hðg; π; σ; σ0ÞÞ þHμð ~fμðg; π; σ; σ0ÞÞ:
ð63Þ

Before proceeding further in this discussion, it will help to
first take a step back and recall some basic notions in the
theory of constrained Hamiltonian systems. The fact that
the Poisson algebra of the constraints results in terms
proportional to the constraints themselves implies that the
constraint algebra is first class. The first-class nature of
the Dþ 1 constraints in the general relativity context is the

manifestation of the fact that there are ðDþ1ÞðD−2Þ
2

true
degrees of freedom of the gravitational field.
Now, going back to the situation of interest, one can ask

what class of gravitational theories (i.e. theories defined on
the phase space of general relativity) exist that possess
spatial (i.e. in the field theory’s space directions) diffeo-
morphism invariance and a local quadratic in momentum
Hamiltonian constraint which is first class and hence
propagate the same number of degrees of freedom as
general relativity. No such theory has been found so far,
although a complete proof of the statement that no such
theory could possibly be found does not exist at the
moment. Nevertheless, if additional restrictions such as
the demand that the kinetic term be ultralocal are imposed,
then the mere demand for closure of the constraint algebra
will force the “tentative” constraints to take the form of
those of general relativity, as was shown in Ref. [20]. This
remains true if the kinetic term is also modified by the
addition of an arbitrary local, but quadratic in momentum,
term; see [16]. If the demand that the modifications no
longer remain quadratic in momenta is relaxed, then
perhaps there is a wide range of generalizations of the
hypersurface deformation algebra that are admissible, such
as those described in Ref. [21].
If no such theory exists, then what one would conclude is

that the only realization of a first-class scalar constraint in
an otherwise spatially covariant theory of gravity is
necessarily the ADM Hamiltonian constraint of general
relativity. In that case, the only demand that one need
impose is for the Wess-Zumino conditions to somehow be
satisfied, i.e. that the algebra of constraint simply be first
class and the only consistent manner in which such closure
can be achieved is if the constraints are those of general
relativity. Here, there will be no need to make any
conjecture about the specific manner in which the Wess-
Zumino consistency conditions are satisfied, and the
covariance of the dual theory will follow solely from the
Abelian nature of the group of local Weyl transformations.

IV. DISCUSSION AND OUTLOOK

I have argued that, in order for the quantum renormal-
ization group applied to matrix field theories to yield
general relativity in the bulk, the additional imposition
of what I call the holographic Wess-Zumino consistency
condition is necessary. If a local RG scheme can satisfy a
consistency condition of the form posited here, then there
are guarantees on the gravity side that the constraints whose

11It should be noted that conventions to do with factors of 2
differ between this article and Ref. [3].
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Poisson algebra must mirror said condition have to take the
ADM form. The most nontrivial consequence that follows
from this algebra is that the term linear in the momentum
generated in the RG Hamiltonian, which, in principle,
breaks RG time reversal invariance, can be removed
through a canonical transformation due to the fact that
the beta function must take the gradient form.
That being said, on the field theory side, the problem of

finding the local RG scheme which satisfies the holo-
graphic Wess-Zumino consistency condition has not yet
been addressed, and there is not any guarantee that such a
scheme should exist. It should be noted, however, that, in
the context of higher spin holography, the authors in
Ref. [8] find a scheme that guarantees bulk diffeomorphism
invariance. Addressing this issue will be the subject of
future work.
There is another caveat to be made regarding the holo-

graphic Wess-Zumino consistency condition. In the pres-
ence of asymptotic boundaries, the gravitational
Hamiltonian needs to have boundary terms added to it,
for consistency of the variational principle (see [22–24]).
These boundary terms may also lead to central extension of
the constraint algebra when the Poisson bracket algebra of
the appended constraints is considered. This is the case for
instance when asymptotically dS or AdS spacetimes
are considered. Such a treatment of the asymptotically
AdS boundary and is related to holographic renormaliza-
tion through which the computation of the conformal
anomaly can be performed; see, for instance, [25,26].
Asymptotically AdS boundary conditions can be specified
through falloff conditions of the gravitational phase space
variables (which is intimately related to the Fefferman-
Graham expansion), and the generators of the group of
asymptotic symmetries are the bulk diffeomorphisms
restricted to respect said conditions. Among such diffeo-
morphisms, there are those whose action reduces to Weyl
transformations of the boundary metric, and these are
known as PBH (Penrose and Brown-Hennaux) transforma-
tions in the literature. In Ref. [27], the case was made for
equating local RG transformations to these PBH trans-
formations, and this was seen as the field theoretic
description of holographic RG flow. Ideally, a suitable
local RG scheme should also satisfy the centrally extended
version of the holographic Wess-Zumino consistency con-
dition. This might be how QRG is bridged with other
approaches to the holographic renormalization group that
focus on radial evolution in the vicinity of the asymptotic
boundary, as described, for instance, in Ref. [28]. It should
be mentioned, however, that there are more manifestly
covariant coarse-graining mechanisms to delve into the
bulk rather than just to radially evolve the boundary, as was
described in Ref. [29].
Another interesting question would be to see what

happens when no assumption is made about the spectrum
of scaling dimensions of the various operators of the matrix

field theory and whether the more general gradient formula
for such operators can be derived from demanding con-
sistency of the renormalization group flow. The sources for
the operators will be promoted to dynamical higher spin
fields, and, if the gradient formula is satisfied, then it
becomes clear that these fields are massive and their masses
are intimately related to their scaling dimensions [1].
From studies of the open-closed string duality, which

AdS/CFT is seen to be but a manifestation of, there is an
expectation that the holographic metric beta function, for
instance, should be related to the beta function correspond-
ing to the background metric of the nonlinear sigma model
representation of the string. This was discussed in the
conclusion section of Ref. [30], for instance.
There is also the possibility that the QRG can somehow

catch a glimpse of a nonlinear sigma model. In this case,
such a relationship might follow from the fact that, if no
particular asymptotics are assumed, then the generating
functional for the canonical transformation which removes
the linear in momentum term in the Hamiltonian constraint
will be the sole contributor to the on-shell action or
Hamilton-Jacobi functional.12 In this situation, the gradient
flow formula for the beta function on shell is very much like
the equation defining the beta functions in a nonlinear
sigma model [32]. To make this more than an analogy, one
needs to introduce a scalar dilaton field which compensates
for the Weyl noninvariance of the action and thereby acts as
a Stuckleberg field. Should this be appropriately intro-
duced, then the on-shell action can presumably be related to
the low-energy effective action of the sigma model action
and the dilaton-gravity Hamilton-Jacobi equations should
coincide with the beta function equations describing the
consistency conditions for a noncritical string propagating
in the bulk. The emergence of the extra dimension in this
situation is a consequence of world sheet conformal
symmetry being anomalous. This will warrant the intro-
duction of the Liouville mode, and, when the right choice
of integration measure is made, this will be counted among
the other scalar fields or target space coordinates.
Holographic renormalization can be seen through the shift
of the Liouville zero mode integration bounds [33].
The above paragraph is but a sketch of ideas and

expectations which warrant further investigation in order
to be made concrete. Investigations along these lines will be
the subject of future research.
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