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We study the three-dimensional UðNÞ Gross-Neveu and CPN−1 models in the canonical formalism with
fixed Uð1Þ charge. For large N, this is closely related to coupling the models to Abelian Chern-Simons
fields in a monopole background. We show that the presence of the imaginary chemical potential for the
Uð1Þ charge makes the phase structure of the models remarkably similar. We calculate their respective large
N free energy densities and show that they are mapped into each other in a precise way. Intriguingly, the
mapping of the free energies involves the Bloch-Wigner function and its generalizations introduced by
Zagier. We expect that our results are connected to the recently discussed 3d bosonization.
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I. INTRODUCTION

Physics in three dimensions is fascinating, physically
relevant, and largely experimentally testable. It is therefore
very useful to identify possible universal patterns in it,
which eventually might better organize our understanding
of the huge web of condensed matter systems. One such
recurrent pattern is 3d bosonization [1], via statistical
transmutation [2,3]. Remarkably, but perhaps expectedly,
3d bosonization has been very recently [4–7] connected to
another recurrent theme of 2þ 1 dimensional physics,
particle-vortex duality, e.g., [8]. At finite temperature,
various dualities between fermionic and bosonic matter
theories coupled to non-Abelian Chern-Simons have also
been recently discussed (see, for example, [9,10] and
references therein). Those works present a remarkable
progress in our understanding of three-dimensional phys-
ics, and its possible holographic higher-spin duals.
However, if the fermion-boson map is a fundamental

property of three-dimensional physics one may wonder
whether the presence of non-Abelian Chern-Simons gauge
fields is necessary to probe it. With this idea in mind, we
revisit the finite temperature phase structure of two three-
dimensional systems; the fermionic UðNÞ Gross-Neveu
model and the bosonic CPN−1 model. We study both
systems in the canonical formalism. This can be elegantly
done by introducing an imaginary chemical potential for
the Uð1Þ charge. Nevertheless, it seems that we cannot
completely forget about the Chern-Simons. The canonical
partition function of the systems is intimately related to
the partition function of the same systems coupled to an
Abelian Chern-Simons gauge field expanded around a
monopole background. For that, one arguably needs to
assume a suitable mean field approximation [11] as well as

a large N expansion. In such a case, the system’s Uð1Þ
charge density is associated to the Chern-Simons level.
It is well known that the above two models exhibit

interesting patterns of symmetry breaking at finite temper-
ature T. The Gross-Neveu model has a parity broken phase
at low temperatures, which disappears for a critical temper-
ature. On the other hand, while the CPN−1 model exhibits
the usual continuous symmetry breaking pattern at zero
temperature, the broken phase ceases to exist for T > 0 in
accordance to the Mermin-Wagner-Colleman theorem that
forbids continuous symmetry breaking at finite T for two-
dimensional systems. What instead happens is that when
the coupling is tuned to its critical value at T ¼ 0, then a
finite temperature scaling regime with a nonzero thermal
mass for the scalars emerges. Nevertheless, although these
models appear to have completely different finite temper-
ature phase structure, we show that this situation changes in
the presence of the imaginary chemical potential. For that,
we evaluate the canonical partition function of the models
for large N by a saddle point expansion to obtain the two
gap equations for the symmetry breaking order parameter
and for the charge density. We then observe that the two
sets of gap equations can be mapped into each other. As a
consequence, the fermionic system acquires a finite temper-
ature scaling regime, where a nonzero fermion condensate
is possible when the coupling is tuned to its critical value at
T ¼ 0. On the other hand, the bosonic system obtains an
symmetry-breaking phase at finite temperature. We claim
that the presence of the latter phase is not inconsistent with
the Mermin-Wagner-Coleman theorem since the system
has been now effectively anyonized and hence the broken
symmetry is quite possibly discrete.
Of particular interest are our results for the large N Uð1Þ

charge densities of the systems. These are given in terms of
the remarkable Bloch-Wigner function [12], and they turn
out to be purely imaginary except at two special values of
the chemical potential where they vanish. The latter
property gives rise to two different critical and Uð1Þ-
neutral vacua for each one of the models. The values of the
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free energy densities at these vacua exhibit a precise
fermion-boson duality, in accordance to expectations.
Finally, we calculate the on-shell large N free energy

densities of the systems and show that they can be written in
terms of a generalized Bloch-Wigner function introduced
by Zagier [13] (see also [14] for a recent discussion). The
results reveal the existence of a precise map between them.
We find that the sum of the free energy densities for values
of the imaginary chemical potential that differ by iπ is
given exactly by the Bloch-Wigner function.
In Sec. II we discuss some general aspects of three-

dimensional systems at imaginary chemical potential and
their relation to Abelian Chern-Simons theories coupled to
matter. In Sec. III we present our calculations for the gap
equations, the phase structure, and the free energy density
of our models. We conclude and raise a number of open
questions on Sec. IV. Finally, technical details can be found
in the Appendixes.

