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Time-dependent analytic solutions of the Einstein-Skyrme system—gravitating Skyrmions—with
topological charge are analyzed in detail. In particular, the question of whether these Skyrmions reach
a spherically symmetric configuration for t → þ∞ is discussed. It is shown that there is a static, spherically
symmetric solution described by the Ermakov-Pinney system, which is fully integrable by algebraic
methods. For Λ > 0, this spherically symmetric solution is found to be in a “neutral equilibrium” under
small deformations, in the sense that under a small squashing it would neither blow up nor disappear after a
long time, but it would remain finite forever (plastic deformation). Thus, in a sense, the coupling with
Einstein gravity spontaneously breaks the spherical symmetry of the solution. However, in spite of the lack
of isotropy, for t → ∞ (and Λ > 0), the spacetime is locally flat and the anisotropy of the Skyrmion only
reflects the squashing of spacetime.
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I. INTRODUCTION

The Skyrme system [1] is one of the most useful models
in nuclear and particle physics due to its close relationship
to low-energy QCD [2]. A remarkable feature of the
Skyrme action is that it allows for the existence of solitons
(Skyrmions) that behave as Fermionic degrees of freedom,
in spite of the fact that the basic fields are scalar.
Furthermore, Skyrmions describe nucleons both theoreti-
cally and phenomenologically (see, e. g., [2–14]), where the
identification of the winding number of the Skyrmion with
the baryon number in particle physics [2] plays a crucial role.
Following [3,7], the possibility of treating the Skyrme
solitons as fermions was extended to curved spaces as well
[15,16], opening the possibility for applying this theory to
general relativity and astrophysics.
The above reasons imply that the Einstein-Skyrme

system might be relevant for astrophysics from a phenom-
enological point of view. From a more theoretical angle,
numerical computations following earlier results in [17,18]
indicate the existence of spherically symmetric black-hole
solutions with a nontrivial Skyrme field (Skyrme hair)
[19,20]. These were the first counterexamples to the black
hole no-hair conjecture, and, moreover, the stability against
spherical linear perturbations was shown in [21]. Regular
particlelike configurations [22] and dynamical properties of
the system have also been investigated numerically [23].
Even in the sector with vanishing topological charge, the

cosmological consequences of the Skyrme model are quite
interesting [24–26].
Thus, having analytic solutions of the Einstein-Skyrme

system with nontrivial topological charges would be
extremely useful. In particular, the gravitational implica-
tions of the discreteness of the topological charge together
with the fact that such topological objects have a character-
istic size, deserve an in-depth investigation. An especially
compelling case is the time-dependent situation in which
the coupling of the Skyrme system with gravity could
reveal unexpected departures from the “natural” spherical
symmetry of configurations with winding number W ¼ 1.
At first glance, the possibility of finding nontrivial

analytic solutions of the Einstein-Skyrme system may seem
hopeless. Until a few years ago, no analytic solutions of the
Skyrme model in flat space had been found. Quite recently,
however, the generalized hedgehog ansatz (introduced in
[27] and its generalizations in [28–35]) allowed for the
construction of exact multi-Skyrmion configurations as well
as the first analytic gravitating Skyrmions [34]. Moreover,
these approaches also work in the Yang-Mills case [35].
In [34], the full Einstein-Skyrme field equations, in

the Bianchi IX case and the W ¼ 1 sector, reduce to a
system of two autonomous second-order ODEs for two
scale factors, where the Skyrme field equations, which are
usually the difficult part of the problem, are automatically
satisfied in this ansatz. Such a system allows addressing the
question of whether or not theW ¼ 1 Skyrmion—which is
known to be spherically symmetric in flat space—retains
this symmetry when coupled to gravity. A preliminary
analysis in the reference [36] suggests that the answer
should depend on the value of the cosmological constant
and not just on its sign. Here we generalize the analysis of
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[36], confirming that the cosmological constant is one of
the relevant parameters of the dynamical evolution.
Moreover, we also clarify in which sense the t → ∞
evolution of the system is “asymptotically” spherically
symmetric, that is, “asymptotically isotropic.” This paper is
organized as follows.
The action integral for the Einstein-Skyrme model with

