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We study the role of composite operators in the asymptotic safety program for quantum gravity. By
including in the effective average action an explicit dependence on new sources, we are able to keep track of
operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical
examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this setup
allows us to investigate the scaling properties of various interesting operators via a suitable exact
renormalization group equation. We test our framework in several settings including quantum Einstein
gravity, the conformally reduced Einstein-Hilbert truncation, and two-dimensional quantum gravity. Finally,
webriefly argue that our constructionpaves theway to approachobservables in the asymptotic safety program.

DOI: 10.1103/PhysRevD.95.066002

I. INTRODUCTION

The construction of a well-defined path integral for
quantum gravity is at the heart of the asymptotic safety
(AS) program [1,2]. Ultimately, however, the construction
of this path integral should allow the evaluation of observ-
able quantities, typically expectation values of composite
operators. In thiswork,wemake a first step towards the latter
goal. So far, the focus ofmost of the investigations regarding
AS has been devoted to probing the existence of a suitable
UV fixed point. The framework employed in these inves-
tigations involves the effective average action (EAA) and its
renormalization group (RG) [3]. In this setting, truncations
of increasing complexity have been analyzed including
bimetric Ansätze, higher derivative terms, and infinite-
dimensional truncations; see [4–11] for some of the most
recent works.
Our aim in the present work is different. Let us suppose

that we have a reasonably well-approximated gravitational
EAA. Canwe extract all possible information from the EAA
alone?Wewish to argue that this is not always the case; there
are instances in which further efforts are required.
Before entering into the technical aspects, we would like

to recall the special status of quantum gravitational theories
with respect to nongravitational ones. In particular, observ-
ables in a quantum gravitational theory are required to be
diffeomorphism invariant, i.e., gauge invariant. In turn, this
implies that we cannot think of an observable as depending
on a point of the spacetime manifold, since a diffeomor-
phism transformation would change it. Instead, one may
consider quantities integrated over all spacetime. However,
such quantities are rather distant from our intuition, which is
trained to think in terms of “localized” quantities.
A possible way out of this conceptual dilemma is to

recall that in performing a measurement, we actually check
for the coincidence of events, like, for instance, that a
photon hits our experimental apparatus. The fact that the

photon hits the detector is invariant under diffeomorphisms
since the statement that the photon and detector are at the
same spacetime point remains true after a diffeomorphism
transformation is applied.
To implement a consistent description of the system plus

the apparatus in the field theoretic language is not an easy
task. Following DeWitt [12], one may modify the action
functional via S → Sþ εA, where the last term describes
the coupling of the system to the detector. As a result, we
observe that purely at the quantum field theoretic level,
information regarding the new operator A is required.
However, in general, this information is not encoded
automatically in the EAA.
To properly define observables in quantum gravity also,

other approaches have been considered. For instance,
one may use scalar fields to localize observables or define
correlation functions at fixed geodesic distance; we refer
the reader to [12–14] for more details.
With regard to the gravitational EAA formalism, all these

approaches have a common feature: they require informa-
tion about operators which usually are not taken into
account in a truncated EAA, at any realistic level of
complexity. For instance, it is hard to imagine a truncation
for the gravitational EAA to contain information on the
geodesic distance of two given points on the spacetime
manifolds, a quantity that appears in many observables of
practical interest, however [15,16].
In order to obtain information regarding an arbitrary

operator in a quantum field theoretic framework, one can
couple it to an external source so that it can be inserted into
correlation functions by taking functional derivatives with
respect to the source. This formalism goes under the name
of the composite operator formalism. It allows us to define
and actually compute correlation functions of not only
elementary fields but also of more complicated local
operators at a given spacetime point. The main task of
this work is to investigate the composite operator formalism
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and its application within the framework of the gravita-
tional EAA.
The introduction of composite operators is unavoidable

also in many other cases. For example, let us consider the
correlation function between metric operators at different
points in the vielbein formalism. In this case, the metric
itself is a composite operator which can be meaningfully
defined only via a suitable regularization and renormaliza-
tion procedure over and above the usual renormalization of
couplings in the EAA.
In the present work, we are going to provide the basic

framework to properly define this type of operator in the
EAA formalism, and we consider some explicit examples
that occur in the AS context.
This paper is organized as follows. In Sec. II, we revisit

an argument which allows us to define the scaling dimen-
sions of operators straightforwardly in the EAA framework.
In Sec. III, we include composite operators into the EAA by
coupling them to an external source, discuss possible
approximations, and show how to compute the scaling
properties of these composite operators.
In Sec. IV, we consider the conformally reduced

Einstein-Hilbert (CREH) truncation, a simple model which
mimics many features of quantum Einstein gravity (QEG).
In this setting, the metric is parametrized by a dynamical
conformal factor times a fixed reference metric. The
conformal factor is actually a composite operator of the
elementary quantum field, and so the metric in the CREH
setting can be thought of as a toy model for the composite
metric of the vielbein formalism. We discuss the definition
of the metric as a composite operator in this framework.
In Sec. V, we investigate the scaling properties of two

geometrical objects within QEG: the volume and the length
of curves.
Finally, in Sec. VI, we study various composite operators

in two-dimensional quantum gravity. The two-dimensional
case is interesting for various reasons. First, there is a variety
of results coming from other approaches and techniques,
such as conformal field theory, to which one may compare
the findings given by our framework. Second, two-dimen-
sional asymptotic safety has been recently investigated in
detail [17], and, among other things, it has been possible to
test the compatibility between the presence of a non-
Gaussian fixed point and unitarity in this context. Thus, it
is natural to ask what kinds of consequences such a fixed
point bears for geometrical objects like the volume operator
or the length of a curve. Furthermore, in the Appendix we
show as an example how our approach leads to the familiar
Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling rela-
tions for gravitationally dressed operators.

II. SCALING ARGUMENTS AND FUNCTIONAL
RENORMALIZATION GROUP

The EAA is a scale-dependent generalization of the
standard effective action [3]. One introduces a scale k

below which the integration of momentum modes is
suppressed. This is achieved by adding the cutoff term
ΔSk ¼ 1

2

R
χRkχ to the bare action, withRk being a suitable

kernel. The scale dependence of the effective average
action satisfies the following exact functional RG equation
or “FRGE” [3]

∂tΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1∂tRk�; ð2:1Þ

where Γð2Þ
k is the Hessian of the effective average action Γk,

and t≡ log k. This equation can be concretely employed
after implementing some approximation scheme.
In this section, we briefly review an argument which

allows us to deduce the scaling properties of any operator in
the EAA formalism [18]. First let us note that to uniquely
solve the flow equation (2.1), a boundary condition must be
given. Such a boundary condition is imposed at a certain
scale μ, which we call the floating normalization point. The
dependence of the EAA on the scale μ has been studied
in detail in [18], and in this section, we shall revisit the
dependence in the framework of the gravitational EAA. In
particular, we shall see that the EAA is invariant under
suitable changes of the boundary condition. Such invari-
ance properties allow one to write down an equation fully
analogous to the Callan-Symanzik equation of standard
quantum field theory. This equation, together with simple
dimensional analysis, allows one to discuss the scaling
properties of the theory straightforwardly.
Let us consider a theory space parametrized by a set of

dimensionless couplings f~gig. The RG flow is described by
a system of differential equations:

∂t ~gi ¼ fiðf~gjgÞ; ð2:2Þ
to which one associates boundary conditions like1

~giðμÞ ¼ ~gðRÞi ; ð2:3Þ
where the “renormalized” couplings ~gðRÞi are given num-
bers. By imposing a boundary condition, we select a
specific trajectory on theory space. Let us denote this

solution by ~gðsolÞi ðk; μ; ~gðRÞi Þ, where we made explicit its

dependence on the boundary values ~gðRÞi and the scale μ.
Clearly, if one chooses another set of boundary values

which, however, still correspond to some point along this
trajectory, then the solution of the flow equation will be the
very same trajectory again. To cast this simple fact into a
mathematical formula, let us consider the specific solution
of Eq. (2.2) associated with the boundary condition (2.3).
Now we want to change the boundary condition (2.3) to an
equivalent boundary condition along the trajectory; i.e., we
move μ to some other scale μ0 and change the couplings

1For lack of a better word, we refer to it as a “boundary”
condition even if μ is an inner point of the k interval under
consideration.
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accordingly. This is achieved by infinitesimally translating

μ → μ0 ¼ μþ ε and ~gðRÞi ¼ ~giðμÞ → ~gðRÞ0i ¼ ~giðμ0Þ ¼
~giðμÞ þ ε∂μ ~giðμÞ. The fact that these two boundary con-
ditions are associated to the same solution implies that

~gðsolÞi ðk;μ; ~gðRÞi Þ ¼ ~gðsolÞi ðk;μ0; ~gðRÞ0i Þ
≅ ~gðsolÞi ðk;μ; ~gðRÞi Þ

þ ε

�
∂μ þ ∂μ ~gjðμÞ

∂
∂ ~gðRÞj

�
~gðsolÞi ðk;μ; ~gðRÞi Þ:

As a consequence, it follows that�
μ∂μ þ βj

∂
∂ ~gðRÞj

�
~gðsolÞi ðk; μ; ~gðRÞi Þ ¼ 0; ð2:4Þ

where βj ≡ βjð~gðRÞi Þ. The same reasoning straightforwardly
applies to the entire EAA. Thereby, a wave function
renormalization Zk can be conveniently introduced con-
sidering Ansätze of the following form2:

Γk½φ� ¼
Xn
i¼1

giOiðZ1=2
k φÞ:

Here we made explicit the inessential nature of Zk. The
anomalous dimension of the elementary field φ corre-
sponds to η≡ −Z−1

k ∂tZk; see [18] for a detailed discussion.
One, thus, has an equation which is fully similar to the
Callan-Symanzik equation:

