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The renormalization group functions for six dimensional scalar ¢* theory with an F, symmetry are
provided at four loops in the modified minimal subtraction (MS) scheme. Aside from the anomalous
dimension of ¢ and the S-function this includes the mass operator and a ¢>-type operator. The anomalous
dimension of the latter is computed explicitly at four loops for the 26 and 324 representations of F. The ¢
expansion of all the related critical exponents are determined to O(e*). For instance the value for A, agrees
with recent conformal bootstrap estimates in 5 and 5.95 dimensions. The renormalization group functions

are also provided at four loops for the group Ejg.

DOI: 10.1103/PhysRevD.95.065030

I. INTRODUCTION

The mid 1980s saw a revolution in our understanding of
two dimensional field theories due to the development and
classification of conformal field theories, [1]. The extension
beyond strictly two dimensions has not been as straightfor-
ward mainly due to the different structure of the underlying
conformal group in two dimensions and d > 2 where d is
the spacetime dimension. One recent development which is
very promising is the so-called conformal bootstrap pro-
gram [2-5], which extended original ideas on higher
dimensional conformal theories, [6—12]. Based on the
earlier work of [2], the conformal bootstrap has led to a
new way of estimating critical exponents in field theories in
d > 2. One primary example of the bootstrap success is in
the three dimensional Ising model, [4], where estimates of
exponents are competitive with other approaches such as
strong coupling expansions, high temperature expansion
and the e-expansion derived from perturbative renormali-
zation group functions. A comprehensive review and
summary of the results from these methods is given in
[13]. A topic which has subsequently been part of this
development is the study of scalar field theories at the
Wilson-Fisher fixed point in dimensions greater than four.
In [14,15] it was demonstrated that O(N) ¢* theory could
be extended into the 4 < d < 6 range of spacetime dimen-
sions and was in the same universality class as the O(N)
scalar ¢ theory which is perturbatively renormalizable in
six dimensions. As well as the application of exact and
functional renormalization group methods to this O(N)
theory, conformal bootstrap studies also ensued with the
main focus being the five dimensional theory [16-22]. For
instance, there has been a debate as to where the boundary
of the conformal window, akin to that determined by the
Banks-Zaks fixed point in gauge theories [23] actually is.
Bootstrap and functional renormalization group methods
have yet to arrive at a consensus for even the ballpark area
for the conformal window boundary N, [16-22]. Some
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bootstrap approaches find a low value for N but others
suggest a value in keeping with the estimates from the ¢
expansion at four loops [14,15,24], which is in the
neighborhood of N = 400. For instance, this value is not
inconsistent with the mixed correlator bootstrap estimate of
[22]. While such a discrepancy between different methods
for N, has yet to be resolved what is not in question is that
critical exponent estimates are in broad agreement. This is
reassuring as ultimately if all methods had access to tools to
refine their computations then they ought to agree precisely.

While the bootstrap debate to a degree has centered on
quantum field theories with a classical Lie group symmetry,
a recent study has concentrated on the exceptional group
F,, [25], as well as a brief look at the case of E4 symmetry.
This was partly to complement the study of the d = 6 — 2¢
dimensional infrared stable fixed point with an O(N)
symmetry which can access the five dimensional theory.
Clearly the issue of a conformal window is absent in the F,
context in the sense that there is no range of a group
parameter for which there is a Banks-Zaks type fixed point.
However, [25] also provided another forum to explore the
conformal bootstrap technology. Indeed in [25] the renorm-
alization group functions for the six dimensional cubic F,
symmetric field theory were determined to three loops in
the modified minimal subtraction (MS) scheme. These
were derived from the earlier results of [24,26,27]. One
interesting outcome of [25] was the estimate for the field
anomalous dimension in d = 5.95 dimensions which was
in precise agreement with that of the three loop € expansion
computed in perturbation theory. The study in d =75
dimensions was less clear in that the three loop estimate
appeared to be out of line with that from the conformal
bootstrap. While it was suggested this was due to non-
perturbative effects [25], one way to clarify this would be to
extend the three loop F, perturbative renormalization group
functions to four loops. This is the purpose of this article.
We will determine the p-function and field and mass
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anomalous dimensions to four loops in the MS scheme.
However, as the bootstrap study in [25] involved other ¢?>-
type operators we will compute their anomalous dimensions
to four loops as well. Their one loop terms were given in [25].
These extra operators are variants of the mass operator but in
the 26 and 324 representations of F4. They are required in the
application of the operator product expansion decomposition
of the product of fields into conformal primary operators in
order to set up equations which the bootstrap technology
solves. It turns out that having the critical exponents
associated with these operators to the same level of accuracy
gives insight into the interpretation of the estimate for the
d = 5 dimensional exponent for the field as well as the ¢?*-
type operators. Indeed there is a suggestion that perturbative
results from the underlying renormalization group functions
could be used in future bootstrap studies as an aid or guide.
For instance, in the F', case the exponent estimates derived
from the e expansion determine the order the operators
appear in the spectrum in relation to increasing value. In
addition we will provide the same renormalization group
functions to four loops for other Lie groups in the family with
underlying F, symmetry as well as the exceptional group E.