II. IMAGINARY CHEMICAL POTENTIAL FOR
Uð1Þ CHARGE AND CHERN-SIMONS THEORIES

A. Canonical formalism and imaginary
chemical potential

Consider a system at finite temperature T ¼ 1=β with
a global Uð1Þ charge operator Q̂. Its canonical partition
function can be formally calculated as the thermal average
over states of fixed Q̂ as

Zcðβ; QÞ ¼ Tr½δðQ − Q̂Þe−βĤ�: ð1Þ
We can normalize Zc by dividing with the thermal
partition function so that in the absence of charged states
Zcðβ; 0Þ ¼ 1. One generally expects that the eigenvalues Q
of the charge operator Q̂ are integers, in which case an
explicit representation for (1) can be written as

Zcðβ; QÞ ¼
Z

2π

0

dθ
2π

eiθQTr½e−βĤ−iθQ̂�

¼
Z

2π

0

dθ
2π

eiθQZgcðβ; μ ¼ −iθ=βÞ; ð2Þ

with Zgcðβ; μÞ being the grand canonical partition function
with imaginary chemical potential μ. The latter function
exhibits, in general, certain periodicity properties with
respect to θ that are intimately connected to the physics
of the underlying theory. For example, [15], in QCD-like
systems with a SUðNÞ non-Abelian gauge symmetry and Q̂
the fermion number operator, one expects that in the
confining phase the spectrum contains only color singlets.
In this case Q is a multiple of N and Zgcðβ; μÞ will be
periodic with a θ-period 2π=N. If however there is a phase,
e.g., at high temperatures, where fundamental particles
turn up in the spectrum, one might expect to find instead a
2πθ-period. Indeed, although the ZN symmetry of the pure

SUðNÞ Yang-Mills action appears to enforce the 2π=N
periodicity, one generically finds a more complicated
structure at high temperature, which may be attributed to
a deconfining transition [16].
Integrals like (2) may be evaluated by a saddle point

analysis. The saddle point equation is

iQ − β
∂
∂θFgcðβ;−iθ=βÞ ¼ 0; ð3Þ

where the grand canonical potential (i.e., free energy) is
βFgcðβ;−iθ=βÞ ¼ − lnZgcðβ;−iθ=βÞ. However, in most of
the physically relevant situations (i.e., charge conjugation,
CP invariance, etc.), the grand canonical partition function
is an even function of μ and hence of θ [17]. Therefore, real
solutions for Q would require imaginary θ and one returns
to the usual case of a real chemical potential.
Nevertheless, an interesting situation can arise if

Fgcðβ;−iθ=βÞ has one (or more) extrema for some real θ�.
In such a case, the canonical partition function of the system
in the absence of charged excitations (Q ¼ 0) is given to
leading order in some approximation scheme such as largeN
by the grand canonical partition function of the same system
at fixed imaginary chemical potential μ� ¼ −iθ�=β,

Zcðβ; 0Þ ≈ e−βFgcðβ;−iθ�=βÞ: ð4Þ
This is not inconsistent with the normalization of Zc since
fixing the imaginary chemical potential in a system at finite
temperature is tantamount to statistical transmutation [18,19].
Despite the absence of charged modes, the system described
by (4) is, in general, different from the initial one, as its
elementarydegrees of freedomwould obey different statistics.

B. Chern-Simons coupled to scalars and fermions
in a monopole background

It is well known [20] that when scalars and fermions
are coupled to a gauge field Aμ at finite temperature the
temporal component A0 is formally equivalent to having an
imaginary chemical potential. For example, consider Dirac
fermions in three Euclidean dimensions [23] coupled to an
Abelian Chern-Simons field at level k. The finite temper-
ature partition function is

Zfðβ; kÞ ¼
Z

½DAμ�½Dψ̄ �½Dψ � exp ½−Sfðψ̄ ;ψ ; AμÞ�;

ð5Þ

Sfðψ̄ ;ψ ; AμÞ ¼ −
Z

β

0

dτ
Z

d2x

�
ψ̄ð∂ − iAÞψ

þ i
k
4π

ϵμνρAμ∂νAρ þ � � �
�
; ð6Þ

where the dots denote the possible presence of fermionic
self interactions. We expand the CS field around a static
(i.e., τ-independent) monopole configuration Āμ [24]
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Aμ ¼ Āμ þ αμ; Āμ ¼ ð0; Ā1ðxÞ; Ā2ðxÞÞ;
αμ ¼ ðα0ðτÞ; α1ðτ; xÞ; α2ðτ; xÞÞ; ð7Þ

normalized as [25]

1

2π

Z
d2xF̄12 ¼ 1; F̄μν ¼ ∂μĀν − ∂νĀν: ð8Þ

Hence, (6) describes the attachment of k units of monopole
charge to the fermions. One then finds

Sfðψ̄ ;ψ ; AμÞ ¼ −
Z

β

0

dτ
Z

d2x

�
ψ̄ð∂ − iγiĀi − iγμαμÞψ

þ i
k
4π

ϵμνραμ∂ναρ þ � � �
�
− ik

Z
β

0

dτa0:

ð9Þ
At this point, we can think of performing the path integral
over the CS fluctuations projecting to a sector with fixed
total monopole charge. Within this sector, we assume the
existence of a mean field approximation such that the
spatial CS fluctuations compensate for the magnetic back-
ground hαii ¼ −Āi [11]. Probably, the validity of such an
approximation requires also a suitable large N limit, and it
would be interesting to clarify it further [26]. We then
obtain

Zfðβ; kÞ ¼
Z

½Dα0�½Dψ̄ �½Dψ � exp

×

�Z
β

0

dτ
Z

d2x½ψ̄ð∂ − iγ0α0Þψ þ � � ��

þ ik
Z

β

0

dτα0

�

¼
Z

ðDθÞeikθZgc;fðβ;−iθ=βÞ; ð10Þ

where in the second line we have defined θ ¼ R β
0 dτα0ðτÞ

and compared with the standard formulas in [21,22].
Similarly, the thermal partition function of a complex

scalar ϕ coupled to Abelian CS at level k may be written as

Zbðβ; kÞ ¼
Z

½DAμ�½Dϕ̄�½Dϕ� exp ½−Sbðϕ̄;ϕ; AμÞ�;

