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We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum
rule for relativistic composite systems in the light-front formulation. We explicitly show that j3, the
z-component of the angular momentum remains unchanged under Lorentz transformations generated by
the light-front kinematical boost operators. The invariance of j3 under Lorentz transformations is a feature
unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form,
we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain
interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory
and show that there exists an upper bound on the change of orbital angular momentum in scattering
processes at any fixed order in perturbation theory.
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I. INTRODUCTION

Understanding the angular momentum decomposition
and helicity sum rule for nucleons is of great interest in
hadron physics. One of the difficulties in studying this
problem is the nonuniqueness of the definition of relativ-
istic spin [1–3]. To avoid this issue, nucleons are usually
studied in a frame in which the nucleons move along the
z-direction such that helicity coincides with the z-projection
of spin, since it is generally believed that the helicity and spin
are not the same in an arbitrary frame [4]. Since constituents
in a bound state can move in different directions, it is
understood that for the Wick helicity spin states, there is no
conservation law of helicity.
Nonetheless, as we shall show in this paper, the

z-component of the relativistic spin of a particle or bound
state in the front form [5] is Lorentz invariant and always
equal to its helicity. Furthermore, we will prove that for any
composite system, helicity is conserved in any Lorentz
frame. This is related to the fact that Lorentz transforma-
tions in the front form are generated by kinematical
operators which leave the xþ ¼ 0 plane invariant, whereas
boosts in the instant form are dynamical and the x0 ¼ 0
plane is changed under Lorentz transformations [6–8]. The
invariance of spin in the front form provides selection rules
for orbital angular momentum in interaction vertices and
scattering processes in renormalizable theories. Examples
of the selection rules have been observed in [9–11].
The paper is organized as follows: In Sec. II, we briefly

remind the readers why spin in relativistic theories is
nontrivial, and which are the different definitions of
relativistic spin states generally used in the literature. In
Sec. III, we compare the dependence of the expectation
value of spin operators on different choices of spin states,

and show that the light-front spin choice is unique: the spin
expectation value along the z-direction is always conserved
under Lorentz transformations. We then give a general
proof for the Lorentz invariance of angular momentum
along the z-direction in the front form for both elementary
and composite particles. In Sec. IV, we present a selection
rule for the angularmomentum inQEDandQCDvertices by
applying the light-front angular momentum conservation
law. We also give an upper bound on the change of orbital
angular momentum in scattering processes for renormaliz-
able theories at any fixed order in perturbation theory.
Conclusions are summarized in Sec. V.
For completeness and clarity, we also include in

Appendix A light-front conventions and a glossary of
notations which we use, Appendix B derivation of light-
front spin representations, and Appendix C relations
between light-front spin operators, the covariant spin vector
and the Pauli-Lubanski pseudovector.

II. SPIN OF RELATIVISTIC PARTICLES

In d ¼ 3þ 1 dimensions, the Poincaré group has
two Casimir operators, P2 ¼ m2 and W2, where Wμ ¼
− 1

2
εμναβPνMαβ is the Pauli-Lubanski pseudovector. For a

fixed momentum pμ,Wμ is the generator of the little group,
the maximal subgroup of the Lorentz group which leaves
pμ invariant. According to Wigner’s theorem, elementary
particles classified with m2 and W2 transform in unitary
irreducible representations of the symmetry group.
In the following, we will construct the spin representa-

tions for both massive and massless elementary particles,
respectively. In both cases, we shall start with a standard
reference frame in which the spin is unambiguously
defined, and then apply Lorentz transformations to obtain
the spin in any arbitrary Lorentz frame. Since the Lorentz
transformation between two frames is not unique, we then
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discuss the spin states defined by different choices of
Lorentz transformations.

A. Massive elementary particles

For massive elementary particles, the intuitive choice for
the standard reference frame is the rest frame, in which the
momentum is

p
∘ μ ≡ 0 1 2 3

½m 0 0 0 � :

The Pauli-Lubanski pseudovector in this frame is

Wμ ¼ m

2
6664

0

J1

J2

J3

3
7775 ¼ m

�
0

Si

�
; i ¼ 1; 2; 3; ð1Þ

where Ji ¼ Li þ Si ¼ 1
2
ϵijkMjk are the total rotation

generators in 3 dimensions. Si are the spin generators,
and the orbital generators Li do not contribute when
particles are at rest.1 The Casimir W2 ¼ −m2ðSiÞ2 ¼
−m2sðsþ 1Þ is Poincaré invariant, and s is defined as
the spin representation of a particle in a relativistic
theory [12,13].
In the rest frame of a spin-s massive particle, the spin

is uniquely labeled by s3, the (2sþ 1) eigenvalues along
the z-direction, which we will use interchangeably with
helicity λ:

S3jp∘ ; λ ¼ s3i ¼ λjp∘ ; λi for

λ ¼ −s;−sþ 1;…; 0;…; s − 1; s: ð2Þ

Although the spin is well defined in the particle’s rest
frame, the definition of spin for a particle in motion is
convention dependent, since in fact a Lorentz transforma-
tion from the rest frame jp∘ i to a state jpiwith momentum is
not unique. Generally speaking, a particle with spin in the
z-direction and s3 ¼ λ in its rest frame is not guaranteed to
have the spin aligned in the z-direction when it is moving.
Therefore, even though the helicity λ is a Lorentz invariant
label of particles, it should not be identified with the
z-component of spin for particles in motion. Nonetheless,
as we will see in Sec. II, there is a particular choice of
Lorentz transformation under which, spin-projection
along the z-direction is invariant, and helicity is equal to
the z-component of spin in all Lorentz frames.

There are three popular choices of Lorentz transforma-
tions in the literature which give rise to different definitions
of relativistic spin states [2,3,14,15]:
(1) Canonical spin Starting with the rest frame of a

massive particle in which the spin is projected along
the z-direction, the canonical spin states are obtained
by first performing a rotation from the direction
of p to the z-axis, followed by a boost along the
z-direction to get the desired jpj, and finally a rotation
from the z-axis back to the 3-momentum direction p:

jp; λic ≡ Λcðp∘ → pÞjp∘ ; s3 ¼ λi ð3Þ

¼ Rðẑ → p̂ÞBðp∘ → p3 ¼ jpjÞ
× R−1ðẑ → p̂Þjp∘ ; s3 ¼ λi; ð4Þ

where

Rðẑ → p̂Þ ¼ e−iM
12ϕe−iM

31θ; ϕ ¼ tan−1
p1

p2
;

θ ¼ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1Þ2 þ ðp2Þ2

p
p3

ð5Þ
and

Bðp∘ →p3¼ jpjÞ ¼ e−iM
03ρ; ρ¼ tanh−1

jpj
p0

: ð6Þ
Note that the action ofΛc is equivalent to a rotationless
pure boost along the direction of the 3-momentum p.
The 4-vector representation of Λc is given by

ðΛcÞμνðp
∘
→ pÞ ¼

0 i

0

i

2
64 p0

m
pi

m

pi

m δij þ pipj

mðp0þmÞ

3
75 ð7Þ

¼

0

1

2

3

2
6666664

0 1 2 3
p0

m
p1

m
p2

m
p2

m

p1

m 1þ p1p1

mðp0þmÞ
p1p2

mðp0þmÞ
p1p3

mðp0þmÞ
p2

m
p2p1

mðp0þmÞ 1þ p2p2

mðp0þmÞ
p2p3

mðp0þmÞ
p3

m
p3p1

mðp0þmÞ
p3p2

mðp0þmÞ 1þ p3p3

mðp0þmÞ

3
7777775
;

ð8Þ

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
for particles which are

on-shell.
Using Eq. (8), we see that for a particle polarized

along the z-direction in its rest frame with the
covariant2 spin 4-vector1Throughout this paper, we will reserve uppercase letters

for operators, and use lowercase letters to denote the value
of the operator acting on some states. For example, the momentum
operator on a momentum eigenstate is denoted byPμjpi ¼ pμjpi.
A full glossary of symbols is given in Appendix A 1.

2A detailed discussion on the covariant spin vector and its
relation to the Pauli-Lubanski pseudovector can be found in
Appendix C 1.
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sμ ¼ 0 1 2 3

½ 0 0 0 m � ;

after performing the canonical choice of Lorentz
transformation, the spin in general will not be aligned
with the 3-momentum p.
In the low-energy limit ðjpj ≪ mÞ, the canonical

spin defined by Λc is the natural choice since Λc is
smoothly connected to the identity, and the spin is
unchanged under Galilean boosts, as expected in
nonrelativistic physics.