cosmological constant is presented in Sec. II, where we
introduce the self-gravitating Skyrmion model in the back-
ground geometry of a locally rotational Bianchi IX universe.
The remaining equations are those of general relativity in
which the energy momentum tensor is produced by the
Skyrmion. In Sec. III, the field equations are shown to
describe a mechanical system of two degrees of freedom. In
the limit in which the Bianchi IX spacetime is isotropic
corresponding to an Einstein-Skyrme system with W ¼ 1,
the integrability of the Ermakov-Pinney system provides a
solution, including a special solutions for the static Einstein
universe. In Sec. IV, we analyze the stability of the isotropic
W ¼ 1 solution by studying the first-order perturbations
around it and show that it is not stable. However, for a
positive cosmological constant, we show that the final
universe is approximately isotropic. The discussion of our
results and our conclusions are given in Sec. V.

II. THE ACTION INTEGRAL

We are interested in self-gravitating Skyrmions for the
SUð2Þ group described by the action

I½g;U� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R−2Λ
2κ

þK
4
Tr

�
AμAμþ

λ

8
FμνFμν

��
:

ð1Þ

Here Aμ is a shorthand for the Maurer-Cartan form

U−1∇μU, with U∈ SUð2Þ and Fμν ¼ ½Aμ; Aν�; Aμ ¼ Aj
μtj

where tj ¼ −iσj are the SUð2Þ generators, and σj are the
Pauli matrices. In our conventions c ¼ ℏ ¼ 1, the space-
time signature is ð−;þ;þ;þÞ and greek indices run over
spacetime. Moreover, R is the Ricci scalar, Λ is the
cosmological constant and κ is the gravitational constant.
Here K and λ are (positive) coupling constants, related to
the experimentally determined phenomenological parame-
ters Fπ and e through [11]

K ¼ 1

4
F2
π; Kλ ¼ 1

e2
;

Fπ ¼ 186 MeV; e ¼ 5.45:

The Skyrme equation, obtained by varying (1) with
respect to U, together with Einstein’s equations are

∇μAμ þ
λ

4
∇μ½Aν; Fμν� ¼ 0; ð2aÞ
Gμν þ Λgμν ¼ κTμν; ð2bÞ

whereGμν is the Einstein tensor and the energy-momentum
tensor for the Skyrme field is

Tμν ¼ −
K
2
Tr

�
AμAν −

1

2
gμνAαAα

þ λ

4

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

��
: ð3Þ

A. Static self-gravitating Skyrmion

The spacetime geometry for the static solutions of the
coupled system (2) is the product R × S3,

ds2 ¼ −dt2 þ ρ20
4
½ðdγ þ cos θdφÞ2 þ dθ2 þ sin2θdφ2�;

ð4Þ
where 0 ≤ γ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π are the coordi-
nates on the 3-sphere of constant radius ρ0.
Following [27–30,32,34], we adopt the standard para-

metrization of the SUð2Þ-valued scalar UðxμÞ as

U�1ðxμÞ¼Y0ðxμÞI�YiðxμÞti; ðY0Þ2þYiYi ¼ 1; ð5Þ

where I is the 2 × 2 identity matrix. The unit vector YA ¼
ðY0; YiÞ defines the embedded three sphere, which is
naturally given by

Y0 ¼ cos α; Yi ¼ ni sin α; ð6aÞ

n1¼ sinΘcosΦ; n2¼ sinΘsinΦ; n3 ¼ cosΘ: ð6bÞ
With this information, one can solve (2a) for α, Θ, andΦ as
functions of γ, θ, and φ. It can be directly checked that the
configuration