ð11Þ

Sbðϕ̄;ϕ; AμÞ ¼
Z

β

0

dτ
Z

d2x

�
jð∂μ − iAμÞϕj2

− i
k
4π

ϵμνρAμ∂νAρ þ � � �
�
; ð12Þ

where again with the dots we have allowed for the presence
of a nontrivial scalar potential. Expanding as in (7), and (8)
and assuming a similar mean field and large N approxi-
mation, we find

Zbðβ; kÞ ¼
Z

½Dα0�½Dϕ̄�½Dϕ� exp

×

�
−
Z

β

0

dτ
Z

d2x½jð∂τ − iα0Þϕj2

þ j∂iϕj2 þ � � �� þ ik
Z

β

0

dτa0

�

¼
Z

½Dθ�eikθZgc;bðβ;−iθ=βÞ; ð13Þ

where we have used the same definition for θ as above
and compared with the standard formulas giving the grand
canonical partition function for charged scalars [21,22].
This discussion shows that the partition function of
fermions and charged scalars coupled to Abelian CS in
a monopole background are intimately related to their
respective canonical partition functions at fixed total Uð1Þ
charge.
Now we can also understand the role of the imaginary

chemical potential for statistical transmutation. Consider,
for example, the fermionic theory (10). One notices that
the presence of the imaginary chemical potential can be
cancelled by the following Abelian gauge transformation
for the fermions:

ψðτ; xÞ ↦ ψ 0ðτ; xÞ ¼ ei
R

τ

0
dτ0α0ðτ0Þψðτ; xÞ;

ψ̄ðτ; xÞ ↦ ψ̄ 0ðτ; xÞ ¼ e−i
R

τ

0
dτ0α0ðτ0Þψ̄ðτ; xÞ: ð14Þ

However, at finite temperature, the fermions obey antiperi-
odic boundary conditions on the thermal circle

ψðβ; x̄Þ ¼ −ψð0; x̄Þ; ψ̄ðβ; x̄Þ ¼ −ψ̄ð0; x̄Þ: ð15Þ

We then see that the gauge transformed fields would satisfy

ψ 0ðβ; xÞ ¼ −eiθψ 0ð0; xÞ; ψ̄ 0ðβ; xÞ ¼ −e−iθψ̄ 0ð0; xÞ:
ð16Þ

Hence, the antiperiodic boundary conditions are preserved
only if θ ¼ 2πn, n ∈ Z. Other values of θ would “twist” the
boundary conditions and change the statistical properties of
the underlying system. A similar argument goes through for
bosonic systems such as (13), as well where the complex
scalars satisfy periodic boundary conditions on the thermal
circle. The twisting of the thermal boundary conditions is
the main underlying mechanics behind the possible stat-
istical transmutation in systems whose grand canonical
potential is extremized at nontrivial values of the imaginary
chemical potential.
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III. THE FERMION-BOSON MAP AT IMAGINARY
CHEMICAL POTENTIAL

We have argued above that the imaginary chemical
potential and its corresponding charge density may be viewed
as mean field fluctuations of Abelian Chern-Simons around a
monopole background. This point of view raises the crucial
issue at the core of our analysis. One might think that
calculating the canonical partition function in systems with
globalUð1Þ charges is, in principle, agnostic to the underlying
microscopic structure, e.g., whether the elementary degrees of
freedomforming the chargeoperator arebosonicor fermionic.
From the outset, the only additional piece of information one
has at hand is the periodicity of the grand canonical partition
function as explained in (2). What then might be a salient
property that distinguishes the above two cases?
Inmanyways, the situation resembles a quantummechani-

cal system in a periodic potential. Indeed if we think of θ as a
periodic coordinate, then (2) has a strong resemblance to the
calculation of the overlap between two Bloch wave functions
that differ by lattice momentumQ (see, e.g., Eq. (2) of [27]).
Although one generally cannot go very far without using a
particular microscopic model at hand, one can use certain
topological properties of a single band, like the eigenvalues
of the Zak phase [28], to study physical properties of the
system such as the polarization. We do not pursue this line of
ideas any further here, but if there is a lesson to be learned it is
that there should be some universality in generic canonical
partition function calculations for bosonic and fermionic 3d
systems. This is exploited below by considering two explicit
three dimensional models: theUðNÞ fermionic Gross-Neveu
and the bosonic CPN−1 model.

A. The UðNÞ Gross-Neveu model at imaginary
chemical potential

To calculate the canonical partition function of the UðNÞ
Gross-Neveu model in the presence of imaginary chemical
potential μ ¼ −iα, we use the Euclidean action [18,19]

SGN ¼ −
Z

β

0

dτ
Z

d2x

�
ψ̄að∂ − iγ0αÞψa

þ G
2N

ðψ̄aψaÞ2 þ iQα

�
;

a ¼ 1; 2;…N; ð17Þ
where Q is the eigenvalue of the fermion number density
[29] operator Q̂ ¼ ψ†ψ. Introducing an auxiliary scalar
field σ, the canonical partition function is given by

Zfðβ; QÞ ¼
Z

ðDαÞðDσÞe−Sf;eff ; ð18Þ

Sf;eff ¼ iQ
Z

β

0

dτ
Z

d2xα −
N
2G

Z
β

0

dτ
Z

d2xσ2

þ NTr ln ð∂ − iγ0αþ σÞβ: ð19Þ

To evaluate (18), we look for constant saddle points α�
and σ�. At large N, these are given by the gap equations

