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We study the butterfly effect of the AdS planar black holes in the framework of Einstein’s general
relativity. We find that the butterfly velocities can be expressed by a universal formula v2B ¼ TS=ð2V thPÞ.
In doing so, we come upon a near-horizon geometrical formula for the thermodynamical volume V th. We
verify the volume formula by examining a variety of AdS black holes. We also show that the volume
formula implies that the conjectured reverse isoperimetric inequality follows straightforwardly from the
null-energy condition, for static AdS black holes. The inequality is thus related to an upper bound of the
butterfly velocities.
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I. INTRODUCTION

The butterfly effect is associated with the exponential
growth of a small perturbation to a quantum system. In the
context of holography, this effect has a beautiful realization
[1–5] in terms of a gravitational shock wave near the
horizon of an AdS black hole [6]. The butterfly velocity, i.e.
the velocity for the shockwave, for the Schwarzschild-AdS
planar black hole in general D dimensions, turns out to be
constant, given by [1]

v2B ¼ D − 1

2ðD − 2Þ : ð1:1Þ

The butterfly velocities for a variety of AdS planar black
holes of various matter energy-momentum tensor were
obtained [7–14]. The study has been further generalized to
include higher-order gravities [3,15]. The expression of vB
can be simple or complicated depending on the detail
structures of the black holes.
On the other hand, based on the no-hair theorem, black

holes are supposed to be the purest and hence simplest
thermodynamical systems. The physics are specified only
by their thermodynamical quantities including mass and
charges. It is thus not unreasonable to expect that the
butterfly velocity be a dimensionless ratio of some (dimen-
sionful) thermodynamical quantities of the black holes. In
fact, based on this principle, it was shown that the holo-
graphic sheer viscosity-entropy ratio [16,17] is a simple
consequence of the generalized Smarr relation of the
thermodynamical variables [18].
In this paper, we study the butterfly effect of planar black

holes in the framework of Einstein’s general relativity, with
only minimally coupled matter. We limit the discussion to
isotropic solutions where the toroidal (or Euclidean) plane
is uniform. We find a universal formula for the butterfly
velocities

v2B ¼ 1

2

TS
V thP

: ð1:2Þ

In this formula, ðT; SÞ are the temperature and entropy of
the black holes. For Einstein’s gravity, the entropy is simply
one quarter of the area of the event horizon. The quantity P
is the pressure associated with the cosmological constant Λ
[as in L ¼ ffiffiffiffiffiffi−gp ðR − 2ΛÞ]. It is given by

P ¼ −
Λ
8π

: ð1:3Þ

The quantity V th is the thermodynamical volume conjugate
to P. Treating the cosmological constant as a thermody-
namical pressure was proposed in [19,20]. The first law of
black hole thermodynamics expands to

dM ¼ TdSþΦαdQα þ V thdPþ � � � ; ð1:4Þ

where the dots denote contributions from further black hole
hair, and the repeated α index implies summation. In this
picture, the mass of the black hole should be better
interpreted as the enthalpy [19]. Thus we see that the
butterfly velocity is related to the volume density of TS,
which is precisely the Gibbons-Hawking surface-term [21]
contribution to the action growth evaluated on the hori-
zon [22].
Assuming that the theory does not involve further

dimensionful coupling constants, the first law implies
the Smarr relation

M ¼ D − 2

D − 3
TSþΦαQα −

2

D − 3
PV th: ð1:5Þ

(See [23] for the original discussion of the Smarr formula in
four dimensions.) For AdS planar black holes, there exists a
further generalized Smarr relation, associated with a new
scaling symmetry. It is given by [18,24]*mrhonglu@gmail.com
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M ¼ D − 2

D − 1
ðTSþΦαQαÞ: ð1:6Þ

These two relations enable us to express the butterfly
velocity in terms of mass, charges and their chemical
potentials, namely

v2B ¼ D − 1

2ðD − 2Þ −
ðD − 3ÞΦαQα

2ðD − 2Þð2M −ΦαQαÞ

¼ 1 −
ðD − 3ÞM

ðD − 2Þð2M −ΦαQαÞ
: ð1:7Þ

(Note that when the black holes involve more hair, the
Smarr relations and the above formula may involve
further terms.)
In establishing (1.2), we find an identity that relates the

thermodynamical volume to the Euclidean bounded vol-
ume. This relation is purely geometrical and it depends on
solely the metric functions of the near-horizon geometry.
We test this identity against a variety of static AdS black
holes with both planar or spherical topologies, and find no
exception. It thus provides a simple method of calculating
the thermodynamical volume even for black holes with no
analytical expressions. Interestingly, if we assume that this
formula is valid, the conjectured reverse isoperimetric
inequality [20] follows directly from the null-energy con-
dition, for static AdS black holes.
The paper is organized as follows: In Sec. II, we first

review the butterfly effects in static and isotropic AdS
planar black holes. We then obtain the universal formula
(1.2) for the butterfly velocities, by making use of the
geometrical identity that relates the thermodynamical and
Euclidean bounded volumes. We also address the subtleties
that can arise when black holes involve nontrivial scalar
hair. In Sec. III, we further elaborate the formula of
thermodynamical volume. We also point out that it is
natural to introduce the black hole volume, in addition to
ðT; SÞ in order to fully specify the near-horizon geometry.
In Secs. IVand V, we list a large number of AdS black holes
and test the identity against their thermodynamical volumes
that are derived from the first law. In Sec. VI, we
demonstrate that the identity, together with the null-energy
condition, imply the reverse isoperimetric inequality for
static AdS black holes. We then obtain a universal bound
for the butterfly velocities in terms of temperature and
entropy. We conclude the paper in Sec. VII.