�
μ∂μ þ βj

∂
∂ ~gðRÞj

− ηφ ·
δ

δφ

�
Γk½φ� ¼ 0: ð2:5Þ

Equation (2.5) can be used to deduce scaling properties
of correlation functions at a fixed point. To do so, one
considers Eq. (2.5) together with a Euler-type differential
equation (homogeneity relation) which stems from dimen-
sional analysis.
As an example, let us consider the propagator of a scalar

field with mass dimension ½φðxÞ� ¼ d−2
2
. In the fixed point

regime, with Γ ¼ Γk→0 and Γð2Þ ≡ δ2Γ
δφðqÞδφðpÞ, we obtain

from Eq. (2.5) and dimensional analysis (see [18] for
details):(

½μ∂μ − η�Γð2Þ ¼ 0

½μ∂μ þ p∂p þ q∂q þ ðd − 2Þ�Γð2Þ ¼ 0
: ð2:6Þ

Now we eliminate the μ∂μ term from these two equations.
It is convenient to take into account the overall delta
function entailing momentum conservation, which has
mass dimension −d. In particular, we define Γð2Þ ≡
δðpþ qÞfðpÞ and obtain

½p∂p − ð2 − ηÞ�fðpÞ ¼ 0: ð2:7Þ
Remarkably, we note that Eq. (2.7) just derives from the
(here assumed) existence of a fixed point. Different fixed
point propagators are distinguished by the different values
of the anomalous dimension.
One can repeat the same logic for the graviton propa-

gator. Let us remark that in the case of gravitational
theories, one can either consider the coordinates dimen-
sionful and the metric dimensionless or vice versa. Either
way, the above reasoning leads straightforwardly to a
propagator of the type p4, as it has been already noted
in [19–21]. Such propagator can be viewed as a two-
dimensional propagator hinting to a dimensional reduction
phenomenon [21–23]. The computation of the anomalous
dimension in the spirit mentioned above (leading to a
propagator of the type p4−η) has been performed in very
few truncations; see, for instance, [4,5,24].
As far as composite operators are concerned, the argu-

ment outlined in this section can be straightforwardly
generalized and allows us to identify their scaling dimen-
sions. In Sec. III, we shall define the scaling dimension of
composite operators and see how they can be estimated.

III. COMPOSITE OPERATORS IN THE
FUNCTIONAL RENORMALIZATION GROUP

AND ASYMPTOTIC SAFETY

In the functional integral formulation of standard quan-
tum field theory, one deals with composite operators by
coupling them to external sources so that one obtains
insertions of composite operators in correlation functions
by taking suitable functional derivatives of the path integral
[25]. In the effective average action formalism, this step is
not often made, one of the reasons being that frequently one
is interested in the properties of a system at a fixed point,
which one describes by the critical exponents associated to
the couplings fg�i g of the operators present in the trunca-
tion, Oi. However, there are several situations in which one
may wish to couple some operators to their respective
sources and carry out the associated renormalization
procedure.
First of all, in order to solve Eq. (2.1), a truncation Ansatz

is typically used. This is one possible reason why not “all”
operators are present in the Ansatz for the EAA. If one was
interested in the scaling of an operator O, which, for any
reason, is not present in the truncation Ansatz for the EAA,
a procedure analogous to the one adopted in standard
quantum field theory is very helpful and gives a first
estimate of the scaling properties of the operator.

2Since the total number of running couplings (including the
wave function renormalization constant) should be n, we set
gi ¼ 1 for some i. For instance, in the case of a scalar field theory,
one usually chooses to write the kinetic term 1

2
Zkð∂φÞ2, with no

coupling gi in front.
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Moreover, there are operators which one is not able to
treat directly even in a full-fledged EAA. As an example, let
us consider the metric in the vielbein formalism, i.e.,
gμν ¼ eaμebνηab. If eaμ is taken to be an elementary field
(possibly together with the spin connection as in the
Riemann-Cartan theory), then gμνðxÞ is neither an elemen-
tary field, it is an operator product of two fields, nor it is an
invariant built from elementary fields; i.e., it is not contained
even in the exact theory space. In this case, the metric is a
composite operator of spin two, and in order to define
meaningful correlation functions of the metric, one needs to
regularize and renormalize the operator gμν. This beginswith
coupling gμν to a spin-two source. Similar considerations
hold for many other interesting operators as we shall see
later on.
Let us review how one can deal with composite operators

in the functional renormalization framework. We denote
εðxÞ the source and consider the expectation value3

hOðxÞi ¼ N
Z

DχOðxÞe−S

¼ −
δ

δεðxÞN
Z

Dχe−S−ε·O
���
ε¼0

;

where N is a suitable normalization constant. Then we
define the generating functional W½J; ε� for the connected
Green’s functions associated to the modified action
Sþ ε ·O:

eW½J;ε� ≡
Z

Dχe−S−ε·OþJ·χ :

The associated effective action is obtained via a Legendre
transform

Γ½φ; ε� ¼ J · φ −W½J; ε�; φ ¼ δW
δJ

:

It is straightforward to check that

δΓ
δε

½φ; ε� ¼ −
δW
δε

½J; ε�;

which tells us that we can extract the renormalization
regarding a single insertion of a composite operator directly
considering a single functional derivative with respect to
εðxÞ of the EAA. One can repeat the derivation of the
FRGE in the case of Γk½φ; ε�. From its ε derivative, we find
the following exact flow equation associated to the
composite operator [18,26,27]:

∂t

�
δ

δε
Γk½φ; ε�

�����
ε¼0

¼ −
1

2
Tr½ðΓð2Þ

k þRkÞ−1
δΓð2Þ

k

δε
ðΓð2Þ

k þRkÞ−1∂tRk�jε¼0:

We can avoid performing the functional derivative with
respect to ε and just compare order by order in ε. Clearly,
since we are interested just in a single insertion of the
composite operator, we can limit ourselves to consider the
case where ε2 ¼ 0. Furthermore, we denote

½Ok�i ≡ δ

δεi
Γk½φ; εj�;

where k indicates the RG scale, and the subscript i labels n
different composite operators. We can rewrite the flow
equation for composite operators as [18]

∂tðε · ½Ok�Þ ¼ −
1

2
Tr½ðΓð2Þ

k þRkÞ−1ðε · ½Ok�ð2ÞÞðΓð2Þ
k þRkÞ−1∂tRk�: ð3:1Þ

To concretely solve Eq. (3.1), some approximation must
be implemented. In particular, one may expand the
composite operator ½Ok�i in a basis of k-independent
operators fOi; i ¼ 1;…; ng. In this case,

½Ok�i ¼
Xn
j¼1

ZijðkÞOj: ð3:2Þ

By following the reasoning of Sec. II, one can show that
the scaling operators of the theory have dimensions,
quantum corrections included, given by the eigenvalues
of the matrix

diδij þ ðZ−1∂tZÞij; ð3:3Þ
where di is the (classical) mass dimension of the operator
Oi [18].
The crucial matrix γZ;ij ≡ ðZ−1∂tZÞij can be directly

found manipulating Eq. (3.1). Inserting the Ansatz
(3.2) and taking a functional derivative with respect to
εi, we findX
j

∂tðZijOjðxÞÞ ¼ −
1

2
Tr

�
ðΓð2Þ

k þRkÞ−1
�X

j

ZijO
ð2Þ
j ðxÞ

�

× ðΓð2Þ
k þRkÞ−1∂tRk

�
;

which implies the final result for the general case with
operator mixing,

3Whenever a dot appears in a mathematical expression, e.g.,
f · g, the DeWitt condensed notation is used, meaning that
integration and index summation is intended.
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X
j

γZ;ijOjðxÞ ¼ −
1

2
Tr½ðΓð2Þ

k þRkÞ−1ðOð2Þ
i ðxÞÞðΓð2Þ

k þRkÞ−1∂tRk�: ð3:4Þ

In the present work, we shall mainly limit ourselves to nonmixing Ansätze for the composite operators. This means that
we shall consider composite operators approximated by the simple parametrization ½Ok� ¼ ZOðkÞO. Such an operator
acquires an anomalous dimension given by Z−1

O ∂tZO, which can be read off from

γZO
OðxÞ ¼ −

1

2
Tr½ðΓð2Þ

k þRkÞ−1ðOð2ÞðxÞÞðΓð2Þ
k þRkÞ−1∂tRk�: ð3:5Þ

For the sake of comparison with other results in the
literature, it is useful to work out the relation between
scaling operators defined by means of explicit introduction
of the sources and those found by linearizing the RG flow
around the fixed point. Let us consider an Ansatz for the
EAA expanded in the basis of operators Oi:

Γk ¼
Xn
i¼1

giðkÞOi:

Here we consider the basis of operators Oi to be the same
that we used previously for the composite operators. Under
these approximations, it is straightforward to conclude
from the flow equation that

Xn
j¼1

βjOj ¼
1

2
Tr

��Xn
j¼1

gjO
ð2Þ
j þRk

�−1
∂tRk

�
:

Taking a derivative with respect to the coupling gi, we find

Xn
j¼1

∂giβjOj ¼ −
1

2
Tr

��Xn
j¼1

gjO
ð2Þ
j þRk

�
−1

×Oð2Þ
i

�Xn
j¼1

gjO
ð2Þ
j þRk

�
−1∂tRk

�
: ð3:6Þ

Comparing (3.4) with (3.6) we conclude that at the
dimensionful level,

∂giβj ¼ γZ;ij;

which can be rewritten in terms of dimensionless
couplings ~gj as

Kiaðdδab þ ∂ ~ga
~βbÞK−1

bj ¼ diδij þ γZ;ij; ð3:7Þ

where d is the spacetime dimension and Kij ≡ kdiδij. Thus,
under these approximations, the scaling dimensions found
by diagonalizing the matrix diδij þ γZ;ij are exactly the
same as those found by linearizing the RG flow and
diagonalizing dδij þ ∂ ~gi

~βj. (Recall also that the negative

eigenvalues of ∂ ~gi
~βj are the fixed point’s critical

exponents θi.)

