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The renormalization group functions for six dimensional scalar ϕ3 theory with an F4 symmetry are
provided at four loops in the modified minimal subtraction (MS) scheme. Aside from the anomalous
dimension of ϕ and the β-function this includes the mass operator and a ϕ2-type operator. The anomalous
dimension of the latter is computed explicitly at four loops for the 26 and 324 representations of F4. The ϵ
expansion of all the related critical exponents are determined toOðϵ4Þ. For instance the value for Δϕ agrees
with recent conformal bootstrap estimates in 5 and 5.95 dimensions. The renormalization group functions
are also provided at four loops for the group E6.
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I. INTRODUCTION

The mid 1980s saw a revolution in our understanding of
two dimensional field theories due to the development and
classification of conformal field theories, [1]. The extension
beyond strictly two dimensions has not been as straightfor-
ward mainly due to the different structure of the underlying
conformal group in two dimensions and d > 2 where d is
the spacetime dimension. One recent development which is
very promising is the so-called conformal bootstrap pro-
gram [2–5], which extended original ideas on higher
dimensional conformal theories, [6–12]. Based on the
earlier work of [2], the conformal bootstrap has led to a
new way of estimating critical exponents in field theories in
d > 2. One primary example of the bootstrap success is in
the three dimensional Ising model, [4], where estimates of
exponents are competitive with other approaches such as
strong coupling expansions, high temperature expansion
and the ϵ-expansion derived from perturbative renormali-
zation group functions. A comprehensive review and
summary of the results from these methods is given in
[13]. A topic which has subsequently been part of this
development is the study of scalar field theories at the
Wilson-Fisher fixed point in dimensions greater than four.
In [14,15] it was demonstrated that OðNÞ ϕ4 theory could
be extended into the 4 < d < 6 range of spacetime dimen-
sions and was in the same universality class as the OðNÞ
scalar ϕ3 theory which is perturbatively renormalizable in
six dimensions. As well as the application of exact and
functional renormalization group methods to this OðNÞ
theory, conformal bootstrap studies also ensued with the
main focus being the five dimensional theory [16–22]. For
instance, there has been a debate as to where the boundary
of the conformal window, akin to that determined by the
Banks-Zaks fixed point in gauge theories [23] actually is.
Bootstrap and functional renormalization group methods
have yet to arrive at a consensus for even the ballpark area
for the conformal window boundary Ncr [16–22]. Some

bootstrap approaches find a low value for Ncr but others
suggest a value in keeping with the estimates from the ϵ
expansion at four loops [14,15,24], which is in the
neighborhood of N ¼ 400. For instance, this value is not
inconsistent with the mixed correlator bootstrap estimate of
[22]. While such a discrepancy between different methods
for Ncr has yet to be resolved what is not in question is that
critical exponent estimates are in broad agreement. This is
reassuring as ultimately if all methods had access to tools to
refine their computations then they ought to agree precisely.
While the bootstrap debate to a degree has centered on

quantum field theories with a classical Lie group symmetry,
a recent study has concentrated on the exceptional group
F4, [25], as well as a brief look at the case of E6 symmetry.
This was partly to complement the study of the d ¼ 6 − 2ϵ
dimensional infrared stable fixed point with an OðNÞ
symmetry which can access the five dimensional theory.
Clearly the issue of a conformal window is absent in the F4

context in the sense that there is no range of a group
parameter for which there is a Banks-Zaks type fixed point.
However, [25] also provided another forum to explore the
conformal bootstrap technology. Indeed in [25] the renorm-
alization group functions for the six dimensional cubic F4

symmetric field theory were determined to three loops in
the modified minimal subtraction (MS) scheme. These
were derived from the earlier results of [24,26,27]. One
interesting outcome of [25] was the estimate for the field
anomalous dimension in d ¼ 5.95 dimensions which was
in precise agreement with that of the three loop ϵ expansion
computed in perturbation theory. The study in d ¼ 5
dimensions was less clear in that the three loop estimate
appeared to be out of line with that from the conformal
bootstrap. While it was suggested this was due to non-
perturbative effects [25], one way to clarify this would be to
extend the three loopF4 perturbative renormalization group
functions to four loops. This is the purpose of this article.
We will determine the β-function and field and mass
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anomalous dimensions to four loops in the MS scheme.
However, as the bootstrap study in [25] involved other ϕ2-
type operators we will compute their anomalous dimensions
to four loops aswell. Their one loop termswere given in [25].
These extra operators are variants of the mass operator but in
the 26 and 324 representations ofF4. They are required in the
application of the operator product expansion decomposition
of the product of fields into conformal primary operators in
order to set up equations which the bootstrap technology
solves. It turns out that having the critical exponents
associated with these operators to the same level of accuracy
gives insight into the interpretation of the estimate for the
d ¼ 5 dimensional exponent for the field as well as the ϕ2-
type operators. Indeed there is a suggestion that perturbative
results from the underlying renormalization group functions
could be used in future bootstrap studies as an aid or guide.
For instance, in the F4 case the exponent estimates derived
from the ϵ expansion determine the order the operators
appear in the spectrum in relation to increasing value. In
addition we will provide the same renormalization group
functions to four loops for other Lie groups in the familywith
underlyingF4 symmetry aswell as the exceptional groupE6.
The article is organized as follows. We briefly recap the

key aspects of the cubic scalar field theory in six dimensions
upon which our computations are based in Sec. II. This
includes the definition of theϕ2-type operators and an outline
of the method we used to efficiently determine their four
loop anomalous dimensions. To achieve this we need to use
properties of theF4 Lie algebra in order to evaluate the group
factors associated with each Feynman graph. This is dis-
cussed in Sec. III prior to the presentation of the renormal-
ization group functions in Sec. IV. Estimates for the critical
exponents are also given there for the two specific dimen-
sions of interest. SectionVis devoted to the same analysis for
the group E6 while we provide conclusions in Sec. VI. An
appendix records thevarious critical exponents for the family
of groups with related F4 symmetry.