σ�
G

¼ 2σ�
β

X∞
n¼−∞

Z
Λ d2p
ð2πÞ2

1

p2 þ ðωn − α�Þ2 þ σ2�
; ð20Þ

i
Q
N

¼ lim
ϵ→0

2

β

Z
Λ d2p
ð2πÞ2

X∞
n¼−∞

eiωnϵðωn − α�Þ
p2 þ ðωn − α�Þ2 þ σ2�

; ð21Þ

where the fermionic Matsubara sums are over the
discrete frequencies ωn ¼ ð2nþ 1Þπ=β. As explained in
the Appendix, we have used the parameter ϵ to regulate
the sum before performing the integral. The latter is also
regulated using the UV cutoff Λ.
At this moment, is it important to recall the physics of the

model in the absence of chemical potential [30,31]. Setting
α� ¼ 0 into the first gap equation (20), one finds

2σ�

�
−
M
4π

þ σ�
4π

þ 1

2πβ
ln ð1þ e−βσ�Þ

�
¼ 0; ð22Þ

where

M
4π

¼ 1

2G�
−

1

2G
;

1

2G�
¼

Z
Λ d3p
ð2πÞ3

1

p2
: ð23Þ

In writing (22) we have taken the cutoff to infinity. The
arbitrary mass scale M quantifies the distance of the bare
coupling G from the zero temperature critical coupling G�.
A nonzero solution for σ� (22) would break parity by giving
mass to the elementary fermions. This is only possible if
M > 0, which requires G > G�. But even then, the value
of σ� goes to zero if the temperature reaches a critical value
Tc ¼ 1=βc ¼ M=2 ln 2. AtG ≤ G�, parity is restored since
the only solution of (22) is σ� ¼ 0. Exactly at the critical
pointG ¼ G�, one can evaluate the (subtracted) free energy
density of the system as

ffð∞Þ − ffðβÞ≡ ΔffðβÞ ¼ N
3

2

ζð3Þ
2πβ3

; ð24Þ

where fðβÞ ¼ − lnZðβÞ=ðβV2Þ. The result (24) is identical
with the corresponding thermal free energy density for N
free massless Dirac fermions in three dimensions reviewed
in the Appendix. The latter result of course corresponds to
setting G, σ� ¼ 0 in the Gross-Neveu model.
The physics of the system for real nonzero chemical

potential μ was studied in various works in the past, e.g.,
[32]. A real chemical potential lowers the critical temper-
ature Tc which eventually becomes zero at some critical
value μc. Moving on to imaginary chemical potential,
however, we discover some new features [19]. Firstly,
Eq. (20) now becomes
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2σ�

�
−
M
4π

þ σ�
4π

þ 1

4πβ
ln ð1þ 2 cosðβα�Þe−βσ� þ e−2βσ� Þ

�

¼ 0: ð25Þ

At the critical point where M ¼ 0, the gap equation (25)
has two real nonzero solutions for σ� inside the window
[33] 2π=3 < jβα�j < π. These are the roots of

x2 þ ð2 cosðβα�Þ − 1Þxþ 1 ¼ 0; x ¼ e−βσ� : ð26Þ

The above chemical potential window corresponds to a
novel scaling regime for the fermionic system. In contrast
to the case of zero or real chemical potential, now, when the
system is tuned to its zero temperature critical coupling G�,
it can break parity since σ� ≠ 0, while being at the same
time a thermal CFT. This resembles the finite temperature
behavior of a three-dimensional bosonic CFT as we later
review [18,34].
The second gap equation (21) is evaluated as [35]

Q
N

¼ −
i

πβ2
Dð−e−βσ�−iβα� Þ

¼ i
2πβ3

½Cl2ð2βα�Þ þ Cl2ð2ϕ − 2βα�Þ − Cl2ð2ϕÞ�:

ð27Þ

Here, we notice the remarkable appearance of the Bloch-
Wigner function DðzÞ [12] in the result. This function is
defined as

DðzÞ ¼ Im½Li2ðzÞ� þ ln jzjArgð1 − zÞ ð28Þ

and can be expressed in terms of the Clausen function
Cl2ðzÞ (see p. 8 of [36]) with

ϕ ¼ arctan

�
e−βσ� sinðβα�Þ

1þ e−βσ� cosðβα�Þ
�
: ð29Þ

It is well known [12] that the Bloch-Wigner function DðzÞ
gives the volume of an ideal tetrahedron in Euclidean
hyperbolic space H3 when the four vertices of the former
lie in ∂H3 at the points 0, 1,∞, and z (z is a dimensionless
cross ratio here). Here, DðzÞ is single-valued, real, and
analytic for all z ∈ C, except at z ¼ 0, 1, where it is
nondifferentiable. We conclude that in this model there are
no real solutions for Q, in accordance with our generic
expectations mentioned in Sec. II.
The maximal value of DðzÞ is obtained on the unit

circle for z� ¼ ð1� i
ffiffiffi
3

p Þ=2. These numbers correspond
to the end points of the interval discussed below (25)
βα� ¼ �2π=3 where σ� ¼ 0. We obtain