The article is organized as follows. We briefly recap the
key aspects of the cubic scalar field theory in six dimensions
upon which our computations are based in Sec. II. This
includes the definition of the ¢*>-type operators and an outline
of the method we used to efficiently determine their four
loop anomalous dimensions. To achieve this we need to use
properties of the F', Lie algebra in order to evaluate the group
factors associated with each Feynman graph. This is dis-
cussed in Sec. III prior to the presentation of the renormal-
ization group functions in Sec. I'V. Estimates for the critical
exponents are also given there for the two specific dimen-
sions of interest. Section V is devoted to the same analysis for
the group E¢ while we provide conclusions in Sec. VI. An
appendix records the various critical exponents for the family
of groups with related F, symmetry.

II. BACKGROUND

We begin by briefly recalling the necessary properties of
the cubic scalar field theory in six dimensions. Our
massless Lagrangian is

L =

(aﬂ¢i)2 +gdijk¢i¢j¢k (2_1)

N =

where d* is totally symmetric and the group indices have
the range 1 < i < N. We use the same coupling constant
conventions as [24]. (As an aside we note the work of [28]
where the exponent 5 of the single field ¢* theory was
computed directly using conformal bootstrap methods of
[29] and can be regarded as a check on the results of [24].)
The mass operator

1, .
O:§¢¢ (2.2)
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has been omitted as the new aspect of the renormalization
of (2.1) here is that we will consider a set of ¢’-type
operators in different group representations and compute
their anomalous dimensions to four loops. The anomalous
dimension of one element of this set of operators is
equivalent to that of O which is already known to four
loops. To be more specific, in order to build the various
operators in a representation of F, there are five indepen-
dent combinations of products of the group tensors 5 and
d7F with four free indices. These are 85K, 5ik5/L, §ils/k,
d*rdi'r and d''P d’*? . The additional product of d"/Pd*'7 is
not independent due to the F', 4-term relation. The various
linear combinations of these tensors which correspond to
projectors onto the F, representations were given in [30].
These lead to the set of rank 2 ¢>-type operators

Rl ®
Ogj) = E’Pz('jk)l¢k¢l (2-3)
where
1 1 26)
Pgﬂz/ = N‘Sij‘skl’ Pl('jkz =d;jpdyp,
4) T 2
ngkl) =2 061 + 6ubjk — = 0ii0u | — dijpdiip.
2 N
(52) 8 T,
2) % L2155 — 8.5,
Pl]kl [N+ 10] _2 [ ilYjk ik ]l]
[N + 2]
+ 3 [dipdjip — dixpdjp] |
@) _ [IN+2] [T,
(273) _ LT T A 2215 85 8.5
Pl]kl [N+ ]0] _2 [ ilYjk ik ./l]
- dilpdjkp =+ dikpdjlp:| (24)

are the projectors in F, [25,30]. Consequently the anoma-

lous dimensions of O and OS}) are equivalent. Also the
anomalous dimensions for the 52 and 273 representations
are immediately zero since the operator % PF @' is symmetric
whereas the respective projectors are antisymmetric in the
indices k and /. So our focus here will be on establishing the
four loop anomalous dimensions of the symmetric 26 and
324 representations of F.

To determine the four loop anomalous dimensions of these
operators, we follow the same method as outlined in [24].
First, to renormalize an operator which does not mix, it is
inserted into the Green’s function (¢’ (p) O,(ff) ()¢’ (—=p—q))
where the external momenta p and ¢ flow in through the
external legs. Then evaluating the constituent Feynman
graphs, the renormalization constant for the operator is
deduced from the poles in the regulator. In this paper we
have used dimensional regularization in d = 6 — 2¢ where ¢
is the regularizing parameter. Moreover we will use the MS
scheme to define the renormalization constants. While this
outlines the essence of the standard operator renormalization
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procedure for the renormalization of the ¢*-type operators
defined from (2.1), there are several technical shortcuts which
allow us to extract the four loop renormalization constants. As
the operators do not involve derivatives, the insertion in the
Green’s function can be at zero momentum. If one was
considering the renormalization of the mass operator in four
dimensions then this nullification would be problematic. This
is because the Feynman integrals would contain 1/(k?)?,
where k is a loop momentum, which is infrared divergent.
In six dimensions, however, such a double pole propagator in
an integral is infrared safe. So inserting the ¢*-type operators
at zero momentum will not corrupt the emergent operator
renormalization constant with infrared divergences.
Therefore we have relegated the exercise of renormalizing
ng) in effect to one of evaluating a 2-point function. As noted
in [24] this could involve 540 Feynman diagrams to deter-
mine, for instance, the nullified 3-point function. However,
for the renormalization of (O the Green’s function
(¢'(p)O(0)¢/(—p)) was generated from the graphs of the
@' 2-point function and we followed the same process here.
For each graph of the ¢’ 2-point function one applies the map

8 5y 2
J J m [P(R) P(R) }

2772 2(k2)2 ijk,l, ijl k, (2-5)

KK

to each propagator where we have not made any assumptions
on the symmetry properties of the projection tensor.
The particular combination which appears derives from the

Feynman rule for (’)g?. The quantity m is not a mass as such
|
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but a counting parameter. After the substitution has been
made, one truncates the graphs by retaining terms up to and
including O(m?) only. Terms higher in m* would correspond
to more than one insertion of the operator and correspond to a
Green’s function we are not interested in. The indices k, and
[, are those associated with the external indices of the operator
insertion. The advantage of using this technique to generate
the particular Green’s function is that it is straightforward to
implement within our automatic Feynman diagram calcula-
tion. The graphs for the ¢’ 2-point function are generated with
the package QGRAF [31] and converted into the syntax of the
symbolic manipulation language we use which is FORM and
its multithreaded version TFORM [32,33]. As the computation
we performed to determine the anomalous dimensions of the
26 and 324 representations of O®) used the same programs as
that for O, we refer the interested reader to [24] for the
technical details where the use of the Laporta algorithm [34]
and its implementation in REDUZE [35,36] is discussed in
depth. The only major difference is that we have had to
develop a FOrRM module to handle the group theory associated
with the F, tensor d*.

