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We describe a Horava-Lifshitz-like reformulated four-fermion Gross-Neveu model describing the
dynamics of two-component spinors in (2þ 1)-dimensional space-time. Within our study, we introduce the
Lagrange multiplier, study the gap equation (including the finite temperature case) which turns out to
display essentially distinct behaviors for even and odd values of the critical exponent z, and show that the
dynamical parity breaking occurs only for the odd z. We demonstrate that for any odd z, there exists a
critical temperature at which the dynamical parity breaking disappears. Besides of this, we obtain the
effective propagator and show that the resulting effective theory is renormalizable within the framework of
the 1

N expansion for all values of z. As one more application of the dynamical parity breaking, we consider
coupling of the vector field to the fermions in the case of a simplified spinor-vector coupling and discuss the
generation of the Chern-Simons term.
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I. INTRODUCTION

The Horava-Lifshitz (HL) approach [1] has recently
received great scientific attention. This approach is charac-
terized by the essential asymmetry between space and time
coordinates: the equations of motion of the theory are
invariant under the rescaling xi→bxi, t→bzt, where z, the
critical exponent, is a number characterizing the ultraviolet
behavior of the theory. The main reason for it is that with the
HL-like reformulation of the known field theorymodelswith
a nontrivial critical exponent z>1 an essential improvement
of the renormalization behavior of these models takes place.
In particular, the four-dimensional gravity becomes renor-
malizable at z ¼ 3. Different issues related to theHL gravity,
including its cosmological aspects [2], exact solutions [3],
and black holes [4] were considered in a number of papers.
At the same time, the study of the impacts of the HL

extension of other field theory models is a very interesting
problem. Some aspects of the HL generalizations for the
gauge field theories were presented in Ref. [5].
Renormalizability of the HL-like scalar field theory models
has been discussed in detail in Ref. [6], and an explicit study
of their renormalization was carried out in Ref. [7]. The
Casimir effect for the HL-like scalar field theory has been
considered in Ref. [8]. In Ref. [9], the HL modifications of
the CPN−1 theory were studied. The purely scalar analogue

of the sigma model has been discussed in Ref. [10].
Different examples of calculating the effective potential
in HL-like theories involving scalars coupled to gauge and/
or spinor fields were presented in Ref. [11].
Many other interesting aspects of HL-like fermionic

theories of spinor fields can be studied as well. Indeed, as it
is well known, namely different couplings within the four-
fermion model give rise to the phenomenon of the emergent
dynamics which possibly allows to treat the photon as a
Goldstone boson and to develop other phenomenologically
interesting concepts [12]. Actually, the original Gross-
Neveu model [13] also was introduced in order to study
the emergent dynamics, and, to be more precise, to discuss
the dynamical parity breaking taking place due to the
emergence of the nontrivial mass term for spinors.
Therefore, it would be natural to generalize studies of
emergent dynamics and dynamical parity breaking for the
HL-like theories with a nontrivial z. Some preliminary
studies of this issue have been carried in Ref. [14].
Here, we will study the contributions of HL-like spinor

fields to an effective dynamics for the Lagrange multiplier,
thus establishing the HL-like Gross-Neveu model, and
discuss its renormalizability within the framework of the 1

N
expansion. As one more illustration, we consider the case
when the HL-like spinor field is coupled to the vector field.
For this coupling, the Maxwell-like terms were earlier
generated in Ref. [15], and it remains to study the
possibility to carry out the perturbative generation of the
Chern-Simons term as well, which we perform in this paper
for a some simplified theory.
The structure of the paper is as follows. In Sec. II we

present the HL-like Gross-Neveu model. In Sec. III we
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obtain the effective propagators and gap equation for the
Lagrange multiplier and prove the renormalizability of the
resulting theory. In Sec. IV, we carry out the perturbative
generation of the Chern-Simons term. Finally, in Sec. V we
discuss our results and perspectives.