(2) Wick helicity spin Helicity states are defined such
that the spin of the moving particle is parallel or
antiparallel to the direction of the 3-momentum p.
Starting with a massive particle in the rest frame,

helicity states are obtained by boosting along the
z-direction to obtain the desired p, followed by a
rotation from the z-axis to the direction of jpj:

jp; λih ≡ Λhðp∘ → pÞjp∘ ; s3 ¼ λi ð9Þ

¼ Rðẑ → p̂ÞBðp∘ → p3 ¼ jpjÞjp∘ ; s3 ¼ λi; ð10Þ

where Rðẑ → p̂Þ and Bðp∘ → p3 ¼ jpjÞ are defined
in Eqs. (5) and (6). Unlike the canonical choice, no
rotation is performed in the rest frame in the helicity
choice before boosting in the z-direction. This
ensures that the rest-frame spin vector which is
pointed along the z-direction will be aligned with the
3-momentum p after the helicity boost.
Helicity boost is related to the canonical boost3 by

Λhðp∘ → pÞ ¼ Λcðp∘ → pÞRðẑ → p̂Þ.
The 4-vector representation of Λh is given by

ðΛhÞμνðp
∘
→ pÞ ¼

0

1

2

3

2
6666664

0 1 2 3
p0

m 0 0
jpj
m

p1

m
p1p3

jpjjp⊥j
−p2

jp⊥j
p0p1

mjpj
p2

m
p2p3

jpjjp⊥j
p1

jp⊥j
p0p2

mjpj
p3

m
−jp⊥j
jpj 0 p0p3

mjpj

3
77777775
;

ð11Þ

with jp⊥j2 ¼ ðp⊥Þ2 ¼ ðp1Þ2 þ ðp2Þ2.

Using Eq. (11), it is obvious that for a particle
polarized along the z-direction in its rest frame with
the covariant spin spin 4-vector

sμ ¼ 0 1 2 3

½ 0 0 0 m � ;

after the helicity boost, the spin will be aligned with
the 3-momentum p.

(3) Light-front spin Light-front states are defined using
the light-front kinematical boost generators, Mþ⊥
and Mþ−, which leaves the xþ ¼ 0 plane invariant;
this is in contrast to the canonical or Wick helicity
boost in the instant form, where boost generators are
dynamical and the x0 ¼ 0 plane is changed under
Lorentz transformations. Note that it is constructed
such that the direction of spin in the particle’s rest
frame coincides with the light-front direction4 ẑ, and
as we will see, this choice makes the z-component of
spin special in Lorentz transformations.
Light-front states are obtained from the rest

frame of a massive particle by first boosting in
the z-direction to obtain the desired pþ, followed by
a light-front transverse boost from the z-axis to
obtain the desired transverse momentum p⊥:

jp; λiL ≡ ΛLðp∘ → pÞjp∘ ; s3 ¼ λi ð12Þ

¼ e−iM
þ⊥θ⊥e−i

Mþ−ω
2 jp∘ ; s3 ¼ λi ð13Þ

where

θ⊥ ¼ p⊥
pþ ; ⊥ ¼ 1; 2 ð14Þ

eω ¼ m
pþ : ð15Þ

The 4-vector representation of ΛL is given by

ðΛLÞμνðp
∘
→ pÞ ¼

þ
−
1

2

2
6666664

þ − 1 2
pþ
m 0 0 0

jp⊥j2
mpþ

m
pþ

2p1

pþ
2p2

pþ

p1

m 0 1 0

p2

m 0 0 1

3
7777775
:

ð16Þ

3For elementary particles, any two choices of Lorentz trans-
formations are related to each other by a pure rotation, known as
the generalized Melosh rotation. The reason is the following.
Assume there are two boosts, ΛA and ΛB, both of which
transform a particle at rest to a state with momentum p, and
pμ¼ðΛAÞμνp

∘ ν¼ðΛBÞμνp
∘ ν. It then follows that p∘ μ ¼ðΛ−1

A Þμνpν ¼
ðΛ−1

A ÞμαðΛBÞανp
∘ ν. Since p

∘
has vanishing space component, in

order for the equality to hold, Λ−1
A ΛB can only be a pure spatial

rotation.

4Light-front conventions which we use are listed in
Appendix A 2.
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In the light-front boost, the parameters ðθ⊥;ωÞ have
simple connections5 to the momentum p, in contrast
to the canonical or helicity boosts, where parameters
ðθ;ϕ; ρÞ are nonlinear functions of the momentum as
in Eq. (5) and (6).
We see that the light-front states are similar to the

Wick helicity states in the sense that the spin of
the moving particle will be parallel or anti-parallel to
the light-front 3-momentum ðpþ; p⊥Þ.

We give a graphical illustration below on how a covariant
spin 4-vector appears under the different choices of Lorentz
transformations. In the example, we consider a massive
particle traveling along the x-direction with

pμ ¼ 0 1 2 3

½E p 0 0 � :

The spin is originally polarized along the z-direction in the
rest frame with

sμ ¼ 0 1 2 3

½ 0 0 0 m � ;

as shown in Fig. 1. The spin states corresponding to the
different choices of Lorentz transformations are illustrated
in Fig. 2.

B. Massless elementary particles

Unlike the massive case, for massless particles, spin is not
directly defined from the eigenvalues ofW2. This is because
the little group of the Poincaré group formassless particles is
the non-compact isometry group of the 2-dimensional
Euclidean space ISOð2Þ, which does not admit finite-
dimensional unitary representations. However, particles
are observed to have discrete spin quantum numbers in
addition to momentum p. Thus, all noncompact generators
of ISOð2Þ are neglected, and the remaining generators form
a compact SOð2Þ group.
For each spin-s irreducible representation of the SOð2Þ

group, there are only two linearly independent polarization
states with eigenvalues s and −s, respectively. States
corresponding to the two eigenvalues are referred to as

the “þ” and “−” helicity states of massless particles,
because the SOð2Þ generator points along the direction
of p.
Since spin states are labeled by the S3 operator in the

massive case, to be consistent, one defines spin in a frame
in which the massless particle moves along the z-direction
with momentum

p̄μ ≡ 0 1 2 3

½ p̄ 0 0 p̄ �

so that the SOð2Þ group in this frame is generated by S3.
Spin states for massless particles are then labeled by

S3jp̄; λ ¼ s3i ¼ λjp̄; λi for λ ¼ �s: ð17Þ

Now that we have defined the spin for massless particles
moving along the z-direction, we can construct spin states
for massless particles moving with arbitrary momentum p
as we did in the massive case. However the canonical spin
definition is not suitable for massless particles because it
requires a rest frame from which a pure boost is performed
and there is no rest frame for massless particles.
In the following, we will discuss the remaining two

choices of Lorentz transformations for massless particles.
(1) Wick helicity spin Helicity spin states for massless

particles are obtained by first boosting a state with
momentum p̄ in the z-direction to obtain the desired
jpj, and then rotating from the z-axis to the direction
of p to have the desired the transverse momentum:

jp; λih ≡ Λhðp̄ → pÞjp̄; s3 ¼ λi ð18Þ

¼ Rðẑ → p̂ÞBðp̄ → p3 ¼ jpjÞjp̄; s3 ¼ λi; ð19Þ

where

Rðẑ → p̂Þ ¼ e−iM
12ϕe−iM

31θ;

ϕ ¼ tan−1
p1

p2
; θ ¼ tan−1

jp⊥j
p3

ð20Þ

FIG. 1. Spin in the rest frame is aligned with the z-direction.

FIG. 2. Different definitions of spin for a massive particle
moving with momentum pμ ¼ ðE; p; 0; 0Þ; only the spatial
components of the covariant spin 4-vector are represented in
the figures. The covariant spin vector sμðpÞ is written in the
(0,1,2,3) coordinates. Note that in Fig. 2(c) the horizontal axis is
the þ direction.