The usefulness of adopting the composite operator point
of view is that there may be cases in which some operators
are not included in a truncation, but one would like to have
information about their renormalization and scaling proper-
ties. As far as the asymptotic safety scenario is concerned, an
interesting example is given by the scaling properties of the
length of curves, and geodesics, in particular, which usually
are not considered as a part of the EAA. Of course, in order
to explore gravitational observables, further efforts are
required since one needs to identify suitable diffeomorphism
invariant operators. Possibly, this can be achieved by having
at our disposal further fields which allow us to “localize”
quantities in spite of an overall integration over themanifold;
see [12,13] for a detailed description. In this work, we shall
not pursue this approach further but simply consider the
renormalization of possibly interesting composite operators.
Finally, we note that scaling properties of correlation

functions involving certain suitable composite operators are
also essential in order to compare different approaches to
two-dimensional quantum gravity [28,29]. Possibly, one
may find similar comparisons between four-dimensional
asymptotic safety and other approaches to 4D quantum
gravity, like Causal Dynamical Triangulations (CDT), for
example. This is a further motivation for the present
investigation.

IV. COMPOSITE METRICS IN THE CREH
TRUNCATION

In this section, we consider the CREH truncation and
evaluate the scaling properties of various operators in this
setting. Interestingly, in the CREH truncation, the metric is
a composite operator, and, therefore, this framework
constitutes an instructive toy model to see which types
of computations are required in more-refined cases, such
as the composite metric in the vielbein formalism. In
Sec. IVA, we briefly recall the CREH truncation, and in
Sec. IV B, we treat the composite metric operator in the
CREH truncation by means of two different approaches
that will turn out equivalent in the end.

A. The CREH action

The CREH truncation is inspired by the classical action
functional

COMPOSITE OPERATORS IN ASYMPTOTIC SAFETY PHYSICAL REVIEW D 95, 066002 (2017)

066002-5



S½gμν� ¼
1

16πG

Z
ddx

ffiffiffi
g

p ð2Λ − RÞ ð4:1Þ

evaluated for arguments gμν which are given by a dynamical
conformal factor times a fixed reference metric ĝμν:

gμν ¼ ϕ2νðdÞĝμν: ð4:2Þ
The conformal factor is written as a power of the elemen-
tary dynamical field ϕ, the choice for the exponent being

νðdÞ≡ 2

d − 2
:

The exponent 2ν is the integer only in the special
dimensions d ¼ 3, d ¼ 4, and d ¼ 6, respectively. (See
Table I.) The distinguished parametrization of the con-
formal factor in (4.2) has the “miraculous” property that,
with this choice, the restricted Einstein-Hilbert action
S½ϕ�≡ S½ϕ2νĝ� has a standard quadratic kinetic term for
ϕ. The only self-interactions of ϕ are due to the cosmo-
logical constant then.
Furthermore, allowing the cosmological and the Newton

constants in S½ϕ� to be scale dependent (Λ → Λk,G → Gk),
this functional reads

Γk½ϕ� ¼ −
1

8πξðdÞGk

Z
ddx

ffiffiffî
g

p �
1

2
ĝμν∂μϕ∂νϕ

þ 1

2
ξðdÞR̂ϕ2 − ξðdÞΛkϕ

2d
d−2

�
; ð4:3Þ

with R̂ the curvature scalar of ĝμν, and

ξðdÞ≡ d − 2

4ðd − 1Þ :

We shall refer to the action (4.3) as the CREH Ansatz for
the EAA of conformally reduced gravity.
Despite its simplicity, this model captures many features

of full-fledged truncations in QEG with all the modes of the
metric retained. In particular, the RG flow is qualitatively
identical to that of full QEG displaying, in particular, a
nontrivial fixed point (NGFP). It has been studied in detail
in [11,30–36].
Note that when the cosmological constant is negligible

(Λk ¼ 0), and, correspondingly, we choose a flat back-
ground (ĝμν ¼ δμν, R̂ ¼ 0), the CREH action (4.3) reduces
to Γk ∝

R ð∂μϕÞ2. So one could think that we are dealing

“only with a free theory” which has no interesting renorm-
alization behavior. But clearly, this is false: In the model at
hand, even the most basic operator of physical interest,
namely, gμν, is a nontrivial composite operator of the
elementary quantum field, ϕ. Hence, there is a large class
of physically relevant renormalization effects, namely,
those related to operator products, which are not reflected
by the running of the EAA in any way.
As a final note, let us remark that the CREH action

carries some crucial differences with respect to seemingly
similar scalar models used in statistical field theory. We
defer a detailed discussion of such differences to the
literature [11,30–36]. Let us just remark that different from
normally considered statistical field theories, the CREH
action has a “wrong sign” kinetic term. Moreover, a full-
fledged treatment of the CREH action requires the intro-
duction of an associated scalar background field, which we
avoided in our simple setting.

B. Composite metric operators

When using the parametrization (4.2), the metric gμν
becomes proportional to a power of the dynamical, i.e.,
quantum, field ϕ. Thus, the metric gμν is a composite
operator4 which must be dealt with by a suitable renorm-
alization procedure.
To see why such a renormalization is needed, let us

consider d ¼ 4 dimensions where we have gμν ¼ ϕ2ĝμν.
This poses the problem of defining the composite operator
ϕ2. It is instructive to consider explicitly the correlation
function hϕðxÞϕðyÞi in the EAA formalism and to explore
how this two-point function becomes ill-defined in the limit
y → x. To properly define limx→yhϕðxÞϕðyÞi, we shall need
a further regularization scheme, this time for the UV,
besides the mode suppression built into the EAA. The
pertinent (re)normalization procedure will yield the mean-
ingful composite operator ϕ2 then.
Regarding the connected two-point function hϕðxÞϕðyÞi,

in the EAA formalism, it is most conveniently obtained
from the inverse of the Hessian of Γk½ϕ� þ ΔSk½ϕ�≡ ~Γk½ϕ�:

hϕðxÞϕðyÞi ¼ hxj 1

Γð2Þ
k ½ϕ� þ Rk

jyi: ð4:4Þ

We assume that we solved the flow equation and found
some RG trajectory along which we follow the evolution of
the two-point function. For simplicity’s sake, we focus on
the classical regime of the RG trajectory where we can
approximate Gk ¼ const≡G, and in addition, we suppose
that the cosmological constant can be neglected, Λk ¼ 0.
Choosing the flat reference metric ĝμν ¼ δμν, we obtain
then in d ¼ 4,

TABLE I. The composite conformal factors and volume
operators for the distinguished parametrizations in various
dimensions.

d 3 4 6

Conformal factor ϕ4 ϕ2 ϕ
Volume operator ϕ6 ϕ4 ϕ3

4For the case d ¼ 6 where gμν ¼ ϕĝμν happens to be linear
in the quantum field and is special, see [17] for a discussion on
this point.
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hϕðxÞϕðyÞi ¼ hxj 1

ð− 3
4πGÞð−□þRkð−□ÞÞ jyi

¼
Z

d4p
ð2πÞ4

1

ð− 3
4πGÞðp2 þRkðp2ÞÞ e

ipðx−yÞ:

ð4:5Þ
Clearly, if we set x ¼ y, the above integral diverges, and the
limit limx→yhϕðxÞϕðyÞi is undefined. In order to arrive at an
expression with more regular properties, we consider the
RG running of the two-point function and take the limit
x → y only at the level of its scale derivative, which turns
out well defined. Differentiating (4.5), we see that the
running of the two-point function is given by

∂thϕðxÞϕðyÞi ¼ ∂thxj
1

~Γð2Þ
k

jyi

¼ −hxj 1

~Γð2Þ
k

ð∂t
~Γð2Þ
k Þ 1

~Γð2Þ
k

jyi

¼ −hxj 1

~Γð2Þ
k

ð∂tRkÞ
1

~Γð2Þ
k

jyi: ð4:6Þ

Thus, with our approximations Λk ≈ 0 and ∂tGk ≈ 0, one
obtains

∂thϕðxÞϕðyÞi ¼
4πG
3

Z
d4p
ð2πÞ4

eipðx−yÞ

ðp2 þRkðp2ÞÞ2 ∂tRkðp2Þ:

ð4:7Þ
We immediately notice that the function (4.7) is well
defined in the limit x → y thanks to the presence of the
k derivative of the cutoff kernel Rk. For example, employ-
ing the optimized cutoff [37], one finds explicitly,

∂thϕðxÞϕðyÞi ¼
8πG
3

k2Fðkjx − yjÞ; ð4:8Þ

with the function F defined by

Fðkjx − yjÞ≡
Z

d4q
ð2πÞ4 e

iqμkðx−yÞμθð1 − q2Þ: ð4:9Þ

In principle, we can now solve for the evolution
equation (4.8) and obtain the k dependence of the two-
point function at arbitrary points x and y.
In order to find the composite operator of interest, we set

y ¼ x in (4.8) and obtain

∂thϕðxÞ2i ¼
8πG
3

k2Fð0Þ ¼ 1

12π
Gk2:

Integration leads to the following running correlation
function of the composite operator ϕ2:

hϕðxÞ2ik − hϕðxÞ2i0 ¼
1

24π
Gk2:

Recalling gμν ¼ ϕ2ĝμν and denoting hϕðxÞ2i0 ≡ τ, we have
the final result

hgμνik ¼
�
1þ 1

τ

1

24π
Gk2

�
hgμνi0: ð4:10Þ

This simple example makes it quite obvious that, in
general, the exploration of the predictions from the same
theory requires much more than merely the scale depend-
ence of the couplings in the (truncated) EAA, the reason
being that there are physically relevant operators which are
not elements of the theory space the EAA lives in, either as
a consequence of a truncation, or even at the exact level. As
we shall see, this complication is particularly acute in
quantum gravity because of the complicated nature of the
observables.
The reader may wonder why we considered the equation

for the running two-point function instead of using directly
the “master equation” (3.1). Indeed, as we shall see in a
moment, the same results can be obtained using Eq. (3.1).
Employing the two-point function is an instructive alter-
native though. It may turn out to be cumbersome, however,
when considering different operators like ϕ4 that would
require us to consider the coincident limit of a four-point
function.
Now let us turn to the master equation (3.1) and find the

running of the composite operator ϕ2. A simple one-loop
computation yields

∂t½ϕ2ðxÞ� ¼ −
Z

d4p
ð2πÞ4

1

Γð2Þ
k þRk

×
1

Γð2Þ
k þRk

∂tRk

���
ĝμν¼δμν;−□→p2

: ð4:11Þ

Here the factor 1=2 in the rhs of (3.1) got canceled by the
factor 2 coming from the Hessian of ϕ2. We observe that
Eq. (4.11) is equivalent to Eq. (4.7) in the limit y ¼ x once
the truncation (4.3) is used. This equivalence, however, is
no longer there if one goes beyond the one-loop approxi-
mation, simply because these two procedures define differ-
ent schemes according to which one can renormalize ϕ2.
Summarizing, this computation shows how one can

properly define a composite metric in the FRG framework,
using the CREH truncation as an example. A similar
reasoning will be applied in the following sections to other
composite operators.