II. BACKGROUND

We begin by briefly recalling the necessary properties of
the cubic scalar field theory in six dimensions. Our
massless Lagrangian is

L ¼ 1

2
ð∂μϕ

iÞ2 þ g
6
dijkϕiϕjϕk ð2:1Þ

where dijk is totally symmetric and the group indices have
the range 1 ≤ i ≤ N. We use the same coupling constant
conventions as [24]. (As an aside we note the work of [28]
where the exponent η of the single field ϕ3 theory was
computed directly using conformal bootstrap methods of
[29] and can be regarded as a check on the results of [24].)
The mass operator

O ¼ 1

2
ϕiϕi ð2:2Þ

has been omitted as the new aspect of the renormalization
of (2.1) here is that we will consider a set of ϕ2-type
operators in different group representations and compute
their anomalous dimensions to four loops. The anomalous
dimension of one element of this set of operators is
equivalent to that of O which is already known to four
loops. To be more specific, in order to build the various
operators in a representation of F4, there are five indepen-
dent combinations of products of the group tensors δij and
dijk with four free indices. These are δijδkl, δikδjl, δilδjk,
dikpdjlp and dilpdjkp. The additional product of dijpdklp is
not independent due to the F4 4-term relation. The various
linear combinations of these tensors which correspond to
projectors onto the F4 representations were given in [30].
These lead to the set of rank 2 ϕ2-type operators

OðRÞ
ij ¼ 1

2
PðRÞ

ijklϕ
kϕl ð2:3Þ

where

Pð1Þ
ijkl ¼

1

N
δijδkl; Pð26Þ

ijkl ¼ dijpdklp;

Pð324Þ
ijkl ¼ T2

2

�
δikδjl þ δilδjk −

2

N
δijδkl

�
− dijpdklp;

Pð52Þ
ijkl ¼

8

½N þ 10�
�
T2

2
½δilδjk − δikδjl�

þ ½N þ 2�
8

½dilpdjkp − dikpdjlp�
�
;

Pð273Þ
ijkl ¼ ½N þ 2�

½N þ 10�
�
T2

2
½δilδjk − δikδjl�

− dilpdjkp þ dikpdjlp

�
ð2:4Þ

are the projectors in F4 [25,30]. Consequently the anoma-

lous dimensions of O and Oð1Þ
ij are equivalent. Also the

anomalous dimensions for the 52 and 273 representations
are immediately zero since the operator 1

2
ϕkϕl is symmetric

whereas the respective projectors are antisymmetric in the
indices k and l. So our focus here will be on establishing the
four loop anomalous dimensions of the symmetric 26 and
324 representations of F4.
To determine the four loop anomalous dimensions of these

operators, we follow the same method as outlined in [24].
First, to renormalize an operator which does not mix, it is
inserted into theGreen’s function hϕiðpÞOðRÞ

kl ðqÞϕjð−p−qÞi
where the external momenta p and q flow in through the
external legs. Then evaluating the constituent Feynman
graphs, the renormalization constant for the operator is
deduced from the poles in the regulator. In this paper we
have used dimensional regularization in d ¼ 6 − 2ϵ where ϵ
is the regularizing parameter. Moreover we will use the MS
scheme to define the renormalization constants. While this
outlines the essence of the standard operator renormalization
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procedure for the renormalization of the ϕ2-type operators
defined from (2.1), there are several technical shortcuts which
allowus to extract the four loop renormalization constants. As
the operators do not involve derivatives, the insertion in the
Green’s function can be at zero momentum. If one was
considering the renormalization of the mass operator in four
dimensions then this nullificationwould be problematic. This
is because the Feynman integrals would contain 1=ðk2Þ2,
where k is a loop momentum, which is infrared divergent.
In six dimensions, however, such a double pole propagator in
an integral is infrared safe. So inserting the ϕ2-type operators
at zero momentum will not corrupt the emergent operator
renormalization constant with infrared divergences.
Therefore we have relegated the exercise of renormalizing

OðRÞ
ij in effect to oneof evaluating a 2-point function.As noted

in [24] this could involve 540 Feynman diagrams to deter-
mine, for instance, the nullified 3-point function. However,
for the renormalization of O the Green’s function
hϕiðpÞOð0Þϕjð−pÞi was generated from the graphs of the
ϕi 2-point function and we followed the same process here.
For each graph of theϕi 2-point function one applies themap

δij
k2

↦
δij
k2

þ m2

2ðk2Þ2 ½P
ðRÞ
ijkele

þ PðRÞ
ijleke

� ð2:5Þ

to each propagator where we have not made any assumptions
on the symmetry properties of the projection tensor.
The particular combination which appears derives from the

Feynman rule forOðRÞ
ij . The quantitym is not a mass as such

but a counting parameter. After the substitution has been
made, one truncates the graphs by retaining terms up to and
includingOðm2Þ only. Terms higher inm2 would correspond
tomore than one insertion of the operator and correspond to a
Green’s function we are not interested in. The indices ke and
le are those associatedwith the external indices of theoperator
insertion. The advantage of using this technique to generate
the particular Green’s function is that it is straightforward to
implement within our automatic Feynman diagram calcula-
tion. The graphs for theϕi 2-point function are generatedwith
the package QGRAF [31] and converted into the syntax of the
symbolic manipulation language we use which is FORM and
its multithreaded version TFORM [32,33]. As the computation
we performed to determine the anomalous dimensions of the
26 and324 representations ofOðRÞ used the sameprograms as
that for O, we refer the interested reader to [24] for the
technical details where the use of the Laporta algorithm [34]
and its implementation in REDUZE [35,36] is discussed in
depth. The only major difference is that we have had to
develop a FORMmodule to handle the group theory associated
with the F4 tensor dijk.