Φ ¼ γ þ φ

2
; tanΘ ¼ cotðθ

2
Þ

cosðγ−φ
2
Þ ;

tan α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðγ−φ
2
Þ ; ð7Þ

identically satisfies the Skyrme equations (2a) in the
background metric (4). This was already noted long ago
by Manton and Ruback [37] (see also [38]). Those authors,
however, did not produce a consistent solution taking into
account the backreaction of the Skyrmion on the geometry.
In other words, they did not attempt to solve the Einstein
equations (2b) with the stress-energy tensor (3) generated
by a Skyrmion U of the form (5), (6), (7). Plugging (7) into
(6) and (5), the only nonvanishing components of Tν

μ are
found to be

Tt
t ¼−

3Kðλþρ20Þ
2ρ40

; Tγ
γ ¼Tθ

θ ¼Tφ
φ ¼Kðλ−ρ20Þ

2ρ40
: ð8Þ
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It can be observed that although the solution U explicitly
depends on the angles γ, θ and φ, the energy-momentum
tensor does not, which means that the backreaction should
not upset the isometries of the background geometry (4).
Solving Einstein’s equations with the energy-momentum
tensor (8) algebraically fixes the radius of the three-
dimensional sphere and the cosmological constant in terms
of the remaining parameters in the action

ρ20 ¼
2λκK
2 − κK

; Λ ¼ 3ð2 − κKÞ2
8λκK

: ð9Þ

Hence, the metric (4) together with the static Skyrmion (5),
(6), and (7) define a self-consistent solution of the full
Einstein-Skyrme system (2) provided the conditions (9)
are satisfied. Note that this requires λ, ð2 − κKÞ and λ to
have the same sign, which we take tentatively positive.
This solution is the self-gravitating generalization of the
Skyrmions in [37]. It is useful to stress here that the above
constraint is only needed if one wants a static solution with
aðtÞ ¼ 1. On the other hand, all rest of the analysis of the
present paper will hold for generic values of the coupling
constants and cosmological constant.
Our result can also be seen as a generalization of the

hedgehog ansatz discussed in [27] that allows for the
construction of exact multi-Skyrmion configurations com-
posed by elementary spherically symmetric Skyrmions
with nontrivial winding number in four dimensions [29,30].
On any three-dimensional constant time hypersurface,

the winding number for the configuration is

w ¼ −1
24π2

Z
Tr½ϵijkAiAjAk� ¼ þ1; ð10Þ

which implies that this Skyrmion cannot be continuously
deformed to the trivial SUð2Þ vacuum, U ¼ 1 [5].

B. Bianchi-IX self-gravitating Skyrmions

Remarkably, the above static Skyrmion can be promoted
to a time-dependent solution in which the spacetime metric
is of the Bianchi type-IX described by the metric

ds2 ¼ −dt2 þ ρðtÞ2
4

½a2ðtÞðdγ þ cos θdφÞ2

þ dθ2 þ sin2θdφ2�; ð11Þ
where ρðtÞ is a global scaling factor and aðtÞ is a squashing
coefficient. As can be directly verified, a Skyrmion of the
same form as before (5), with Y0 and Yi still given by (6),
still identically satisfies the Skyrme field equations in a
time-dependent background geometry of the form (11). The
technical reason why this happens is that the scale factor ρ
and the squashing parameter a depend only on time, while
the Skyrme ansatz depends only on the spatial coordinates.
This is actually consistent with an ansatz for the Skyrmion
in which the full Skyrme system is consistently reduced to a

single scalar equation for the profile [27,28]. The Skyrmion
in this case still has baryon charge þ1.

III. THE TIME-DEPENDENT SYSTEM

The full Einstein-Skyrme field equations (2) with the
metric (11) reduce to

2aρ2ð2ρ _aþ 3a_ρÞ_ρ − 2a2ρ2ðΛρ2 þ a2 − 4Þ
− κK½ð2ρ2 þ λÞa2 þ ρ2 þ 2λ� ¼ 0; ð12aÞ

2a2ρ2ð2ρρ̈þ _ρ2Þ − 2a2ρ2ðΛρ2 þ 3a2 − 4Þ
− κK½ð2ρ2 þ λÞa2 − ρ2 − 2λ� ¼ 0; ð12bÞ

aρ3ðρäþ 3_ρ _aÞ þ ða2 − 1Þ½κKðλþ ρ2Þ þ 4a2ρ2� ¼ 0:

ð12cÞ
The function aðtÞ describes the deviations from spherical
symmetry. For aðtÞ ¼ �1, the spatial sections are three-
spheres and so the solution has full spherical symmetry
(which is expected for a gravitating soliton of charge 1
which, on a flat background, has spherical symmetry). Thus,
an interesting questionwould bewhether or not the solutions
of the above system of equations have the property that

lim
t→þ∞

aðtÞ ¼ �1; ð13Þ

which would mean that the solutions approach the “most
symmetric configuration.”Alternatively, when this condition
is violated, spherical symmetry is “spontaneously” broken.
The flat Skyrmion of charge�1 in flat spacetime is isotropic
(see, for instance, [5]), whereas if Eq. (13) does not hold, the
gravitating Skyrmion is not spherically symmetric.
As seen in [34], assuming aðtÞ ¼ �1 turns (12a), (12b),

and (12c) into a consistent one-dimensional dynamical
system for ρðtÞ, which can be solved explicitly, as discussed
in the following sections. A preliminary analysis of the
interesting properties of this system for generic aðtÞ was
presented in [36]. In the present paper, we will generalize
the analysis of [36] clarifying the issue of the final state of
the dynamical system. In particular, we address the ques-
tion of whether (13) holds and in which sense this is a stable
condition. The integrability properties of the reduced
dynamical system for aðtÞ ¼ �1 will also be analyzed.

A. Minisuperspace Lagrangian and Hamiltonian

It is convenient to write the dynamical system made of
Eqs. (12a), (12b), and (12c) usingHamiltonian formalism.The
first step is to observe that Eqs. (12b) and (12c) follow from the
variational principle of the following Lagrange function,

Lðxk; _xkÞ ¼ LGR þ VΛ þ VSk; ð14Þ
where LGR is the Lagrangian of general relativity (GR) in the
mini-superspace geometries of the form (11), i.e.
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LGRða; _a; ρ; _ρÞ ¼ ð2ρ2 _a _ρþ3aρ_ρ2Þ þ ða2 − 4Þaρ: ð15Þ
It can be checked that varying L with respect to a and ρ
yields (12b), (12c), where VΛ and VSk are the potential terms
which correspond to the cosmological constant and to the
Skyrmion field,

VΛða; ρÞ ¼ Λaρ3;

VSkða; ρÞ ¼
κKða2ð2ρ2 þ λÞ þ ρ2 þ 2λÞ

2aρ
: ð16Þ

Since Lagrangian (14) describes an autonomous system
invariant under time translations generated by ∂t, Noether’s
theorem implies energy conservation, which turns out to be
the left-hand side of (12a). The fact that the energy vanishes
reflects the fact that, in general relativity, it is constrained to
be zero by invariance under time reparametrizations,
t → τðtÞ. In a generic time choice, the metric (11) is

ds2 ¼ −N2ðτÞdτ2 þ ρ2ðτÞ
4

½a2ðτÞðdγ þ cos θdφÞ2

þ dθ2 þ sin2θdφ2�; ð17Þ
where NðτÞdτ ¼ dt. In this parametrization, the
Lagrangian is

L̄ðN; a; _a; ρ; _ρÞ ¼ 1

N
ð2ρ2 _a _ρþ3aρ_ρ2Þ

− Nða2 − 4Þaρþ NVΛ þ NVSk: ð18Þ
Here it is manifest that the only dynamical degrees of
freedom of the system are metric coefficients ρ and a, and
the Skyrmion does not bring in new dynamical variables.
Then, varying with respect to the variables N, a, and ρ
yields equations (12a), (12b) and (12c), respectively. The
corresponding Hamiltonian for this system is