V. GEOMETRIC OBSERVABLES: VOLUME AND
LENGTH OPERATORS

In this section, we consider the scaling behavior of two
geometrical objects: (1) the volume operator V ≡ R

ddx
ffiffiffi
g

p
,

a quantity that one is naturally led to consider as a first
possible observable in quantum gravity, and (2) the length
of an arbitrary curve. Interestingly, the scaling properties of
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geometric observables, like the volume and the length, play
a central role in the description of 2D quantum gravity and
have been widely explored [28,29]. In this section, we
consider these geometrical objects in the AS scenario in
dimension d > 2. We postpone the two-dimensional case
to Sec. VI.
In Secs. VA and V B, we study the volume operator in

the CREH truncation and in the full-fledged Einstein-
Hilbert truncation, respectively. Then, in Sec. V C, we
investigate the length of a given spacetime curve in the
Einstein-Hilbert truncation.

A. Volume operator in the CREH approximation

As we have already seen, in the conformally reduced
setting, themetric is a composite operator. Thus, any operator
O depending on the metric is also a composite operator.
In d > 2 dimensions, we have the volume elementffiffiffi

g
p ¼ ϕdνðdÞ ffiffiffî

g
p

:

The exponent dνðdÞ is noninteger except in the dimensions
reported in Table I. In two dimensions, the exponential
parametrization is the distinguished one leading to a free
kinetic term and, thus, takes the place of the power-type
dependence ∝ ϕ2νðdÞ [17]; we shall consider the relevant
composite operator in Sec. VI.
We have evaluated the anomalous dimensions of the

volume operators with integer exponents listed in Table I
via Eq. (3.1), i.e., those for d ¼ 3, 4, and 6. The calculation
makes essential use of Eq. (3.5), and it parallels those
described in the previous sections, so that it suffices to
comment on the results.
First, let us consider the case d ¼ 4, for whichffiffiffi
g

p ¼ ϕ4
ffiffiffî
g

p
. The anomalous dimension of the volume

operator can be computed expanding the rhs of Eq. (3.5) up
to ϕ4. It is easy to observe that the flow equation induces
mixing with infinitely many other operators. We consider a
simple nonmixing Ansatz, namely, ½ϕ4� ¼ Zϕ4ϕ4, and
compute the anomalous dimension following the discus-
sion of Sec. III. The Hessian of the action (4.3) in four
dimensions reads

Γð2Þ
k ¼

�
−

3

4πGk

��
−□̂þ R̂

6
− 2Λkϕ

2

�
:

Inserting the Hessian Γð2Þ
k and the Hessian of the operators

½ϕ4� in Eq. (3.5), one can read off the anomalous dimension.
The correction to the classical scaling dimension associated
to the volume operator can be found in Table II together
with the cases for d ¼ 3 and d ¼ 6.
From Table II, we note that the anomalous dimensions

are proportional to Newton’s constant and a certain power
of the cosmological constant that renders γV dimensionless.
The factor of Λ comes from expanding, in the field ϕ, the
regularized propagator in the flow equation; the power of Λ

is essentially determined by the order in this expansion. The
three-dimensional case shows a vanishing anomalous
dimension in our approximation.5

B. Volume in the full Einstein-Hilbert truncation

In this section, we estimate the anomalous dimension of
the volume operator via a nonmixing Ansatz within the
fully fledged Einstein-Hilbert truncation for the gravita-
tional EAA:

Γk½gμν� ¼
1

16πGk

Z
ddx

ffiffiffi
g

p ð2Λk − RÞ: ð5:1Þ

The metric gμν is expressed via the sum of a background
metric ḡμν and the dynamicalmetrichμν, i.e., gμν ¼ ḡμνþhμν.
We equip the Ansatz (5.1) with the Feynman–de Donder
gauge fixing, which gives a particularly simple Hessian; see,
for instance, [38].
We consider now the integrated volume operator

V ¼ R
ddx

ffiffiffi
g

p
, and we do not allow for any mixing with

other operators. In order to compute the associated anoma-
lous dimension, and, thus, the scaling properties of V, we
employ Eq. (3.5).
Taking into account the presence of the ghosts, the

Hessian of the functional V ≡ V½g�≡ V½ḡþ h� has the
following block form in field space:

Vð2Þ ¼

0
B@

δ2V
δhδh 0 0

0 0 0

0 0 0

1
CA:

The simple structure ofVð2Þ in field space also simplifies the
trace in Eq. (3.5). Indeed, this latter trace includes not only
the gravitons but all the fields, in particular, the ghosts.
However, in the present approximation, we see that once the
fluctuating fields are set to zero, i.e., hμν ¼ cμ ¼ c̄μ ¼ 0, the
relevant contribution only comes from the gravitons, in
particular,

γVV¼−
1

2
Tr

�
1

Γð2Þ
k;hhþRk;hh

·

�
δ2V
δhδh

�
·

1

Γð2Þ
k;hhþRk;hh

·∂tRk

�
:

ð5:2Þ

TABLE II. Volume operators in various dimensions and their
one-loop anomalous dimensions according to the CREH model.

d 3 4 6

Volume operator ϕ6 ϕ4 ϕ3

Anomalous dimension 0 2
πGΛ

27
250π2

GΛ2

5In the three dimensions, the anomalous dimension vanishes if
we parametrize ½ϕ6� ¼ Z6ϕ

6. A nonzero anomalous dimension
occurs upon including the mixing of ϕ6 with other operators.
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The Hessian of the volume operator reads�
δ2V
δhδh

�
ρσ

μν

¼
�
−
1

2

ffiffiffi
g

p ��
Iρσμν −

d
2
Pρσ
μν

�
; ð5:3Þ

with the matrices Iρσμν ≡ 1
2
ðδρμδσν þ δσμδ

ρ
νÞ and Pρσ

μν ≡ 1
d gμνg

ρσ.
Inserting the operator (5.3) in Eq. (5.2), one finds

γV ¼ dðdþ 1Þ
2

16πGk

2

�
1

ð4πÞd=2
1

Γðd
2
Þ
Z

∞

0

dz
zd=2−1

ðzþ RkÞ2

×

�
∂tRk −

∂tGk

Gk
Rk

��
: ð5:4Þ

The integral can be evaluated in terms of the standard
threshold functions Φp

n and ~Φp
n from [2]. In terms of the

dimensionless couplings gk ≡ kd−2Gk and λk ≡ Λk=k2, and
with the anomalous dimension related to Newton’s constant
ηN ≡ ∂tGk=Gk, we find

γVðg; λÞ ¼ dðdþ 1Þ g

ð4πÞd=2−1 ½Φ
2
d=2ð−2λÞ − ηNðg; λÞ ~Φ2

d=2ð−2λÞ�: ð5:5Þ

This formula applies to an arbitrary point of the
(g − λ)-theory space. For ηNðg; λÞ, one should substitute
the standard result from the (full) Einstein-Hilbert
truncation.6

For the example of the optimized cutoff, Eq. (5.5)
becomes

γVðg; λÞ ¼
4ðdþ 1Þ

ð4πÞd=2−1Γðd
2
Þ

g
ð1 − 2λÞ2

�
1 − ηNðg; λÞ

1

dþ 2

�
:

ð5:6Þ
At the NGFP ðg�; λ�Þ where ηNðg�; λ�Þ ¼ 2 − d, Eq. (5.6)
yields for γ�V ¼ γVðg�; λ�Þ:

γ�V ¼ 8dðdþ 1Þ
ð4πÞd=2−1Γðd

2
Þðdþ 2Þ

g�
ð1 − 2λ�Þ2

: ð5:7Þ

For a first orientation, let us focus on d ¼ 2þ ε
dimensions where the Einstein-Hilbert truncation is
known [2] to display a non-Gaussian fixed point which
has the (universal) coordinate g� ¼ 3

38
ε, together with a

nonuniversal λ�, which is likewise of order ε. Since
Φ2

1ð0Þ ¼ 1 for any cutoff shape function, Eq. (5.5) yields
in this case

γ�V ¼ 12g� þOðε2Þ ¼ 18

19
εþOðε2Þ: ð5:8Þ

This anomalous dimension amounts to a shift of the classical
scaling dimension of the volume operator dV ¼ −d, to
the corrected value dV þ γ�V ¼ −2 − εþ 18

19
ε ¼ −2 − 1

19
ε,

which appears to correspond to an effective spacetime
dimensionality, which is slightly smaller (larger) than the
classical one when ε > 0 (ε < 0).