III. F; GROUP THEORY

We devote this section to the mechanics of finding the
values for the group invariants which appear in the ¢?
theory renormalization to four loops inclusive. These were
defined in [26,27] to three loops and the four loop ones
were introduced in [24]. We use the notation introduced in
the latter and for completeness we note that they are

dii ity — T2§U’

diilizdji1i3dki2i3 — T3dijk’

diiliz dji3i4 dki5i6di]i3i5 di2i4i(, — T5dijk,
diilizdji3i4dki5i6di1i3i7di2i5i8di4i6i9di7i3i9 — T71dijk,

diivia i ks giiin gisisis gisisio lisinis — T fijk.

diiiz iisia gkisin givisie gizizis gizioir giaiziio gielsin gisioin — T9ldijk’
diiiz itsia gkivin givisis giaizis gisisio giaizio Jieisin Jisiioiz — T92dijk’
diilizdji3i4dkisi|zdi1isiedi2i7isdi3i5i9di4i7ilodixi11i12di9i10i1| — T93dijk’
diiiz itsia gkisin givisie gizizis gizioir giaiioinn Jisiziio gisiolin — T94dijk’
diiiz iisia gkisin givisie gizizis Jisisio giaiiolin Jisirio gioiiin — T95dijk,
diiviz giisia gkivin givisis gizigiy giaieis gisioiio gizioiin Jisioin — T%dijk,
diiiz iisia gkisin givisie gizizis Jizioirs Jiaiziio giiiofin Jisiolin — T97dijk,
diivi> giisia gkisiva givisis giaizis Jizisio gisizivo gfisioin gfivoiniin — T98d’7k,

dllllzd]l3l4dk111llzdlllslﬁdlzlﬂsd131519d1417110d16110111 disholz — ngdl]k‘

(3.1)

In that article values were derived for certain groups and it transpired that several subsets of Ty; had the same values. We do
not assume at the outset that the same feature arises for either F, or E4 which is considered later.
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As the first stage in the extraction of the four loop
renormalization group functions for the F, symmetric case,
we recall basic properties of the tensor d'/* for this specific
group. From [25,30] the 4-term relation is

diji| dkli, 4 dikildjlil + dili,djki|
27,

— 5ij5kl+5ik5jl+5i15jk
| ] [N +2]

(3.2)

where we retain 7, for completeness in contrast to [25].
From this we can derive an expression for the group theory
value of a one loop box graph which we use extensively
throughout. Although the same relation was given in [30]
our derivation differs slightly from that given in [25,30] but
may be useful for constructing parallel expressions for the
group theory associated with higher point one loop graphs.
Contracting (3.2) with d/P"d*4" produces

diirs giisia ghivia gliia. | giiris gjisia ghisis glivis

L oo 2T g 272
— [giki giliv 1 giliy gikiy 2 Siigkl 2
| * S e T
[N=2|T
i grin N = 2T 3.3
+ 2N 12| (33)

after relabeling. We have used d”/ = 0 which follows from
contracting (3.2) with d"/?. The two terms on the left-hand
side of (3.3) represent two permutations of the indices on a
one loop box diagram. If we define the tensor
Biikl — giivia giisia gkivia glizia (3.4)
to denote the group theory associated with a one loop box
integral and the right-hand side of (3.3) formally by C//¥
then (3.3) becomes
Bijkl 4 Bijlk — Cijkl‘ (35)
By permuting the indices j — k, k — [ and [ — j twice we
obtain two other relations which are
Biilk | gikil — Ciklj, BNl 4 Bk = Cilik (3.6)
where we have used B'/¥ = B'*/ which follows from the
definition of B/  These three relations, (3.5) and (3.6),
involve the three independent ways of labeling a one loop
box topology and hence the equations can be represented
by a 3 x 3 matrix where the entries are either 0 or 1.
Inverting this matrix then allows one to obtain the decom-
position of a box topology into tensors involving fewer
products of d"* tensors which is [25,30]
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2
diiis giiais gkinia glivia — [5ij5kl _ siksil 4 51’15//(} T3

[N +2]
o [N=2]T,
d”’ldklll dlllldjkll [7
+1 * ]4N+ﬂ
oo [N =10]T
_ dlkt d]ll [ 172 3.7
N2 (3.7)

where the right-hand side is derived from CY and its
above permutations. The result is equivalent to that
produced in [30] using a symmetrization and antisymmet-
rization method. Being equipped with this has allowed us to
evaluate all the group invariants of (3.1) aside from 7.
Its value will not be set to unity until later. We find