III. F4 GROUP THEORY

We devote this section to the mechanics of finding the
values for the group invariants which appear in the ϕ3

theory renormalization to four loops inclusive. These were
defined in [26,27] to three loops and the four loop ones
were introduced in [24]. We use the notation introduced in
the latter and for completeness we note that they are

dii1i2dji1i2 ¼ T2δ
ij;

dii1i2dji1i3dki2i3 ¼ T3dijk;

dii1i2dji3i4dki5i6di1i3i5di2i4i6 ¼ T5dijk;

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i6i9di7i8i9 ¼ T71dijk;

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i8i9di6i7i9 ¼ T72dijk;

dii1i2dji3i4dki5i12di1i5i6di2i7i8di3i9i12di4i7i10di6i8i11di9i10i11 ¼ T91dijk;

dii1i2dji3i4dki11i12di1i5i6di2i7i8di3i5i9di4i7i10di6i8i11di9i10i12 ¼ T92dijk;

dii1i2dji3i4dki6i12di1i5i6di2i7i8di3i5i9di4i7i10di8i11i12di9i10i11 ¼ T93dijk;

dii1i2dji3i4dki5i12di1i5i6di2i7i8di3i9i12di4i10i11di6i7i10di8i9i11 ¼ T94dijk;

dii1i2dji3i4dki8i12di1i5i6di2i7i8di3i5i9di4i10i11di6i7i10di9i11i12 ¼ T95dijk;

dii1i2dji3i4dki11i12di1i3i5di2i6i7di4i6i8di5i9i10di7i9i11di8i10i12 ¼ T96dijk;

dii1i2dji3i4dki5i12di1i5i6di2i7i8di3i9i12di4i7i10di6i10i11di8i9i11 ¼ T97dijk;

dii1i2dji3i4dki6i12di1i5i6di2i7i8di3i5i9di4i7i10di8i9i11di10i11i12 ¼ T98dijk;

dii1i2dji3i4dki11i12di1i5i6di2i7i8di3i5i9di4i7i10di6i10i11di8i9i12 ¼ T99dijk: ð3:1Þ

In that article values were derived for certain groups and it transpired that several subsets of T9i had the same values. We do
not assume at the outset that the same feature arises for either F4 or E6 which is considered later.

F4 SYMMETRIC ϕ3 THEORY AT FOUR LOOPS PHYSICAL REVIEW D 95, 065030 (2017)

065030-3



As the first stage in the extraction of the four loop
renormalization group functions for the F4 symmetric case,
we recall basic properties of the tensor dijk for this specific
group. From [25,30] the 4-term relation is

diji1dkli1 þ diki1djli1 þ dili1djki1

¼ ½δijδkl þ δikδjl þ δilδjk� 2T2

½N þ 2� ð3:2Þ

where we retain T2 for completeness in contrast to [25].
From this we can derive an expression for the group theory
value of a one loop box graph which we use extensively
throughout. Although the same relation was given in [30]
our derivation differs slightly from that given in [25,30] but
may be useful for constructing parallel expressions for the
group theory associated with higher point one loop graphs.
Contracting (3.2) with djprdkqr produces

dii1i2dji3i2dki1i4dli3i4 þ dii1i2dji3i2dki3i4dli1i4

¼ ½diki1djli1 þ dili1djki1 � 2T2

½N þ 2� þ δijδkl
2T2

2

½N þ 2�

þ diji1dkli1
½N − 2�T2

2½N þ 2� ð3:3Þ

after relabeling. We have used dijj ¼ 0 which follows from
contracting (3.2) with dijp. The two terms on the left-hand
side of (3.3) represent two permutations of the indices on a
one loop box diagram. If we define the tensor

Bijkl ¼ dii1i2dji3i2dki1i4dli3i4 ð3:4Þ

to denote the group theory associated with a one loop box
integral and the right-hand side of (3.3) formally by Cijkl

then (3.3) becomes

Bijkl þ Bijlk ¼ Cijkl: ð3:5Þ

By permuting the indices j → k, k → l and l → j twice we
obtain two other relations which are

Bijlk þ Bikjl ¼ Ciklj; Bikjl þ Bijkl ¼ Ciljk; ð3:6Þ

where we have used Bijkl ¼ Bilkj which follows from the
definition of Bijkl. These three relations, (3.5) and (3.6),
involve the three independent ways of labeling a one loop
box topology and hence the equations can be represented
by a 3 × 3 matrix where the entries are either 0 or 1.
Inverting this matrix then allows one to obtain the decom-
position of a box topology into tensors involving fewer
products of dijk tensors which is [25,30]

dii1i3dji2i3dki2i4dli1i4 ¼ ½δijδkl − δikδjl þ δilδjk� T2
2

½N þ 2�

þ ½diji1dkli1 þ dili1djki1 � ½N − 2�T2

4½N þ 2�

− diki1djli1
½N − 10�T2

4½N þ 2� ð3:7Þ

where the right-hand side is derived from Cijkl and its
above permutations. The result is equivalent to that
produced in [30] using a symmetrization and antisymmet-
rization method. Being equipped with this has allowed us to
evaluate all the group invariants of (3.1) aside from T2.
Its value will not be set to unity until later. We find

T3 ¼−½N − 2� T2

2½Nþ 2� ;

T5 ¼−½N2− 10N − 16� T2
2

2½Nþ 2�2 ;

T71 ¼ ½N3 − 3N2þ 80Nþ 100� T3
2

4½Nþ 2�3 ;

T72 ¼−N½N − 2�½N − 10� T3
2

8½Nþ 2�3 ;

T91 ¼ ½N − 2�½N3þ 18N2þ 204Nþ 152� T4
2

16½Nþ 2�4 ;

T92 ¼ T96 ¼ T98

¼−½N − 2�½N3 − 24N2þ 36Nþ 80� T4
2

8½Nþ 2�4 ;

T93 ¼ T95 ¼ T97 ¼N½N − 2�½N2− 24Nþ 12� T4
2

16½Nþ 2�4 ;