The value of γV at the UV fixed point for a
four-dimensional spacetime is reported in Table III in
Sec. V C. It is worth to notice that the value of this
anomalous dimension γ�V ≈ 3.9866 is almost equal to
the spacetime dimension, i.e., γ�V ≈ 4, and that the
volume operator has classical mass dimension dV¼−4.
According to the discussion and conventions of Sec. III,
the full scaling dimension of the volume operator (and
analogous for any other operator) is obtained adding the
anomalous dimension to the classical mass dimension:
dcorrectedV ¼ dV þ γ�V . In the present case, the quantum
contribution almost cancels against the classical value
so that the operator V has an almost vanishing scaling
dimension, dV þ γ�V ≈ 0.
Let us stress that this result may well be an artifact

of the truncation and approximations employed so far.
Nevertheless, we can possibly make contact with indepen-
dent results in the literature. First, we recall the connection
between the “composite operator formalism” of Sec. III
with that of critical exponents θi defined by the linearized
flow. In particular, Eq. (3.7) allows one to compare our
results with those obtained by linearizing the RG around
the fixed point.
Now, most of the works in the asymptotic safety

literature have produced complex critical exponents θ so
far, and, thus, a direct comparison with our present results is
far from obvious.
Let us remark that here the scaling dimension can be

seen as the exponent which characterizes the volume
operator under a rescaling of an appropriate classical
length, Lc. In particular, let us consider the volume of a
certain domain whose typical size is governed by the
typical length Lc. For instance, Lc could be the side length
of a cube in the coordinate space. Then we have the
behavior

TABLE III. The anomalous dimensions of the length and
volume operators in d ¼ 4.

γ�L γ�V
One-loop anomalous dimension 0.0682 2.7273
Full anomalous dimension 0.0997 3.9866

6See Eq. (4.41) with (4.40) in [2].
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hVðLcÞi ¼ hVðLc;0Þi
�
Lc

Lc;0

�
−dcorrectedV

; ð5:9Þ

where dcorrectedV is the full mass dimension of the volume
operator. Such scaling relations are typical of self-similar
fractals, in which case, the similarity dimension can
sometimes be used to guess the Hausdorff dimension
[39]. With this in mind, the fact of having an almost
vanishing scaling dimension could suggest that at very
small distance scales (fixed point regime), the spacetime is
actually much more “empty” than one would naively
expect, like a sort of “dust,” i.e., a set of discrete points
rather that a continuum.
However, let us stress that ultimately one aims to

measure volumes (or other operators) in terms of
physical lengths (or areas, etc.) rather than the artificial
scale Lc. Ideally, one may wish to determine the
scaling of volumes with respect to that of expectation
values of the geodesic distance operator. This allows us
then to define a dimension δ via V ∝ lδgeod, where lgeod
is a geodesic distance. (It has to be kept in mind,
however, that lgeod is not diffeomorphism invariant, and
a suitable “localization procedure” must be considered
somehow.)
Hopefully, the tools introduced in this work can be used

in the future to compute this kind of generalized dimension
in the asymptotic safety scenario.

C. Quantum average of the length of curves

In this section, we study another geometrical object: the
length of curves. Let us denote xμðsÞ the coordinates of the
points visited by a curve as a function the parameter
s ∈ ½0; 1�. The length of this curve on a manifold of fixed
metric gμν is then given by

L½xð·Þ; g�≡
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxðsÞÞ_xμðsÞ_xνðsÞ

q
;

_xμðsÞ≡ dxμðsÞ
ds

: ð5:10Þ

One is interested in quantum averages of L½xð·Þ; g� over the
metrics g realized on the manifold,�Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxðsÞÞ_xμðsÞ_xνðsÞ

q 	
: ð5:11Þ

With regard to the quantum metric gμν, or, rather, the
fluctuation hμν ¼ gμν − ḡμν, which is considered an
elementary field here, the length L½xð·Þ; g�≡ L½xð·Þ;
ḡþ h� is clearly a composite operator. It is, therefore,
natural to ask if this operator possesses a nontrivial
anomalous dimension which encodes how the length
responds to a scale variation.
As usual, we shall compute the anomalous dimension via

the master equation (3.1). We need the Hessian of the

functional L with respect to the metric for a fixed curve
xμðsÞ, on the rhs of Eq. (3.1). It reads explicitly

δ2L½xð·Þ; g�
δhαβðx0Þδhγδðx00Þ

¼ −
1

4

Z
ds

_xαðsÞ_xβðsÞ_xγðsÞ_xδðsÞ
½gμνðxλÞ_xμðsÞ_xνðsÞ�3=2

× δðx0 − xðsÞÞδðx00 − xðsÞÞ: ð5:12Þ
We can anticipate that by taking the trace in the flow
equation, we are led to contract the indices of the Hessian
(5.12) in such a way that the rhs turns out to be proportional
to L itself. Considering a flat spacetime background metric,
it is rather straightforward to obtain the associated anoma-
lous dimension γL from Eq. (3.5).
The final result obtained in this way reads

γLðg;λÞ¼
d−3

d−2

g

ð4πÞd=2−1 ½Φ
2
d=2ð−2λÞ−ηNðg;λÞ ~Φ2

d=2ð−2λÞ�:

ð5:13Þ

The corresponding one-loop result could be retrieved by
neglecting the term proportional to ηNðg; λÞ on the rhs of
(5.13) and letting λ → 0 in the argument of the threshold
functions.
Interestingly enough, the function γLðg; λÞ is propor-

tional to γVðg; λÞ. At any point ðg; λÞ and for all cutoff
functions, we have

γLðg; λÞ ¼
d − 3

dðdþ 1Þðd − 2Þ γVðg; λÞ: ð5:14Þ

Thus, for example, γL ¼ γV in d ¼ 1, and γL ¼ 1
40
γV in

d ¼ 4, everywhere in the theory space.
As for the (2þ ε)-dimensional case, it is remarkable that

the pole proportional to 1=ðd − 2Þ in (5.14) cancels the
linear ε dependence of γ�V . Hence, with (5.8) in the leading
order in ε,

γ�L ¼ −
1

6ε
γ�V ¼ −

2g�
ε

:

This yields a finite, nonzero anomalous dimension in the
limit ε → 0:

γ�L ¼ −
3

19
:

Recall that the anomalous dimension of the volume
operator vanishes in this limit, γ�V ¼ 0þOðεÞ.
The numerical results for the four-dimensional case can

be found in Table III. They were obtained with the
optimized cutoff [37]. Note that the full anomalous dimen-
sions γ�L and γ�V do indeed differ by the universal factor
1=40 predicted above.
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VI. QUANTUM GRAVITY IN EXACTLY
TWO DIMENSIONS

Liouville field theory is a well-known playground for
quantum gravity in (exactly) two dimensions [28,29].
Along a different line of investigations, QEG in 2þ ε
dimensions has often been used as a theoretical laboratory
for asymptotic safety. There, ε is always kept different
from zero since, if one employs the Einstein-Hilbert
truncation, the (bare) action becomes purely topological
at ε ¼ 0.
However, recently it has been shown that if one takes the

limit ε → 0 of the action functional only after having
already computed the RG flow in 2þ ε dimensions, one
obtains a nontrivial EAA and fixed point action [17]. The
latter action is given by the following manifestly two-
dimensional functional, which has the form of the induced
gravity action:

Γk→∞ ¼ −
ð25 − NÞ

96π

Z
d2x

ffiffiffi
g

p
R
�
−
1

□

�
Rþ � � � : ð6:1Þ

Here the dots stand for a cosmological constant term
with a nonuniversal coefficient. This result applies to
gravity coupled to N minimally coupled free scalar
fields and the exponential parametrization of the metric
fluctuations; for the standard linear parametrization, the
central charge 25 in Eq. (6.1) would be replaced by 19;
see [40].
The 2D functional (6.1) descends from the (2þ ε)-

dimensional Einstein-Hilbert term alone. Therefore, the
total EAA contains further contributions, in particular, the
Faddeev-Popov ghosts and the Jacobian leading to a Weyl
invariant measure. These contributions change the func-
tional in (6.1), yielding an exactly vanishing total charge of
QEG in 2D. (For further details, we refer to [17].) In the
following, we shall consider the contribution (6.1) in its
own right though.
Inserting metrics of the form gμν ¼ e2ϕĝμν, the action

(6.1) gives rise to a Liouville theory for ϕ:

Γk→∞¼−
ð25−NÞ
24π

Z
d2x

ffiffiffî
g

p
fϕð−□̂Þϕþ R̂ϕþμ�k2e2ϕg:

ð6:2Þ

It describes a RG fixed point7 on the side of the effective
action; in particular, ϕ≡ hχi is the expectation value of the
quantum field, χ. Furthermore, in [17,41] also the (re)
construction of a well-defined UV-regularized functional
integral

R
DΛχe−SΛ½χ� has been performed, which reprodu-

ces the RG trajectories Γk½ϕ�.

Employing the approach outlined in [42] and the UV-
regularized measure proposed there, the dependence of the
bare action SΛ½χ� on the UV cutoff scale Λ was deduced
from (6.2), with the result

SΛ→∞ ¼ κ

Z
d2x

ffiffiffî
g

p
½χð−□̂Þχ þ R̂χ þ μ̌ΛΛ2e2χ �: ð6:3Þ

Remarkably, the coefficient of the bare kinetic term turned
out to be exactly the same as its counterpart at the effective
level, namely,

κ ¼ −
ð25 − NÞ

24π
: ð6:4Þ

The bare fixed point cosmological constant μ̌� is different
from the effective one μ� and depends on the precise
definition of the measure, DΛχ. There exists a normaliza-
tion such that the bare cosmological constant vanishes. We
take advantage of this possibility and, henceforth, set
μ̌� ¼ 0. For the details of the reconstruction step, we must
refer to the literature [17,41,42].
In this context, Liouville theory comes into play as

the exactly two-dimensional limiting case of d-
dimensional QEG, as always based on the functional
integral

R
DΛgbareμν e−SΛ½gbareμν � but now only over metrics of

the type

gbareμν ≡ e2χ ĝμν: ð6:5Þ

In the present paper, instead we shall not be concerned
with the physical origin of the Liouville theory and rather
use it as a framework to see the FRGE for composite
operators “at work” and to show how it relates to the
standard approaches. We shall employ the action (6.3) with
an arbitrary value of κ and, for simplicity, μ̌� ¼ 0.