T,

Ty=-[N-2 \

3= ]MN+ﬂ

T2
Ts=—[N?—10N - 16]—2—.
2[N +2]
322 T3

T =[N3 =3N?+80N + 100 ——2—,

n=| OO ]MN+ﬂ3

3
T =—N[N=2][N-10]—2—,
3 2 Té

To; =[N —2][N° + 18N% 4+ 204N + 152] ——2>——,
Toy =Tos=Tog

= —[N —2][N® —24N? + 36N + 80] T

B 8[N +2]*

> T3
T93:T95:T97:N[N—2HN —24N+1z]m,
T4
Toy = —[N*—14N3 — 12N> — 616N — 672] ——=——.
8[N +2]
3 2 Tg

Too =[N —=2][N®=27N?2 454N + 72| —2 .. 3.8
5 =[N ~2][ FN T (38)

As a check we have reproduced the expressions for the
invariants used in the three loop analysis of [25]. Those at
four loops, Ty,,, are new. The only one where we could not
directly reduce the invariant using (3.7) was Tg9. This was
because all the one loop subgraphs are pentagons and there
are no boxes present. Instead we manufactured boxes by
first applying the 4-term relation (3.2). An interesting
feature emerges in (3.8). Setting N = 2 in (3.8) the only
nonzero invariants are 7’5, 77; and T, which all evaluate to
unity. It transpires that for the exceptional group Eg, which
we consider later, these are also the only nonzero invariants
present in the renormalization group functions. Although
their values will not be unity in that group. As we will be
concentrating on the N = 26 representation of F, we note
that the specific values we used are
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T, =1 T.—_> 7= _ 27 T, — 2 Ty — 522
CE T TS 372 27 686" 1™ 9604
111 39 727 75

Ty, =Tgs =Tog = Toys =Tos =To; = (3.9)

T 9604 9604 %= T19208" % = 9604

Here we have assumed 7, = 1 like [25] for the purpose of comparing our renormalization group functions with that
article.

IV. Fy RENORMALIZATION GROUP FUNCTIONS

Before examining the consequences of the four loop renormalization group functions for critical exponent estimates we
first record the anomalous dimensions for the ¢>-type operators in the 26 and 324 representations of F,. These result from
the method outlined in Sec. II. For 05?6) we have (see Supplemental Material [37])

T 4
Yo (g) = — 2’ 2 4 [7T2T3+18T2+12T5}48
g6
1728

+[17283T5T3 — 36961 T35 — 1555283 T3T5 + 188556 T5T3 + 48492T5Ts + 23472, T3 + 964224 3T, T3 T
—326592(,T,T5T5 — 8208007, T T5 — 2332807, T, — 107308815 T, +419904¢4T>T5, + 23328077,
+933120¢5T4 — 150271274 — 415756883 T3Ts 4+ 93312084 T3 T's + 338169673 T's + 273715243 T3 T,
—7464960¢sT+ T, + 3877632T3T7, + 30481923 T3 T, — 1119744, 3T, —3877632T3T7, — 653184¢ T2
+ 66096072 + 3732480( 3T, — 3732480(5Tq; + 373248Ty; + 3732480L3Tog — 3732480L 5 Tog — 7464965 T o
493312085 T g9 + 186624083 To, — 186624085 Ty — 435456083 o3 + 62208005 T o3 4 1119744¢5T g4

—373248T g4 — 6096384¢3Tos + 870912085 Tos + 373248083 o — 373248085 Tos — 2612736¢3 T,
8

746496

+[396T,T5 — 119T3T5 + 198T,T5 4+ 486T3 + 216083 T35 — 2556T3T's — 864T7; — 2592377, + 864T 75| ——

+3732480¢5To7| =—=——+ 0(g'?) (4.1)
in the MS scheme where {(z) is the Riemann zeta function. We have been able to determine this without reference to
specific F, related group identities such as (3.2) and (3.7). In other words to four loops the combination of d/* tensors in
each graph could be written in terms of one of the group invariants of (3.1). Therefore (4.1) can be used for the non-F,
symmetric problems discussed in [24]. The situation for the remaining ¢*-type operator is that we have had to use F, based
identities as noted earlier. So the four loop anomalous dimension is not expressed in terms of the T; invariants of (3.1) and

can only be used in the F, context. In the MS scheme we found

2 4 6
g g 2 2 g

SN +22]—2— — [17283N? — 1465N? — 864085N + 13724N + 7316] ———
[N +2] BN+ ]24[N+2]2 172865 GNF - ]864[N+2}3
+[3290976¢5N3 + 6415208, N3 — 58708808sN> + 160441 1N3 — 4822416083 N2 — 2426112 ,N*

+ 765158408sN? — 17175342N? + 105473664¢3N + 1353024 ,N — 165939840 5N + 52790148N
8

Yo (9) = =

+2595456( 5 — 3359232¢, — 31726080¢ s + 53133016 g 7+ 0(g"). (4.2)