T94 ¼−½N4− 14N3− 12N2− 616N − 672� T4
2

8½Nþ 2�4 ;

T99 ¼ ½N − 2�½N3− 27N2þ 54Nþ 72� T4
2

4½Nþ 2�4 : ð3:8Þ

As a check we have reproduced the expressions for the
invariants used in the three loop analysis of [25]. Those at
four loops, T9n, are new. The only one where we could not
directly reduce the invariant using (3.7) was T99. This was
because all the one loop subgraphs are pentagons and there
are no boxes present. Instead we manufactured boxes by
first applying the 4-term relation (3.2). An interesting
feature emerges in (3.8). Setting N ¼ 2 in (3.8) the only
nonzero invariants are T5, T71 and T94 which all evaluate to
unity. It transpires that for the exceptional group E6, which
we consider later, these are also the only nonzero invariants
present in the renormalization group functions. Although
their values will not be unity in that group. As we will be
concentrating on the N ¼ 26 representation of F4 we note
that the specific values we used are
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T2 ¼ 1; T3 ¼ −
3

7
; T5 ¼ −

25

98
; T71 ¼

277

1372
; T72 ¼ −

39

686
; T91 ¼

825

9604
;

T92 ¼ T96 ¼ T98 ¼ −
111

9604
; T93 ¼ T95 ¼ T97 ¼

39

9604
; T94 ¼ −

727

19208
; T99 ¼

75

9604
: ð3:9Þ

Here we have assumed T2 ¼ 1 like [25] for the purpose of comparing our renormalization group functions with that
article.

IV. F4 RENORMALIZATION GROUP FUNCTIONS

Before examining the consequences of the four loop renormalization group functions for critical exponent estimates we
first record the anomalous dimensions for the ϕ2-type operators in the 26 and 324 representations of F4. These result from
the method outlined in Sec. II. For Oð26Þ

ij we have (see Supplemental Material [37])

γOð26Þ ðgÞ ¼−
T3

2
g2þ½−7T2T3þ 18T2

3þ 12T5�
g4

48

þ½396T2T2
3− 119T2

2T3þ 198T2T5þ 486T3
3þ 2160ζ3T3T5− 2556T3T5− 864T71− 2592ζ3T72þ 864T72�

g6

1728

þ½1728ζ3T3
2T3− 36961T3

2T3− 15552ζ3T2
2T

2
3þ 188556T2

2T
2
3þ 48492T2

2T5þ 23472T2T3
3þ 964224ζ3T2T3T5

− 326592ζ4T2T3T5 − 820800T2T3T5− 233280T2T71− 1073088ζ3T2T72þ 419904ζ4T2T72þ 233280T2T72

þ 933120ζ3T4
3− 1502712T4

3 − 4157568ζ3T2
3T5þ 933120ζ4T2

3T5þ 3381696T2
3T5þ 2737152ζ3T3T71

− 7464960ζ5T3T71þ 3877632T3T71þ 3048192ζ3T3T72−1119744ζ4T3T72− 3877632T3T72− 653184ζ3T2
5

þ 660960T2
5þ 3732480ζ3T91− 3732480ζ5T91þ 373248T91þ 3732480ζ3T98− 3732480ζ5T98−746496ζ3T99

þ 933120ζ5T99þ 1866240ζ3T92− 1866240ζ5T92− 4354560ζ3T93þ 6220800ζ5T93þ 1119744ζ3T94

− 373248T94− 6096384ζ3T95þ 8709120ζ5T95þ 3732480ζ3T96− 3732480ζ5T96− 2612736ζ3T97

þ 3732480ζ5T97�
g8

746496
þOðg10Þ ð4:1Þ

in the MS scheme where ζðzÞ is the Riemann zeta function. We have been able to determine this without reference to
specific F4 related group identities such as (3.2) and (3.7). In other words to four loops the combination of dijk tensors in
each graph could be written in terms of one of the group invariants of (3.1). Therefore (4.1) can be used for the non-F4

symmetric problems discussed in [24]. The situation for the remaining ϕ2-type operator is that we have had to use F4 based
identities as noted earlier. So the four loop anomalous dimension is not expressed in terms of the Ti invariants of (3.1) and
can only be used in the F4 context. In the MS scheme we found

γOð324Þ ðgÞ ¼ −
g2

½N þ 2� þ ½5N þ 22� g4

24½N þ 2�2 − ½1728ζ3N2 − 1465N2 − 8640ζ3N þ 13724N þ 7316� g6

864½N þ 2�3
þ ½3290976ζ3N3 þ 641520ζ4N3 − 5870880ζ5N3 þ 1604411N3 − 48224160ζ3N2 − 2426112ζ4N2

þ 76515840ζ5N2 − 17175342N2 þ 105473664ζ3N þ 1353024ζ4N − 165939840ζ5N þ 52790148N

þ 2595456ζ3 − 3359232ζ4 − 31726080ζ5 þ 53133016� g8

373248½N þ 2�4 þOðg10Þ: ð4:2Þ

The general expressions for γϕðgÞ, γOðgÞ and βðgÞ were given earlier in [24] in terms of the group invariants Ti and we do
not reproduce them here for F4 as these were given in [25] at three loops. Instead we have evaluated them for the case when
N ¼ 26 and together with (4.1) and (4.2) we have
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βðgÞ ¼ 1

4
ðd − 6Þg − 19

56
g3 −

1997

14112
g5 þ ½3301747 − 3383856ζ3�

g7

14224896

þ ½1259178385 − 596452464ζ3 þ 192879792ζ4 − 926795520ζ5�
g9

1194891264
þOðg11Þ;

γϕðgÞ ¼ −
1

12
g2 −

149

3024
g4 − ½32400ζ3 þ 78731� g6

3048192

þ ½3121981 − 1958160ζ3 − 256176ζ4 − 1595520ζ5�
g8

28449792
þOðg10Þ;