A. Correlators of exponential operators

From the splitting (6.5), it is clear that with respect to the
elementary field, the bare conformal factor χ, the metric is a
composite operator. We are interested in evaluating its
correlation functions, which boils down to evaluating
correlators of “vertex operators”:

he2a1χðx1Þ � � � e2anχðxnÞi: ð6:6Þ

Let us consider a flat background metric implying R̂ ¼ 0
and take μΛ ¼ 0.
(1) First we focus on the one-point function he2a1χðxÞi.

The scale dependence of this average could be
straightforwardly found employing the techniques
used in Secs. IV and V. However, here it turns out
more convenient to work directly at the path integral
level rather than working out the master equation at
higher order in the source ε. Thus, we first consider7In the notation of [17], μ� ≡ −2λ̆� ≡ −2λ�=ε.
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he2aχðxÞik ¼
1

Z0

Z
Dχ exp



−κ

Z
d2yχð−□þRkÞχ þ 2aχðxÞ

�

≡ 1

Z0

Z
Dχ exp



−κ

Z
d2yχð−□þRkÞχ þ

Z
d2yJðyÞχðyÞ

�
;

with JðyÞ≡ 2aδðy − xÞ. This is a simple Gaussian
integral, and so one obtains

he2aχðxÞi ¼ exp

�
a2

κ
hxj 1

−□þRk
jxi

�
¼ exp

�
a2

κ
Gkð0Þ

�
;

ð6:7Þ

where Gkð0Þ ¼ hxjð−□þRkÞ−1jxi is the Green’s
function at coinciding points.
Clearly,Gkð0Þ is undefined as it stands, andweneed

a regularization procedure. Rather than the Green’s
function per se, we determine its scale derivative:

∂tGkð0Þ ¼ ¼ −hxj ∂tRk

ð−□þRkÞ2
jxi

¼ −
Z

d2q
ð2πÞ2

∂tRkðq2Þ
ðq2 þRkðq2ÞÞ2

ð6:8Þ

¼ −
1

2π
Φ2

1ð0Þ ¼ −
1

2π
: ð6:9Þ

The above result isuniversal in the sense thatΦ2
1ð0Þ ¼

1 is known to be valid for any cutoff of the typeRk ¼
k2Rð0Þð−□=k2Þ [2]. By integrating (6.9), we find

Gkð0Þ − Gμð0Þ ¼ −
1

2π
log

k
μ
: ð6:10Þ

Using this result in Eq. (6.7), we can form the well-
defined ratio

he2aχðxÞik
he2aχðxÞiμ

¼
�
k
μ

�
− 1
2π

a2
κ

;

and so we obtain

he2aχðxÞik ¼
�
k
μ

�
− 1
2π

a2
κ he2aχðxÞiμ: ð6:11Þ

From this relation, we can read off the scaling
dimension of the exponential operator:

∂the2aχðxÞik ¼ −
1

2π

a2

κ
he2aχðxÞik: ð6:12Þ

(2) Let us compare the k dependence of the expectation
value (6.11) with the one found directly from the
composite operator flow equation. We denote ZO the
renormalization constant associated to the operator
OðxÞ ¼ e2aχðxÞ. A one-loop computation based upon
Eq. (3.5) yields then

ðZ−1
O ∂tZOÞe2aχðxÞ ¼ Tr

�
−
1

2

1

2κð−□þRkÞ
ð4a2e2aχðxÞÞ 1

2κð−□þRkÞ
2κ∂tRk

�

¼ −
�
a2

κ

�
1

2π
Φ2

1ð0Þe2aχðxÞ

¼ −
1

2π

�
a2

κ

�
e2aχðxÞ: ð6:13Þ

The running found in Eq. (6.13) is the expected
result, the same as in Eq. (6.12).
Furthermore, we mention that this approach

based upon the master equation (3.1), allows
one to obtain the so-called KPZ scaling rela-
tions in the FRG framework. As a further
illustration of our techniques, we discuss their
derivation in the Appendix. For a detailed
discussion of Liouville theory and the KPZ
scaling in the EAA approach, see, also,
[43,44].

(3) Now we generalize (6.7) to the n-point correlation
functions, starting out from

he2a1χðx1Þ � � � e2anχðxnÞik
¼ 1

Z0

Z
Dχ exp



−κ

Z
dyχð−□þRkÞχ

þ
Z

dyJðyÞχðyÞ
�
;

with the source function JðyÞ≡P
n
i¼1 2aiδðy − xiÞ.

The Gaussian integral yields
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he2a1χðx1Þ � � � e2anχðxnÞik
¼ exp

�Xn
i¼1

a2i
κ
Gkð0Þ þ

X
i<j

2aiaj
κ

Gkðxi − xjÞ
�
:

While these correlation functions are ill-defined,
their flow equation is perfectly regular:

∂t loghe2a1χðx1Þ � � � e2anχðxnÞik
¼

Xn
i¼1

a2i
κ
∂tGkð0Þ þ

X
i<j

2aiaj
κ

∂tGkðxi − xjÞ

≡ 1

κ

�Xn
i¼1

ai

�
2

∂tGkð0Þ

þ 2

κ

X
i<j

aiaj½∂tGkðxi − xjÞ − ∂tGkð0Þ�: ð6:14Þ

Here the regularized propagator occurs at noncoin-
cident points also:

GkðrÞ ¼
Z

d2q
ð2πÞ2

eiqðx−yÞ

q2 þRk
; r≡ jx − yj:

Considering the example of a masslike cutoff
profile, i.e., Rk ¼ k2, we find

GkðrÞ¼
1

2π
K0ðkrÞ and ∂tGkðrÞ¼−

1

2π
krK1ðkrÞ;

ð6:15Þ
where Kν denotes the Bessel function of the second
kind. In the limit kr → 0, it gives

GkðrÞ ≈ −
1

2π
log ðkrÞ and

∂tGkðrÞ ≈ −
1

2π
¼ const: ð6:16Þ

In particular, we recover (6.10), i.e.,

Gkð0Þ − Gμð0Þ≡ lim
r→0

ðGk − GμÞðrÞ ¼ −
1

2π
log

�
k
μ

�
:

We also see that

∂tGkðrÞ − ∂tGμð0Þ → 0 for kr → 0 ð6:17Þ
is a well-defined limit. Hence, the last term in
Eq. (6.14) vanishes when all distances jxi − xjj
are much smaller than k−1.

Let us consider the case n ¼ 2, for example. At small
distances jx1 − x2j ≪ k−1, the RG equation (6.14) yields

∂t loghe2a1χðx1Þe2a2χðx2Þik ¼ −
1

2πκ
ða1 þ a2Þ2: ð6:18Þ

Note that in the limit k → 0, the distances jx1 − x2j being
measured with the fixed metric ĝμν ¼ δμν all become small
in comparison with k−1. Hence, the scaling exponent

displayed by the rhs of (6.18) is, indeed, the expected,
correct, and universal result [45].
According to (6.18), the two-point correlator equals

k−ða1þa2Þ2=2πκ multiplied by a k-independent function of
jx1 − x2j. To find it, we can start from the formal expression

he2a1χðx1Þe2a2χðx2Þik
¼ exp

�
a21
κ
Gkð0Þ þ

a22
κ
Gkð0Þ þ 2

a1a2
κ

Gkðx1 − x2Þ
�

and obtain the distance dependence by evaluating the
followingmanifestlywell-defined ratio for arbitrary x1 ≠ x2:

he2a1χðx1Þe2a2χðx2Þik
he2a1χðx1Þiμhe2a2χðx2Þiμ

¼ exp

�
a21 þ a22

κ
ðGkð0Þ −Gμð0ÞÞ

þ 2
a1a2
κ

Gkðx1 − x2Þ
�

¼
�
k
μ

�
− 1
2π

a2
1
κ

�
k
μ

�
− 1
2π

a2
2
κ ðkjx1 − x2jÞ−

a1a2
κπ

¼
�
k
μ

�
− 1
2π

1
κða1þa2Þ2ðμjx1 − x2jÞ−

a1a2
κπ :

ð6:19Þ
From (6.19), it is clear that the IR limit k → 0 can be
meaningfully taken only if a1 ¼ −a2. This condition of
charge neutrality is a well-known feature of such Coulomb
gas calculations; see, for instance, [46].
The problem of the k → 0 limit presents itself differently

depending on the sign of κ. If κ > 0, the correlator (6.19)
with a1 ≠ −a2 diverges for k → 0 at fixed μ ≠ 0, while it
vanishes in this limit when κ < 0. In the usual Coulomb gas
interpretation [47], this leads to the requirement of charge
neutrality

P
ai ¼ 1, which we shall not discuss further

here since our emphasis was on showing how the FRGE for
composite operators relates to the standard methods.
Let us note that imposing the condition of charge neutral-

ity a1 ¼ −a2, one can obtain the power law in (6.19), i.e., the

distance dependence ∝ jx1 − x2j
a1a2
κπ ¼ jx1 − x2j

a2
1
κπ , by

assuming that the correlation function of two composite
operators O1 and O2 is determined by their individual
(anomalous) scale dimension. In the case at hand, it is

given by −γO1
− γO2

¼ a2
1

2κπ þ
a2
1

2κπ ¼ a2
κπ. This yields the same

power law behavior as in (6.19) if the charge neutrality
condition holds.
Let us also note that we can use (6.11) in order to

eliminate the normalization point μ from (6.19) yielding

he2a1χðx1Þe2a2χðx2Þik ¼ðkjx1−x2jÞ−
a1a2
κπ he2a1χðx1Þikhe2a2χðx2Þik:

This relates the product of two expectation values of
normal ordered exponentials to the expectation value of
their product.
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B. Scaling of geodesics and of generic curves

Let us consider the following functional depending on
the metric alone:

Lg ≡ L½xgð·Þ; g� ¼
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxgðsÞÞ_xμgðsÞ_xνgðsÞ

q
: ð6:20Þ

Here, xμgðsÞ parametrizes the geodesic determined by gμν
and connecting xgð0Þ and xgð1Þ.
Hence, in comparison with (5.10), the length (6.20) has

an additional source of metric dependence via the curve
considered. As a result, the functional Lg is an even more
complicated composite operator built from the quantum
metric. We will compute its anomalous dimension which
describes how the quantum average of Lg responds to a
scale variation.
Let us stress that since xgðsÞ occurring in Lg solves the

geodesics equation and, thus, depends implicitly on the
metric, a variation of gμν changes the geodesics equation
and its associated solution. This is a crucial difference for
our computation since it renders the Hessians of the
composite operators Lg and L different. Based on this
observation, we expect that the scaling dimensions of Lg

and L may turn out differently. In general, if one wishes to
recover the result regarding L for generic fixed curves, not
necessarily geodesics, one just needs to drop from the
Hessian of Lg the extra contribution which does not appear
in the Hessian of L.
Let us interpret gμν ≡ gbareμν in (6.20) as the bare metric

now, and let us parametrize it as gμν ¼ e2χδμν so that

Lg ¼
Z

1

0

dsj_xμgðsÞjeχðxgðsÞÞ:

The explicit form of Lg can be worked out explicitly in two
dimensions, expanding with respect to χ [48,49]. Up to the
second order in χ, it reads

Lg ¼ jx0 − y0j
Z

1

0

ds

�
1þ χðxðsÞÞ þ 1

2
χðxðsÞÞ2

�

−
1

2
jx0 − y0j3

Z
1

0

du
Z

1

0

dv∂⊥χðxðuÞÞDu;v∂⊥χðxðvÞÞ;

ð6:21Þ
where jx0 − y0j is the flat spacetime distance between the
two points connected by the geodesics, and

xμðsÞ≡ xμ0ð1 − sÞ þ yμ0s;

∂⊥χ ≡ εμν
yν0 − xν0
jx0 − y0j

∂μϕ;

Du;v ≡ vð1 − uÞθðu − vÞ þ uð1 − vÞθðv − uÞ:
We shall read off the anomalous dimension of Lg, which

we denote γLg
, from Eq. (3.5) by projecting on the

monomial Lg in flat spacetime, that is, by setting χ ¼ 0

after having computed the Hessian of Lg. This means that
we have to single out the terms proportional to jx0 − y0j
when we compute the trace on the rhs of (3.5). In this
manner, Eq. (3.5) will read

γLg
jx0 − y0j ¼ −

1

2
Tr½Gk · L

ð2Þ
g · Gk · ∂tRk�; ð6:22Þ

where Gk is the regularized inverse propagator Gk ¼
ðΓð2Þ

k þRkÞ−1, and Lð2Þ
g is the Hessian of the geodesic length

operator. Let us observe that, furthermore,

γLg
jx0 − y0j ¼ −

1

2

Z
d2p
ð2πÞ2 hpjGk · L

ð2Þ
g · Gk · ∂tRkjpi

¼ −
1

2

Z
d2p
ð2πÞ2 GkðpÞGkðpÞ∂tRkðpÞhpjLð2Þ

g jpi;

ð6:23Þ

where we expressed in flat spacetime the trace as a single
momentum integral. As a result, we are left with finding

the explicit form of the matrix element hpjLð2Þ
g jpi. It

can be obtained as follows. After a Fourier transform,

hpjLð2Þ
g jpi is seen to consist of three pieces labeled a, b,

and c, respectively:

hpjLð2Þ
g jpi ¼

Z
d2x0d2x00eip·ðx0−x00Þhx0jLð2Þ

g jx00i

≡ Pa þ Pb þ Pc: ð6:24Þ

The matrix element hx0jLð2Þ
g jx00i≡Qa þQb þQc, i.e.,

the Hessian δ2Lg=δϕðx0Þδϕðx00Þ of (6.21), consists of the
following three terms:

Qa ≡ jx0 − y0j
Z

1

0

dsδðx0 − xðsÞÞδðx00 − xðsÞÞ;

Qb ≡ −
1

2
jx0 − y0j3

Z
1

0

du

×
Z

1

0

dv∂⊥δðx0 − xðuÞÞDu;v∂⊥δðx00 − xðvÞÞ;

Qc ≡ −
1

2
jx0 − y0j3

Z
1

0

du

×
Z

1

0

dv∂⊥δðx00 − xðuÞÞDu;v∂⊥δðx0 − xðvÞÞ:

ð6:25Þ

(a) The first term Qa in Eq. (6.25) is the part of the
Hessian which coincides with the one present when
we compute the Hessian of the length for a generic
curve, not necessarily a geodesic. Using Eqs. (6.23)
and (6.24), we see that it gives rise to the following
contribution to the rhs of (6.23):
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−
1

2π

�
1

4κ
jx0 − y0j

�
: ð6:26Þ

(b) Now we evaluate the contribution due toQb. Denoting
ξμ ≡ εμνðyν0 − xν0Þ, it reads

Qb ¼ −
1

2
jx0 − y0j

Z
1

0

du
Z

1

0

dvξμ
∂

∂x0μ
× δðx0 − xðuÞÞDu;vξ

ν ∂
∂x00ν δðx

00 − xðvÞÞ:
ð6:27Þ

Inserting this expression in Eq. (6.24), one obtains

Pb ¼ −
1

2
jx0 − y0j

Z
dx0dx00eip·ðx0−x00Þ

Z
1

0

du

×
Z

1

0

dvξμð−ipμÞδðx0 − xðuÞÞ

×Du;vξ
νðipνÞδðx00 − xðvÞÞ: ð6:28Þ

Integrating over x0 and x00, we obtain the following
contribution to (6.24):

Pb ¼ −
1

8
jx0 − y0j

Z
1

0

du

×
Z

1

0

dveip·ðxðuÞ−xðvÞÞDu;vξ
μξνpμpν: ð6:29Þ

(c) The third pieceQc in Eq. (6.25) gives a result identical
to (6.29) but with xðuÞ and xðvÞ interchanged. Sum-
ming the two contributions, we find

Pb þ Pc ¼ −
1

8
jx0 − y0j

Z
1

0

du
Z

1

0

dvðeip·ðxðuÞ−xðvÞÞ

þ e−ip·ðxðuÞ−xðvÞÞÞDu;vξ
μξνpμpν: ð6:30Þ

Noting that xμðuÞ − xμðvÞ ¼ −ðu − vÞðxμ0 − yμ0Þ, the
integral over the parameters u and v can be performed
now, and we haveZ

1

0

du
Z

1

0

dvðeip·ðxðuÞ−xðvÞÞ þ e−ip·ðxðuÞ−xðvÞÞÞDu;v

¼ 2

Z
1

0

du
Z

1

0

dv cos ðp · ðxðuÞ − xðvÞÞÞDu;v

¼ 2
ð−2þ 2 cos ðp · ðx0 − y0ÞÞ þ ðp · ðx0 − y0ÞÞ2Þ

ðp · ðx0 − y0ÞÞ4
:

ð6:31Þ

This expression shows that the RG flow generates
infinitely many monomials proportional to jx0 − y0jn
on the rhs of the flow equation for the composite
operator. To make them explicit, we expand the above
term as a power series in p · ðx0 − y0Þ, finding

2
−2þ 2 cosðp · ðx0 − y0ÞÞ þ ðp · ðx0 − y0ÞÞ2

ðp · ðx0 − y0ÞÞ4

¼ 1

6
−

1

180

�
p · ðx0 − y0Þ

�
2

þ � � � :

So, finally we obtain for (6.30),

Pb þ Pc ¼ −
1

2
jx0 − y0j

×

�
1

6
−

1

180
ðp · ðx0 − y0ÞÞ2 þ � � �

�
× ξμξνpμpν: ð6:32Þ

Under our approximation, we must consistently neglect
all monomials with ðx0 − y0Þ dependences different from
jx0 − y0j when evaluating the rhs of Eq. (6.22). As a
consequence, Eq. (6.32) implies that Pb þ Pc gives no
contribution to the anomalous dimension γLg

.
This is seen easily after a symmetric integration over the

momenta in (6.23) with (6.32). It replaces pμpν → p2δμν=2
in the leading term, so that effectively

Pb þ Pc ¼ −
1

2
jx0 − y0j

�
1

6
þOððx0 − y0Þ2Þ

�
ξμξνp2

δμν
2

¼ −
1

2
jx0 − y0j

�
1

6
þOððx0 − y0Þ2Þ

�
ξ2

p2

2
:

We also observe that ξ2¼εμρðyρ0−xρ0Þδμνενσðyσ0−xσ0Þ¼
jx0−y0j2, since εμρεμσ ¼ δρσ. This then implies that in
(6.32) the lowest order in jx0 − y0j is proportional to
jx0 − y0j3: Pb þ Pc ¼ − 1

4
jx0 − y0j3 þ � � �. As a result,

Pb þ Pc contains no term that matches the linear one on
the lhs of (6.23) and could contribute to γLg

.
Hence, our final conclusion is that the anomalous

dimension γLg
is determined solely by the contribution

coming from Pa. It reads

γLg
¼ −

1

2π

1

4κ
: ð6:33Þ

In turn, this demonstrates that the anomalous dimensions
for the length of a geodesics γLg

and for a generic curve,
respectively, are equal within the approximation employed.
However, let us stress that, in general, they are likely to

be different once the mixing in the running of the geodesic
length operator is taken into account. Nevertheless, one
may interpret our result as an indication that the anomalous
dimensions of the length of a generic curve and of a
geodesic are not too different (at least in two dimensions).
We emphasize that the geodesic length enters in many

potentially observable correlation functions. For instance,
given two local operatorsO1 andO2 it would be interesting
to compute [15,16]
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GðrÞ≡
�Z

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p Z
ddy

ffiffiffiffiffiffiffiffiffi
gðyÞ

p
O1ðxÞ

×O2ðyÞδðr − Lgðx; yÞÞ
	
:

Clearly, Lg being a nontrivial composite operator, the
scaling analysis of GðrÞ is affected by the presence of
the delta function involving Lg. Once the full scaling
dimensions of the operators involved are known, it is
straightforward to invoke scaling arguments for this type of
correlation function; see, for instance, [44].