1

N
Qmax

�
� 2π

3

�
¼ ∓ i

πβ2
Cl2

�
π

3

�
: ð30Þ

Here, Cl2ðπ=3Þ ¼ −Cl2ð−π=3Þ are the maximal (minimal)
values of the Clausen function.
Recall now that for α� ¼ 0 and σ� ¼ 0, we return to the

zero chemical potential case, with Q ¼ 0 and the free
energy density given by (24). However, at the middle point
of the allowed interval βα� ¼ π, ϕ ¼ 0, and consequently,
we have Q ¼ 0. At this point, the critical (M ¼ 0) gap
equation becomes

2σ�

�
σ�
4π

þ 1

2πβ
ln ð1 − e−βσ� Þ

�
¼ 0: ð31Þ

Interestingly, (31) can be written as

σ�
πβ

D1ðe−βσ� Þ ¼ 0; ð32Þ

where D1ðzÞ is the first in the series of the odd-
indexed generalized Bloch-Wigner functions DmðzÞ,
m¼0;1;2;3… introduced by Zagier in [13]. Here, D1ðzÞ
has the real positive root

σ� ¼ σg ≡ 2

β
ln

�
1þ ffiffiffi

5
p

2

�
; ð33Þ

which can be interpreted as a parity breaking mass term for
the fermions. Notice also that when βα� ¼ π we have a
bosonization of the Matsubara frequencies in (20) and (21).
At this value, we find for the free energy density of the
model

ΔffðβÞ ¼ −N
8

5

ζð3Þ
2πβ3

: ð34Þ

This is two times minus the large N free energy density of
the bosonic OðNÞ vector model at its nontrivial critical
point [18,34]. The minus sign in (34) implies that the theory
at βα� ¼ π is nonunitary, and it probably requires an
analytic continuation to be matched with the usual OðNÞ
bosonic model.

B. The CPN−1 model at imaginary
chemical potential

The Euclidean action for the CPN−1 model [37,38] with
an imaginary chemical potential is

SCPN ¼
Z

β

0

dτ
Z

d2x

�
jð∂τ− iαÞϕaj2þj∂iϕj2

þ iσ

�
ϕ̄aϕa−

N
g

�
þ iqα

�
; a¼ 1;2;…;N; ð35Þ
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where the auxiliary scalar field σ enforces the constraint
jϕj2 ¼ N=g and q is the eigenvalue density of the Uð1Þ
charge density operator q̂ ¼ −igϕ̄a∂↔0ϕ

a. The model has a
global SUðNÞ symmetry, as well as a global Uð1Þ sym-
metry that can be trivially gauged by the introduction of a
nonpropagating Abelian gauge field. Integrating out the
scalar fields, we obtain the canonical partition function as

Zbðβ; qÞ ¼
Z

ðDαÞðDσÞe−Sb;eff ; ð36Þ

Sb;eff ¼ iq
Z

β

0

dτ
Z

d2xαþ iN
1

g

Z
β

0

dτ
Z

d2xσ

− NTr ln ð−ð∂0 − iαÞ2 − ∂2 þ iσÞβ: ð37Þ

Again, we evaluate (36) at constant saddle points iσ� ≡m2�
and α�. The latter are determined by the gap equations

1

g
¼ 1

β

X∞
n¼−∞

Z
d2p
ð2πÞ2

1

p2 þ ðωn − α�Þ2 þm2�
; ð38Þ

i
q
N

¼ −lim
ϵ→0

2

β

Z
d2p
ð2πÞ2

X∞
−∞

eiωnϵðωn − α�Þ
p2 þ ðωn − α�Þ2 þm2�

; ð39Þ

where the bosonic frequencies are ωn ¼ 2πn=β.
As before, we briefly recall the phase structure of the

model at zero chemical potential [38,39]. We firstly point
out that the free CPN−1 model corresponds to sending
g → 0 and m� ¼ 0. In this case the free energy density is
found to be twice the result given in (B6) for the free
masslessOðNÞmodel. Of course, this is the expected result
since now we have complex scalars. For g ≠ 0, the gap
equation (38) in that case reads

−
M
4π

þm�
4π

þ 1

2πβ
ln ð1 − e−βm� Þ ¼ 0; m� > 0; ð40Þ

where

M
4π

¼ 1

g�
−
1

g
;

1

g�
¼

Z
Λ d3p
ð2πÞ3

1

p2
: ð41Þ

The gap equation (22) diverges for m� ¼ 0 implying the
absence of a finite temperature phase transition for
the continuous SUðNÞ global symmetry, in accordance
to the Mermin-Wagner-Coleman theorem. At the critical
coupling g ¼ g�, however, M ¼ 0 and (40) has a real
solution given by the “golden mean” value shown in (33).
At this point, the free energy density is evaluated to be

fbð∞Þ − fbðβÞ≡ ΔfbðβÞ ¼ N
8

5

ζð3Þ
2πβ3

: ð42Þ

To recapitulate, in the absence of a chemical potential,
the fermionic GN model has a parity breaking finite

temperature transition but it does not exhibit a nontrivial
scaling regime (except at some physically obscure imagi-
nary mass [40]). The bosonic CPN−1 model, on the other
hand, does not have a finite temperature transition, but it
exhibits a nontrivial finite temperature scaling regime.
One should therefore have guessed by now that the
presence of the imaginary chemical potential, or equiv-
alently of a Chern-Simons field expanded around a
monopole background, catalyzes an interpolation between
these two theories. Let us explicitly see how this happens
from the bosonic side this time.
The gap equation (38) gives

−
M
4π

þm�
4π

þ 1

4πβ
ln ð1 − 2 cosðβα�Þe−βm� þ e−2βm� Þ ¼ 0:

ð43Þ
At the critical coupling where M ¼ 0, the equation above
has one real positive solution for m� in the window
−π=3 < βa� < π=3. This is the root of

x2 − ð2 cosðβα�Þ − 1Þxþ 1 ¼ 0; x ¼ e−βm� : ð44Þ
Notice that this range is the mirror image with respect to the
vertical axis of the allowed range for a nonzero fermionic
mass discussed after (25). For example, the middle point in
the fermionic case (for βα� ¼ π) is mapped into the middle
point here which is at βα� ¼ 0 (mod 2π).
The second gap equation (39) is now evaluated to

q
N

¼ i
πβ2

Dðe−βσ�−iβα� Þ

¼ −
i

2πβ3
½Cl2ð2βα�Þ þ Cl2ð2w − 2βα�Þ − Cl2ð2wÞ�;

ð45Þ
where

w ¼ arctan

�
e−βσ� sinðβα�Þ

e−βσ� cosðβα�Þ − 1

�
: ð46Þ

As previously, the maximal value of q is also reached at the
end points of the above interval where m� ¼ 0. We find

1

N
qmax

�
� π

3

�
¼ ∓ i

πβ2
Cl2

�
π

3

�
: ð47Þ

For α� ¼ 0, we return to the zero chemical potential case
where q ¼ 0, the SUðNÞ symmetry is unbroken, the mass of
the scalars is given by (33), and the free energy is (42). But
now, for π=3 ≤ jβα�j ≤ π, the only allowed solution for the
gap equation (43) ism� ¼ 0. This might appear to imply the
finite temperature breaking of the continuous SUðNÞ sym-
metry and the violation of the Mermin-Wagner-Coleman
theorem.However, we do not believe that this is the case. The
underlying theory has now been effectively fermionized, and
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the broken symmetry must be a discrete one. It would be
important nevertheless to further clarify this point. At the
middle point of this window, we have βα� ¼ π, w ¼ 0, and
hence, q ¼ 0. The theory is now fermionized, and the
calculation of the free energy density yields

ΔfbðβÞ ¼ −N
3

2

ζð3Þ
2πβ3

: ð48Þ

This is exactly minus the fermionic free energy result (34).

C. The free energy map

We have seen that in the presence of an imaginary
chemical potential the gap equations of the fermionic and
bosonic models map into each other. As a consequence,
there is a corresponding map between the physical proper-
ties of the two models. The map can be translated into a
precise statement about the corresponding free energy
densities.
The fermionic free energy density is given by

1

N
ΔffðβÞ ¼ −

Z
d3p
ð2πÞ3 lnp

2 þ iQα� þ
1

β

X∞
n¼−∞

Z
d2p̄
ð2πÞ2 lnðp̄

2 þ ðωn − a�Þ2 þ σ2�Þ −
σ2�
2G

¼
Z

d3p
ð2πÞ3

�
ln

�
p2 þ σ2�

p2

�
−

σ2�
p2 þ σ2�

�
þ α�
πβ2

Dð−z�Þ þ
σ2�
2πβ

Reflnð1þ z�Þg

þ 1

πβ

Z
∞

σ�
xdxReflnð1þ e−βx−iβα� Þg; ð49Þ

where

z� ¼ e−βσ�−iβα� ; ð50Þ
and in the second line we have substituted the solutions of
the gap equations. A few more details on the calculation are
given in the Appendix. The second line of (49) brings into
the result the cutof- dependent critical coupling 1=2G�.
This has to be subtracted in order to obtain a finite result for
the critical theory. Then, quite remarkably, the finite result
of the second line in (49) combined with the third line gives
exactly the generalized Bloch-Wigner-Zagier function
D3ðzÞ defined as [13]

D3ðzÞ ¼ RefLi3ðzÞg − ln jzjRefLi2ðzÞg

−
1

2
ln2jzjReflnð1 − zÞg þ ln3jzj

12
: ð51Þ

Our final result reads

1

N
ΔffðβÞ ¼

α�
πβ2

Dð−z�Þ −
1

πβ3
D3ð−z�Þ: ð52Þ

The analogous calculation for the bosonic theory yields

1

N
ΔfbðβÞ ¼ −

α�
πβ2

Dðz�Þ þ
1

πβ3
D3ðz�Þ; ð53Þ

where we have set m� ¼ σ�. We see that the free energies
are mapped into each other when βα� ↦ βα� � π. The
exact relation reads

1

N
ΔffðβÞ

���
βα��π

þ 1

N
ΔfbðβÞ

���
βα�

¼ � 1

β3
Dðz�Þ: ð54Þ

An intriguing geometric interpretation of our result is that
the bosonic and fermionic partition functions at imaginary

chemical potential correspond to partial volumes of an ideal
tetrahedron. Their sum gives the entire volume.