II. GROSS-NEVEU MODEL

In this paper, the main object of our study is the Gross-
Neveu model [13,16]. Its natural HL-like generalization,
for the set of N spinor fields, looks like

S ¼
Z

dtd2x
XN
j¼1

�
ψ̄ jðiγ0∂0 þ ðiγi∂iÞzÞψ j −

g
2N

ðψ̄ jψ jÞ2
�
;

ð1Þ

where j ¼ 1; 2;…; N. The number of spatial derivatives
acting on the spinor fields is equal to z, that is, the critical
exponent for the spinor fields. We will study the effective
dynamics of this model within the framework of the 1

N
expansion, along the lines developed in Ref. [17] for the
Lorentz-invariant case, and using conventions adopted
in Ref. [17].
First of all, we introduce the Lagrange multiplier, that is,

an auxiliary scalar field σ allowing to avoid the four-
fermion coupling, so that the action takes the form

S ¼
Z

dtd2x

�XN
j¼1

½ψ̄ jðiγ0∂0 þ ðiγi∂iÞz − σÞψ j� þ
N
2g

σ2
�
:

ð2Þ
Now, we introduce a mass through the shift σ → σ þmz

where m has mass dimension one, so that the vacuum
expectation of σ turns out to be equal to zero. We get

S ¼
Z

dtd2x

�XN
j¼1

½ψ̄ jðiγ0∂0 þ ðiγi∂iÞz −mz − σÞψ j�

þ N
2g

ðσ2 þ 2σmzÞ
�
: ð3Þ

Here we disregarded the constant, field-independent addi-
tive term. The mass term mzψ̄ jψ j breaks the parity [17].
Indeed, under the parity transformation, that is, the inver-
sion of the axis x1, of the form

ψðx0; x1; x2Þ → γ1ψðx0;−x1; x2Þ ð4Þ

the mass term changes sign since ðγ1Þ2¼−1 (cf. Ref. [17]);
we recall that ψ̄ ¼ ψ†γ0. One can note as well that under
the parity transformation, the time part of the kinetic term
ψ̄γ0∂0ψ is invariant, and its spatial part ψ̄ðγi∂iÞzψ is
invariant for the odd z, including the Lorentz-invariant
case z ¼ 1, and changes sign for the even z; however, the

case of the odd z, where the kinetic term is completely
parity invariant, and the mass term breaks the parity, is the
most interesting one for us since just in this case the
dynamical mass generation occurs, as we show below.
The propagator of the ψ field is

SijðkÞ ¼ hψ̄ iðkÞψ jð−kÞi

¼ i
δij

γ0k0 þ ðγikiÞz −mz ≡ δijSðkÞ: ð5Þ

We use the signature ðþ − −Þ. Now, one should emphasize
an important difference between odd and even z. Indeed,

for even z ¼ 2n, one has ðγikiÞ2n ¼ ð−~k2Þn, and for odd

z ¼ 2nþ 1, one has ðγikiÞ2nþ1 ¼ γikið−~k2Þn. Then, we
have

z ¼ 2n∶ SðkÞ ¼ i
γ0k0 − ½ð−~k2Þn −mz�
k20 − ½ð−~k2Þn −mz�2

≡ i
γ0k0 − ωð~kÞ
k20 − ω2ð~kÞ

;

z ¼ 2nþ 1∶ SðkÞ ¼ i
γ0k0 þ γikið−~k2Þn þmz

k20 − ð~k2Þz −m2z

≡ i
γ0k0 þ γikið−~k2Þn þm2nþ1

k20 −Ω2ð~kÞ
: ð6Þ

These propagators will be further used to study quantum
corrections in our theory.

III. DYNAMICS OF THE
LAGRANGE MULTIPLIER

A. Gap equation in the zero-temperature case

To study the dynamics of the Lagrange multiplier σ, we
start with the gap equation, i.e., let us impose a condition
that the vacuum expectation hσi ¼ 0. Graphically, it is
represented by the Feynman diagram given in Fig. 1.
Here the sign × means the constant mz originated from

the action (3), the solid line is for the ψ field, and the dashed
one is for the σ field. This equation means that, given the
effective potential

Veff ¼ −
σ2

2g
þ itr

Z
dk0d2~k
ð2πÞ3 ln ðγ0k0 þ ðγikiÞz − σÞ; ð7Þ

we are interested in finding the minima, that is, in solutions
of the expression

FIG. 1. Gap equation.
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dVeff

dσ

����
σ¼mz

¼ −
mz

g
− itr

Z
dk0d2~k
ð2πÞ3

1

γ0k0 þ ðγikiÞz −mz ¼ 0:

ð8Þ

Then, after Wick rotation, k0 → ik0, for even z ¼ 2n, we
have

mz

g
¼ −tr

Z
dk0d2~k
ð2πÞ3

iγ0k0 − ½ð−~k2Þn þmz�
k20 þ ½ð−~k2Þn þmz�2

; ð9Þ

and for odd z ¼ 2nþ 1,

mz

g
¼ −tr

Z
dk0d2~k
ð2πÞ3

iγ0k0 þ γikið−~k2Þn þmz

k20 þ ð~k2Þz þm2z
: ð10Þ

Calculation of the trace is straightforward, so that for
z ¼ 2n, we get

mz

g
¼ 2

Z
dk0d2~k
ð2πÞ3

½ð−~k2Þn þmz�
k20 þ ½ð−~k2Þn þmz�2

; ð11Þ

and for z ¼ 2nþ 1,

mz

g
¼ −2

Z
dk0d2~k
ð2πÞ3

mz

k20 þ ð~k2Þz þm2z
: ð12Þ

Then, because of the integral
R dk0

2π
1

k2
0
þA2 ¼ 1

2A, we find that

for the even z, we get the integral of a constant which
vanishes within the dimensional regularization. Thus, for
z ¼ 2n, we have mz ¼ 0, so, there is no consistent vacuum
shift, nomass term, and hence, no dynamical parity breaking
in this case. At the same time, at z ¼ 2nþ 1 one has (here,
the factor 1

2
from the integral over k0 is canceled by the factor

2 from the trace of the 2 × 2 unit matrix)

1

g
¼ −

Z
d2~k
ð2πÞ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2z þm2z

q ; ð13Þ

which, for odd z, relates the mass with the coupling g
through the equation

mz−2 ¼ −
g

4π3=2
Γ
�
1þ 1

z

�
Γ
�
1

2
−
1

z

�
: ð14Þ

It is clear that for any z > 1 this equation is singularity free.
Actually, this expression implies that g < 0, for any z > 1.
Let us now verify that we indeed have a minimum of the

effective potential. To do it, we proceed in a manner similar
to Ref. [18]. The derivative of the effective potential, with
the mass mz incorporated into the σ field, is given by the
expression

dVeff

dσ
¼ −

σ

g
− itr

Z
dk0d2~k
ð2πÞ3

1

γ0k0 þ ðγikiÞz − σ
: ð15Þ

Similar calculations have been performed above with the
only difference being that mz instead of σ was used. So, we
can directly apply the result given in Ref. (14) for our case,
and arrive at

∂Veff

∂σ ¼ −
σ

g
−

σ2=z

4π3=2
Γ
�
1þ 1

z

�
Γ
�
1

2
−
1

z

�
: ð16Þ

This expression can be integrated, so that the result is

Veff ¼−
σ2

2g
−

σ1þ2=z

4π3=2ð1þ2=zÞΓ
�
1þ1

z

�
Γ
�
1

2
−
1

z

�
: ð17Þ

In the above expression, ½g� ¼ z − 2, ½σ� ¼ z, and,
consequently, ½Veff � ¼ zþ 2. Then, by rescaling g, σ,
and consequently, Veff , by the rules g → Mz−1g,
σ → Mz−1σ, and Veff → Mz−1Veff , in order to restore the
usual dimensions of fields and couplings, whereM is some
arbitrary mass scale, we obtain

Veff ¼−
σ2

2g
−
M2ð1−1=zÞσ1þ2=z

4π3=2ð1þ2=zÞ Γ
�
1þ1

z

�
Γ
�
1

2
−
1

z

�
; ð18Þ

where now ½g� ¼ −1, ½σ� ¼ 1, and ½Veff � ¼ 3. It is clear that
for any odd z ≥ 3 this effective potential will possess the
minimum for a nonzero σ (recall that g < 0).

B. Gap equation in the finite-temperature case

The above consideration can be generalized to the finite
temperature case as well. In the finite temperature case the
gap equation, in our theory for odd z, is given by Eq. (12).
Then, we introduce the finite temperature through the
Matsubara formalism. Afterward, Eq. (12) takes the form