373248[N + 2]
The general expressions for y,(g), yo(g) and f3(g) were given earlier in [24] in terms of the group invariants 7; and we do

not reproduce them here for F, as these were given in [25] at three loops. Instead we have evaluated them for the case when
N = 26 and together with (4.1) and (4.2) we have
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1 19, 1997 g
= — — - — = 1 4 -
Plo) = 3(d =09 =3¢ — 1159 13301747 = 338385643 1757 1506
9
9 1
1259178385 — 596452464¢ 5 + 192879792¢, — 9267955200 <] — 9
+ (1259178385 — 596452464 + 192879792 — 92679552005 11 zeo 5 + Olg™).
1 149 &
= A (324000, + 78731 —
7a(9) =~ 139 ~ 30049~ B2A00G T8N 30e s
8
g 10
3121981 — 1958160¢5 — 2561768, — 15955200 <] ——
1 79 P
— P 116848C, + 34631
ro(9) 59 ~ 3369 [ &+ }84672
8
9 10
2 145 -2 2 214034408, — 200 ]—9
+ (230779145 — 258668208 + 21403440C, — 8957952005 s + O(9").
3, 53, g
= = 4818+ —
Yoes (9) a9 +784g + [5481¢;5 6689]24696
8
9 10
2365441928, — 1045094408, + 4131388808 — 531246791] —F— 4+ 0(g'%).
(g) = == P + —2_ g# 4 [78275 — 117936(3) g
Tori\g) = =589 T 53579 312370816
8
9 10
21865291285 + 755244008, — 43600032085 + 140736511 ——2— 1 0(g'0). 43
using (3.9). Numerically we have
B(g) = —0.500000eg — 0.339286¢> — 0.141511¢5 — 0.053838¢5 — 0.175793¢° + O(g"!).
74(g) = —0.083333¢> — 0.049272¢* — 0.038606¢° — 0.0408984" + O(g'),
vo(g) = —0.500000¢% — 0.235119g* — 0.648187¢6 — 0.5853464° + O(g'°),
Vo (g) = 021428647 + 0.0676025" — 0.0040705¢0 + 0.114445¢% + O(g'),
Yo (g) = —0.035714¢% + 0.008078g* — 0.026780¢° + 0.018529¢° + 0('0), (4.4)

where the four loop terms are roughly the same magnitude
as the lower order ones. The three loop values for the first
three renormalization group functions are in agreement
with [25]. Clearly there is no sign of a Banks-Zaks
fixed point to four loops with our coupling constant
conventions. With the coupling constant conventions of
[25] there are fixed points for the two and four loop
p-functions but only complex solutions to f(g) =0 at
three loops. So there is no robust Banks-Zaks fixed point
which would in fact be an asymptotically safe solution if it
had existed.

Equipped with these renormalization group functions
we can evaluate the ¢ expansion of the related critical
exponents where the fixed point, g., is defined by
B(g.) = 0. In order to compare with the results of [25]

[
we use the notation of that article but define the

exponents with respect to the conventions used here.
We recall [25]

1
Ay = Ed_ 1+ 74(9c)s

AO(R) =d-2+ 2}/¢(gc) - 2)/0(1?) (gc),
A¢3 =d+ ﬁ/(gc)’ (45)

where 7o (9.) = 70(g.). Solving for g. and evaluating
these exponents we find
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1
Ay = Ed —1+0.122807¢ — 0.031524¢?

+0.042483¢% +0.122722¢* + O(€Y),
Apn =d—2—1.228070e + 0.052388¢? — 3.414275¢€°
—3.252345¢* + 0(€),
Apee = d —2 + 1.122807¢ — 0.031524€> + 0.042483¢3
+0.122722¢* + O(€),
A = d —2 +0.140351€ — 0.162835¢> — 0.172846¢°
—0.472810¢* + O(€),
Ay =d+2e—1.229301¢ - 0.132727¢€3

—8.882515¢* + O(¢€), (4.6)
where the terms to three loops of A, Ay and A¢3 are in
agreement with [25]. Also the coefficients of A, and
Apee are consistent with O being a conformal
descendant of ¢'. Surprisingly the four loop correction
to Ay is large. One of the main features of [25] was the
comparison of the exponent A, with the value obtained
from the conformal bootstrap analysis for dimensions
d =75 and 5.95. In Tables I and II we have provided
estimates for A, using Padé approximants at successive
loop orders in order to gauge convergence. In Table [ we
note the [0, /] estimate at the /-loop order. The results for
d = 5.95 dimension appear to converge while those for
d = 5 have not converged as well but do appear to have
settled to a value in the neighborhood of 1.56. In
compiling the Padé analysis, what was apparent was
that the estimates from the other [p,g| approximants
were not dissimilar to the [0,!/] ones. Therefore to
improve estimates we calculated the average of all the
approximants at each loop. These are presented in
Table II and indicate a four loop value closer to 1.55.
Given these estimates for A we have repeated the same
Padé analysis for the ¢*-type operators in the 26 and 324
representations as these are the only cases with nonzero

TABLE L [0,/] Padé approximants for F, exponent A, at
[-loops.

d 2 loop 3 loop 4 loop

5 1.5731551 1.5613412 1.5639085
5.95 1.9780535 1.9780512 1.9780512
TABLEIIL.  Average of Padé approximants at each loop order for
F4 exponent A.