II. A UNIVERSAL FORMULA FOR BUTTERFLY
VELOCITIES

A. Shockwave and butterfly effect

In this section, we consider a generic static AdS planar
black hole in general D dimensions. We focus on the
isotropic configuration in the planar directions. The metric
takes the form

ds2D ¼ −hðρÞdt2 þ dρ2

fðρÞ þ ρ2d~xid~xi: ð2:1Þ

In this Schwarzschild-type metric, ρ and t have the
dimension of length, while ðh; fÞ and ~xi are dimensionless.
Asymptotically at large ρ, the functions ðh; fÞ behave as

h¼ g2ρ2þ�� �− α

ρD−3þ�� � ; f¼ g2ρ2þ���− ~α

ρD−3þ�� � ;

ð2:2Þ

where l ¼ 1=g is the AdS radius. The mass of the black
hole is proportional to the constant α. This definition of
mass is in most cases consistent with the first law. The
situation becomes more subtle when there are nontrivial
scalar charges, which we shall clarify in Sec. II C.
We assume that the metric describes a black hole with the

event horizon located at ρ ¼ ρ0 > 0. We may perform
Taylor expansions near the horizon

h ¼ h1ðρ − ρ0Þ þ h2ðρ − ρ0Þ2 þ � � � ;
f ¼ f1ðρ − ρ0Þ þ f2ðρ − ρ0Þ2 þ � � � : ð2:3Þ

In other words, h1 ¼ h0ðρ0Þ and f1 ¼ f0ðρ0Þ. The temper-
ature and entropy can be calculated using the standard
technique, given by

T ¼
ffiffiffiffiffiffiffiffiffiffi
h1f1

p
4π

; S ¼ 1

4
ρD−2
0 AD−2; ð2:4Þ

where AD−2 is the volume of the metric d~xid~xi. If this
metric is compact describing a (D − 2)-torus, we can scale
the coordinate r to set AD−2 to be any fixed value. For
example, we can choose it to be AD−2 ¼ 1 or be the same
as the volume of the unit round SD−2, namely

AD−2 ¼
2π

1
2
ðD−1Þ

Γ½1
2
ðD − 1Þ� : ð2:5Þ

If d~xid~xi is noncompact like Euclidean, we can also choose
AD−2 to be the above values, but now with the under-
standing that the extensive quantities such as mass, charge,
or entropy describe the corresponding densities.
Before proceeding, we would like to point out the fact that

the near-horizon geometry is in general specified by three
parameters ðh1; f1; ρ0Þ. However, the well-established tem-
perature and entropy only give two parameters, leaving the
combination h1=f1 unspecified. This demonstrates that
the temperature and entropy are not enough to characterize
the black hole horizon and a new quantity is called for. We
shall come back to this point in Sec. III.
To study the butterfly effects, it is convenient to

introduce the Kruskal coordinates ðu; vÞ
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u¼ eκðρ�−tÞ; v¼−eκðρ�þtÞ; with dρ� ¼
dρffiffiffiffiffiffi
hf

p : ð2:6Þ

Here κ ¼ 2πT ¼ 1
2

ffiffiffiffiffiffiffiffiffiffi
h1f1

p
is the surface gravity on the

horizon ρ ¼ ρ0, which corresponds to uv ¼ 0. Near the
horizon, we have

uv ¼ ðρ − ρ0Þ −
1

2

�
f2
f1

þ h2
h1

�
ðρ − ρ0Þ2 þ � � � ;

ρ − ρ0 ¼ uvþ 1

2

�
f2
f1

þ h2
h1

�
ðuvÞ2 þ � � � : ð2:7Þ

The metric (2.1) can now be expressed as

ds2D ¼ AðuvÞdudvþ BðuvÞdxidxi; ð2:8Þ
where the coordinates xi ≡ ~xi=g ¼ l~xi have dimension of
length, and

AðuvÞ ¼ 1

κ2
h
uv

; BðuvÞ ¼ g2ρ2: ð2:9Þ

We can expand the functions A and B on the horizon
uv ¼ 0,

A ¼ A0 þ A1ðuvÞ þ A2ðuvÞ2 þ � � � ;
B ¼ B0 þ B1ðuvÞ þ B2ðuvÞ2 þ � � � : ð2:10Þ

It is clear that the coefficients of the Taylor expansions (2.3)
and (2.10) are related. We find

A0 ¼
4

f1
; A1 ¼

�
2f2
f1

þ 6h2
h1

�
1

f1
;

A2 ¼
�
3f22
4f21

þ f3
f1

þ 13f2h2
2f1h1

þ 19h22
4h21

þ 5h3
h1

�
1

f1
;

B0 ¼ g2ρ20; B1 ¼ 2g2ρ0;

B2 ¼ g2
�
1þ f2

f1
ρ0 þ

h2
h1

ρ0

�
: ð2:11Þ

This allows us to translate the butterfly velocity, typically
calculated using the metric of the Kruskal ðu; vÞ coordi-
nates, in terms of variables in the more standard black hole
metric of the ðt; rÞ coordinates.
The butterfly effect emerges if one releases a particle

from x ¼ 0 on the boundary of asymptotical AdS black
hole at a time tw in the past. As was described in [7], for late
times (i.e. tw > β ¼ 1

T ¼ 2π=κ), the energy density of this
particle in Kruskal coordinates is localized on the u ¼ 0
horizon and it is exponentially boosted:

δTuu ∼ Ee
2π
β twδðuÞδð~xÞ; ð2:12Þ

where E is the initial asymptotic energy of the particle.
Consequently, even the effects of an initially small

perturbation cannot be neglected, and after the scrambling
time t� ∼ β logN2 the backreaction of the stress tensor on
the metric becomes significant.
This results in the formation of a shockwave geometry,

whose metric can then be written as [6]

ds2 ¼ AðuvÞdudvþ BðuvÞdxidxi − AðuvÞδðuÞhð~xÞdu2:
ð2:13Þ

For Einstein gravity with minimally coupled matter, one
finds that the shockwave satisfies the wave equation [6–8]

ð□ −m2Þhð~xÞ ∼ Ee
2π
β twδð~xÞ: ð2:14Þ

Here □ is the Laplacian on the (D − 2)-dimensional
Euclidean metric dxidxi and the screening length m is
given by

m2 ¼ ðD − 2ÞB1

A0

; ð2:15Þ

where B1 and A0 are defined by (2.10). Thus the properties
of the shockwave are encoded in Eq. (2.14). At long
distances x ≫ m−1 the metric is simply given by

hð~xÞ ∼ Ee
2π
β ðtw−t�Þ−mj~xj

j~xjD−3
2

: ð2:16Þ

One can immediately read off the Lyapunov exponent λL
and velocity vB of these holographic theories as [3]