1

g
¼ −

2

β

X∞
l¼−∞

Z
d2~k
ð2πÞ2

1

ω2
l þ ð~k2Þz þm2z

; ð19Þ

where ωl ¼ ð2lþ 1Þ πβ. Here β is an inverse temperature,
i.e., β ¼ 1=T, with its canonical mass dimension being
equal to −z.
Let us first evaluate the integral in Eq. (19), by using the

solution

Z
d2~k
ð2πÞ2

1

ω2
l þ ð~k2Þz þm2z

¼ 1

4π
Γ
�
1þ 1

z

�
Γ
�
1 −

1

z

�
ðω2

l þm2zÞ1z−1: ð20Þ

Thus, we get the gap equation
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1

g
¼−

1

2πβ
Γ
�
1þ1

z

�
Γ
�
1−

1

z

� X∞
l¼−∞

ðω2
l þm2zÞ1z−1: ð21Þ

Now, in order to carry out the above summation, let us use
the expression [19]

X∞
l¼−∞

½ðlþbÞ2þa2�−λ ¼
ffiffiffi
π

p
Γðλ− 1=2Þ

ΓðλÞða2Þλ−1=2 þ 4sinðπλÞfλða;bÞ;

ð22Þ

valid for λ < 1, aside from the poles at λ ¼ 1=2;
−1=2;−3=2; � � �, with

fλða; bÞ ¼
Z

∞

jaj

dx
ðx2 − a2Þλ Re

�
1

e2πðxþibÞ − 1

�
: ð23Þ

Note that, here, we have a ¼ β
2πm

z, b ¼ 1
2
, and λ ¼ 1 − 1

z.
Thus, for our case (odd z) λ always takes values
λ ¼ 0; 2

3
; 4
5
; 6
7
;…; 2n

2nþ1
, i.e., between 0 and 1, so that we

can readily use the relation ([19]). Hence, the integral (23)
converges and can be rewritten as

fλ

�
a;
1

2

�
¼

Z
∞

jaj
dx

ðtanhðπxÞ − 1Þ
2ðx2 − a2Þλ : ð24Þ

Finally, we have the following expression relating the
coupling g with the mass and the temperature:

1

g
¼ −

�
m2−z

4π3=2
Γ
�
1þ 1

z

�
Γ
�
1

2
−
1

z

�

þ 2β1−2=z

zð4π2Þ1−1=z f1−1=z
�
mzβ

2π
;
1

2

��
: ð25Þ

It is evident that the temperature-independent terms of this
expression replay the zero-temperature gap equation (14).
Therefore, we find that the gap equation is modified in the
finite-temperature case. We note that, as the temperature is
raised (or, equivalently, β is decreased), the second term in
the brackets in Eq. (25), which is always a negative one,

will approach the first term, so that they cancel each other at
the critical temperature

Tc ¼
�
2−

zþ2
z π

1
2
−2
zΓð1

2
− 1

zÞΓð1zÞ
jf1−1=zj

� z
2−z

mz; ð26Þ

where we have considered f1−1=z ¼ −jf1−1=zj. To find this
critical temperature, we must approximate f1−1=z by its
asymptotic value in the high-temperature limit, i.e., we
must calculate f1−1=zða → 0; 1

2
Þ. For example, by taking

into account z ¼ 1, we get Tc ¼ σ0
2 ln 2, with σ0 ¼ −m, which

is the seminal result discussed in Ref. [17], where we have
obtained f0 ¼ − ln 2

2π , in the limit of a → 0.
In the following, for z ¼ 3, we have

Tc ¼
16ð1 − 22=3Þ3ζð1

3
Þ3ffiffiffi

π
p

Γð1
6
Þ3 m3; ð27Þ

where ζð1
3
Þ is the zeta function. To obtain this result, we

have used the fact that, in the high-temperature limit,

f2=3 ¼ −
ð1 − 22=3Þζð1

3
ÞΓð1

3
Þffiffiffi

3
p

2π
: ð28Þ

Thus, we see that there exists some critical temperature at
which the parity breaking vanishes.

C. Effective propagator and renormalizability

To further study the dynamics, let us take into account
the propagator of the σ field. It is characterized by the
Feynman diagram given in Fig. 2.
The contribution of this graph, for even z ¼ 2n,

looks like

Γ2ðpÞ ¼ −
N
2
tr
Z

dk0d2~k
ð2πÞ3

ðγ0k0 − ωð~kÞÞðγ0ðk0 þ p0Þ − ωð~kþ ~pÞÞ
ðk20 − ω2ð~kÞÞððp0 þ k0Þ2 − ω2ðkþ pÞÞ

σðpÞσð−pÞ ð29Þ

and for odd z ¼ 2nþ 1,

Γ2ðpÞ¼−
N
2
tr
Z

dk0d2~k
ð2πÞ3

ðγ0k0þ γikið−~k2ÞnþmzÞðγ0ðk0þp0Þþ γjðkjþpjÞð−ð~kþ ~pÞ2ÞnþmzÞ
ðk20−Ω2ð~kÞÞððk0þp0Þ2−Ω2ðkþpÞÞ