d 2 loop 3 loop 4 loop

5 1.5632667 1.5589076 1.5516367
5.95 1.9780520 1.9780511 1.9780512
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critical exponents. The results are presented in Tables III
and IV where we gather the 5 and 5.95 dimension estimates
in each table. The former Table has the values for the [0, /]
Padé approximants at /-loops and the latter has the average
of the Padé’s at each loop order. For 5.95 dimensions the
exponents agree to at least four decimal places for each of
the representations. In five dimensions the convergence is
not as fast but again there appears to be a consistent value to
two decimal places. In terms of comparing the exponent
values in different representations in a particular dimension
the operators are virtually degenerate in 5.95 dimensions.
The discrepancy between them is around 0.5%. As the
spacetime dimension decreases, this effective degeneracy is
lifted. It transpires that the critical exponent for the 324
representation, A s, is lower than that of the 26 repre-
sentation, A,zs. Moreover the former decreases more
rapidly than the one for the 26 representation as the
spacetime dimension decreases. A similar feature was
evident in the analysis of [25].

It is now instructive to compare our four loop estimates
with the conformal bootstrap results of [25]. In that article
plots were given of the allowed and excluded regions of the
parameter space defined by A, (x axis) and what was
termed AZ3¢ (y axis) in the notation of [25]. In the bootstrap
approach the location of a kink in the boundary of these two
regions is the point where one can read off an estimate for
A for example from the x-coordinate. First, the plot of [25]
in 5.95 dimensions, for instance, has a well-defined kink
with an x-coordinate value of 1.978. This is in accordance
with the three loop € series estimates provided in [25]. Our
new four loop values in Tables I and II are not inconsistent
with this. In addition, what is apparent from the plot of [25]
in this spacetime dimension is that the y-coordinate
corresponds to a value fractionally shy of 4. This is the
estimate given in [25] for the quantity A28 This is not
dissimilar to the estimates of both A .6 and Az shown

TABLE III. [0, /] Padé approximants for F4 exponent Az at

[-loops in dimension d.

d R 2 loop 3 loop 4 loop

5 26 3.5598518 3.5585128 3.5648212
324 3.0848268 3.0317658 2.9986463

5.95 26 3.9780513 3.9780511 3.9780512
324 3.9534156 3.9534045 3.9534041

TABLE IV. Average of Padé approximants at each loop order
for F, exponent A at [-loops in dimension d.

d R 2 loop 3 loop 4 loop

5 26 3.5566150 3.5578930 3.5509073
324 3.0562147 3.0062392 3.0267278

5.95 26 3.9780509 3.9780511 3.9780512
324 3.9534112 3.9534043 3.9534041
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in Tables IIT and IV. Indeed our four loop estimates show a
small change from the one loop estimates given in Table 1
of [25] for these exponents.

The situation for the conformal bootstrap analysis in five
dimensions is different. While there is an allowed and
excluded region in the corresponding plot of [25] there
are no sharp kinks or boundaries. Instead there are what
was termed weak kinks [25]. From Figure 4 of [25] the
kinks have slope changes at about 1.55 and 1.6 in the
x-coordinate. Indeed the latter value is what was quoted for
the bootstrap estimate for A,. However, from Table II the
average four loop Padé estimate for A falls closer to the
value of 1.55 rather than the quoted value of 1.6 in [25].
Indeed it was noted in [25] that this latter value was not in
full agreement with the three loop perturbation theory used
in [25]. Our four loop result shows that the series for A is
not diverging as is apparent from Table II. Put another way
if one regards the lower kink of Fig. 4 of [25] as the one to
be used for estimating exponents then the perturbative
result is not inconsistent with the bootstrap technology. To
support this point of view one can examine the location of
the first weak kink or lower knuckle of Fig. 4 in [25] with
respect to the y axis. This is roughly at 3.1 [25]. Our
estimates for A @4 are in the region of 3.01 which appears
to be consistent with the y axis value of Fig. 4 in [25]. For
the 26 representation we find an estimate for the A
exponent of around 3.55. This is lower than the upper
knuckle of the five dimensional plot in [25] which appears
closer to 3.9. However, the three curves presented in Fig. 4
of [25] have not converged to the same accuracy as those in
the neighborhood of the lower knuckle in 5 dimensions or
indeed that for 5.95 dimensions. Moreover in the latter
spacetime dimension it is the lower corner of the plot of
Fig. 4 of [25] which gives the dimension of either ¢*-type
operator. That should also be the case in 5 dimensions in
order to have a consistent point of view. What is interesting
is that the conformal bootstrap analysis appears to give
relatively accurate data on the exponent of the operator
with the lowest value. However if one wishes to marry the
information derived from perturbation theory here with the
data from the 5 dimensional bootstrap analysis then one
would have to regard the exponent estimate from the lower
kink as corresponding to that of the ¢*-type operator in the
324 representation.