5This simplification occurs because kinematical generators of
the Poincaré group on the light-front are isomorphic to the
symmetry operators of nonrelativistic quantum mechanics in d ¼
2þ 1 dimensions [6].
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and

Bðp̄ → p3 ¼ jpjÞ ¼ e−iM
03ρ; eρ ¼ jpj

p̄
: ð21Þ

The 4-vector representation of Λh for massless particles is given by

ðΛhÞμνðp̄ → pÞ ¼

0

1

2

3

2
666666664

0 1 2 3
jpj2þðp̄Þ2

jpjp̄ 0 0
jpj2−ðp̄Þ2

jpjp̄
p1ðjpj2−ðp̄Þ2Þ

jpj2p̄
p1p3

jpjjp⊥j
−p2

jp⊥j
p1ðjpj2þðp̄Þ2Þ

jpj2p̄
p2ðjpj2−ðp̄Þ2Þ

jpj2p̄
p2p3

jpjjp⊥j
p1

jp⊥j
p2ðjpj2þðp̄Þ2Þ

jpj2p̄
p3ðjpj2−ðp̄Þ2Þ

jpj2p̄
−jp⊥j
jpj 0

p3ðjpj2þðp̄Þ2Þ
jpj2p̄

3
777777775
: ð22Þ

Note that in general, jpj2 ≠ ðp̄Þ2 due to the non-
unitarity of the boost operation.
The above expression shows that after the helicity

boost, the spin vector in the standard reference frame
indeed transforms into a vector which points in the
3-momentum direction p.

(2) Light-front spin Light-front spin states for mass-
less particles are obtained by boosting p̄ in the
z-direction to obtain the desired pþ, followed by a
light-front transverse boost from the z-axis to obtain
the desired transverse momentum p⊥.

jp; λiL ≡ ΛLðp̄ → pÞjp̄; s3 ¼ λi ð23Þ

¼ e−iM
þ⊥θ⊥e−i

Mþ−ω
2 jp̄; s3 ¼ λi ð24Þ

where

θ⊥ ¼ p⊥
pþ ; ⊥ ¼ 1; 2 ð25Þ

eω ¼ 2p̄
pþ : ð26Þ

The 4-vector representation of ΛL for massless
particles is given by

ðΛLÞμνðp̄ → pÞ ¼

þ
−
1

2

2
6666664

þ − 1 2
pþ
2p̄ 0 0 0

jp⊥j2
2p̄pþ

2p̄
pþ

2p1

pþ
2p2

pþ

p1

2p̄ 0 1 0

p2

2p̄ 0 0 1

3
7777775
:

ð27Þ

Comparing Eq. (27) with Eq. (16), we see that in
contrast to the helicity choice, the expressions of the
light-front boost are almost identical for both massive
andmassless particles. The only difference is thatm in
themassive case is replacedby2p̄ in themassless case.

Remark A Using the explicit vector representation in
Eqs. (22) and (27), one finds that for massless particles, the
spin vector defined by the Wick helicity boost points in
the direction of the 3-momentum p, and the spin vector
defined by the light-front boost points in the light-front 3-
momentum ðpþ; p⊥Þ. This is exactly what we found in the
massive case. Therefore, we conclude that Λh and ΛL can
be used to define spin states for massive and massless
particles for any momentum p.
Remark B It is worth mentioning that the massless spin-1

representation defined by the light-front boost preserves the
light-cone gauge condition Aþ ¼ 0 under Lorentz trans-
formations6 Thus, in contrast to other choices of Lorentz
transformations where gauge conditions are generally not
preserved, one can always choose the Aþ ¼ 0 gauge
condition in all Lorentz frames. We also emphasize that
the light-front Lorentz transformations are kinematical and
leave the xþ ¼ 0 plane invariant, unlike the canonical or
Wick helicity boosts.

III. CONSERVATION OF ANGULAR
MOMENTUM: A PROPERTY OF THE LIGHT-

FRONT LORENTZ TRANSFORMATION

In the last section, we have defined different choices of
Lorentz transformations, which up to this point merely look
like a preference of choices. However, as we will discover
in this section, the light-front choice is advantageous and

6The explicit light-front spin representations for spin-1 and
spin-1

2
particles are given in Appendix B; the preservation of the

Aþ ¼ 0 condition is demonstrated in Eq. (B16).
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unique in that it provides frame-independent angular
momentum conservation rules.
We shall first study the action of different of Lorentz

transformations on the spin.

A. Spin of particles in motion—Why is light-front
special?

Let us start with a spin state pointed in the z-direction in
a massive particle’s rest frame:

hSiiðp∘ Þ ¼ hp∘ ; λ ¼ s3jSijp∘ ; λ ¼ s3i
hp∘ ; λjp∘ ; λi

¼ λ

2
64
0

0

1

3
75;

i ¼ 1; 2; 3: ð28Þ
We then wish to find the spin of the particle when it is
motion

hSiiðpÞ ¼ hp; λjSijp; λi
hp; λjp; λi ð29Þ

using different choices of Lorentz transformations. Note
that hSiiðpÞ in Eq. (29) are the expectation values of spin
operators on moving states. The 3-vector formed by
hSiiðpÞ should not be confused with the spatial components
of the covariant7 spin 4-vector defined by the expectation
value of the Pauli-Lubanski operator. The calculation can
be done with the definitions of Lorentz transformations in
Eq. (4), (10), (13) and the commutation relation

½Mαβ;Mμν� ¼ iðgανMβμ þ gβμMαν − gαμMβν − gβνMαμÞ:
ð30Þ

Since the Lorentz algebra is representation independent,
one can pick any representation to do the computation
without loss of generality. For example, let us consider the
spin-1 representation and the matrices given in Eq. (8),
(11), and (16). We then obtain the following results8:
(1) Canonical spin

hSiicðpÞ ¼ chp; λjSijp; λic
chp; λjp; λic

¼ λ

mðmþ p0Þ

2
64

−p1p3

−p2p3

mðmþ p0Þ þ jp⊥j2

3
75:
ð31Þ

This shows the canonical spin is generally not
aligned along the direction of motion, as we have
already seen in Fig. 2(a).

(2) Wick helicity spin

hSiihðpÞ ¼ hhp; λjSijp; λih
hhp; λjp; λih

¼ λ

jpj

2
64
p1

p2

p3

3
75: ð32Þ

The helicity spin points along the 3-momentum
direction. For example, a photon moving in the x-
direction has two states polarized along the x-axis;
thus, hSi¼1ihðpÞ ¼ �1 in the helicity spin definition,
as illustrated in Fig. 2(b). Note however that

hSi¼3ihðpÞ ¼ λ p3

jpj ≠ λ, and therefore one cannot
identify the z-component of spin with the helicity
λ for particles in motion.

(3) Light-front spin

hSiiLðpÞ ¼ Lhp; λjSijp; λiL
Lhp; λjp; λiL

¼ λ

2
664

p1

pþ

p2

pþ

1

3
775: ð33Þ

Remark C Note that for all three choices of Lorentz
transformation, the norm of the spin expectation value for
moving particles, hSiiðpÞ, is not conserved, in contrast to
the nonrelativistic case where spin is a 3-vector with unit
norm. This is a consequence of the nonunitarity of the boost
operation. Nevertheless, using the light-front definition, we
find hSi¼3iLðpÞ ¼ λ ¼ s3 and the spin projection along the
light-front direction ẑ ¼ 3̂ in any Lorentz frame is always
the same as in the rest frame. Thus, s3 is an invariant under
the light-front choice of Lorentz transformation.
Remark D In the nonrelativistic regime where

jpj2 ≪ m2, hSiicðpÞ and hSiiLðpÞ reduces to the usual
spin definition which is frame independent:

hSiicðpÞ ¼ hSiiLðpÞ →
jpj2≪m2

λ

2
64
0

0

1

3
75 ¼ hSiiðp∘ Þ: ð34Þ

Remark E On the other hand, in a reference frame where
the observer moves with infinite momentum in the negative
z-direction and p3 ≈ jpj, the Wick helicity spin is

hSiihðpÞ⟶
p3≈jpj

λ

2
664

p1

p3

p2

p3

1

3
775: ð35Þ

Applying the usual identification of p3 in the infinite
momentum frame (IMF) with pþ in the front form

7A detailed discussion on the definition of the covariant spin
vector can be found in Appendix C 1.

8We have verified that the analogous calculation for massless
particles using Eqs. (22) and (27) yields the same hSiihðpÞ and
hSiiLðpÞ, whereas hSiicðpÞ is well defined only for massive
particles.
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[16,17], Eq. (35) becomes the same as hSiiLðpÞ in Eq. (33).
Therefore, the Wick helicity spin in the IMF is the same as
the light-front spin, and the z-component of the Wick
helicity spin remains invariant in the IMF. This is one of the
ways that one can see the correspondence between the IMF
and the front form.
In summary, the light-front spin is powerful because:

(i) it is applicable to both nonrelativistic and relativistic
regimes; (ii) one does not need the IMF to show that the
spin along the z-direction is preserved. In the front form,
hSi¼3iLðpÞ ¼ λ ¼ s3 is true in all Lorentz frames. The
invariance of s3 in the front form provides a great advantage
for the angular momentum sum rules for composite
systems, which we will explore in Sec. IV.