λL ¼ 2π

β
; vB ¼ 2π

βm
: ð2:17Þ

B. Butterfly velocity

As we discussed in the Introduction, we expect that the
dimensionless vB may be a ratio of some thermodynamical
quantities. It follows from (2.17) that the numerator has a
factor of T, suggestive of a dimensionless ratio of TS and
the product of another thermodynamical conjugate pair. In
fact, it follows from (2.17), (2.15), and (2.11) that the
butterfly velocity satisfies

v2B ¼
ffiffiffiffiffi
h1
f1

s
2πT

ðD − 2Þg2ρ0
¼ 1

2

ffiffiffiffiffi
h1
f1

s
TS
VEP

; ð2:18Þ

where

P¼ðD−1ÞðD−2Þg2
16π

; S¼1

4
ρD−2
0 AD−2; VE¼

ρD−1
0

D−1
AD−2:

ð2:19Þ
Here VE denotes the Euclidean bounded volume and its
terminology will be explained in Sec. III. For nondilatonic
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black holes such as Schwarzschild or Ressner-Nordstrøm
(RN) metrics, one has h ¼ f; hence h1=f1 ¼ 1, and VE is
precisely the thermodynamical volume. In general, we
claim that the thermodynamical volume is given by

V th ¼
ffiffiffiffiffi
f1
h1

s
VE: ð2:20Þ

This then leads straightforwardly to the general formula
(1.2) for butterfly velocities. We shall elaborate this
formula further in Sec. III, and then in Secs. IV and V,
we shall verify this formula using a variety of AdS
black holes.
In the Introduction, we then made use of the Smarr

relation (1.5) and the generalized Smarr relation (1.6) to
express the v2B as (1.7). However, there is a subtlety when
the black hole contains nontrivial scalar hair.

C. Subtleties involving scalar hair

A rather general class of AdS black holes come from
Lagrangians with a scalar potential. For simplicity, we shall
consider only one scalar ϕ, and its scalar potential is VðϕÞ.
The existence of the AdS vacuum of radius l ¼ 1=g
requires that V has a stationary point, say ϕ ¼ 0, with

V 0ð0Þ ¼ 0; Vð0Þ ¼ ðD − 1ÞðD − 2Þg2: ð2:21Þ

Depending on the mass parameter of the scalar
~m2 ¼ V 00ð0Þ, at large ρ, the scalar behaves as

ϕðrÞ ∼ ϕ1

r
1
2
ðD−1−σÞ þ

ϕ2

r
1
2
ðD−1þσÞ þ � � � ; ð2:22Þ

where σ is related to the mass parameter as
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~m2g−2 þ ðD − 1Þ2

p
. It was shown that the first

law of the black hole thermodynamics takes the form
[25,26]

dM ¼ TdSþ Z þ � � � ; ð2:23Þ

with

Z¼ σg2

32πðD−1Þg
2ððD−1þσÞϕ2dϕ1− ðD−1−σÞϕ1dϕ2Þ:

ð2:24Þ

Here the mass is given by

M ¼ ðD − 2ÞAD−2

16π
α: ð2:25Þ

The above result is controversial owing to the fact that the
variation of the on-shell Hamiltonian

ðdHÞρ→∞ ¼ dM − Z ð2:26Þ

is not integrable, and hence the energy is not well defined.
In this paper, we adopt the same strategy of [26], and
introduce a “gravitational mass” M that describes the
condensate of the spin-2 massless graviton. It is then clear
from the dimensional analysis that the integration constants
ðϕ1;ϕ2Þ do not involve in the Smarr relation, and hence
relation (1.5) holds even for black holes with such non-
trivial scalar hair, provided that M is defined as the
gravitational mass, satisfying (2.23). (An explicit example
will be given in Sec. IV.)
The first law (2.23) and the Smarr relation (1.5) are

independent of whether the AdS black hole is spherically
symmetric or is of the planar type. For the planar AdS black
holes with nontrivial scalar hair, it was shown in [18] that
the generalized Smarr relation (1.6) also works. In other
words, the scalar hair variables ðϕ1;ϕ2Þ do not enter the
Smarr nor the generalized Smarr relation. Thus the formula
(1.7) is valid even for black holes with nontrivial scalar hair
provided thatM is the gravitational mass defined by (2.25).
It should be pointed out that the Hamiltonian becomes

integrable after one fixes the asymptotic boundary con-
dition for the scalar field, e.g., ϕ2 ¼ ϕ2ðϕ1Þ. This is
necessary for the variation principle to be well defined.
It follows from (2.23) and (2.24) that the “total energy” is
then ~M ¼ M −

R
Z. One then recovers the standard first

law of black hole thermodynamics. However, the differ-
ential relation (2.23) is a correct mathematical statement if
one wishes to vary the parameters beyond the constraint of
the boundary condition. In fact it is a useful formula, since
one can start from (2.23) and substitute any chosen scalar
boundary condition and obtain the corresponding standard
first law of thermodynamics. Furthermore, as we have seen,
it is the gravitational mass M, rather than ~M, that satisfies
the Smarr and the generalized Smarr relations, which allow
us to express the (horizon) butterfly velocity in terms of
asymptotic data of a black hole, as in (1.7). It is intriguing
that the butterfly velocity is related to the gravitational mass
rather than the total energy in general scalar hairy
black holes.