γOðgÞ ¼ −
1

2
g2 −

79

336
g4 − ½16848ζ3 þ 34631� g6

84672

þ ½230779145 − 258668208ζ3 þ 21403440ζ4 − 89579520ζ5�
g8

256048128
þOðg10Þ;

γOð26Þ ðgÞ ¼ 3

14
g2 þ 53

784
g4 þ ½5481ζ3 − 6689� g6

24696

þ ½236544192ζ3 − 104509440ζ4 þ 413138880ζ5 − 531246791� g8

597445632
þOðg10Þ;

γOð324Þ ðgÞ ¼ −
1

28
g2 þ 19

2352
g4 þ ½78275 − 117936ζ3�

g6

2370816

þ ½218652912ζ3 þ 75524400ζ4 − 436000320ζ5 þ 140736511� g8

1792336896
þOðg10Þ; ð4:3Þ

using (3.9). Numerically we have

βðgÞ ¼ −0.500000ϵg − 0.339286g3 − 0.141511g5 − 0.053838g6 − 0.175793g8 þOðg11Þ;
γϕðgÞ ¼ −0.083333g2 − 0.049272g4 − 0.038606g6 − 0.040898g8 þOðg10Þ;
γOðgÞ ¼ −0.500000g2 − 0.235119g4 − 0.648187g6 − 0.585346g8 þOðg10Þ;

γOð26Þ ðgÞ ¼ 0.214286g2 þ 0.067602g4 − 0.0040705g6 þ 0.114445g8 þOðg10Þ;
γOð324Þ ðgÞ ¼ −0.035714g2 þ 0.008078g4 − 0.026780g6 þ 0.018529g8 þOðg10Þ; ð4:4Þ

where the four loop terms are roughly the same magnitude
as the lower order ones. The three loop values for the first
three renormalization group functions are in agreement
with [25]. Clearly there is no sign of a Banks-Zaks
fixed point to four loops with our coupling constant
conventions. With the coupling constant conventions of
[25] there are fixed points for the two and four loop
β-functions but only complex solutions to βðgÞ ¼ 0 at
three loops. So there is no robust Banks-Zaks fixed point
which would in fact be an asymptotically safe solution if it
had existed.
Equipped with these renormalization group functions

we can evaluate the ϵ expansion of the related critical
exponents where the fixed point, gc, is defined by
βðgcÞ ¼ 0. In order to compare with the results of [25]

we use the notation of that article but define the
exponents with respect to the conventions used here.
We recall [25]

Δϕ ¼ 1

2
d − 1þ γϕðgcÞ;

ΔOðRÞ ¼ d − 2þ 2γϕðgcÞ − 2γOðRÞ ðgcÞ;
Δϕ3 ¼ dþ β0ðgcÞ; ð4:5Þ

where γOð1Þ ðgcÞ≡ γOðgcÞ. Solving for gc and evaluating
these exponents we find
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Δϕ ¼ 1

2
d − 1þ 0.122807ϵ − 0.031524ϵ2

þ 0.042483ϵ3 þ 0.122722ϵ4 þOðϵ5Þ;
ΔOð1Þ ¼ d − 2 − 1.228070ϵþ 0.052388ϵ2 − 3.414275ϵ3

− 3.252345ϵ4 þOðϵ5Þ;
ΔOð26Þ ¼ d − 2þ 1.122807ϵ − 0.031524ϵ2 þ 0.042483ϵ3

þ 0.122722ϵ4 þOðϵ5Þ;
ΔOð324Þ ¼ d − 2þ 0.140351ϵ − 0.162835ϵ2 − 0.172846ϵ3

− 0.472810ϵ4 þOðϵ5Þ;
Δϕ3 ¼ dþ 2ϵ − 1.229301ϵ2 − 0.132727ϵ3

− 8.882515ϵ4 þOðϵ5Þ; ð4:6Þ

where the terms to three loops of Δϕ, ΔOð1Þ and Δϕ3 are in
agreement with [25]. Also the coefficients of Δϕ and
ΔOð26Þ are consistent with Oð26Þ being a conformal
descendant of ϕi. Surprisingly the four loop correction
to Δϕ3 is large. One of the main features of [25] was the
comparison of the exponent Δϕ with the value obtained
from the conformal bootstrap analysis for dimensions
d ¼ 5 and 5.95. In Tables I and II we have provided
estimates for Δϕ using Padé approximants at successive
loop orders in order to gauge convergence. In Table I we
note the ½0; l� estimate at the l-loop order. The results for
d ¼ 5.95 dimension appear to converge while those for
d ¼ 5 have not converged as well but do appear to have
settled to a value in the neighborhood of 1.56. In
compiling the Padé analysis, what was apparent was
that the estimates from the other ½p; q� approximants
were not dissimilar to the ½0; l� ones. Therefore to
improve estimates we calculated the average of all the
approximants at each loop. These are presented in
Table II and indicate a four loop value closer to 1.55.
Given these estimates for Δϕ we have repeated the same

Padé analysis for the ϕ2-type operators in the 26 and 324
representations as these are the only cases with nonzero

critical exponents. The results are presented in Tables III
and IV where we gather the 5 and 5.95 dimension estimates
in each table. The former Table has the values for the ½0; l�
Padé approximants at l-loops and the latter has the average
of the Padé’s at each loop order. For 5.95 dimensions the
exponents agree to at least four decimal places for each of
the representations. In five dimensions the convergence is
not as fast but again there appears to be a consistent value to
two decimal places. In terms of comparing the exponent
values in different representations in a particular dimension
the operators are virtually degenerate in 5.95 dimensions.
The discrepancy between them is around 0.5%. As the
spacetime dimension decreases, this effective degeneracy is
lifted. It transpires that the critical exponent for the 324
representation, ΔOð324Þ , is lower than that of the 26 repre-
sentation, ΔOð26Þ . Moreover the former decreases more
rapidly than the one for the 26 representation as the
spacetime dimension decreases. A similar feature was
evident in the analysis of [25].
It is now instructive to compare our four loop estimates

with the conformal bootstrap results of [25]. In that article
plots were given of the allowed and excluded regions of the
parameter space defined by Δϕ (x axis) and what was
termed Δ2nd