IV. DISCUSSION

Motivated by the recent revival of 3d bosonization,
we studied the fermionic UðNÞ Gross-Neveu and the
bosonic CPN−1 models at finite temperature and imaginary
chemical potential for a Uð1Þ charge. We started by
noticing that if the charge density vanishes for nontrivial
values of the chemical potential, the underlying system
could effectively undergo a statistical transmutation. We
have also pointed out that the canonical partition function
of the systems is intimately related to the thermal partition
function of Abelian Chern-Simons fields coupled to matter
in a monopole background, when a suitable mean-field
approximation is assumed. One may think of the latter as
the regime where the Uð1Þ charge density essentially
corresponds to the monopole charge.
One of our main results is that the phase structures of the

Gross-Neveu and CPN−1 models are altered in the presence
of the imaginary chemical potential. A novel scaling phase
opens up for the Gross-Neveu model, while a pseudobroken
phase of a continuous symmetry appears in the CPN−1

model. The latter situationmay appear toviolate theMermin-
Wagner-Coleman theorem, but we believe that this is not the
case since the system has been fermionized and the broken
symmetrymust be discrete. Thus, the phase structures appear
to be mapped into each other. Another result of our analysis
states that the charge densities for both models are purely
imaginary and given by the Bloch-Wigner function. This is
rather tantalizing. The Bloch-Wigner function gives the
volume of ideal tetrahedra in H3, and apart from its great
importance for the classification of 3-manifolds, it also gives
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the imaginary part of a complex Chern-Simons action. This
fits rather nicely with our association of the Uð1Þ charge
density to the Chern-Simons level. Morever, the second gap
equation can be identifiedwith theD1ðzÞ function introduced
by Zagier in [13]. Finally, we have calculated the free energy
densities of our two models and found, again rather remark-
ably, that they are given in terms of the generalized Bloch-
Wigner functionD3ðzÞ [13].Our results allowed us tomake a
precise duality statement between the free energies of the
models in (54). Again, the Bloch-Wigner function DðzÞ
plays an important role here as it gives the sum of the
fermionic and bosonic free energy densities at imaginary
chemical potentials that differ by iπ.
Our work raises numerous questions that could shed more

light into the nature of 3d fermion-boson duality. Firstly, we
note that our approach to the canonical formalism closely
resembles the physics of a quantum mechanical system in a
periodic potential. Indeed, the imaginary chemical potential
may be thought of as the periodic coordinate and the charge
density as the quasimomentum. Such a quantummechanical
systems exhibit a band structure which can be studied by
restricting the quasimomentum to the first Brillouin zone.
One cannot go very far without a detailed model at hand;
however, there are certain topological properties like, e.g., the
Zak phase [28], which only depend on the band symmetry. It
is then tempting to associate the fermion-boson duality with
some symmetry properties of the band.
Our results were derived in the large N limit. It is

therefore rather interesting to test whether there are
remnants of the fermion-boson map at subleading orders
in the 1=N expansion. After all, the above bosonization is
probably an exact statement even for a single boson or
fermion [4–6]. To this effect, the calculation of the 1=N
corrections to the free energies of the bosonic and fermionic
models is relevant.
Another interesting point is the surprising, to us, rel-

evance of the hyperbolic geometry for the fermion-boson
map. The bosonic and fermionic systems have a very
different phase structure for real chemical potential when
the charge density is real for both systems. In that case we
are not aware of a manifestation of the boson-fermion map.
Introducing the imaginary chemical potential the charge
density becomes purely imaginary and apparently evaluates
the volume of ideal tetrahedra in H3. Since the latter is
related to the imaginary part of the complex SLð2;CÞ
Chern-Simons action, our results seem to suggest that the
canonical partition function for fermions and bosons in
three dimensions is related to the full partition function of
the above complex group. It would be important to quantify
such a possible relationship, as well as to understand the
meaning of the charge density extrema. Finally, the
appearance of the D1ðzÞ function in the gap equation
and the D3ðzÞ function in the free energy density is another
intriguing result. There is a large mathematical literature for
symmetry properties of these functions (also related to

Nielsen’s generalized polylogarithms, see, e.g., [41]),
which consequently should be inherited by the free energy
densities of fermions and bosons in three dimensions.
Finally, there are strong indications [42] that analogous
results, namely, the appearance of higher DmðzÞ functions,
are relevant in studies of higher-dimensional fermionic and
bosonic critical systems such as the finite temperature
extensions of the models discussed in [43].
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APPENDIX A: NOTATION AND
USEFUL RESULTS

Following [22], we use two-component Euclidean Dirac
spinors and a Hermitian representation for the gamma
matrices as γμ ¼ σμ, where μ ¼ 0, 1, 2. Here, σμ are the
usual Pauli matrices with the definition γ0 ¼ σ0 ≡ σ3. Latin
indices run as i ¼ 1, 2.
A standard integral used in the text is

Z
Λ d3p
ð2πÞ3

1

p2 þ σ2�
¼ Λ

2π2
−
σ�
4π

þOðσ�=ΛÞ: ðA1Þ

The Matsubara sums can be done with the help of the
Poisson sum formula

X∞
n¼−∞

fðnÞ ¼
X∞
k¼−∞

Z
∞

−∞
dxe−i2πkxfðkÞ: ðA2Þ

As an application we consider the sum that appears in the
fermionic charge density gap equation (21)

lim
ϵ→0

X∞
n¼−∞

eiωnϵðωn − α�Þ
p2 þ ðωn − α�Þ2 þ σ2�

: ðA3Þ

Without the introduction of the convergence factor eiωnϵ,
ϵ > 0, the sum would be undetermined [44]. Doing then the
integral in the right-hand side of (A2) term by term, we first
note that the n ¼ 0 term vanishes, and we obtain

lim
ϵ→0

X∞
n¼−∞

eiωnϵðωn − α�Þ
p2 þ ðωn − α�Þ2 þ σ2�

¼ i
β

2

�
1

1þ eβ
ffiffiffiffiffiffiffiffiffiffi
p̄2þσ2�

p
þiβα�

−
1

1þ eβ
ffiffiffiffiffiffiffiffiffiffi
p̄2þσ2�

p
−iβα�

�
: ðA4Þ

Integrating (A4) over the spatial momenta p̄ and using the
definition of the dilogarithm
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Li2ðzÞ ¼ −
Z

z

0

dw
w

lnð1 − wÞ; ðA5Þ

we obtain (27). The vanishing of the n ¼ 0 mode above
should be contrasted with the sum that appears in the first
gap equation (20), which is evaluated to