H≡ N

�
papρ

2ρ2
−

3a
4ρ3

p2
a − ða2 − 4Þaρ − VΛ − VSk

�
; ð19Þ

and the Legendre transformation from a, ρ, N to pa, pρ, πN
reads

pa ¼
2ρ2

N
_ρ; pρ ¼

2ρ2

N
_aþ 3a

ρ
_ρ; πN ¼ 0: ð20Þ

B. Isotropic spacetime and the
Ermakov-Pinney equation

For the spherically symmetric spacetime a2 ¼ 1, (12c) is
identically satisfied, while (12a) and (12b) reduce to the
following system [34]:

_ρ2 ¼ Λ
3
ρ2 þ λκK

2ρ2
þ κK − 2

2
; ð21Þ

ρ̈ ¼ Λ
3
ρ −

λκK
2ρ3

: ð22Þ

As noted before, (21) is the vanishing energy constraint,
while (22) is a particular case of the well-known Ermakov-
Pinney (EP) equation1 [40,41], which is also found in
various physical systems (see, for instance, [39,42,47]).
One of its features is that it is invariant under a larger than
expected symmetry, SLð2; RÞ in this case. The representa-
tion of the symmetry algebra depends on whether Λ ⋚ 0.
Specifically, the generators of the SLð3; RÞ Lie algebra are
the autonomous symmetry Γ1 ¼ ∂t, and the two generators
Γ2 and Γ3 with representations

Γ2
ðΛ>0Þ ¼

2

ω
sinhðωtÞ∂t þ coshðωtÞρ∂ρ;

Γ3
ðΛ>0Þ ¼

2

ω
coshðωtÞ∂t þ sinhðωtÞρ∂ρ ð23Þ

for positive cosmological constant, where ω2 ≔ 4jΛj=3, or

Γ2
ðΛ<0Þ ¼

2

ω
sinðωtÞ∂t þ cosðωtÞρ∂ρ;

Γ3
ðΛ<0Þ ¼

2

ω
cosðωtÞ∂t − sinðωtÞρ∂ρ ð24Þ

for negative cosmological constant, while when Λ ¼ 0, the
generators take the simple form

Γ2
ðΛ¼0Þ ¼ 2t∂t þ ρ∂ρ;Γ3

ðΛ¼0Þ ¼ t2∂t þ tρ∂ρ: ð25Þ

The solution of the EP equation (22) can be expressed,
using a generic solution of the associated linear equation
ρ̈ ¼ Λ

3
ρ [39,41], as

ω2ρ2 ¼ −ðK − 2Þ þ ðK − 2þ ρ20ω
2Þ coshðωtÞ

� ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ20ðK − 2Þ þ 2κKλþ ρ40ω

2

q
sinhωtðΛ > 0Þ

ð26Þ
for Λ > 0 and

ω2ρ2 ¼ K − 2þ ð−ðK − 2Þ þ ρ20ω
2Þ cosðωtÞ

� ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ20ðK − 2Þ þ 2κKλ − ρ40ω

2

q
sinωtðΛ < 0Þ;

ð27Þ
for Λ < 0, where ρ0 ¼ ρð0Þ and the second integration
constant have been eliminated by the constraint
equation (21).
Furthermore, for Λ ¼ 0, the solution is a power law,

ρ2 ¼ ρ1ðt − t0Þ2 þ ρ0; ð28Þ

where ρ0 ¼ λκK
2−κK and ρ1 ¼ κK−2

2
.

1The EP equation has the form üþ ω2uþ bu−3 ¼ 0 and
admits exact solutions u¼Fðy1;y2Þ where y1, y2 are the inde-
pendent solutions of the associated problem ÿþ ω2y ¼ 0 [39].
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We note that the functional forms of the exact solutions
are related with the representation of the corresponding
admitted slð2; RÞ Lie algebra. From the exact solutions in
which a2ðtÞ ¼ 1 we observe that for positive cosmological
constant the spacetime (11) has a de Sitter evolution, while
for negative cosmological constant the scale factor ρðtÞ is
periodic with frequency ω. Finally, for zero cosmological
constant and for t → ∞ the spacetime (11) describes the
Milne universe.