×σðpÞσð−pÞ: ð30Þ

It is easy to calculate a trace in three dimensions since trðγμγνÞ ¼ 2ημν. So, for even z ¼ 2n, we have (here the mass is
introduced for formal reasons, since we note that there is no dynamical mass generation in this case; note nevertheless that
either a zero or nonzero mass does not affect the superficial degree of divergence of this theory since the mass never
accompanies the UV leading orders of the propagators),

FIG. 2. Contribution to the effective propagator of σ.
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Γ2ðpÞ ¼ −N
Z

dk0d2~k
ð2πÞ3

k0ðk0 þ p0Þ þ ωð~kÞωð~kþ ~pÞ
ðk20 − ω2ð~kÞÞððp0 þ k0Þ2 − ω2ð~kþ ~pÞÞ

σðpÞσð−pÞ; ð31Þ

and, for odd z ¼ 2nþ 1,

Γ2ðpÞ ¼ −N
Z

dk0d2~k
ð2πÞ3

k0ðk0 þ p0Þ − ~k · ð~kþ ~pÞð~k2ð~kþ ~pÞ2Þn þm2z

ðk20 −Ω2ð~kÞÞððk0 þ p0Þ2 − Ω2ðkþ pÞÞ
× σðpÞσð−pÞ: ð32Þ

It remains to calculate the integrals.
The operator that is the inverse of this effective action is just the propagator. To integrate, we first do the Wick rotation,

then use the Feynman representation, where the subsequent change of variables k0 → k0 þ p0x is carried out for k0 only. As
a result, for even z, we get

Γeven
2 ðpÞ ¼ −iN

Z
dk0Ed2~k
ð2πÞ3

Z
1

0

dx
−k20E þ p2

0Exð1 − xÞ þ ωð~kÞωð~kþ ~pÞ
½k20E þ p2

0Exð1 − xÞ þ ð1 − xÞω2ð~kÞ þ xω2ð~kþ ~pÞ�2
× σðpÞσð−pÞ; ð33Þ

and, for odd z ¼ 2nþ 1,

Γodd
2 ðpÞ ¼ iN

Z
dk0Ed2~k
ð2πÞ3

Z
1

0

dx½k20E − p2
0Exð1 − xÞ þ ~k · ð~kþ ~pÞð~k2ð~kþ ~pÞ2Þn −m4nþ2�

× ½k20E þ p2
0Exð1 − xÞ þ ð1 − xÞΩ2ð~kÞ þ xΩ2ð~kþ ~pÞ�−2σðpÞσð−pÞ: ð34Þ

It remains to integrate over k0E and expand numerators and denominators in external momenta ðp0; ~pÞ, up to leading orders.
For even z ¼ 2n, after integration over k0E and reintroducing the Minkowski zero component through p2

0E → −p2
0 we

arrive at the following self-energy tensor TðpÞ:

TevenðpÞ ¼ −
iN
4

Z
d2~k
ð2πÞ2

Z
1

0

dx
xω2ð~kþ ~pÞ þ ð1 − xÞω2ð~kÞ þ ωð~kÞωð~kþ ~pÞ þ 2x2p2

0

½xω2ð~kþ ~pÞ þ ð1 − xÞω2ð~kÞ − xð1 − xÞp2
0�

3
2

; ð35Þ

which corresponds to Γ2 through the relation Γ2 ¼ σð−pÞTðpÞσðpÞ.
The integral overd2~k in the expression above can be calculated only in an approximatemanner. In order to consider theUV

leading asymptotics of thesepropagators,we approximate thedenominators byhigher orders in ~k and ~p. For this, let us first use

ω2ð~kÞ ≈ ð~k2Þ2n þm4n;

ωð~kÞωð~kþ ~pÞ ≈ ð~k2Þ2n þ ð−1Þnm2nð~p2Þn þm4n;

ω2ð~kþ ~pÞ ≈ ð~k2Þ2n þ ð~p2Þ2n þ 2ð−1Þnð~p2Þnm2n þm4n: ð36Þ
With the use of Eq. (36) we can write