III. A GEOMETRICAL FORMULA FOR
THERMODYNAMICAL VOLUMES

In the previous section, we obtained the butterfly
velocity (2.18). We find that it can be expressed universally
as a simple ratio (1.2) of thermodynamical variables,
provided that the identity (2.20) for calculating the ther-
modynamical volume is valid. In this section, we discuss
this identity in more detail. A static black hole metric may
not always be expressed analytically in terms of the
Schwarzschild-type coordinate as in (2.1). Instead it takes
a more general form
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ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ ρðrÞ2dΩ2
D−2;k: ð3:1Þ

The statement of the identity (2.20) in this more general
coordinate system becomes

V th

VE
¼

ffiffiffi
f
h

r
dρ
dr

����
r→r0

; ð3:2Þ

where r ¼ r0 is the event horizon. It is perhaps better to
express the above identity in a more abstract notation

V th

VE
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgrr

p dρ
dr

����
r→r0

: ð3:3Þ

As explained in the Introduction, the quantity V th is the
thermodynamical volume derived from the first law of
black hole thermodynamics

dM ¼ TdSþΦαdQα þ V thdPþ � � � ; ð3:4Þ

where P is the thermodynamical pressure

P ¼ −
Λ
8π

¼ ðD − 1ÞðD − 2Þg2
16π

: ð3:5Þ

The quantity VE is defined as

VE ¼ ρD−1
0

D − 1
AD−2; ð3:6Þ

where ρ0 ¼ ρðr0Þ and AD−2 is the volume of the metric
dΩ2

D−2;k which is a unit Einstein metric with

~Rij ¼ ðD − 3Þk~gij; k ¼ −1; 0; 1: ð3:7Þ
When k ¼ 1, and the metric is a unit round SD−2, VE is
precisely the volume of a ball of radius ρ0 in the (D − 1)-
dimensional Euclidean space. For this reason, VE was
called a Euclidean bounded volume in [20]. Here we
generalize the concept to include the k ¼ −1, 0 topologies
as well. Thus the identity (3.2) or (3.3) provides a purely
horizon-geometric formula for calculating the thermody-
namical volume. An important advantage is that this
method does not require an exact analytical expression
of a black hole in order to calculate its thermodynamical
volume. By contrast, determining V th through the first law
would necessarily require that the exact solution of the
black hole be known, since the first law involves both
horizon quantities such as ðT; SÞ and the asymptotic
quantities such as mass and charges.
For Schwarzschild-AdS or RN-AdS black holes, one has

h ¼ f in the r ¼ ρ coordinate gauge choice. The thermo-
dynamical volume is precisely the Euclidean bounded
volume. Such black holes are typically nondilatonic and
include, for examples, [27–32]. For these examples, the
formula (3.2) is thus automatically valid.

The situation becomes more complicated when the
theory involves radially dependent scalar fields. For exam-
ple, let us consider

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ þ � � �

�
: ð3:8Þ

The Einstein equation of motion implies that (in the r ¼ ρ
gauge)

ϕ02 ¼ −
ðD − 2Þ

ρ

h
f

�
f
h

�0
: ð3:9Þ

Thus for these black holes, V th ≠ VE, but rather their ratio
satisfies the identity (3.2). In the next two sections, we shall
test this identity with a variety of black holes involving
scalar fields, by computing their thermodynamical volumes
using the first law (3.4). A formula for calculating the
thermodynamical volume based on the Wald formalism
was also obtained in [33,34]. As in the case of using the
first law to computing the volume, this formula of [33,34] is
useful only when one has an exact solution, since it requires
an integration from the horizon to asymptotic infinity,
where potential divergent terms cancel out in a intricate
fashion. This is very different from our proposed formula
(3.2) that depends only on the near-horizon data, and hence
it does not rely on the existence of an exact solution.
It is worth pointing out again that (3.2) depends only on

the near-horizon geometry, which does not, a priori,
“know” the asymptotic structure, whether it is asymptoti-
cally flat or AdS. This is suggestive that the volume V th
based on (3.2) may be fundamentally a quantity of black
holes in general. It may be valid even for black holes with
flat (or other unusual) asymptotics, where there is no
thermal pressure associated with the cosmological constant.
It happens that in asymptotic AdS black holes, where a
sensible pressure can be defined, the volume V th becomes a
thermodynamical one conjugate to the pressure. In fact, as
we discussed in Sec. II A, for static black holes in the ρ ¼ r
gauge, the near-horizon geometry is characterized by three
parameters ðh1; f1; r0Þ. The entropy is a function of r0,
while T ¼ ffiffiffiffiffiffiffiffiffiffi

h1f1
p

=ð4πÞ. Thus ðT; SÞ do not specify the
ratio

ffiffiffiffiffiffiffiffiffiffiffiffi
f1=h1

p
. Our definition of V th precisely makes up for

this ratio. It is thus natural to introduce three quantities
ðT; S; V thÞ, instead of only ðT; SÞ, to specify the horizon
property fully.
Before finishing this section, we note that the thermal-

ization factor which vanishes on the event horizon cancels
out in

ffiffiffiffiffiffiffiffi
f=h

p
. Thus we have

ffiffiffiffiffiffiffiffiffiffiffiffi
f1=h1

p ¼ ffiffiffiffiffiffiffiffi
f=h

p jr¼r0 . It
follows that the ratio of (3.2) can be well defined for generic
r ≥ r0, leading to the well-defined function

σðrÞ ¼
ffiffiffi
f
h

r
dρ
dr

: ð3:10Þ
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For the gauge choice r ¼ ρ, it is clear that σð∞Þ ¼ 1. In this
gauge, we shall show in Sec. VI that σðrÞ is a monoton-
ically decreasing function.

IV. TESTING THE IDENTITY: KALUZA-KLEIN
DYONIC ADS BLACK HOLES

In this and the next section, we shall test the formula
(3.2) using explicit examples of AdS black holes. For
nondilatonic types of black holes, we have h=f ¼ 1 in the
gauge choice of r ¼ ρ. In this case, it is clear that V th ¼ VE
and it follows that the identity (3.2) is trivially true. Thus it
is more nontrivial to consider solutions with nonvanishing
scalar fields. Furthermore, we would also like to test the
Smarr (1.5) and generalized Smarr (1.6) relations when
solutions involve nontrivial scalar hair. For almost all the
exact black hole solutions constructed in literature, the

one-form Z in (2.24) vanishes, and the subtlety does not
arise. The only known exact solutions with nonvanishing Z
are the Kaluza-Klein dyonic AdS black holes [35] in
maximal gauged supergravity and their multicharge gen-
eralizations [36]. This may be the most nontrivial example
to test the identity.