V. Eq

For the remaining part of our study of ¢> theory with
exceptional symmetry, we concentrate on the group Ejg
where the fundamental representation is 27 and the adjoint
is 78. As Eg is a complex group then the Lagrangian for a
cubic theory with Eg symmetry involves fields ¢’ and ¢’
and the tensors d;j; and d'*. We take the convention that
the conjugate to d/* is d;j; similar to [25]. Therefore the Eg
symmetric Lagrangian is

PHYSICAL REVIEW D 95, 065030 (2017)
- i g f . ik 3 3
L=20,0,09" + 6 (dijxd PPt + djk¢i¢j¢k)' (5.1)

This is similar in structure to the cubic theory with SU(3) x
SU(3) symmetry considered in [38,39]. Moreover, the
Feynman graphs generated from (5.1) share properties
similar to those of the SU(3) x SU(3) theory. The main
one is that there are no Feynman diagrams with subgraphs
with an odd number of legs. So for instance there is no one
loop triangle graph for the renormalization of the coupling
constant. It is straightforward to establish this by realizing
that the two vertices of (5.1) are what is termed directed.
Either all the arrows indicating the charge flow on each
vertex line points to the interaction point itself or points
away. Thus it is easy to see that in a one loop triangle graph
the lines cannot be decorated with arrows which point to or
from all the vertices. To reflect this aspect of the properties
of the Eq Lagrangian the indices of the tensor associated
with the coupling constant are either raised or lowered [25].
This convention will only be applied in this section.
Moreover we will use upper and lower group indices on
the fields themselves in keeping with the notion of
distinguishing that there is a flow of charge in contrast
to Fy.

To construct the four loop Eg renormalization group
functions we need to determine the values of the group
invariants. The properties of the E¢ Lie algebra differ from
those of F, but we will use the same algorithm as before to
derive an identity for the one loop box akin to (3.7). We
base our derivations on Eg group properties derived in [40]
which used the more mathematical articles [41-44]. Further
background to the structure and properties of E4 can be
found in [30,45]. In [40] the convention for the product of
tensors was

dikldjkl - 105ij, (52)
which implies 7, = 10. From this and identities derived in
[41-44] it was shown in [40] that

dii iy 25 dy i, d" = 5578, + 6,16, ] — Adyyg, d'.
(5.3)

This is the E¢ equivalent of the one loop box topology of
(3.7). Using this we have determined the values of all the
invariants of (3.1). Before recording the values, we note
that for topologies where at least one of the one loop
subgraphs has an odd number of external legs it is not
possible to decorate the lines consistently in such a way that
all the vertices have all arrows pointing in or out. In these
cases the invariant is set to zero as such Feynman graphs
would not be generated in the first place using, say, the
QGRAF package [31]. It transpires that to four loops
there are only three nonzero invariants aside from T7,.
In summary the values are
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T2 - 10, T5 - —30,

after applying the box rule to (3.1).

T71 - 220,

PHYSICAL REVIEW D 95, 065030 (2017)

Toy = =530 (5.4)

It is a straightforward exercise to substitute these values in the expressions for the renormalization group functions which

have been expressed in terms of 7; to find

7

1 5 265 g
Plg) = ;(d = 6)g—Zg +> g + 5163183 — 19440g3]5184
9
+ 5[1044144¢5 + 324008, — 633600¢ s + 591527 34% +0(g"),
5 275 q°
74(9) = —gg ~ 08 g* +25[2699 — 3888¢5] —o— 6
8
+25[143119 — 9936¢5 + 6480¢, — 126720( ] 51% + 0(g"),
25 , 9575
_ _&82_ =7 4 _ 6
vol9) = =50 = 159" =45 9
8
+25[34011364; — 1749602, — 1026432075 + 13869707] ; 6 et 0(g"),
15 , 1155 g
rorn(9) == g ——5—g° +1055[49 - 432@] S TREL (5.5)

where there is no one loop contribution to the final
renormalization group function. Numerically we have

B(g) = —0.500000¢ — 1.2500004° + 3.6805564°
1 134.85244449" + 1771.871166¢° + O(g'"),
74(9) = —0.833333¢> — 2.5462964* — 6.348371¢°
+32.741763g% + 0(g'?),
ro(g) = =5.000000¢% — 2.083333¢* — 88.657407¢°
+3818.021497¢° + 0(g'),
Yoo (g) = =7.500000g* — 144.3750004°

—1722.7585216% + 0(¢'). (5.6)

In [25] it was noted that from the one loop f-function there
was a stable unitary fixed point which we confirm here
allowing for the different convention on the definition of
the sign of our coupling constant in (2.1). Compared to the
F, p-function the coefficients of the E¢ f-function increase
significantly with the loop order. This can be traced,
however, to the different values of 7, which is 10 for
E, instead of unity for F,. If one rescaled g° by a factor of
10 then the coefficients of (g) would be comparable to
those of F,. In our coupling constant conventions the Eg
case like F4 exhibits asymptotic freedom and to four loops
has a Banks-Zaks fixed point. At two, three and four loops
this is at ¢ = 0.339623, 0.083593 and 0.063944 respec-
tively. The latter values suggest convergence. At three loops
there is a fixed point for negative coupling which is not

present at two or four loops. If it had been present in those
cases then Eg could be a model with the property of
asymptotic safety.

In advance of a conformal bootstrap analysis we can now
provide the e expansion of the related critical exponents at
the Wilson-Fisher fixed point at four loops. These are

1
Ay, = Ed — 1+ 0.333333¢ — 0.800000¢> + 8.044444¢*

—84.333501¢* + O(¢),
Agn = d—2 —3.333333¢ + 3.777778¢* — 76.971365¢
+505.735425¢* + O(€),
Apen = d —2 + 1.333333¢ — 0.800000> + 8.044444¢3
—84.333501¢* + O(¢),
Ay = d + 2e +2.355556¢> — 74.593093¢3

+ 885.932572¢* + O(€Y). (5.7)

It transpires that the respective coefficients of the exponents
are much larger than their F4 counterparts. In effect what
this means is that estimates for Eg exponents from

perturbation theory may only be reliable for a value of d
relatively close to six.