B. Invariance of light-front spin
for elementary particles

In this section, we shall give a formal proof of the
invariance of spin for elementary particles under the light-
front Lorentz transformation.
Let us start by defining an operator S3LðpÞ, which when

acting on a light-front state jp; λiL gives s3—the rest frame
spin projection along the z-axis:

S3LðpÞjp; λiL ¼ s3jp; λiL: ð36Þ
Using the definition of the light-front spin state

jp; λiL ¼ ΛLðp∘ → pÞjp∘ ; λi ð37Þ
and

J3jp∘ ; λi ¼ s3jp∘ ; λi; ð38Þ
one deduces

S3LðpÞ ¼ ΛLðp∘ → pÞJ3Λ−1
L ðp∘ → pÞ: ð39Þ

Furthermore, we can express S3LðpÞ in terms of the
Poincaré generators as9

S3LðpÞ ¼ J3 −
P1

PþMþ2 þ P2

PþMþ1 ð40Þ

¼ J3 −
P1

Pþ Sþ2 þ P2

Pþ Sþ1 − L3
LðpÞ; ð41Þ

where

L3
LðpÞ ¼

P1

Pþ Lþ2 −
P2

Pþ Lþ1; ð42Þ

and Sμν and Lμν are the spin and the orbital part of the
Lorentz generators, respectively.

We can now compute the total angular momentum for a
moving particle

hJ3iLðpÞ ¼ Lhp; λjJ3jp; λiL
Lhp; λjp; λiL

: ð43Þ

Rewriting Eq. (43) using Eqs. (41) and (37), we have

hJ3iLðpÞ ¼ hS3LðpÞi þ Lhp; λj P
1

Pþ Sþ2 − P2

Pþ Sþ1jp; λiL
Lhp; λjp; λiL

þ Lhp; λjL3
LðpÞjp; λiL

Lhp; λjp; λiL
ð44Þ

We will show below that the last two terms in fact vanish,
and then since hJ3iLðpÞ ¼ hS3LðpÞi ¼ s3, we prove the
invariance of spin along the z-direction under light-front
Lorentz transformations.
In the second term, the matrix

hp;λjSþ⊥jp;λiL ¼ hp∘ ;λjΛ−1
L ðp∘ → pÞSþ⊥ΛLðp∘ → pÞjp∘ ;λi

ð45Þ

¼ hp∘ ;λjeiSþ−ω
2 Sþ⊥e−iS

þ−ω
2 jp∘ ;λi; with eω¼ m

pþ ð46Þ

¼ eωhp∘ ; λjSþ⊥jp∘ ; λi ð47Þ
¼ 0: ð48Þ

The second line is obtained by using the definition of light-
front boost in Eq. (13), along with ½Sþ1; Sþ2� ¼ 0, and the
fact that the spin and orbital Lorentz generators commute
½Sμν; Lαβ� ¼ 0. The third line is due to the property that in
the front form, the kinematical generators are invariant up
to a scaling under a longitudinal boost, and

ei
Sþ−ω

2 Sþ⊥e−iS
þ−ω
2 ¼ eωSþ⊥: ð49Þ

To obtain the last line, recall that the state at rest jp∘ ; λi is an
eigenstate defined by the eigenvalues of J3 as in Eq. (2).
Therefore the expectation values for all other Lorentz

generators on jp∘ ; λi vanish, and hence the last equality.
The last term can be simplified in the following way:

hL3
LðpÞi ¼ Lhp; λjL3

LðpÞjp; λiL ð50Þ

¼ Lhp; λji
�
p1

∂
∂p2

− p2
∂

∂p1

�
jp; λiL ð51Þ

¼ Lhp; λjL3jp; λiL ð52Þ
≡hL3iLðpÞ: ð53Þ

The second line is obtained by using the explicit form
of L3

LðpÞ in Eq. (42) and the fact any function of generator
Pμ on the momentum eigenstate satisfies fðPμÞjpi ¼
fðpμÞjpi. The third equality is then obvious by noting

9One can repeat the same calculation for massless particles and
obtain the same expression.
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that the momentum-space representation for the orbital
angular momentum operator is Lμν ¼ iðpμ ∂

∂pν
− pν ∂

∂pμ
Þ.

Combining Eq. (48) and (53), We obtain a simplified
expression for Eq. (44):

hJ3iLðpÞ ¼ hS3LðpÞi þ hL3iLðpÞ: ð54Þ
Comparing this with the usual expression for angular
momentum conservation:

hJ3iLðpÞ ¼ Lhp; λjJ3jp; λiL
Lhp; λjp; λiL

ð55Þ

¼ Lhp; λjðS3 þ L3Þjp; λiL
Lhp; λjp; λiL

ð56Þ

¼ hS3iLðpÞ þ hL3iLðpÞ; ð57Þ
we deduce

hS3iLðpÞ ¼ hS3LðpÞi ¼ s3: ð58Þ
Let us discuss the interpretation of hL3iLðpÞ for elemen-

tary particles without internal structure. An elementary
particle with fixed momentum is described by a plane wave
which is spread all over the space and carries no orbital
angular momentum around a fixed point. It has also been
shown with detailed wavepacket analysis in [1] and [18]
that this term is regulated and contains no infinities and
only depends on the particle’s motion around a fixed center;
thus, this term has no applicability to the internal spin. We
can thus neglect this term and only discuss the intrinsic spin
angular momentum for elementary particles. Thus, we find

hJ3iLðpÞ ¼ hS3iLðpÞ ¼ s3 ¼ λ: ð59Þ
This proves the invariance of spin for elementary

particles—in any Lorentz frame obtained by a light-front
Lorentz transformation from the particle’s rest frame, the
expectation value of the spin-projection operator along the
z-direction is the same as in the particle’s rest frame.
Remark F In the literature, people often say “light-front

spin” or “light-front helicity” is invariant. The accurate
statement should be: the spin along the z-direction defined
by the light-front Lorentz transformation is preserved
because hJ3iLðpÞ ¼ s3 for all momentum p. Furthermore,
since the helicity λ is equal to s3 by definition, spin and
helicity can thus be used interchangeably in the front form.
Similarly, in the operator level, since S3LðpÞ also gives the
Lorentz-invariant z-component of spin for particles as in
Eq. (59), it is often referred to as the “light-front spin
operator” or “light-front helicity operator” [8,19,20]. In
addition to S3LðpÞ, one can also define the transverse light-
front spin operators S⊥L ðpÞ in analogy to Eq. (36). The
relation between the light-front spin operators SiLðpÞ and the
Pauli-Lubanski vector Wμ is given in Appendix C 2.

Remark G One may wonder whether the invariance of
the z-projection of spin also occurs in the Wick helicity
boost, which is defined similarly to the light-front boost.
The answer is yes, but only in the IMF limit [7].
To see this, we first construct S3hðpÞ for the Wick helicity

boost analogous to the light-front S3LðpÞ:
S3hðpÞjp; λih ¼ λjp; λih: ð60Þ

This “Wick helicity spin operator" satisfies

S3hðpÞ ¼ Λhðp∘ → pÞJ3Λ−1
h ðp∘ → pÞ: ð61Þ

An explicit calculation gives

S3hðpÞ ¼
JiPi

jPj ; ð62Þ

which is exactly the ordinary helicity operator.
Even though s3 ¼ λ in the standard reference frame, in

general hS3ihðpÞ ≠ hS3hðpÞi ¼ λ for an arbitrary momen-
tum p. Nevertheless, in the IMF where p1; p2 ≪ p3 ≈ jpj,

S3hðpÞ⟶
p3≈jpj

J3 þ P1

P3
M23 þ P2

P3
M31: ð63Þ

Identifying p3 in the IMF with pþ in the front form,
Eq. (63) becomes identical to S3LðpÞ in Eq. (40). We see that
in the IMF the Wick helicity spin operator S3hðpÞ is the
same as the light-front spin operator S3LðpÞ in the front
form. Alternatively, one may take p1, p2 → 0 in the IMF
and find S3hðpÞ⟶p1;p2≈0

J3. Both ways give

hS3hðpÞi ¼ hS3LiðpÞ ¼ λ ¼ s3 ð64Þ
in the IMF.
This explains why the z-projection of spin is preserved in

the IMF, which we have already seen in Eq. (35).