1

β

X∞
n¼−∞

Z
d2p
ð2πÞ2

1

p2 þ ðωn − α�Þ2 þ σ2�

¼
Z

d3p
ð2πÞ3

1

p2 þ σ2�
−
1

2

Z
d2p̄2

ð2πÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̄2 þ σ2�
p

×

�
1

1þ eβ
ffiffiffiffiffiffiffiffiffiffi
p̄2þσ2�

p
þiβα�

þ 1

1þ eβ
ffiffiffiffiffiffiffiffiffiffi
p̄2þσ2�

p
−iβα�

�
: ðA6Þ

The divergent first term in the right-hand side of the above,
which is needed for the coupling constant renormalization,
comes from the n ¼ 0 term in the sum.

APPENDIX B: THERMAL PARTITION
FUNCTION FOR FREE SCALARS AND

FERMIONS IN d = 3

We review here, in some detail, the free field theory
results for the free energy density of scalars and fermions in
d ¼ 3. Consider the OðNÞ invariant action of free massive
scalars ϕiðxÞ, a ¼ 1; 2;…; N in d ¼ 3

Ib ¼
Z

d3x

�
1

2
∂μϕ

a∂μϕ
a þ 1

2
m2

bϕ
aϕa

�
: ðB1Þ

We put the theory in Euclidean S1 ×R2, where S1 has
radius L ¼ β ¼ 1=T, and impose periodic boundary con-
ditions as

pμ ¼ ðωn; p̄Þ; p̄ ¼ ðp2; p2Þ;

ωn ¼
2π

β
n; n ¼ 0;�1;�2;… ðB2Þ

The thermal free energy density fbðβÞ is defined as

Zb ¼
Z

ðDϕiÞexp−1
2

R
β

0
dx3

R
d2x½ϕið−∂2Þϕiþm2

bϕ
iϕi� ≡ e−βV2fbðβÞ;

ðB3Þ

with V2 the volume of R2. The interesting quantity is the
difference

fbð∞Þ − fbðβÞ≡ ΔfbðβÞ

¼ N
2

Z
d3p
ð2πÞ3 lnp

2

−
N
2L

X∞
n¼−∞

Z
d2p̄
ð2πÞ2 lnðp̄

2 þm2
b þ ω2

nÞ;

ðB4Þ

which is expected to be positive in a stable theory since
fbðβÞ ¼ −PbðβÞ is the bosonic pressure density at temper-
ature T ¼ 1=β. We find (we give the result for general d)

1

N
ΔfbðβÞ ¼ −

1

2

Z
ddp
ð2πÞd ln

�
p2 þm2

b

p2

�

−
1

β

Z
dd−1p
ð2πÞd−1 ln

�
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

b

p 	

¼ −
πSd

2dð2πÞd
�
md

b

sin πd
2

− 4d
Sd−1
Sd

1

βd

×
Z

e−βmb

0

ðln2x −m2
bβ

2Þd−32 ln x lnð1 − xÞ dx
x

�
;

ðB5Þ

with Sd ¼ 2πd=2=Γðd=2Þ the d-dimensional solid angle.
The integral above can be evaluated in closed form for d
odd, in terms of Nielsen’s generalized polylogarithms
[41,45] (and eventually as a finite sum of polylogarithms
which turn into a linear combination of Bloch-Wigner-
Zagier functions after the introduction of a gauge field or an
imaginary chemical potential [42]). For d ¼ 3 and mb ¼ 0,
we have

fbð∞Þ − fbðLÞ ¼
N

2πL3
ζð3Þ: ðB6Þ

This is half the value of the free energy for density for the
free CPN−1 model.
For N Dirac fermions ψ i, ψ̄a, a ¼ 1; 2;…; N in three

Euclidean dimensions, we have

If ¼ −
Z

d3xðψ̄ iγμ∂μψ
i þmfψ̄

iψ iÞ: ðB7Þ

The corresponding thermal free energy calculation for
fermions yields

1

NTrI
ΔffðβÞ ¼ −

1

2

Z
d3p
ð2πÞ3 lnp

2

þ 1

2β

X∞
n¼−∞

Z
d2p̄
ð2πÞ2 lnðp̄

2 þm2
b þ ω2

nÞ;

ðB8Þ
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where the fermionic frequencies are ωn ¼ π
β2
ð2nþ 1Þ. We obtain

1

NTrI
ΔffðβÞ ¼

1

2

Z
ddp
ð2πÞd ln

�
p2 þm2

f

p2

�
þ 1

β

Z
dd−1p
ð2πÞd−1 ln

�
1þ e−L

ffiffiffiffiffiffiffiffiffiffiffi
p̄2þm2

f

p 	

¼ πSd
2dð2πÞd

�
md

f

sin πd
2

− 4d
Sd−1
Sd

1

βd

Z
e−βmf

0

ðln2x −m2
fβ

2Þd−32 ln x lnð1þ xÞ dx
x

�
:

ðB9Þ

For d ¼ 3 and mf ¼ 0, we obtain

ΔfðβÞ ¼ 1

2πL3
NTrI

3

4
ζð3Þ: ðB10Þ

Since TrI ¼ 2 here, the fermionic result is 3=2 times the bosonic one.
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