VI. DISCUSSION

Our original aim was to extend the three loop analysis of
F, symmetric scalar cubic theory in six dimensions to four
loops. Having achieved this we derived critical exponents
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for the field and ¢>-type operators in various representa-
tions of F, to the same order of precision. This is important
in the context of predictions from the conformal bootstrap
analysis of [25]. In that paper there was a suggestion that
the difference in the d =35 dimension estimate for A,
compared to perturbative prediction was due to nonpertur-
bative effects. From the Padé analysis we noted that the
exponent derived from the O(e*) correction was smaller
than the three loop result and, moreover, closer to that for
the bootstrap. Although in d = 5 there was not as sharp an
estimate compared to the d = 5.95 dimensional case. From
the perturbative side the estimates for the dimension two
operator exponents determined the order of their appear-
ance in the spectrum. Close to six dimensions the two
operators were effectively degenerate and the perturbative
estimate for their exponents was in sharp agreement with
[25]. For the lower dimensional case studied in [25] the
value recorded there for A3¢ was consistent with the
estimate for the ¢»*-type operator in the 324 representation
rather than that in the 26 representation. It would be
interesting to have a conformal bootstrap analysis for the
exceptional group Eg. The observation of [25] that there
appears to be a stable infrared fixed point in five dimen-
sions seems to be confirmed. However, such a bootstrap
analysis could give further insight into the role of the
analogous ¢*-type operator in Egz. From properties of the
E¢ group it would appear that there is no operator parallel to
that in the 324 representation of F . Instead there is only the
27 one. In other words a conformal bootstrap analysis

|

1
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should be able to estimate the E¢ value for what would be
the exponent A20¢ accurately and then compare with the
four loop € expansion. Equally the other groups in the F4
family can be analyzed by the bootstrap given that
perturbative results are now available to the same accuracy
as the F, case itself.
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APPENDIX: EXPONENTS FOR
RELATED F, GROUPS

While we have focused in the main text on the excep-
tional group F 4, there are several other groups which have a
tensor d'/* which satisfies the 4-term relation of (3.2) and

d =0, dM ikl = T,60. (A1)
Using the Lie algebra classification notation, these are A,
A, and C5 [25,30], where A; is also equivalent to B;.
Values of the critical exponents for ¢ theory based on
these symmetry groups can be deduced from the results of
Sec. IV by setting N = 5, 8 and 14 respectively. Thus we
have extended the three loop results of [25] for each case
and found

Ay = Ed — 1+ 0.179487¢ + 0.174885¢* + 1.446636¢* + 11.125264¢* + O(e°),

Aoy = d —2 —1.794872¢ — 2.641683¢? — 25.875476¢* — 179.737315¢* + O(€°),
Aps) = d =2+ 1.179487¢ + 0.174885¢? + 1.446636¢> + 11.125264¢* + O(€d),
Apo) = d —2—0.256410e — 1.214990€> — 7.225638¢* — 54.804917¢* + O(¢°),

Ap =d+2e— 3.880342¢2 — 24.132914¢% — 250.285961¢* + O(€),

for N =5 corresponding to A;. For N = 8 which relates to the Lie algebra A, we have

1
Ap=5d—1+0.151515¢ + 0.041740€* + 0.397533€> + 2.024208¢* + O(¢’),

Apn =d—2—1.515152¢ — 0.959179¢? — 10.049808¢> — 38.922333¢* + O(€°),
Apw) = d =2+ 1.151515€ + 0.041740€* + 0.397533€> + 2.024208¢* + O(€’),
Apen = d —2 = 0.060606¢ — 0.521746¢* — 1.853121€* — 9.180040¢* + O(€Y),

Ap =d+2e— 2.389348¢% — 7.729109¢* — 65.712863¢* + O(€).

(A3)

We note that the sign of the O(e®) term of A, differs from that given in [25] which we assume is a typographical error.

Finally, we find
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1
Aj=7d—-1+0.133333¢ - 001111 le? 4 0.120049¢* + 0.437738¢* + O(€d),

Ao = d —2—1.333333¢ — 0.244444¢* — 5.098686¢* — 10.110099¢* + O(¢°),
Apisy =d =2+ 1.133333¢ — 0.011111€? 4 0.120049¢* + 0.437738¢* + O(€),
Ao = d —2 + 0.066667¢ — 0.260000e> — 0.520808¢* — 1.816381¢* + O(€’),

Ap =d+2e— 1.611111€* —2.094961€3 — 20.962996¢* + O(€?),

(A4)

for Cy having set N = 14. The dimensions of O®) for R # 1 are determined from the respective F, expressions
for the 26 and 324 representations which were computed as functions of N. Our expressions for Ay, Ay
and A agree with the three loop ones given in the appendix of [25], aside from the one noted above, but the four loop

contributions are new. Also within our conventions, the coefficients in the ¢ expansion of the ¢*-type operators derived from
the 26 representation of F, are in accordance with A consistent with the relation to the conformal descendant operator.
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