C. Conservation of j3 for composite systems
in the front form

In this section, we shall generalize the proof to composite
systems and show that the z-component of the total angular
momentum is conserved for any bound state in the
front form.
Bound states in the front form are defined at one instant

of light-front time xþ ¼ 0. As we will see, light-front
bound state wave functions are in fact Poincaré invariant, in
contrast to instant-form wave functions defined at x0 ¼ 0.
A bound state with momentum p has the following light-
front Fock state decomposition [10]

jp; j3iL ¼
X
n

Z
½dx�½d2k⊥�ψn

× ðxa; k⊥a ; s3aÞjn;pa; s3aiL; ∀ s3a; ð65Þ
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with the Lorentz invariant integral measure

½dx� ¼
Yn
a¼1

dxaffiffiffiffiffi
xa

p δ

�
1 −

Xn
a¼1

xa

�

½d2k⊥� ¼ 16π3
Yn
a¼1

d2k⊥a
16π3

δ2
�Xn

a¼1

k⊥a
�
: ð66Þ

The total angular quantum number j3 can be defined in the
standard reference frame in which the bound state is at rest,
analogous to the case of massive elementary particles in
Sec. II. jn;pa; s3aiL denotes the n-particle Fock state; a
labels the n constituents; s3a is the z-projection of the light-
front spin for each of the constituents, which we have
proved to be Lorentz invariant in the previous section. The
light-front 3-momentum of constituent a is given by

pþ
a ¼ xapþ p⊥

a ¼ xap⊥ þ k⊥a : ð67Þ
The light-front energy of a constituent is given by

p−
a ¼ ðp⊥

a Þ2þm2
a

pþ
a

, where ma is the mass of the constituent.

For a bound state, the light-front energy is given by

p− ¼ ðp⊥Þ2þm2

pþ , where m is the mass of the bound state.
Note that p− ≠

P
n
a¼1 p

−
a because in light-front time-

ordered perturbation theory, particles are always on their
mass shell, but off the energy conservation shell. Thus, it is
sufficient to specify a bound state with the total light-front
3-momentum ðpþ; p⊥Þ of the bound state together with the
internal variables ðxa; k⊥a Þ.
It can be readily checked that ðxa; k⊥a Þ are in fact

Poincaré invariant, despite that ðpþ
a ; p⊥

a Þ transform cova-
riantly under the light-front Lorentz transformation defined
in Eq. (16). Since s3a is Lorentz invariant, the light-front
wave function (LFWF) ψnðxa; k⊥a ; s3aÞ, which describes the
internal structure of a bound state, is indeed independent of
the observer’s Lorentz frame as desired.
We compute the total angular momentum along z-

direction for each of the n-particle Fock state jn;pa; s3ai
at arbitrary momentum p:

hJ3iLðpÞ ¼ Lhn;pa; s3ajJ3jn;pa; s3aiL
Lhn;pa; s3ajn;pa; s3aiL

ð68Þ

¼
Xn
a¼1

Lhn;pa; s3ajðS3a þ L3
aÞjn;pa; s3aiL

Lhn;pa; s3ajn;pa; s3aiL
ð69Þ

¼
Xn
a¼1

s3a þ Lhn;pa; s3ajL3
ajn;pa; s3aiL

Lhn;pa; s3ajn;pa; s3aiL
: ð70Þ

We have used conservation of spin for elementary con-
stituents in Eq. (58) to obtain the last equality.
We shall show below that not only s3a is Lorentz

invariant, but the orbital angular momentum along the
z-direction is also independent of the observer’s Lorentz

frame. We rewrite the orbital term with the total transverse
momentum p⊥ of the bound state and the n − 1 indepen-
dent internal transverse momentum k⊥ [21]:

Xn
a¼1

Lhn;pa; s3ajL3
ajn;pa; s3aiL ð71Þ

¼
Xn
a¼1

Lhn;pa; s3aji
�
p2
a

∂
∂p1

a
− p1

a
∂

∂p2
a

�
jn;pa; s3aiL ð72Þ

¼ Lhn;pa;s3aji
�
p2

∂
∂p1

−p1
∂

∂p2

�
jn;pa;s3aiL

þ
Xn−1
a¼1

Lhn;pa;s3aji
�
k2a

∂
∂k1a− k1a

∂
∂k2a

�
jn;pa;s3aiL: ð73Þ

The first term in Eq. (73) corresponds to the orbital angular
momentum due to total momentum of the composite
system and is thus neglected due to its irrelevance to the
internal structure. The second term depends on the frame-
independent internal transverse momentum k⊥a , and thus it
gives the Lorentz invariant internal orbital angular momen-
tum l3a for the constituents. Therefore, we deduce

Xn
a¼1

Lhn;pa; s3ajL3
ajn;pa; s3aiL

¼
Xn−1
a¼1

l3aLhn;pa; s3ajjn;pa; s3aiL: ð74Þ

Inserting Eq. (74) into Eq. (70), we find that the
z-projection of the total angular momentum hJ3iLðpÞ
satisfies

hJ3iLðpÞ ¼ j3 ¼
Xn
a¼1

s3a þ
Xn−1
a¼1

l3a: ð75Þ

Since s3a and l3a are Lorentz invariant, hJ3iLðpÞ ¼ j3

must also be Lorentz invariant. This thus completes the
proof of the Lorentz invariance of the angular momentum
conservation law.
In summary, we have proved that, in the front form the

internal angular quantum number j3 is frame independent
and is determined only by the internal structure of the
composite system. This is an important consequence that
boosts are kinematical in the front form [5]. Due to its
Lorentz invariance, this conservation law is rigorous and
can be applied to any composite system at all momentum
scales.

D. Alternative proof of j3 conservation
using Lorentz algebra in the front form

The conservation of angular momentum for a composite
system can be understood from another perspective using
the Lorentz algebra in the front form.
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In the front form, the action of the set of kinematical
generators ðMþ−; Pþ;M12Þ on Mþ⊥ is identical to its
action on P⊥ up to a scaling. To see this, we compare

eiM
12ϕMþ⊥e−iM12ϕ ¼ cosϕMþ⊥ − sinϕε⊥⊥0

Mþ⊥0 ð76Þ

ei
Mþ−ω

2 Mþ⊥e−iM
þ−ω
2 ¼ eωMþ⊥ ð77Þ

eiP
þx−Mþ⊥e−iPþx− ¼ Mþ⊥; ð78Þ

with

eiM
12ϕP⊥e−iM12ϕ ¼ cosϕP⊥ − sinϕε⊥⊥0

P⊥0 ð79Þ

ei
Mþ−ω

2 P⊥e−iM
þ−ω
2 ¼ P⊥ ð80Þ

eiP
þx−P⊥e−iPþx− ¼ P⊥; ð81Þ

where ε12 ¼ −ε21 ¼ 1, and ⊥;⊥0 ¼ 1, 2.
The relations suggest that, when evaluating hJ3iLðpÞ for

a light-front spin state jp; jiL, which depends on the
kinematical Lorentz generators Mþ− and Mþ⊥, the action
of Mþ⊥ on the state should be the same as the transverse
translation generator P⊥.
Since a translation does not change a particle’s

angular momentum and the boost in the z-direction Mþ−

commutes with J3, we deduce that the z-projection of
the angular momentum is preserved in light-front boosts,
and hJ3iLðpÞ ¼ j3.
This result is again a reflection that boosts in the front

form are kinematical, in contrast to the instant form. In fact,
this statement can be generalized to all kinematical trans-
formations in the front form—any transformation generated
by the kinematical subgroup of the Poincaré group leaves
j3 invariant in the front form.