26 (y axis) in the notation of [25]. In the bootstrap
approach the location of a kink in the boundary of these two
regions is the point where one can read off an estimate for
Δϕ for example from the x-coordinate. First, the plot of [25]
in 5.95 dimensions, for instance, has a well-defined kink
with an x-coordinate value of 1.978. This is in accordance
with the three loop ϵ series estimates provided in [25]. Our
new four loop values in Tables I and II are not inconsistent
with this. In addition, what is apparent from the plot of [25]
in this spacetime dimension is that the y-coordinate
corresponds to a value fractionally shy of 4. This is the
estimate given in [25] for the quantity Δ2nd

26 . This is not
dissimilar to the estimates of both ΔOð26Þ and ΔOð324Þ shown

TABLE I. ½0; l� Padé approximants for F4 exponent Δϕ at
l-loops.

d 2 loop 3 loop 4 loop

5 1.5731551 1.5613412 1.5639085
5.95 1.9780535 1.9780512 1.9780512

TABLE II. Average of Padé approximants at each loop order for
F4 exponent Δϕ.

d 2 loop 3 loop 4 loop

5 1.5632667 1.5589076 1.5516367
5.95 1.9780520 1.9780511 1.9780512

TABLE III. ½0; l� Padé approximants for F4 exponent ΔOðRÞ at
l-loops in dimension d.

d R 2 loop 3 loop 4 loop

5 26 3.5598518 3.5585128 3.5648212
324 3.0848268 3.0317658 2.9986463

5.95 26 3.9780513 3.9780511 3.9780512
324 3.9534156 3.9534045 3.9534041

TABLE IV. Average of Padé approximants at each loop order
for F4 exponent ΔOðRÞ at l-loops in dimension d.

d R 2 loop 3 loop 4 loop

5 26 3.5566150 3.5578930 3.5509073
324 3.0562147 3.0062392 3.0267278

5.95 26 3.9780509 3.9780511 3.9780512
324 3.9534112 3.9534043 3.9534041
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in Tables III and IV. Indeed our four loop estimates show a
small change from the one loop estimates given in Table 1
of [25] for these exponents.
The situation for the conformal bootstrap analysis in five

dimensions is different. While there is an allowed and
excluded region in the corresponding plot of [25] there
are no sharp kinks or boundaries. Instead there are what
was termed weak kinks [25]. From Figure 4 of [25] the
kinks have slope changes at about 1.55 and 1.6 in the
x-coordinate. Indeed the latter value is what was quoted for
the bootstrap estimate for Δϕ. However, from Table II the
average four loop Padé estimate for Δϕ falls closer to the
value of 1.55 rather than the quoted value of 1.6 in [25].
Indeed it was noted in [25] that this latter value was not in
full agreement with the three loop perturbation theory used
in [25]. Our four loop result shows that the series for Δϕ is
not diverging as is apparent from Table II. Put another way
if one regards the lower kink of Fig. 4 of [25] as the one to
be used for estimating exponents then the perturbative
result is not inconsistent with the bootstrap technology. To
support this point of view one can examine the location of
the first weak kink or lower knuckle of Fig. 4 in [25] with
respect to the y axis. This is roughly at 3.1 [25]. Our
estimates for ΔOð324Þ are in the region of 3.01 which appears
to be consistent with the y axis value of Fig. 4 in [25]. For
the 26 representation we find an estimate for the ΔOð26Þ

exponent of around 3.55. This is lower than the upper
knuckle of the five dimensional plot in [25] which appears
closer to 3.9. However, the three curves presented in Fig. 4
of [25] have not converged to the same accuracy as those in
the neighborhood of the lower knuckle in 5 dimensions or
indeed that for 5.95 dimensions. Moreover in the latter
spacetime dimension it is the lower corner of the plot of
Fig. 4 of [25] which gives the dimension of either ϕ2-type
operator. That should also be the case in 5 dimensions in
order to have a consistent point of view. What is interesting
is that the conformal bootstrap analysis appears to give
relatively accurate data on the exponent of the operator
with the lowest value. However if one wishes to marry the
information derived from perturbation theory here with the
data from the 5 dimensional bootstrap analysis then one
would have to regard the exponent estimate from the lower
kink as corresponding to that of the ϕ2-type operator in the
324 representation.

V. E6

For the remaining part of our study of ϕ3 theory with
exceptional symmetry, we concentrate on the group E6

where the fundamental representation is 27 and the adjoint
is 78. As E6 is a complex group then the Lagrangian for a
cubic theory with E6 symmetry involves fields ϕi and ϕ̄i

and the tensors dijk and dijk. We take the convention that
the conjugate to dijk is dijk similar to [25]. Therefore the E6

symmetric Lagrangian is

L ¼ ∂μϕ̄i∂μϕi þ g
6
ðdijkϕiϕjϕk þ dijkϕ̄iϕ̄jϕ̄kÞ: ð5:1Þ

This is similar in structure to the cubic theory with SUð3Þ ×
SUð3Þ symmetry considered in [38,39]. Moreover, the
Feynman graphs generated from (5.1) share properties
similar to those of the SUð3Þ × SUð3Þ theory. The main
one is that there are no Feynman diagrams with subgraphs
with an odd number of legs. So for instance there is no one
loop triangle graph for the renormalization of the coupling
constant. It is straightforward to establish this by realizing
that the two vertices of (5.1) are what is termed directed.
Either all the arrows indicating the charge flow on each
vertex line points to the interaction point itself or points
away. Thus it is easy to see that in a one loop triangle graph
the lines cannot be decorated with arrows which point to or
from all the vertices. To reflect this aspect of the properties
of the E6 Lagrangian the indices of the tensor associated
with the coupling constant are either raised or lowered [25].
This convention will only be applied in this section.
Moreover we will use upper and lower group indices on
the fields themselves in keeping with the notion of
distinguishing that there is a flow of charge in contrast
to F4.
To construct the four loop E6 renormalization group