TevenðpÞ ≈ −
iN
4

Z
1

0

dx
Z

d2~k
ð2πÞ2

2ð~k2Þ2n þ xð~p2Þ2n þ ð1þ 2xÞð−1Þnm2nð~p2Þn þ 2x2p2
0 þ 2m4n

½ð~k2Þ2n þ xð~p2Þ2n þ 2xð−1Þnð~p2Þnm2n þm4n − xð1 − xÞp2
0�

3
2

: ð37Þ

Now, after integrating over ~k, we find

TevenðpÞ ≈ −
iN
8π

Z
1

0

dx
1

n
ffiffiffi
π

p fm4n þ ½ð~p2Þ2n þ 2ð−1Þnð~p2Þnm2n − p2
0ð1 − xÞ�xg 1

2n−
3
2

× Γ
�
1

2n
þ 1

��
Γ
�
n − 1

2n

�
fm4n þ ½ð~p2Þ2n þ 2ð−1Þnð~p2Þnm2n − p2

0ð1 − xÞ�xg

þ nΓ
�
3

2
−

1

2n

�
½2m4n þ ð~p2Þ2n þ 2p2

0x
2 þ ð~p2Þnm2nð1þ 2xÞ�

	
: ð38Þ
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Considering the behavior of this expression in the limit
p0 → ∞, ~p → ∞ in order to obtain the UV asymptotics of
the propagator, and approximating the integrals over x as
numbers of the order of 1, we see that the behaviour of this
self-energy tensor, up to numerical factors of the order of 1
accompanying any monomials (these factors are denoted
here by b1, b2, b3), is

TevenðpÞ≃ Nfm4n þ ½b1ð~p2Þ2n − b2p2
0

þ 2b3ð−1Þnð~p2Þnm2n þ � � ��g 1
2n−

1
2: ð39Þ

This expression is approximate but sufficient to find the
superficial degree of divergence. The dots are for sublead-
ing orders in momenta.

For the odd z we have the following self-energy tensor:

ToddðpÞ ¼−
iN
4

Z
d2~k
ð2πÞ2

Z
1

0

dx½xΩ2ð~kþ ~pÞþ ð1− xÞΩ2ð~kÞ

− ~k · ð~kþ ~pÞð~k2Þnð~k2þ 2~k · ~pþ ~p2Þn

þm4nþ2þ 2x2p2
0�× ½xΩ2ð~kþ ~pÞ

þ ð1− xÞΩ2ð~kÞ− xð1− xÞp2
0�−

3
2; ð40Þ

where Ω2ð~pÞ ¼ ð~p2Þ2nþ1 þm4nþ2. Again, we approximate
the integral by taking into account only the leading orders
in ~k and ~p, which implies considering

Ω2ð~kÞ ¼ ð~k2Þ2nþ1 þm4nþ2; Ω2ð~kþ ~pÞ ≈ ð~k2Þ2nþ1 þ ð~p2Þ2nþ1 þm4nþ2; ð41Þ
and ~k · ð~kþ ~pÞð~k2Þnð~k2 þ 2~k · ~pþ ~p2Þn ≈ ð~k2Þ2nþ1. Therefore, the self-energy tensor is

ToddðpÞ ≈ −
iN
4

Z
d2~k
ð2πÞ2

Z
1

0

dx
xð~p2Þ2nþ1 þ 2m4nþ2 þ 2x2p2

0

½xð~p2Þ2nþ1 þ ð~k2Þ2nþ1 þm4nþ2 − xð1 − xÞp2
0�

3
2

: ð42Þ

Integrating over ~k, we arrive at

ToddðpÞ ≈ −
iN

8π
3
2

Z
1

0

dxΓ
�
6nþ 1

4nþ 2

�
Γ
�
2nþ 2

2nþ 1

�
xð~p2Þ2nþ1 þ 2m4nþ2 þ 2x2p2

0

ðm4nþ2 þ ½ð~p2Þ2nþ1 þ p2
0ðx − 1Þ�xÞ6nþ1

4nþ2

: ð43Þ

Again, we consider the UV limit. We find

ToddðpÞ≃N½ð~p2Þ2nþ1−a1p2
0þa2m4nþ2þ����1−2n2þ4n: ð44Þ

Here and below, a1; a2; b1; b2; α; β are numerical factors,
and dots are for terms with lower orders in momenta.
These results can be used to find effective propagators,

and, finally, to make conclusions about the renormaliz-
ability of our theory. For even and odd z respectively we
have the propagators of σ of the formG ¼ T−1 looking like