IV. SELECTION RULE FOR ORBITAL ANGULAR
MOMENTUM IN THE FRONT FORM

In this section, we apply the angular momentum con-
servation law in the light-front formulation derived in
Sec. III C to present an explanation for the selection rule
of the orbital angular momentum observed in [9,10]: in the
nth order perturbative expansion of a renormalizable
theory, the change of orbital angular momentum between
the initial and final states in the front form is constrained
by jΔl3j ≤ n.
Recall that in nonrelativistic quantum mechanics, a

state’s orbital angular momentum is changed by 1 unit
when it is acted on by the transverse circular momentum
operator PR ≡ P1 þ iP2 and PL ≡ P1 − iP2:

PRjl3i ∝ jl3 þ 1i PLjl3i ∝ jl3 − 1i ð82Þ
This is true because

½PR; J3� ¼ −PR ½PL; J3� ¼ PL ð83Þ

and

J3PRjl3i ¼ ðl3 þ 1ÞPRjl3i ⇒ PRjl3i ∝ jl3 þ 1i ð84Þ
J3PLjl3i ¼ ðl3 − 1ÞPLjl3i ⇒ PLjl3i ∝ jl3 − 1i: ð85Þ

In general,

ðPRÞnjl3i ∝ jl3 þ ni ðPLÞnjl3i ∝ jl3 − ni: ð86Þ
It follows that, an interaction HI proportional to n

powers of the transverse momentum P⊥ ¼ ðP1; P2Þ can
change a state’s orbital angular momentum at most by n:

hp0; l0jHIjp; li ¼ 0; for jΔl3j ≥ n: ð87Þ
For relativistic quantum field theories in the instant form,

the angular momentum in the z-direction generally changes
under Lorentz transformation, and thus the above selection
rule cannot be easily applied to relativistic systems in the
instant form since l3 is not Lorentz invariant. Nonetheless,
in the front form, the angular momentum conservation law

j3 ¼
Xn
a¼1

s3a þ
Xn−1
a¼1

l3a; ð88Þ

which we derived in Eq. (75) is frame independent. The
quantum numbers ðs3; l3; j3Þ are in fact invariant under the
light-front Lorentz transformations, and only depend on the
internal angular structure of particles. Therefore, we can
readily apply the orbital angular momentum selection rule
in Eq. (87) to constrain the change of the orbital angular
quantum number in interactions.
Specifically, in all renormalizable theories, since

the interaction vertex HI only contains at most one power
of P⊥, the change of orbital angular momentum is con-
strained by

jΔl3j ≤ 1 ð89Þ
at every vertex.
This selection rule can be used to eliminate certain

interaction vertices in QED and QCD. For example, in
e− → e−γ scattering, if the incoming electron line has
s3in ¼ − 1

2
, then it is not possible to have outgoing lines with

s3out ¼ s3e þ s3γ ¼ þ 1
2
þ 1 ¼ þ 3

2
because Δl3 ¼ − 3

2
in this

case. One can also use the spin representations given in
Appendix B to explicitly verify Vð− 1

2
→ þ 1

2
þ 1Þ ¼ 0.

Similarly, in QCD, the 3-gluon interaction vertex
Vð− → þþ;Δl3 ¼ −2Þ and the 4-gluon vertices
Vð− → þþþ;Δl3 ¼ −4Þ, Vð− → −þþ;Δl3 ¼ −2Þ
and Vð− → − − −;Δl3 ¼ 2Þ all vanish by the same
argument.
Furthermore, in the nth order perturbative expansion, the

change between initial and final state orbital angular
momentum is constrained by
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jΔl3j ≤ n: ð90Þ
This explains the vanishing amplitude Mðþ;þ; � � � ;þÞ10
at tree level [9,11]: In 2 → n gluon scattering, the ampli-
tude Mðþ;þ;� �� ;þÞ¼Mð−−→þ���þÞ has Δs3¼nþ2.
Conservation of angular momentum in the z-direction then
gives Δl3 ¼ −ðnþ 2Þ. At tree level, since there are only at
most n triple gluon vertices in this process and jΔl3j ≤ n,
Mðþ;þ; � � � ;þÞ must then vanish due to violation of the
selection rule.

V. DISCUSSION

In this paper we have proved that the z-component of the
total angular momentum of any system is invariant under
Lorentz transformations in the front form. In particular, we
havedemonstrated that for a bound state, the internal angular
quantum numbers ðj3; s3; l3Þwhich appear in the light-front
wave functions are independent of the observer’s Lorentz
frame. In contrast to [7,8,15,19,20], where j3 is understood
as the eigenvalue of the light-front helicity operator, which
is not a charge operator of the Lorentz symmetry, we showed
explicitly that in fact, j3 also corresponds to the expectation
value of the actual total angular momentum operator. This
provides an explanation to the conservation of j3, which
has been implicitly assumed in [9,10,22].
The conservation of j3 is an important consequence of

the fact that the light-front boosts are kinematical, which
leave the xþ ¼ 0 quantization plane invariant. These
quantum numbers can be applied to particles in the
intermediate states which are off-shell in the light-front
energy p−. Moreover, j3 is conserved for any intermediate
states even though they are off-shell. In addition, we have
shown that the Aþ ¼ 0 light-front gauge condition is
preserved under Lorentz transformations in the front form.
Thus, one can consistently use light-front gauge in all
Lorentz frames, avoiding the redundant gauge degrees of
freedom characteristic of covariant gauges.
We applied the angular momentum conservation law and

found an upper bound for the change of orbital angular
momentum between initial and final states in scattering
processes—in a renormalizable theory, jΔl3j ≤ 1 at every
vertex and jΔl3j ≤ n in the nth order perturbative expan-
sion. We also showed explicitly that this selection rule can
be used to eliminate certain interaction vertices in QED and
QCD scattering processes.
In order to understand the specific features of the front

form, we analyzed the spin states defined by different
choices of Lorentz transformations and found that: (i) in the
nonrelativistic limit, light-front spin is identical to the
canonical spin, and (ii) in the infinite momentum frame
(IMF) limit, the Wick helicity spin reduces to the light-front
spin, which explains the conservation of helicity in the IMF.

Thus, we conclude that the light-front spin is suitable for
describing the spin structure of particles at all momentum
scales.
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APPENDIX A: NOTATION

1. Glossary of symbols

Throughout the paper, we use uppercase letters to denote
operators, and lowercase letters to denote the value of the
operator acting on some states.
The SUð2Þ spin operators are Si, for i ¼ 1, 2, 3.
The average spin si of a particle at rest is

si ¼

2
64
s1

s2

s3

3
75 ¼ 1

s
hsij

2
64
S1

S2

S3

3
75jsii: ðA1Þ

The average spin of a particle in motion is denoted by

hSiiðpÞ ¼ hp; λjSijp; λi
hp; λjp; λi : ðA2Þ

A relativistic spin state jp; λi defined by a Lorentz
transformation Λ from the standard reference frames in
which spin is labeled along the z-direction by λ ¼ s3. For
massive particles, the standard reference frame is the rest
frame, and

jp; λi≡ Λðp∘ → pÞjp∘ ; s3 ¼ λi: ðA3Þ
For massless particles, the standard reference frame is in
which the particle moves along the z-direction so that the
helicity coincides with the z-component of the spin

jp; λi≡ Λðp̄ → pÞjp̄; s3 ¼ λi: ðA4Þ
There are three choices of Lorentz transformations in

general use: canonical Λc, helicity Λh and light-front ΛL.
Light-front spin operator or light-front helicity operators

S3LðpÞ are defined by

S3LðpÞjp; λiL ¼ s3jp; λiL; ðA5Þ
such that the action of S3LðpÞ on a light-front spin state
gives the rest-frame spin projection along the z-direction.
As we have shown in Sec. III, in fact hS3LðpÞi ¼
hS3iLðpÞ ¼ s3, and the z-component of spin is conserved
under Lorentz transformations.10In this convention, all momenta are assumed to be outgoing.
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2. LF conventions

Light-front coordinates are defined by the light-front
time

xþ ¼ x0 þ x3 ðA6Þ

and the corresponding longitudinal spacelike coordinate

x− ¼ x0 − x3: ðA7Þ

The transverse components x1 and x2 are unchanged in the
light-front coordinates, often denoted by x⊥. Note that by
putting c back into the expressions, in the nonrelativistic
regime when c → ∞, the light-front time xþ ¼ x0 þ x3

c →
x0 is reduced to the ordinary time.
The metric tensor is

gμν ¼
þ
−
1

2

2
6664

þ − 1 2

0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1

3
7775 ;

gμν ¼
þ
−
1

2

2
6664

þ − 1 2

0 1
2

0 0

1
2

0 0 0

0 0 −1 0

0 0 0 −1

3
7775 ðA8Þ

For any 4-vecor vμ, in the light-front coordinates

vμ ¼ þ − 1 2

½ vþ v− v1 v2 � ;

vμ ¼
þ − 1 2�

v−
2

vþ
2

−v1 −v2
�
: ðA9Þ

Lorentz invariant scalar product is

p · x ¼ p−

2
xþ þ pþ

2
x− − p1x1 − p2x2: ðA10Þ

p− is defined as the light-front Hamiltonian as it is
multiplied by xþ the light-front time, pþ is called the
light-front longitudinal momentum for similar reason, and
p⊥ is the light-front transverse momentum vector. For
particles on their mass shell,

p− ¼ ðp⊥Þ2 þm2

pþ : ðA11Þ

Lorentz invariant integral measure is

Z
d2p⊥
ð2πÞ3

dpþ

2pþ ¼
Z

d4p
ð2πÞ4 θðp

þÞð2πÞδ2ðp2 −m2Þ: ðA12Þ

Poincaré generators can be classified into the kinematical
subgroup which leaves the quantization plane at one instant
of time invariant, and the dynamical subgroup which
involves evolution in time and depends on interactions.
In the instant form, the 6 kinematical generators which
leave x0 ¼ 0 invariant are the translation generators Pi and
the rotation generators Ji. In the front form, there are 7
kinematical generators under which xþ ¼ 0:

translation∶ Pþ; P⊥; ⊥ ¼ 1; 2 ðA13Þ

rotation in the x − yplane∶ M12 ðA14Þ

longitudinal boost∶ Mþ− ¼ −2M03 ðA15Þ

transverse boost∶ Mþ⊥ ¼ M0⊥ þM3⊥;
⊥ ¼ 1; 2 ðA16Þ

The remaining 3 dynamical generators in the front form are

Hamiltonian∶ P− ðA17Þ
transverse rotation∶ M−⊥ ¼ M0⊥ −M3⊥;