C. Einstein static universe

In order to examine the stability properties of the static
Einstein universe around the isotropic solutions (26) and
(27), let us consider the critical points for the field equa-
tions (12a)–(12c). The critical points of theHamiltonian (19)
are given by the conditions

∂Veff

∂a ¼ 0 and
∂Veff

∂ρ ¼ 0; ð29Þ

where Veff ¼−ða2−4Þaρ−VΛ−VSk. Taking into account
the additional constraint (12a)—which reduces to Veff ¼ 0,
the critical points in the ðρ; aÞ plane are identified as2

P�∶ ρc ¼
�
3ð2 − κKÞ

4Λ

�
1=2

¼
�
3λκKΛ

2

�
1=4

; ac ¼ �1:

ð30Þ

FIG. 1. Qualitative behavior of the general solution perturbed around the stable solution a ¼ 1 which is given by the Ermakov-Pinney
equation. The plots are for the function aðtÞwhich follow from the total system or the linearized system and for various values of the free
parameters where Λ > 0.

2For κK < 0 and λ < 0 there would be an additional possible

critical point with a0 ≠ 0 at, ~P0∶~ρc ¼ ½8−κK
2Λ �1=2 ¼ ½−λ a2

0
þ4

a2
0
þ2
�1=2

with ac ¼ a0 ≠ 0 and κK ¼ −2a20ða20 þ 4Þ. The critical point ~P0

can be neglected in the standard situations where κK ≥ 0.
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Observe that for κK > 2, the critical points P� exist
provided both Λ and λ are negative, while the opposite
happens if κK < 2 (λ > 0, Λ > 0). Last but not least, for
zero cosmological constant, P� exist if and only if kK ¼ 2
and λ ¼ 0 ¼ Λ.
Finally, we note that these critical points in momentum

space are located at ðpa; pρÞ ¼ ð0; 0Þ and therefore they
correspond to static configurations. It should be noted that
the critical points P� are exact solutions of the field
equations and describe isotropic Einstein static spacetimes

]43,44 ] and therefore perturbing around them is a mean-
ingful test for the stability of the solutions. In the next
section, we examine the stability of the critical points P� in
the linearized approximation of the time-dependent field
equations.

IV. STABILITY OF THE SPHERICALLY
SYMMETRIC SKYRMION

Let us now study the evolution of an infinitesimal
perturbation around the classical solution near the critical
point for a ¼ 1,

a ≔ 1þ uðtÞ; ρ ≔ ρE þ vðtÞ; ð31Þ

where ρE stands for the exact solution of the EP equa-
tion (22), and u and v are the small perturbations.
Substituting this into (12) and keeping up to first order
in u and v, one finds (from now on we drop the labelE from
the exact solution ρE)

0 ¼ üþ 3
_ρ

ρ
_uþ 2½Kκ þ 4þ Kκλρ−2�ρ−2u; ð32aÞ

0 ¼ v̈þ _ρ

ρ
_vþ ρ−2½4þ 4ð_ρÞ2 − 4κK þ 12ρ̈ρ − 8Λρ2�v

þ 1

2
ρ−3½κK − 2Λρ4 − κKλ − 4ρþ 2ð_ρρÞ2 − 2κKρ2 þ 4ρ3ρ̈�u

þ 1

2
½1þ ð_ρÞ2 − κK þ 2ρ̈ρ − Λρ2�ρ−1 þ κK

4
ð−λþ 2Λþ 1Þρ−3; ð32bÞ

0 ¼ _ρ

ρ
_uþ

�
2

ρ2
þ 3

�
_ρ

ρ

�
2

−
κKλ

2ρ4
−
κK
ρ2

− Λ
�
uþ 3

_ρ

ρ

_v
ρ
þ
�
3

ρ2
þ 3

�
_ρ

ρ

�
2

−
3κK
ρ2

− 2Λ
�
v
ρ

þ
�
3

2ρ2
þ 3

�
_ρ

ρ

�
2

−
3κK
4ρ2

−
Λ
2

�
−
κK
4ρ4

ð2Λþ λÞ: ð32cÞ

Since the solution ρðtÞ for (22) is explicitly known, Eq. (32a) is an ODE for uðtÞ that can be directly solved. If Λ > 0, (26)
implies ρ ∼ ρ0eðω=2Þt for t → ∞. In this limit, Eq. (32a) reduces to üþ ð3ω=2Þ _u ¼ 0, whose solution is