A. Spherically symmetric black hole

It was shown in [35] that the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

4
e−

ffiffi
3

p
ϕF2 þ 6g2 cosh

�
1ffiffiffi
3

p ϕ

��
;

ð4:1Þ

admits the following static solution:

ds2 ¼ −ðH1H2Þ−1
2f̂dt2 þ ðH1H2Þ12

�
dr2

f̂
þ r2ðdθ2 þ sin2θdφ2Þ

�
;

ϕ ¼
ffiffiffi
3

p

2
log

H2

H1

; f̂ ¼ f0 þ g2r2H1H2; f0 ¼ 1 −
2μ

r
;

A ¼
ffiffiffi
2

p �ð1 − β1f0Þffiffiffiffiffiffiffiffiffi
β1γ2

p
H1

dtþ 2μγ−12
ffiffiffiffiffiffiffiffiffi
β2γ1

p
cos θdφ

�
;

H1 ¼ γ−11 ð1 − 2β1f0 þ β1β2f20Þ; H2 ¼ γ−12 ð1 − 2β2f0 þ β1β2f20Þ;
γ1 ¼ 1 − 2β1 þ β1β2; γ2 ¼ 1 − 2β2 þ β1β2: ð4:2Þ

The solution describes a dyonic AdS black hole with the
horizon r ¼ r0 given by

f̂ðr0Þ ¼ 1 −
2μ

r0
þ g2r20H1ðr0ÞH2ðr0Þ ¼ 0: ð4:3Þ

The mass and electric and magnetic charges are

M ¼ ð1 − β1Þð1 − β2Þð1 − β1β2Þμ
γ1γ2

:Q ¼ μ
ffiffiffiffiffiffiffiffiffi
β1γ2

pffiffiffi
2

p
γ1

;

P ¼ μ
ffiffiffiffiffiffiffiffiffi
β2γ1

pffiffiffi
2

p
γ2

: ð4:4Þ

The temperature, entropy, and chemical potentials are

T ¼ f̂0ðr0Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1ðr0ÞH2ðr0Þ

p ; S ¼ πr20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1ðr0ÞH2ðr0Þ

p
;

ΦQ ¼
ffiffiffiffiffiffiffiffiffi
2

β1γ2

s �
1 − β1 −

1 − β1f0ðr0Þ
H1ðr0Þ

�
;

ΦP ¼
ffiffiffiffiffiffiffiffiffi
2

β2γ1

s �
1 − β2 −

1 − β2f0ðr0Þ
H2ðr0Þ

�
: ð4:5Þ

The scalar hair contribution to the first law is given by

Z¼XdY; X¼ 4g2μ3ðβ1−β2Þ
ffiffiffiffiffiffiffiffiffi
β1β

3
2

p
ð1−β1β2Þγ22

; Y¼
ffiffiffiffiffi
β1

p
γ2ffiffiffiffiffi

β2
p

γ1
:

ð4:6Þ

The first law can then be established that [35]

dM ¼ TdSþΦQdQþΦPdPþ XdY þϒdΛ; ð4:7Þ

where

ϒ ¼ −
r30

12γ1γ2
ðβ1β2ð2β1β2 − β1 − β2Þ ~f30

þ 3β1β2ð2 − β1 − β2Þ ~f20
þ 3ð2β1β2 − β1 − β2Þ ~f0 − 2þ β1 þ β2Þ; ð4:8Þ

and ~f0 ¼ 1 − 2μ=r0. Here we also corrected some sign
typos in [35]. Thus for P given in (3.5), we have
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V th ¼ −8πϒ: ð4:9Þ

Note that the Smarr relation

M ¼ 2TSþΦQQþΦPP − 2V thP ð4:10Þ

indeed does not involve any scalar hair.
Having obtained the thermodynamical volume,

we can now test the formula (3.2). It is clear that
we have

ρ ¼ rðH1H2Þ14; VE ¼ 4π

3
ρðr0Þ3;

f
h
¼ 1: ð4:11Þ

It is now very simple to verify (3.2).

B. Toroidally symmetric black hole

As was emphasized before, once we have a spherically
symmetric solution, solutions with different topology of
the level surfaces can be easily obtained from some simple
scaling of the coordinates. The formula (3.2) is clearly
invariant under such scaling and hence valid for all
topologies. However, in the toroidal limit, a new scaling
symmetry emerges that can lead to the generalized
Smarr relation (1.6). Also in this paper, we focus on
the AdS planar black holes for studying the but-
terfly effect. For these reasons, we discuss this
example in some detail, even though the results are
already implied by the previous example. The solution
is given by [35]

ds2 ¼ −ðH1H2Þ−1
2f̂dt2 þ ðH1H2Þ12

�
dr2

f̂
þ r2ðdx2 þ dy2Þ

�
;

ϕ¼
ffiffiffi
3

p

2
log

H2

H1

; f ¼ −
2μ

r
þ g2r2H1H2;

A¼
ffiffiffiffiffi
2μ

p �ðrþ 2β1Þffiffiffiffiffi
β1

p
H1r

dtþ 2
ffiffiffiffiffi
β2

p
xdy

�
;

H1 ¼ 1þ 4β1
r

þ 4β1β2
r2

; H2 ¼ 1þ 4β2
r

þ 4β1β2
r2

:

ð4:12Þ

The horizon is located at r ¼ r0, with

μ ¼ 1

2
g2r30H1ðr0ÞH2ðr0Þ: ð4:13Þ

All the thermodynamical quantities are [35]

M¼ μ; Q¼
ffiffiffiffiffiffiffi
μβ1
2

r
; P¼

ffiffiffiffiffiffiffi
μβ2
2

r
;

T ¼ f̂0ðr0Þ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1ðr0ÞH2ðr0Þ

p ; S¼ πr20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1ðr0ÞH2ðr0Þ

p
;

ΦQ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2μβ1

p ðr0þ2β2Þ
r20H1ðr0Þ

; ΦP ¼
2

ffiffiffiffiffiffiffiffiffiffi
2μβ2

p ðr0þ2β1Þ
r20H2ðr0Þ

;

X¼ 4g2ðβ1−β2Þ
ffiffiffiffiffiffiffiffiffi
β1β

3
2

q
; Y¼

ffiffiffiffiffi
β1
β2

s
; P¼ 3g2

8π
;

V th ¼
4

3
πð4β1β2ðβ1þβ2Þþ12β1β2r0þ3ðβ1þβ2Þr20þ r30Þ:

ð4:14Þ

It is now straightforward to verify that the first law is again
satisfied. The usual Smarr formula takes the same form as
(4.10). In addition, there is a generalized Smarr relation

M ¼ 2

3
ðTSþΦQQþΦPPÞ: ð4:15Þ

In the above discussion, we have, for convenience,
assumed that the R2 coordinates ðx; yÞ have been iden-
tified to give a 2-torus of volume 4π. One can take any
other choice for the volume, with the understanding that
the extensive quantities should be scaled by the relative
volume factor.
The quantities listed in (4.11) are the same for the

toroidal black hole, and then the formula (3.2) can be
straightforwardly shown to be true. By utilizing both the
Smarr and generalized Smarr relations, we thus have

v2B ¼ 3

4
−

ΦQQþΦPP
4ð2M −ΦQQ −ΦPPÞ

: ð4:16Þ

Note that since the forms of Smarr and generalized Smarr
relations are identical to those of the dyonic RN-AdS planar
black hole, it follows that the above formula applies for the
dyonic RN-AdS planar black hole as well. (It should be
pointed out that M above is the gravitational mass rather
than the “total energy,” whose distinction was raised in
Sec. II C.)

V. TESTING THE IDENTITY:
FURTHER ADS BLACK HOLES

In this section, we shall test the identity (3.2) with more
AdS black holes in literature that we are familiar with.
These are static black holes with spherical or more general
topologies. The list is by no means exhaustive. The
presentation will also be less detailed than that in the
previous section. Instead we shall simply present the metric
functions and the thermodynamical volumes in most cases.
It is worth pointing out that none of the examples in this
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section has nontrivial scalar hair, i.e. the 1-form Z in (2.24)
vanishes for all.

A. R-charged black holes in gauged supergravities

The thermodynamical quantities including the volumes
for R-charged black holes in gauged supergravities in
D ¼ 4, 5 and 7 dimensions were obtained in [20]. We
find that these formulas are particularly useful for our task
of verifying the identity (3.2).

1. D = 4 four-charge black hole

This solution was constructed in [37] and the metric
functions are

h ¼ f ¼
Yn
i¼1

H
−1
2

i f̂; ρ ¼ r
Y4
i¼1

H
1
4

i;

f̂ ¼ 1 −
2m
r

þ g2r2
Y4
i¼1

Hi; Hi ¼ 1þ qi
r
: ð5:1Þ

The thermodynamical and Euclidean volumes are [20]

V th ¼
1

3
πr30

Y4
i¼1

Hiðr0Þ
X4
j¼1

1

Hjðr0Þ
; VE ¼ 4

3
πρðr0Þ3:

ð5:2Þ
Since the thermalization factor f̂ cancels in f=h, it follows
that in the actual verification of (3.2), r0 can be treated as if
it is a generic r. This avoids the precise determination of r0
which at times can be tedious. This is the case for all
examples.

2. D= 5 three-charge black hole

The solution was constructed in [38]. The metric
functions are

h ¼
Y3
i¼1

H
−2
3

i f̂; f ¼
Y3
i¼1

H
−1
3

i f̂; ρ ¼ r
Y3
i¼1

H
1
6

i;

f̂ ¼ 1 −
2m
r2

þ g2r2
Y3
i¼1

Hi; Hi ¼ 1þ qi
r2
: ð5:3Þ

The thermodynamical and Euclidean volumes are [20]

V th ¼
1

6
π2r40

Y3
i¼1

Hiðr0Þ
X3
j¼1

1

Hjðr0Þ
; VE ¼ 1

2
π2ρðr0Þ4:

ð5:4Þ

3. D = 6 two-charge black hole

This solution can be extracted from a general class of
solutions obtained in [39]. The metric functions are

h¼ ðH1H2Þ−3
4f̂; f ¼ ðH1H2Þ−1

4f̂; ρ¼ rðH1H2Þ18;

f̂ ¼ 1−
2m
r3

þ g2r2H1H2; Hi ¼ 1þ qi
r3
: ð5:5Þ

We find that the thermodynamical and Euclidean
volumes are

V th ¼
1

15
π2r50ð2H1ðr0ÞH2ðr0Þ þ 3H1ðr0Þ þ 3H2ðr0ÞÞ;

VE ¼ 8

15
π2ρðr0Þ5: ð5:6Þ

4. D = 7 two-charge black hole

The solution was obtained in [40]. The metric
functions are

h¼ðH1H2Þ−4
5f̂; f¼ðH1H2Þ−1

5f̂; ρ¼ rðH1H1Þ 1
10;

f̂¼ 1−
2m
r4

þg2r2H1H2; Hi ¼ 1þqi
r4
: ð5:7Þ

The thermodynamical and Euclidean volumes are [20]

V th ¼
π3

30
r60ðH1ðr0ÞH2ðr0Þ þ 2H1ðr0Þ þ 2H2ðr0ÞÞ;

VE ¼ π3

6
ρðr0Þ6: ð5:8Þ

For all above D ¼ 4, 5, 6, 7 examples, it is simple algebra
to verify (3.2).

B. Charged dilatonic AdS black holes

A general class of Lagrangians involving a minimally
coupled dilaton and two Maxwell fields with some appro-
priate scalar potential were proposed [41]:

e−1LD ¼ R −
1

2
ð∂ϕÞ2 − 1

4
ea1ϕF2

1 −
1

4
ea2ϕF2

2 − VðϕÞ;

V ¼
�
dW
dϕ

�
2

−
D − 1

2ðD − 2ÞW
2;

W ¼ 1ffiffiffi
2

p N1ðD − 3Þg
�
e−

1
2
a1ϕ −

a1
a2

e−
1
2
a2ϕ

�
; ð5:9Þ

where dilatonic coupling constants ða1; a2Þ satisfy

a1a2 ¼ −
2ðD − 3Þ
D − 2

: ð5:10Þ

One may introduce a pair of constants ðN1; N2Þ, defined by

a1 ¼
4

N1

−
2ðD − 3Þ
D − 2

; a22 ¼
4

N2

−
2ðD − 3Þ
D − 2

: ð5:11Þ

The constraint (5.10) implies that
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N1a1 þ N2a2 ¼ 0; N1 þ N2 ¼
2ðD − 2Þ
D − 3