GoddðpÞ ¼ T−1
odd ∝

1

N
α

½ð~p2Þ2nþ1 − a1p2
0 þ a2m4nþ2�1−2n2þ4n

;

GevenðpÞ ¼ T−1
even ∝

1

N
β

½m4n þ b1ð~p2Þ2n − b2p2
0�

1
2n−

1
2

: ð45Þ

Here we disregarded subleading orders in momenta. We
note that the effective dimension of p0 is 2nþ 1 for the odd
case, and 2n for the even case, as it should be. It allows us
to calculate the superficial degree of divergence ω of an
arbitrary Feynman diagram.
For the odd z ¼ 2nþ 1, any propagator of ψ contributes

to ω with −ð2nþ 1Þ, and any propagator of σ with 2n − 1
(the non-negative contribution of propagators to the

superficial degree of divergence is rather typical for the
effective dynamics emerging due to quantum corrections,
cf. Ref. [16]). Any loop integration yields 2þ z ¼
2nþ 3. In total, we have in this case

ω ¼ ð3þ 2nÞLþ ð2n − 1ÞPσ − ð2nþ 1ÞPψ ; ð46Þ

wherePσ andPψ are numbers of corresponding propagators.
Using the topological identity Lþ V − ðPσ þ PψÞ ¼ 1
together with relations between numbers of vertices and
propagators2Pψ ¼ 2V − Eψ ,2Pσ ¼ V − Eσ ,whereEψ ;σ are
numbers of corresponding external lines, we have

ω ¼ 3þ 2n − Eψ − ð2nþ 1ÞEσ: ð47Þ

Thus, the theory is renormalizable in all orders of the 1
N

expansion, which matches the z ¼ 1 (n ¼ 0) result found
in Ref. [17].
For the even z ¼ 2n, any propagator of ψ contributes to

ω with −2n, and any propagator of σ with 2n − 2. In this
case we have

ω ¼ ð2þ 2nÞL − 2nPψ þ ð2n − 2ÞPσ; ð48Þ

which yields

A. M. LIMA et al. PHYSICAL REVIEW D 95, 065031 (2017)

065031-6



ω ¼ 2þ 2n − Eψ − 2nEσ: ð49Þ

Thus, for the even z the theory is also renormalizable in all
orders of the 1

N expansion.

IV. GENERATION OF THE
CHERN-SIMONS TERM

Now, to illustrate other possible impacts of a HL-like
spinor field, let us make the first step in studying its
interaction with a vector field, that is, let us couple the
spinor field to a gauge field through the vertex

Lint ¼
effiffiffiffi
N

p
XN
j¼1

ψ̄ jγμψ jAμ: ð50Þ

We note that this vertex is really a “toy” coupling which we
use only to discuss the possibility for a dynamical parity
breaking similarly to the study performed in the relativistic
case in Ref. [17]; therefore, the Lagrangian given by
the sum of Eqs. (3) and (50) is really not gauge invariant,
while to construct the complete model one should use a
Lagrangian like ψ̄ðiγ0D0 − ðiγiDiÞz −mzÞψ , where

D0;i ¼ ∂0;i − igA0;i are the gauge-covariant derivatives.
That model was studied in Ref. [15], and we plan to study
the generation of the Chern-Simons (CS) term in it in our
next paper, while at this step our aim consists only in
discussing the parity breaking for which we use only the
sum of Eqs. (3) and (50).
Here, our aim is to find the polarization tensor given by

ΠμνðpÞ ¼ e2
Z

dk0d2~k
ð2πÞ3 trγμSFðkþ pÞγνSFðkÞ: ð51Þ

The corresponding Feynman diagram is given in Fig. 3.
We consider only the case of odd z ¼ 2nþ 1 since for

z ¼ 2n there is no mass generation and hence no CS term
can arise.
For odd zwe use the propagator (5), so that Eq. (51) yields

ΠμνðpÞ ¼ −e2
Z

dk0d2~k
ð2πÞ3 trγμ

γ0ðk0 þ p0Þ þ γiðki þ piÞð−~k2 − 2~k · ~p − ~p2Þn þmz

ðk0 þ p0Þ2 − ð~k2 þ 2~k · ~pþ ~p2Þz −m2z
× γν

γ0k0 þ γikið−~k2Þn þmz

k20 − ð~k2Þz −m2z
: ð52Þ

Here we look for the CS term. To find it, we concentrate on terms linear in the external momentum p and involving three
Dirac matrices, to get the Levi-Civita tensor. The relevant terms are