FIG. 2. Qualitative behavior of the general solution perturbed around the stable solution a ¼ 1 which is given by the Ermakov-Pinney
equation. The plots are for the function ρðtÞwhich follow from the total system or the linearized system and for various values of the free
parameters where Λ > 0.
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uðtÞ ¼ u0e−ð3ω=2Þt þ c; ð33Þ

where u0 and c are arbitrary constants fixed by the initial
conditions of the perturbations. Thismeans that for t → ∞,a
can approach any constant value 1þ c and there is nothing
special about a ¼ 1 or a ≠ 1. In fact, Eq. (32a) has the form
of a damped oscillator driven by an effective harmonic
potential u2½Kκ þ 4þ Kκλρ−2�ρ−2, which vanishes expo-
nentially for t → ∞, as well as all of its derivatives. This is a
case of the so-called “neutral equilibrium” [45].
Having found u, Eq. (32b) can now be solved for v.

Substituting the asymptotic expression for ρ, (32b) takes
the form

0 ¼ v̈þ ω

2
_v − 2ω2v; ð34Þ

whose solution is

vðtÞ ¼ v0emt ð35Þ

with m ¼ ð−1� ffiffiffiffiffi
33

p Þω=4. This means that vðtÞ either
vanishes or blows up for large t. Which of the two branches
actually occurs is decided by the constraint equation (32c).
This last equation is identically satisfied by the exponen-
tially decaying perturbation and is grossly violated by the
unstable branch. It is, therefore, verified that under a small
perturbation around the critical point fρ ¼ ρE; a ¼ 1g, the
solution settles to fρ ¼ ρE; a ¼ 1þ cg.
Numerical simulations of the system (32) and of the

original equations (12) with initial conditions around a ¼ 1
are summarized in Figs. 1–4. For Λ > 0, Fig. 1 shows the
scalar factor aðtÞ while 2 describes the behavior of ρðtÞ.
These figures show that for large t, ρðtÞ → þ∞ and
aðtÞ → a0 ¼ �1þ c, where c is the constant of (33) that

FIG. 3. Qualitative behavior of the general solution perturbed around the stable solution a ¼ 1 which is given by the Ermakov-Pinney
equation. The plots are for the function σðtÞ=θðtÞ which follow from the solution of the field equations with various values of the free
parameters where Λ > 0. The initial conditions are that of fig 1.
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FIG. 4. Qualitative behavior of the general solution perturbed around the stable solution a ¼ 1 which is given by the Ermakov-Pinney
equation. The plots are for the function aðtÞ; ρðtÞ and σðtÞ=θðtÞ which follow from the total system or the linearized system and for
various values of the free parameters where Λ < 0.
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can take any value depending on the initial conditions.
Although the solution is not strictly stable around
a2ðtÞ ¼ 1, the spacetime for t → ∞ is an infinitely large
squashed sphere and therefore to a good approximation,
locally indistinguishable from a sphere. The main reason is
that, when Λ > 0, the terms in the dynamical system which
lead to the instability of the isotropic solution are sup-
pressed for t → þ∞ so that, effectively, such “destabiliz-
ing” terms only act for a finite time after which the value of
aðtÞ becomes constant as we will see in the next Section.
The peculiar neutral equilibrium feature of the present
system means that if the initial data are close to a2 ¼ 1, for
later times a2ðtÞ approach a20 in the vicinity of 1.
A numerical simulation for the case Λ < 0 is shown in

Fig. 4. In this case ρðtÞ is periodic and may vanish for

specific initial conditions. In that case, the solution uðtÞ
from (32a) reaches a singularity for which üðtÞ → ∞. It is
straightforward to see that in general uðtÞ is not a
decreasing function which means that the EP solution is
unstable.