⊥ ¼ 1; 2 ðA18Þ
Note that as we have shown in Sec. III, any trans-

formation generated by the kinematical generators in the
front form preserves j3, the angular momentum in the z-
direction. This is in contrast to the instant form, where j3

generally even changes under rotations generated by the
kinematical operators Ji.

APPENDIX B: SPIN REPRESENTATION
IN THE FRONT FORM

In this section, we derive the front form representations
for spin-1 and spin-1

2
particles.

Due to Wigner’s theorem, under a Lorentz transforma-
tion Λ, a generic field ϕsðxÞ with spin s transforms in the
unitary irreducible representation Λs:

ϕsðxÞ → ϕs
0ðxÞ ¼ Λ−1ϕsðxÞΛ ðB1Þ

¼ ΛsϕsðΛ−1xÞ: ðB2Þ
The light-front mode expansion for ϕsðxÞ reads:

ϕsðxÞ ¼
X
λ

Z
d2p⊥
ð2πÞ3

dpþffiffiffiffiffiffiffiffiffi
2pþp ½Rs;λðpÞbλðpÞe−ip·x

þ R̄s;λðpÞd†λðpÞeip·x�: ðB3Þ
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λ is as defined in Eqs. (2) and (17) for massive and massless
particles respectively. d†λðpÞ is the creation operator for
particles and bλðpÞ is the annihilation operator for anti-
particles. Rs;λðpÞ and R̄s;λ represent the spin dependence
for the field. For example, R0ðpÞ ¼ 1 for scalar particles,
R1;�ðpÞ ¼ εμ�ðpÞ for massless photons, R1

2
;�ðpÞ ¼ u�ðpÞ

for Dirac spinors, etc.
Under Lorentz transformation in Eq. (B2),

ϕ0
sðxÞ ¼

X
λ

Z
d2p⊥
ð2πÞ3

dpþffiffiffiffiffiffiffiffiffi
2pþp ½ΛsRs;λðpÞbλðpÞe−iðΛpÞ·x

þ ΛsR̄s;λðpÞd†λðpÞeiðΛpÞ·x�; ðB4Þ
where we have used p · ðΛ−1xÞ ¼ ðΛpÞ · x.
For a state jp; λi ¼ ð2πÞ3

ffiffiffiffiffiffiffiffiffi
2pþp

b†λðpÞj0i in the second
quantized form, it has the corresponding first-quantized
wave function given by

h0jϕsðxÞjp; λi ¼ Rs;λðpÞe−ip·x: ðB5Þ
Then, under a Lorentz transformation jpi → Λjpi ¼ jΛpi,

h0jϕsðxÞjΛp; λi ¼ Rs;λðΛpÞe−iðΛpÞ·x: ðB6Þ
On the other hand,

h0jϕsðxÞΛjp; λi ¼ h0jΛ−1ϕsðxÞΛjp; λi ðB7Þ
¼ h0jϕ0

sðxÞjp; λi ðB8Þ

¼ ΛsRs;λðpÞe−iðΛpÞ·x: ðB9Þ
The first equality is true by assuming the vacuum is Lorentz
invariant and Λj0i ¼ j0i. The second and third line are
obtained using Eq. (B1) and (B4). Equating Eq. (B6) and
(B9), we derive the Lorentz transformation rule for the spin
representation:

Rs;λðΛpÞ ¼ ΛsRs;λðpÞ: ðB10Þ
In the following, we shall start with the spin representa-

tions in the standard reference frame, and apply this rule to
obtain light-front spin representations for any momen-
tum p.

1. Spin-1 with m ≠ 0

A massive spin-1 field has the mode expansion

BμðxÞ ¼
X

λ¼−1;0;1

Z
d2p⊥
ð2πÞ3

dpþffiffiffiffiffiffiffiffiffi
2pþp ½εμλðpÞaλðpÞe−ip·x

þ ε�μλ ðpÞa†λðpÞeip·x�: ðB11Þ
The standard reference frame for massive particles is the

particle’s rest frame defined in Eq. (2) with

p
∘ μ ¼ þ − 1 2

½m m 0 0 � :

The polarization vectors in this frame correspond to the
eigenvectors of the little group SOð3Þ with λ ¼ �1; 0:

εμþðp∘ Þ ¼

þ
−
1

2

2
666664

0

0

−1ffiffi
2

p

−iffiffi
2

p

3
777775 εμ−ðp∘ Þ ¼

þ
−
1

2

2
666664

0

0

1ffiffi
2

p

−iffiffi
2

p

3
777775

εμ0ðp
∘ Þ ¼

þ
−
1

2

2
6664
1

1

0

0

3
7775 ðB12Þ

in the light-front coordinates. Applying the vector repre-

sentation of the light-front boost ðΛLÞμvðp
∘
→ pÞ in

Eq. (16), we find

εμþðpÞ ¼

þ
−
1

2

2
666664

0
− ffiffi

2
p

pR

pþ

−1ffiffi
2

p

−iffiffi
2

p

3
777775 εμ−ðpÞ ¼

þ
−
1

2

2
666664

0ffiffi
2

p
pL

pþ

1ffiffi
2

p

−iffiffi
2

p

3
777775

εμ0ðpÞ ¼

þ
−
1

2

2
666664

pþ
m

jp⊥j2þm2

m

p1

m

p2

m

3
777775; ðB13Þ

where pR ≡ p1 þ ip2 and pL ≡ p1 − ip2. εμþðpÞ and
εμ−ðpÞ are sometimes referred to as the right-handed and
left-handed circular polarization respectively.

2. Spin-1 with m= 0

A massless spin-1 field has the mode expansion

AμðxÞ ¼
X
λ¼�

Z
d2p⊥
ð2πÞ3

dpþffiffiffiffiffiffiffiffiffi
2pþp ½εμλðpÞaλðpÞe−ip·x

þ ε�μλ ðpÞa†λðpÞeip·x�: ðB14Þ
The standard reference frame for massless particles is

defined in Eq. (17), in which a particle moves along the
z-direction with

p̄μ ¼ þ − 1 2

½ 2p̄ 0 0 0 � :

The polarization vectors in this frame are the eigenvectors
of the little group SOð2Þ with λ ¼ �1:
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εμþðp̄Þ ¼

þ
−
1

2

2
666664

0

0
−1ffiffi
2

p

−iffiffi
2

p

3
777775 εμ−ðp̄Þ ¼

þ
−
1

2

2
666664

0

0
1ffiffi
2

p

−iffiffi
2

p

3
777775 ðB15Þ

in the light-front coordinates. Applying the vector
representation of the light-front boost ðΛLÞμvðp̄ → pÞ in
Eq. (27), we find

εμþðpÞ ¼

þ
−
1

2

2
666664

0
− ffiffi

2
p

pR

pþ

−1ffiffi
2

p

−iffiffi
2

p

3
777775 εμ−ðpÞ ¼

þ
−
1

2

2
666664

0ffiffi
2

p
pL

pþ

1ffiffi
2

p

−iffiffi
2

p

3
777775 ðB16Þ

The above expressions are consistent with the transverse
polarizations ϵμ�ðpÞ obtained for massive particles in
Eq. (B13).
Note that the þ component of the polarization vectors

vanishes for all momentum p. Therefore, the light-front
gauge condition Aþ ¼ 0 is preserved under the light-front
Lorentz transformation ΛL. This is in contrast to other
choices of Lorentz transformations, under which a gauge
condition is generally not preserved.