VII. CONCLUSIONS AND OUTLOOK

In this work, we considered the role of composite
operators in the asymptotic safety program. We argued that
the introduction of composite operators via suitable sources
is convenient in a number of cases. In particular, our
framework makes it possible to consider geometrical objects,
like the length of an arbitrary curve or of a geodesic, whose
quantum properties would hardly be seen in any realistic
truncation for the EAA. Moreover, we demonstrated that
particular operators, like a composite metric in the vielbein
formalism, require a careful regularization and renormaliza-
tion procedure, on top of that related to the EAA, to be
meaningfully defined. Within the FRG setting, we systema-
tized this procedure for arbitrary composite operators. In
general, the introduction of composite operators is useful
whenever one wishes to investigate the quantum properties
of operators that are not contained in the (exact) EAA or in
the truncation considered.
In Secs. II and III, we reviewed the inclusion of

composite operators in the EAA formalism and discussed
a method which allows us to identify the scaling properties
of the composite operators at the fixed point. In Sec. IV, we
considered the CREH truncation and studied the case of
composite metrics in this setting. The CREH example made
it explicit that a dedicated regularization and subsequent
(re)normalization is necessary in order to define the metric
whenever the latter is a composite field. As such, the
composite metric analyzed in Sec. IV can be viewed as a
toy model for the composite metric in the vielbein
formalism.
The CREH model also illustrates nicely that by choosing

different field parametrizations, quantum corrections can be
changed crucially both in the EAA and the composite
operator. As an extreme example, with gμν ¼ ϕ2δμν the
metric is a composite operator, whereas with the alternative
parametrization gμν ¼ ψδμν, it is not. But in the latter case,
also the CREH Ansatz (4.3) acquires a different form, the
kinetic term ∝ ð∂μψÞ2=ψ is no longer bilinear in the
dynamical field, and so the running of the couplings
involved will be different.
In Sec. V, we tested our framework further by computing

the anomalous dimensions of the volume and the length

operators. Finally, in Sec. VI, we considered Liouville
theory in two dimensions. In particular, we computed the
correlation functions of composite metrics and the anoma-
lous dimension of the geodesic distance.
In general, since in our computations the approximations

and Ansätze were too simple still, we do not expect our
results to be quantitatively precise. However, it is important
to note that the framework introduced in this work has
allowed us for the first time to give an estimate of the
quantum properties of geometrical objects, like the length
of a curve, that have never been considered before for the
case of asymptotically safe quantum gravity.
We would like to remark that the final purpose of

explicitly keeping track of selected composite operators
is making contact with quantum gravitational observables.
Clearly, this is beyond the scope of the present paper, but
we made a first step towards this goal. Indeed, as we argued
in the Introduction, in order to consider certain types of
observables, it is unavoidable to introduce further operators
on top of those present in the gravitational EAA. In this
sense, it would be natural to follow the logic of the two-
dimensional case where fixed-volume and fixed-geodesic
distance functionals have been discussed in detail.
Ultimately, indeed, we believe that a comparison between
the different attempts to define a well-defined gravitational
path integral can only be made by considering observable
quantities.
Summarizing, we believe that the framework developed

in this work opens the door to new avenues in comparing
different approaches to quantum gravity and gives a viable
road to access observables in the asymptotic safety scenario
for quantum gravity.

APPENDIX: LIOUVILLE THEORY:
KPZ SCALING

Scaling arguments in quantum gravity have been par-
ticularly fruitful in two dimensions. Here we shall derive
the so-called KPZ relations [28,29,50] following the
notation adopted in [51]. The partition function can be
written as follows:

Z ¼
Z

Dϕ exp

�
−
�
25 − c
48π

�

×
Z

d2x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕþ Rϕ

��
: ðA1Þ

Now, the bare action in the exponent of (A1) enjoys the
trivial symmetry gμν → eσðxÞgμν;ϕ → ϕ − σðxÞ since it can
be rewritten as a functional of the product eϕgμν only. This
means that the bare (“classical”) action is annihilated when
one acts on it with the operator

L≡
�
gμνðxÞ

δ

δgμνðxÞ
−

δ

δϕðxÞ
�
:
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We require that this invariance is enjoyed also at the
quantum level by observables. In particular, we shall
construct the diffeomorphism invariant operator

O≡
Z

d2x
ffiffiffi
g

p
eαϕ:

One notices that for α ≠ 1, the classical functional
O≡O½ϕ; g� is not invariant under the σ transformation.
The reason for considering a general parameter α is that we
will determine its value such that

LhOi ¼ 0; ðA2Þ
which is to say that the operator L annihilates O at the
quantum level. Indeed, quantum corrections to the naive
scaling properties will force us to fix α to some specific
value different from unity.
Let us turn to the scaling properties of the operator eαϕðxÞ.

At the quantum level, eαϕðxÞ will acquire an anomalous
dimension γ which we will compute later on. In the fixed
point regime, the anomalous dimension enters the corre-
sponding Callan-Symanzik equation as follows:

ðμ∂μ þ γÞheαϕi ¼ 0: ðA3Þ
As usual, to deduce the scaling properties of heαϕi, we need
to eliminate the μ derivative from Eq. (A3). This can be
done by means of simple dimensional analysis. When
working in curved spacetime, one may choose either the
coordinates or the metric to be dimensionful. In our case, it
is natural to take the coordinates dimensionless, as they
are merely variables devoid of any particular meaning.
Moreover, we note that eαϕ is classically dimensionless.
Then, dimensional analysis implies�

μ∂μ − 2gμν
δ

δgμν

�
heαϕi ¼ 0: ðA4Þ

Eliminating the μ∂μ term from Eqs. (A3) and (A4) yields�
2gμν

δ

δgμν
þ γ

�
heαϕi ¼ 0: ðA5Þ

Now let us determine the action of L on hOi:

LhOi ¼
�
gμν

δ

δgμν
−

δ

δϕ

�
hOi

¼
�
gμν

δ

δgμν
−

δ

δϕ

��Z
d2x

ffiffiffi
g

p
eαϕ

	

¼
�
gμν

δ

δgμν
−

δ

δϕ

�Z
d2x

ffiffiffi
g

p heαϕi;

where we brought the volume element outside the average
h·i since the latter is not dynamical. Now we note that the
functional derivative with respect to the metric acts
obviously on

ffiffiffi
g

p
but also on the implicit dependence

of heαϕi on the metric. This latter dependence is easily
obtained from Eq. (A5). Therefore, we have the following
contributions:

gμνðxÞ
δ

δgμνðxÞ
ffiffiffi
g

p ðx0Þ ¼ ffiffiffi
g

p
δðx − x0Þ;

gμνðxÞ
δ

δgμνðxÞ
heαϕðx0Þi ¼ −

γ

2
heαϕiδðx − x0Þ

−
δ

δϕðxÞ he
αϕðx0Þi ¼ −αheαϕiδðx − x0Þ:

Summing all the terms, we can finally write Eq. (A2) as

1 − α −
γ

2
¼ 0: ðA6Þ

We shall see in a moment that this is the celebrated
KPZ relation.
Finally, we come to our point, the actual computation

of γ. According to the discussion in Sec. III, we need to
evaluate γ ¼ Z−1

eαϕ∂tZeαϕ via Eq. (3.5). It is sufficient and
particularly convenient to set gμν ¼ δμν. Doing so, one
obtains

ðZ−1
eαϕ

∂tZeαϕÞeαϕðxÞ ¼ −
1

2
Tr

�
1

ð25−c
48π Þð−□þ RkÞ

ðα2eαϕðxÞÞ

×
1

ð25−c
48π Þð−□þ RkÞ

�
25 − c
48π

�
∂tRk

�

¼ −
12α2

25 − c
eαϕðxÞ:

Inserting this value for γ in Eq. (A6), we obtain

1 − αþ 6α2

25 − c
¼ 0: ðA7Þ

This relation is a well-known result in Liouville gravity, the
basis, in particular, for the “gravitational dressing” of
arbitrary matter field operators; see, e.g., [51].
We can rephrase our arguments also in the following

way: The operator eαϕ has a vanishing classical mass
dimension. However, quantum corrections afflict eαϕ with
an anomalous dimension equal to γ. Under a Weyl rescal-
ing, an operator with mass dimension γ is transformed by
an overall factor ðe−σ

2Þγ.8 Therefore, at the quantum level,
the operator

ffiffiffi
g

p
eαϕ gets transformed by an overall factor

eσe−ασe−
σ
2
γ, where the first exponential comes from the

determinant of the metric, while the other exponentials
come from the classical and quantum scaling properties of
the operator eαϕ, respectively. We note that the exponent of
the overall scaling factor eσð1−α−γ=2Þ is precisely the lhs of

8We recall that in the conventions adopted in this appendix,
the metric transforms via gμν → eσðxÞgμν under a Weyl
transformation.
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Eq. (A6), which we require to vanish in order to satisfy the
invariance under the operator L at the quantum level.
Equations fully analogous to (A7) can also be obtained

in a similar manner, and they determine the parameters
usually indicated with αn for the gravitational dressing of
other operators. Eventually, one can follow the arguments
given in the literature; see, e.g., [51] to recover the known
results. For further details on the EAA approach to
Liouville theory and KPZ scaling, we refer to [43].
However, let us stress that in the main body of the paper,

the attitude towards composite operators is different than in
this appendix. In particular, here we applied the following
logic: By a suitable choice of the parameter α the composite

operator is tuned in the UV so that the property (A2) is
satisfied at the full quantum level, i.e., at k ¼ 0. On
the contrary, in the main body of the paper, we did not
ask for any special property at the quantum level. For this
reason, a straightforward comparison between the results of
this appendix and those given in the main text is not
possible.
Furthermore, we recall that KPZ arguments are normally

used to compute the scaling property of heat kernel related
observables, which are different composite operators
with respect to the ones considered in the main text; hence,
also for this reason, the results cannot be compared
straightforwardly.
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