: ð5:12Þ

The charged AdS black hole is given by [41]

ds2 ¼ −ðHN1

1 HN2

2 Þ−D−3
D−2f̂dt2

þ ðHN1

1 HN2

2 Þ 1
D−2ðf̂−1dr2 þ r2dΩ2

D−2Þ;

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ðμþ qiÞ

qi

s
H−1

i dt;

ϕ ¼ 1

2
N1a1 logH1 þ

1

2
N2a2 logH2;

f ¼ 1 −
μ

rD−3 þ g2r2HN1

1 HN2

2 ; Hi ¼ 1þ qi
rD−3 :

ð5:13Þ

The solution has three integration constants ðμ; q1; q2Þ,
parametrizing the mass and two electric charges. The
thermodynamical quantities are

M ¼ AD−2

16π
ððD − 2Þμþ ðD − 3ÞðN1q1 þ N2q2ÞÞ;

T ¼ f̂0

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HN1

1 HN2

2

q ; S ¼ 1

4
AD−2ρ

D−2;

Φi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Niðμþ qiÞ

qi

s �
1 −

1

Hi

�
;

Qi ¼
ðD − 3ÞAD−2

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Niqiðμþ qiÞ

p
;

V th ¼
AD−2rD−1

0 HN1−1
1 HN2−1

2

2ðD − 1ÞðD − 2Þ ððD − 3ÞðN2H1 þ N1H2Þ

þ ½2ðD − 2Þ − ðD − 3ÞðN1 þ N2Þ�H1H2Þ;

P ¼ ðD − 1ÞðD − 2Þg2
16π

: ð5:14Þ

These quantities satisfy the first law

dM ¼ TdSþΦ1dQ1 þΦ2dQ2 þ V thdP: ð5:15Þ

The Euclidean volume on the other hand is given by

VE ¼ AD−2

D − 1
ρD−1jr¼r0 ; ρ ¼ rðHN1

1 HN2

2 Þ 1
2ðD−2Þ: ð5:16Þ

The identity (3.2) is then easy to verify since

f
h
¼ ðHN1

1 HN2

2 Þ−D−4
D−2: ð5:17Þ

It is of interest to note that the second condition in (5.12)
implies that the square-bracket term of V th in (5.14)
actually vanishes. However, if we include this, then both
the first law and the identity (3.2) are valid for generic
ðN1; N2Þ without the constraints (5.14).
In [42], analogous Lagrangians inspired by bosonic

string theory were proposed. Both static and rotating (with
single rotation) AdS black holes were constructed. The
metric functions for the static black holes are [42]

h¼ðH1H2Þ−D−3
D−2f̂; f¼ðH1H2Þ− 1

D−2f̂; ρ¼ rðH1H2Þ
1

2ðD−2Þ;

f̂¼1−
2m
rD−3þg2r2H1H2; Hi¼1þ qi

rD−3 : ð5:18Þ

We find that thermodynamical and Euclidean volumes
are

Vth ¼
AD−2

2ðD − 1ÞðD − 2Þ r
D−1
0 ðH1H2Þ−D−4

D−2ð2H1H2 þ ðD − 3ÞðH1 þH2ÞÞ;

VE ¼ AD−2

D − 1
ρðr0ÞD−1: ð5:19Þ

Note that V th is the same as (5.14) with N1 ¼ N2 ¼ 1.

C. Scalar hairy AdS black holes

Large classes of scalar hairy AdS black holes
were constructed in [24,43–48]. In all these examples,

there is no nontrivial scalar hair and hence the thermo-
dynamical quantities and the first law can be completely
determined by the metric functions alone, without
needing to know the solution of the scalar field. Here
we consider the examples of [48]. The metric functions
are
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h ¼ −H−1−μf̂; f ¼ H−1þμ
D−3f̂; ρ ¼ rH

1þμ
2ðD−3Þ; H ¼ 1þ q

rD−3

f̂ ¼ H þ g2r2H
D−2
D−3ð1þμÞ − α2r2ðH − 1ÞD−1

D−2
2F1

�
1;
D − 2

D − 3
ð1þ μÞ; 2ðD − 2Þ

D − 3
; 1 −H−1

�
; ð5:20Þ

We find that the thermodynamical quantities are

M ¼ ðD − 2ÞAD−2

16π
q
�
μþ αq

2
D−3

	
; P ¼ ðD − 1ÞðD − 2Þg2

16π
;

T ¼ f0

4π
H−ðD−2Þð1þμÞ

2ðD−3Þ ; S ¼ 1

4
rD−2
0 AD−2H

ðD−2Þð1þμÞ
2ðD−3Þ ;

V th ¼
AD−2

2ðD − 1Þ r
D−1
0 H

ðD−2Þð1þμÞ
D−3 ð1 − μþ ð1þ μÞH−1Þ: ð5:21Þ

In [24] two more classes of AdS planar black holes were obtained. In the first class, the metric functions are

h ¼ f ¼ rðrþ qÞ
�
g2 − α

�
q
r

�
D−1

2F1

�
D − 1;

1

2
D;D;−

q
r

��
; ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ qÞ

p
: ð5:22Þ

The thermodynamical quantities including the volume are

M ¼ ðD − 2ÞAD−2

16π
αqD−1; V th ¼

AD−2ð2r0 þ qÞ
2ðD − 1Þ ðr0ðr0 þ qÞÞ12D−1;

T ¼ 1

4π
ðD − 1ÞαqD−1ðr0ðr0 þ qÞÞ1−1

2
D; S ¼ 1

4
ðr0ðr0 þ qÞÞ12D−1AD−2; ð5:23Þ

In the second class, the metric functions are

h ¼ r2ðg2 þ ανλ−2νðΓðν; λ2ϕ2Þ − ΓðνÞÞÞ; f ¼ e2λ
2ϕ2

h; ρ ¼ r;

ν ¼ D − 1

2μ
; λ2 ¼ μ

4ðD − 2Þ ; ϕ ¼
�
q
r

�
μ

: ð5:24Þ

The mass, temperature, entropy, and the volume are

M ¼ ðD − 2ÞAD−2

16π
αqD−1; T ¼ αðD − 1ÞqD−1

4πrD−2
0

; S ¼ 1

4
AD−2rD−2

0 ;

V th ¼
AD−2rD−1

0

D − 1
exp

�
μq2μ

4ðD − 2Þr2μ0

�
¼ VE exp

�
μq2μ

4ðD − 2Þr2μ0

�
: ð5:25Þ

To summarize, with the data provided, the formula (3.2)
can be successfully verified against all of the examples
studied in this section.