3. Spin-12 Dirac spinors

A Dirac spin-1
2
fermion has the mode expension

ψðxÞ ¼
X
λ¼�1

2

Z
d2p⊥
ð2πÞ3

dpþffiffiffiffiffiffiffiffiffi
2pþp ½uλðpÞbλðpÞe−ip·x

þ vλðpÞd†λðpÞeip·x�: ðB17Þ
Since both massive and massless Dirac fermions have

two polarizations, the spin representations must be con-
sistent in both cases. We shall work with the massive case

and obtain the expression for massless Dirac spinors by
taking m → 0.
In a massive Dirac fermion’s rest frame, solutions

to the Dirac equation correspond to eigenvectors of the
SOð3Þ rotation group with λ ¼ 1

2
;− 1

2
, labeled by ↑ and ↓

respectively:

u↑ðp∘ Þ ¼
ffiffiffiffiffiffiffi
2m

p
2
6664
1

0

0

0

3
7775 u↓ðp∘ Þ ¼

ffiffiffiffiffiffiffi
2m

p
2
6664
0

1

0

0

3
7775

v↑ðp∘ Þ ¼
ffiffiffiffiffiffiffi
2m

p
2
6664

0

0

0

−1

3
7775 v↓ðp∘ Þ ¼

ffiffiffiffiffiffiffi
2m

p
2
6664
0

0

1

0

3
7775: ðB18Þ

The spinors are defined in the Dirac representation, where

γ0 ¼
�
1 0

0 −1

�
γi ¼

�
0 σi

−σi 0

�
γ5 ¼

�
0 1

1 0

�

ðB19Þ

The Lorentz transformations for spin-1
2
are generated by

Sμν ¼ i
4
½γμ; γν� ¼ 1

2
σμν. In the Dirac representation, the

light-front boost generators are

Sþ− ¼ −i
�
0 σ3

σ3 0

�
Sþ1 ¼ 1

2

�
σ2 iσ1

iσ1 σ2

�

Sþ2 ¼ 1

2

�
−σ1 iσ2

iσ2 −σ1

�
ðB20Þ

Applying to the light-front boost in Eq. (13), we obtain
the spin-1

2
representation

ΛL;1
2
ðp∘ → pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

4mpþ

s 2
6664
pþ þm −pL pþ −m pL

pR pþ þm pR −pþ þm

pþ −m pL pþ þm −pL

pR −pþ þm pR pþ þm

3
7775; ðB21Þ

where pR ¼ p1 þ ip2 and pL ¼ p1 − ip2.
The light-front spinors at any momentum are thus given by [23]

u↑ðpÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2pþ

s 2
6664
pþ þm

pR

pþ −m

pR

3
7775 u↓ðpÞ ¼

ffiffiffiffiffiffiffiffiffi
1

2pþ

s 2
6664

−pL

pþ þm

pL

−pþ þm

3
7775 ðB22Þ
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v↑ðpÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2pþ

s 2
6664

−pL

pþ −m

pL

−pþ −m

3
7775

v↓ðpÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2pþ

s 2
6664
pþ −m

pR

pþ þm

pR

3
7775: ðB23Þ

It is interesting that the light-front spinors are exactly what
have been used in the field of scattering amplitudes [11].

APPENDIX C: PAULI-LUBANSKI
PSEUDOVECTORS AND SPIN

In this section, we derive the relations between the Pauli-
Lubanski pseudovector and various relativistic expressions
of spin.

1. Covariant spin sector sμðpÞ
In nonrelativistic physics, for spin-s particles, the three

components of a spin vector si is defined as the expectation
value of the spin generators Si:

si ¼

2
64
s1

s2

s3

3
75 ¼ 1

s
hsij

2
64
S1

S2

S3

3
75jsii: ðC1Þ

In the main text, we have chosen to label spin in the z-
direction and set s1 ¼ s2 ¼ 0. But labeling spin with the
other two axes will not affect the discussion as long as all
the operators are redefined accordingly.
The definition of a spin vector can be extended to

relativistic systems via the Pauli-Lubanski pseudovector

Wμ ¼ −
1

2
εμναβPνMαβ: ðC2Þ

For a particle moving with momentum p, a relativistic
spin vector sμðpÞ is defined as

sμðpÞ ¼ 1

s
hp; sijWμjp; sii
hp; sijp; sii : ðC3Þ

It is easy to check that the sμðpÞ is consistent with the
nonrelativistic spin vector si by going to a massive
particle’s rest frame. In the rest frame, Wμ is proportional
to the SOð3Þ rotation generators as in Eq. (1), and

sμðp∘ Þ ¼ 0

i

�
0

m
s s

i

�
: ðC4Þ

Furthermore, sμðpÞ transforms covariantly under
Lorentz transformations: Under a Lorentz transformation

Λ, Λ−1PμΛ ¼ ðΛÞμνPν and jpi → Λjpi ¼ jΛpi. SinceWμ

satisfies W · P ¼ 0, Wμ must also transform as a 4-vector:

Λ−1WμΛ ¼ ðΛÞμνWν: ðC5Þ

Then, the spin vector

sμðpÞ → sμðΛpÞ ¼ 1

s
hΛp; sijWμjΛp; sii
hΛp; sijΛp; sii ðC6Þ

¼ 1

s
hp; sijðΛÞμνWνjp; sii

hΛp; sijΛp; sii ðC7Þ

¼ Λμ
νsνðpÞ: ðC8Þ

The last line is true because the state normalization is
Lorentz invariant and hΛp; sijΛp; sii ¼ hp; sijp; sii ¼
2pþð2πÞ3δ3ð0Þ.
We can thus obtain the spin vector in any frame by

transforming it as a vector from the rest frame. In the instant
form, the covariant spin vector is naturally defined with the
canonical choice of Lorentz transformation in Eq. (8) as it is
smoothly connected to identity in the nonrelativistic
regime, and

sμcðpÞ ¼
0

i

� pjsj

msi pjsj

p0þmp
i

�
1

s
: ðC9Þ

In the front form, the spin vector is defined with the light-
front boost in Eq. (16), and

sμLðpÞ ¼
þ
−
⊥

� pþs3

jp⊥j2−m2

pþ s3 þ 2mp⊥s⊥
pþ

ms⊥ þ s3p⊥

�
1

s
: ðC10Þ

2. Light-front spin operator SiLðpÞ
In addition to the light-front spin operator S3LðpÞ in the z-

direction in Eq. (36), one can also define transverse light-
front spin operators S⊥L ðpÞ analogously such that they give
s⊥, the angular momentum projection along the transverse
direction defined in the standard reference frame. We then
have

SiLðpÞjp; jiiL ¼ jijp; jiiL ðC11Þ

with SiLðpÞ ¼ ΛLðp∘ → pÞJiΛ−1
L ðp∘ → pÞ;

i ¼ 1; 2; 3: ðC12Þ

For an elementary particle, ji ¼ si, and for a composite
system with n constituents, ji ¼ P

n
a¼1 s

i
a þ

P
n−1
a¼1 l

i
a.

Let us relate the light-front spin operators to the Pauli-
Lubanski vector. Under the light-front Lorentz transforma-
tion defined in Eq. (16),
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Wμ ¼
þ
−
⊥

2
64
Wþ

W−

W⊥

3
75 ¼ ðΛLÞμνΛLWνΛ−1

L ðC13Þ

¼ ðΛLÞμνΛL

2
64

mJ3

−mJ3

mJ⊥

3
75Λ−1

L ðC14Þ

¼ ðΛLÞμν

2
64

mS3LðpÞ
−mS3LðpÞ
mS⊥L ðpÞ

3
75 ðC15Þ

¼

2
64

PþS3LðpÞ
jP⊥j2−m2

Pþ S3LðpÞ þ 2mP⊥S⊥L ðpÞ
Pþ

mS⊥L ðPÞ þ S3LðpÞP⊥

3
75: ðC16Þ

We then recover the familiar expression [8]:

S3LðpÞ ¼
Wþ

Pþ mS⊥L ðpÞ ¼ W⊥ − S3LðpÞP⊥: ðC17Þ

In a similar way, one can also check that the Wick
helicity operator S3hðpÞ defined in Eq. (62) is related to the
Pauli-Lubanski vector by

S3hðpÞ ¼
W0

jpj ; ðC18Þ

and the helicity operator thus always only depends on the 3-
momentum p.
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