functions we need to determine the values of the group
invariants. The properties of the E6 Lie algebra differ from
those of F4 but we will use the same algorithm as before to
derive an identity for the one loop box akin to (3.7). We
base our derivations on E6 group properties derived in [40]
which used the more mathematical articles [41–44]. Further
background to the structure and properties of E6 can be
found in [30,45]. In [40] the convention for the product of
tensors was

dikldjkl ¼ 10δi
j; ð5:2Þ

which implies T2 ¼ 10. From this and identities derived in
[41–44] it was shown in [40] that

dii1i3d
ji2i3dki2i4d

li1i4 ¼ 5½δijδkl þ δi
lδk

j� − 4diki1d
jli1 :

ð5:3Þ

This is the E6 equivalent of the one loop box topology of
(3.7). Using this we have determined the values of all the
invariants of (3.1). Before recording the values, we note
that for topologies where at least one of the one loop
subgraphs has an odd number of external legs it is not
possible to decorate the lines consistently in such a way that
all the vertices have all arrows pointing in or out. In these
cases the invariant is set to zero as such Feynman graphs
would not be generated in the first place using, say, the
QGRAF package [31]. It transpires that to four loops
there are only three nonzero invariants aside from T2.
In summary the values are
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T2 ¼ 10; T5 ¼ −30; T71 ¼ 220; T94 ¼ −530 ð5:4Þ

after applying the box rule to (3.1).
It is a straightforward exercise to substitute these values in the expressions for the renormalization group functions which

have been expressed in terms of Ti to find

βðgÞ ¼ 1

4
ðd − 6Þg − 5

4
g3 þ 265

72
g5 þ 5½163183 − 19440ζ3�

g7

5184

þ 5½1044144ζ3 þ 32400ζ4 − 633600ζ5 þ 591527� g9

3456
þOðg11Þ;

γϕðgÞ ¼ −
5

6
g2 −

275

108
g4 þ 25½2699 − 3888ζ3�

g6

7776

þ 25½143119 − 9936ζ3 þ 6480ζ4 − 126720ζ5�
g8

5184
þOðg10Þ;

γOðgÞ ¼ −5g2 −
25

12
g4 −

9575

108
g6

þ 25½3401136ζ3 − 174960ζ4 − 10264320ζ5 þ 13869707� g8

46656
þOðg10Þ;

γOð27Þ ðgÞ ¼ −
15

2
g4 −

1155

8
g6 þ 1055½49 − 432ζ3�

g8

288
þOðg10Þ; ð5:5Þ

where there is no one loop contribution to the final
renormalization group function. Numerically we have

βðgÞ ¼ −0.500000ϵ − 1.250000g3 þ 3.680556g5

þ 134.852444g7 þ 1771.871166g9 þOðg11Þ;
γϕðgÞ ¼ −0.833333g2 − 2.546296g4 − 6.348371g6

þ 32.741763g8 þOðg10Þ;
γOðgÞ ¼ −5.000000g2 − 2.083333g4 − 88.657407g6

þ 3818.021497g8 þOðg10Þ;
γOð27Þ ðgÞ ¼ −7.500000g4 − 144.375000g6

− 1722.758521g8 þOðg10Þ: ð5:6Þ

In [25] it was noted that from the one loop β-function there
was a stable unitary fixed point which we confirm here
allowing for the different convention on the definition of
the sign of our coupling constant in (2.1). Compared to the
F4 β-function the coefficients of the E6 β-function increase
significantly with the loop order. This can be traced,
however, to the different values of T2 which is 10 for
E6 instead of unity for F4. If one rescaled g2 by a factor of
10 then the coefficients of βðgÞ would be comparable to
those of F4. In our coupling constant conventions the E6

case like F4 exhibits asymptotic freedom and to four loops
has a Banks-Zaks fixed point. At two, three and four loops
this is at g2 ¼ 0.339623, 0.083593 and 0.063944 respec-
tively. The latter values suggest convergence. At three loops
there is a fixed point for negative coupling which is not

present at two or four loops. If it had been present in those
cases then E6 could be a model with the property of
asymptotic safety.
In advance of a conformal bootstrap analysis we can now

provide the ϵ expansion of the related critical exponents at
the Wilson-Fisher fixed point at four loops. These are

Δϕ ¼ 1

2
d − 1þ 0.333333ϵ − 0.800000ϵ2 þ 8.044444ϵ3

− 84.333501ϵ4 þOðϵ5Þ;
ΔOð1Þ ¼ d − 2 − 3.333333ϵþ 3.777778ϵ2 − 76.971365ϵ3

þ 505.735425ϵ4 þOðϵ5Þ;
ΔOð27Þ ¼ d − 2þ 1.333333ϵ − 0.800000ϵ2 þ 8.044444ϵ3

− 84.333501ϵ4 þOðϵ5Þ;
Δϕ3 ¼ dþ 2ϵþ 2.355556ϵ2 − 74.593093ϵ3

þ 885.932572ϵ4 þOðϵ5Þ: ð5:7Þ

It transpires that the respective coefficients of the exponents
are much larger than their F4 counterparts. In effect what
this means is that estimates for E6 exponents from
perturbation theory may only be reliable for a value of d
relatively close to six.