A. Asymptotically isotropic spacetime

Let us now examine the isotropization of spacetime for
large t. According to [46], if a solution of the field
equations (12a)–(12c), in the limit t → þ∞, satisfies the
conditions: (a) the global scale factor ρðtÞ is going to
infinity, i.e. ρðtÞ → þ∞, (b) the anisotropic parameter aðtÞ
becomes constant, aðtÞ → a0, (c) the weak energy con-
dition is not violated T00 > 0, while it holds T0i=T00 → 0
and (d) the ratio of the shear σ with the expansion rate θ
vanishes, i.e. σ

θ → 0, then the spacetime (11) will be
asymptotically isotropic. Tμν is the energy momentum
tensor, the kinematic quantities σ and θ are defined by
the observer uμ¼δμt ðuνuν¼−1Þ, such as σ2¼σμνσ

μν, where
σμν ¼ uðκ;λÞðhκμhλν − 1

3
θhμνÞ and θ ¼ uðμ;νÞhμν in which hμν

is the projective tensor hμν ¼ gμν þ uμuν.
In Fig. 3, the evolution of the anisotropy parameter

σ=θ is presented from where we can see that the ration
vanishes.
For Λ > 0, conditions (a), (b) and (c) are satisfied.

Figure 5 shows the evolution of aðtÞ, ρðtÞ for the system
(12a)–(12c) with Λ > 0 and initial conditions far from the
point a0 ¼ 1. We observe that as t → þ∞, conditions (a)
and (b) are satisfied, while Fig. 6 shows that condition (d) is

also satisfied, because σ ¼
ffiffi
6

p
3
j _aa j, which implies that

spacetime is asymptotically isotropic. On the other hand,
for Λ < 0, condition (c), T00 > 0, can be violated which
means that the “isotropization” is not guaranteed.

FIG. 5. Qualitative behavior of the solution of the field equations (12a)–(12c) for initial conditions far for að0Þ ¼ 1. The left plot is for
the scale factor aðtÞ, while the right plot is for the scale factor ρðtÞ. The lines are for various values of the free parameters, where Λ > 0.

FIG. 6. Qualitative behavior of the anisotropic parameter
σðtÞ=θðtÞ, for the solutions of Fig. 5.
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The present analysis shows that in general, the exact
solution (26) with aðtÞ ¼ �1 is unstable. However the
spacetime is asymptotically isotropic for large values of t.
That means that in the late-time the only fluid-term which
survives is that of the cosmological constant. That result
revises the previous analysis of [36].

V. CONCLUSIONS

We have analyzed the gravitating, time-dependent ana-
lytic solutions of the Einstein-Skyrme system with topo-
logical charge introduced in [34]. In particular, we have
shown that these solutions—whose analogs in flat space-
times would be spherically symmetric—reach an isotropic
asymptotic state for t → þ∞. This question was also
analyzed numerically in [36]. In addition, we have shown
that the isotropic solution, given by the Ermakov-Pinney
equation, itself is not stable configuration, but a state of
neutral equilibrium, like a spontaneously broken vacuum.
Thus, the isotropy of the charge 1 Skyrmion on flat spaces
may be broken by the coupling with Einstein gravity.
However, despite this fact, the asymptotic solutions
for Λ > 0 of the dynamical system describing the time-
dependent gravitating Skyrmion are asymptotically iso-
tropic in large scales. The main reason is that, when Λ > 0,

the “destabilizing” terms in the dynamical system (leading
to the instability of the isotropic solution) are suppressed
for t → þ∞. Consequently, such terms only act for a finite
amount of time after which the value of aðtÞ freezes. To the
best of the authors’ knowledge, this is the first explicit
example of a symmetry breaking induced by the coupling
with Einstein gravity of a topological soliton (which on flat
spaces would be isotropic) in a realistic theory such as
the Skyrme model. Moreover, we have discussed in detail
the integrability of the isotropic solution in terms of the
Ermakov-Pinney system.
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