VI. REVERSE ISOPERIMETRIC INEQUALITY
AND THE vB BOUND

In the previous two sections, we have tested a large
number of AdS black holes and verified the geometric
formula (3.2) for the black hole thermodynamical volume.
In [20], a conjecture of reverse isoperimetric inequality was
proposed after having examined the relation of the

thermodynamical volume and the entropy for a large
number of AdS static and rotating black holes. For static
black holes, the inequality can be equally stated as

V th ≥ VE: ð6:1Þ

Physically, this inequality implies that for a given amount
of entropy, Schwarzschild black hole requires least space
volume to store them. We now show that if we assume the
identity (3.2), the above inequality is a natural consequence
of the null-energy condition in Einstein’s theory.
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For convenience, we would like to choose a coordinate
gauge ρ ¼ r, and hence the metric is

ds2D¼−hðrÞdt2þ dr2

fðrÞþr2dΩ2
D−2;k; k¼−1;0;1: ð6:2Þ

It follows from (3.2) that the inequality is a consequence of

ffiffiffi
f
h

r ����
r¼r0

≥ 1: ð6:3Þ

To proceed, it is convenient to define a vielbein base

e0̄ ¼
ffiffiffi
h

p
dt; e1̄ ¼ drffiffiffi

f
p ; eī¼ r~eī; i¼ 2;3;…;D−1;

ð6:4Þ

where the barred indices denote those in the tangent
spacetime. Following from the Einstein equation
Tab ¼ Gab, we find the nonvanishing components of the
matter energy-momentum tensor

T 0̄ 0̄ ¼ −
ðD − 2ÞðD − 3Þðf − kÞ

2r2
−
ðD − 2Þf0

2r
;

T 1̄ 1̄ ¼ ðD − 2ÞðD − 3Þðf − kÞ
2r2

þ ðD − 2Þfh0
2rh

;

Tī j̄ ¼
�ðD − 3ÞððD − 4Þðf − kÞ þ rf0Þ

2r2

−
fh02

4h2
þ ð2ðD − 3Þf þ rf0Þh0

4rh
þ fh00

2h

�
δij: ð6:5Þ

The null-energy condition implies that

T 0̄ 0̄ þ T 1̄ 1̄ ¼ −
ðD − 2Þh

2r

�
f
h

�0
≥ 0: ð6:6Þ

[Compare this with (3.9).] Since the function h and
coordinate r are non-negative from the horizon to asymp-
totic infinity, it follows that ðf=hÞ0 ≤ 0. In other words, f=h
is monotonically decreasing. It is conventional to scale the
time coordinate such that f=h ¼ 1 at the asymptotic
infinity. It follows that the statement (6.3) must be true
and thus we have proven the inequality (6.1) for static AdS
black holes.
Applying the inequality (6.1) to the butterfly velocity

(1.2), we have

v2B ≤
TS

2VEP
¼ 2πT

ðD − 2Þρ0g2
; ð6:7Þ

where we have used

S ¼ 1

4
AD−2ρ

D−2
0 ; VE ¼ AD−2

D − 1
ρD−1
0 : ð6:8Þ

The bound (6.7) can be better expressed as

v2B
ð4sÞ 1

D−2

Tl
≤

2π

D − 2
; ð6:9Þ

where s ¼ S=ðlD−2AD−2Þ is the (dimensionless) entropy
density and l ¼ 1=g is the AdS radius. Thus we see that for
fixed entropy, the upper bound for the velocity is propor-
tional to

ffiffiffiffi
T

p
. It is worth pointing out that the essence of the

bound (6.9) is (6.3) and hence the bound can be proven
without making use the reverse isoperimetric inequality.
Nevertheless, our approach shows that the bound and the
inequality are closely related.

VII. CONCLUSIONS

In this paper, we studied the butterfly effect of static and
isotropic AdS planar black holes in the framework of
Einstein’s theory of general relativity, with only minimally
coupled matter. We found a purely horizon-geometric
formula (3.2) to calculate the thermodynamic volumes of
the general static AdS black holes. This allows us to
calculate the volume even for the cases with no exact
analytical solutions. We verified this identity for a large
number of black holes, with no exception. Since the near-
horizon geometry of a black hole does not, a priori, “know”
the asymptotic structure, it follows that the volume based
on (3.2) may be fundamental and it may be valid even for
black holes with flat (or other unusual) asymptotics, where
there is no thermal pressure associated with the cosmo-
logical constant. Indeed, the near-horizon geometry of a
static black hole involves three parameters, and we showed
that they could be fully specified by ðT; S; V thÞ. That black
hole volume might be as fundamental as the horizon area is
both intriguing and perplexing since it contradicts the well-
established holographic nature of black holes.
We found two applications of (3.2) in this paper. One is

that the butterfly velocity can now be expressed universally
as (1.2). In other words, it is related to the volume density
of the quantity TS, which is precisely the contribution to the
action growth from the Gibbons-Hawking surface term
evaluated on the horizon [22]. By utilizing the Smarr and
generalized Smarr relations, the butterfly velocities can also
be expressed in terms of conserved quantities including
mass, charges, their chemical potentials, etc. We derived
our results for isotropic solutions. It is of interest to
investigate whether (1.2) may be still valid for anisotropic
solutions.
Another application is that if we assume this identity, the

conjectured reverse isoperimetric inequality proposed in
[20] then follows straightforwardly from the null-energy
condition for the static AdS black holes. This may point a
possible direction of proving the conjecture in general. (It
should be mentioned that violations of the inequality were
found for some somewhat exotic black holes; see
e.g. [49,50].)
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We also found that the reverse isoperimetric inequality
was in one-to-one correspondence to an upper bound for
the butterfly velocities in AdS planar black holes. It is
fascinating to see that the purely geometric inequality is
related to the bound of a physical process.
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