Πμν
CS ¼ −e2

Z
dk0d2~k
ð2πÞ3 tr

γμγ0p0γ
νmz þ γμγipiγ

νð−~k2Þnmz

½ðk0 þ p0Þ2 − ð~k2 þ 2~k · ~pþ ~p2Þz −m2z�½k20 − ð~k2Þz −m2z�
: ð53Þ

Now, by calculating the traces, we arrive at

Πμν
CS ¼ 2imze2

Z
dk0d2~k
ð2πÞ3

ϵμ0νp0 þ ϵμiνpið−~k2Þn
½ðk0 þ p0Þ2 − ð~k2 þ 2~k · ~pþ ~p2Þz −m2z�½k20 − ð~k2Þz −m2z�

: ð54Þ

The low-energy leading terms are

Πμν
CS¼−2mze2

Z
dk0Ed2~k
ð2πÞ3

ϵμ0νp0þϵμiνpið−~k2Þn
½k20Eþð~k2Þzþm2z�2

; ð55Þ

where we have performed the Wick rotation. After the
integration over k0E, we obtain

Πμν
CS ¼ −

mze2

2

Z
d2~k
ð2πÞ2

ϵμ0νp0 þ ϵμiνpið−~k2Þn
½ð~k2Þz þm2z�32

: ð56Þ

Finally, by calculating the integral over ~k, we get

Πμν
CS ¼ −

e2

4π3=2
sgnðmÞðc1εμ0νp0 þ c2εμiνpiÞ; ð57Þ

where

c1 ¼ m−4nΓ
�
2nþ 2

2nþ 1

�
Γ
�
6nþ 1

4nþ 2

�
;

c2 ¼ m−2n ð−1Þn
nþ 1

Γ
�
3nþ 2

2nþ 1

�
Γ
�
4nþ 1

4nþ 2

�
: ð58Þ

Equation (57) is a self-energy tensor describing the
generation of the CS term in the Gross-Neveu model at
odd z. It is easy to see that for z ≠ 1 one has c1 ≠ c2 which
confirms the space-time anisotropy. To verify the consis-
tency of our result, we note that at z ¼ 1, that is, n ¼ 0,
we get

FIG. 3. Contribution to the Chern-Simons term.
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Πμν
CS ¼ −

e2

4π
sgnðmÞϵμρνpρ: ð59Þ

Equation (59) is just the same as that obtained in Ref. [17],
so we see that at z ¼ 1 the Lorentz invariance is recovered
as it should be.

V. SUMMARY

We considered different issues related with the Horava-
Lifshitz-like (2þ 1)-dimensional Gross-Neveu model. We
showed that within the framework of the 1

N expansion, it is
renormalizable for any z. Also, we demonstrated (although
the vector field was introduced from the beginning as the
external one, just as in Ref. [14], and not generated through
some Thirring-like interaction) that the anisotropic Chern-
Simons term can be generated in it (however, we note that,
for the simplified model we considered here, it is not gauge
invariant). A consequence of generating the Chern-Simons
term consists in the fact that we succeeded in this way to
break the parity dynamically. Besides, we succeeded in
generalizing some of these results to the finite-temperature
case, namely, we considered the gap equation in the finite-
temperature case and found that there is some critical
temperature at which the parity breaking disappears (in

principle, one could also apply this result to a detailed study
of possible phase transitions in this theory extending thus
the studies carried out in Ref. [14]).
We showed that our emergent dynamics of the Lagrange

multiplier σ is renormalizable for any z. (Unlike in Ref. [10],
to prove it we did not use any special identities.) Therefore
our HL-like Gross-Neveumodel is perturbatively consistent.
The possible continuation of our study could consist in

studying the emergent dynamics of vector fields in more
detail, that is, the generation of the vector field through a
Thirring-like interaction in a manner similar to that used
here to introduce the Lagrange multiplier σ, and generating
the CS term starting with the full-fledged, gauge-invariant
Lagrangian ψ̄ðiγ0D0 − ðiγiDiÞz −mzÞψ [15]. This is a
problem we plan to consider in the next paper.
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