VI. DISCUSSION

Our original aim was to extend the three loop analysis of
F4 symmetric scalar cubic theory in six dimensions to four
loops. Having achieved this we derived critical exponents
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for the field and ϕ2-type operators in various representa-
tions of F4 to the same order of precision. This is important
in the context of predictions from the conformal bootstrap
analysis of [25]. In that paper there was a suggestion that
the difference in the d ¼ 5 dimension estimate for Δϕ

compared to perturbative prediction was due to nonpertur-
bative effects. From the Padé analysis we noted that the
exponent derived from the Oðϵ4Þ correction was smaller
than the three loop result and, moreover, closer to that for
the bootstrap. Although in d ¼ 5 there was not as sharp an
estimate compared to the d ¼ 5.95 dimensional case. From
the perturbative side the estimates for the dimension two
operator exponents determined the order of their appear-
ance in the spectrum. Close to six dimensions the two
operators were effectively degenerate and the perturbative
estimate for their exponents was in sharp agreement with
[25]. For the lower dimensional case studied in [25] the
value recorded there for Δ2nd

26 was consistent with the
estimate for the ϕ2-type operator in the 324 representation
rather than that in the 26 representation. It would be
interesting to have a conformal bootstrap analysis for the
exceptional group E6. The observation of [25] that there
appears to be a stable infrared fixed point in five dimen-
sions seems to be confirmed. However, such a bootstrap
analysis could give further insight into the role of the
analogous ϕ2-type operator in E6. From properties of the
E6 group it would appear that there is no operator parallel to
that in the 324 representation of F4. Instead there is only the
27 one. In other words a conformal bootstrap analysis

should be able to estimate the E6 value for what would be
the exponent Δ2nd

27 accurately and then compare with the
four loop ϵ expansion. Equally the other groups in the F4

family can be analyzed by the bootstrap given that
perturbative results are now available to the same accuracy
as the F4 case itself.
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APPENDIX: EXPONENTS FOR
RELATED F4 GROUPS

While we have focused in the main text on the excep-
tional group F4, there are several other groups which have a
tensor dijk which satisfies the 4-term relation of (3.2) and

dijj ¼ 0; dikldjkl ¼ T2δ
ij: ðA1Þ

Using the Lie algebra classification notation, these are A1,
A2 and C3 [25,30], where A1 is also equivalent to B1.
Values of the critical exponents for ϕ3 theory based on
these symmetry groups can be deduced from the results of
Sec. IV by setting N ¼ 5, 8 and 14 respectively. Thus we
have extended the three loop results of [25] for each case
and found

Δϕ ¼ 1

2
d − 1þ 0.179487ϵþ 0.174885ϵ2 þ 1.446636ϵ3 þ 11.125264ϵ4 þOðϵ5Þ;

ΔOð1Þ ¼ d − 2 − 1.794872ϵ − 2.641683ϵ2 − 25.875476ϵ3 − 179.737315ϵ4 þOðϵ5Þ;
ΔOð5Þ ¼ d − 2þ 1.179487ϵþ 0.174885ϵ2 þ 1.446636ϵ3 þ 11.125264ϵ4 þOðϵ5Þ;
ΔOð9Þ ¼ d − 2 − 0.256410ϵ − 1.214990ϵ2 − 7.225638ϵ3 − 54.804917ϵ4 þOðϵ5Þ;
Δϕ3 ¼ dþ 2ϵ − 3.880342ϵ2 − 24.132914ϵ3 − 250.285961ϵ4 þOðϵ5Þ; ðA2Þ

for N ¼ 5 corresponding to A1. For N ¼ 8 which relates to the Lie algebra A2 we have

Δϕ ¼ 1

2
d − 1þ 0.151515ϵþ 0.041740ϵ2 þ 0.397533ϵ3 þ 2.024208ϵ4 þOðϵ5Þ;

ΔOð1Þ ¼ d − 2 − 1.515152ϵ − 0.959179ϵ2 − 10.049808ϵ3 − 38.922333ϵ4 þOðϵ5Þ;
ΔOð8Þ ¼ d − 2þ 1.151515ϵþ 0.041740ϵ2 þ 0.397533ϵ3 þ 2.024208ϵ4 þOðϵ5Þ;
ΔOð27Þ ¼ d − 2 − 0.060606ϵ − 0.521746ϵ2 − 1.853121ϵ3 − 9.180040ϵ4 þOðϵ5Þ;
Δϕ3 ¼ dþ 2ϵ − 2.389348ϵ2 − 7.729109ϵ3 − 65.712863ϵ4 þOðϵ5Þ: ðA3Þ

We note that the sign of the Oðϵ3Þ term of ΔOð1Þ differs from that given in [25] which we assume is a typographical error.
Finally, we find
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Δϕ ¼ 1

2
d − 1þ 0.133333ϵ − 0.011111ϵ2 þ 0.120049ϵ3 þ 0.437738ϵ4 þOðϵ5Þ;

ΔOð1Þ ¼ d − 2 − 1.333333ϵ − 0.244444ϵ2 − 5.098686ϵ3 − 10.110099ϵ4 þOðϵ5Þ;
ΔOð14Þ ¼ d − 2þ 1.133333ϵ − 0.011111ϵ2 þ 0.120049ϵ3 þ 0.437738ϵ4 þOðϵ5Þ;
ΔOð90Þ ¼ d − 2þ 0.066667ϵ − 0.260000ϵ2 − 0.520808ϵ3 − 1.816381ϵ4 þOðϵ5Þ;
Δϕ3 ¼ dþ 2ϵ − 1.611111ϵ2 − 2.094961ϵ3 − 20.962996ϵ4 þOðϵ5Þ; ðA4Þ

for C3 having set N ¼ 14. The dimensions of OðRÞ for R ≠ 1 are determined from the respective F4 expressions
for the 26 and 324 representations which were computed as functions of N. Our expressions for Δϕ, ΔOð1Þ

and Δϕ3 agree with the three loop ones given in the appendix of [25], aside from the one noted above, but the four loop
contributions are new. Also within our conventions, the coefficients in the ϵ expansion of the ϕ2-type operators derived from
the 26 representation of F4 are in accordance with Δϕ consistent with the relation to the conformal descendant operator.
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