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Massive spin-2 particles have been a subject of great interest in current research. If the graviton
has a small mass, the gravitational force at large distances decreases more rapidly, which could
contribute to the explanation of the accelerated expansion of the Universe. The massive spin-2
particles are commonly described by the known Fierz-Pauli action which is formulated in terms of a
symmetric tensor h,, = h,,. However, the Fierz-Pauli theory is not the only possible description of
massive spin-2 particles via a rank-2 tensor. There are other two families of models L(a;) and
L,rp(c), where a; and c are real arbitrary parameters, which describe massive particles of spin-2 in
the flat space via a nonsymmetric tensor e,, # e,,. In the present work we derive Lagrangian
constraints stemming from L(a;) and £,rp(c) in curved backgrounds with nonminimal couplings
which are analytic functions of m?. We show that the constraints lead to a correct counting of degrees
of freedom if nonminimal terms are included with fine-tuned coefficients and the background space is
of the Einstein type, very much like the Fierz-Pauli case. We also examine the existence of local

symmetries.
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I. INTRODUCTION

Our motivation to work with massive spin-2 particles
in a curved background is twofold. On one hand, they
can represent massive gravitons at the linearized approxi-
mation; on the other hand, they can be understood as
elementary massive spin-2 particles in a given gravita-
tional background.

Regarding the motivation for massive gravitons, they
lead to a weaker gravitational interaction at large dis-
tances, which could contribute to the observed [1,2]
accelerated expansion of the Universe at large distances.
Although the recent detection of gravitational waves [3] is
consistent with massless gravitons, predicted by the usual
(massless) general relativity, massive gravitons are not
ruled out. The mentioned experiment sets an upper bound
of about 10722 eV for the graviton mass [4]. Further-
more, previous theoretical obstacles for massive gravitons
like the vDVZ mass discontinuity [5,6] and the existence
of ghosts in the nonlinear theory [7] have been tackled
by the addition of fine-tuned nonlinear self-interaction
terms for the metric fluctuation; see [8] and the bimetric
model of [9]. Those models are based on previous ideas
of [10] and [11] and have recently led to intense work on
massive gravity and related topics; see the review works
[12,13].

Regarding elementary massive spin-2 particles, the
coupling of higher spin particles to electromagnetic and
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gravitational interactions is a longstanding problem. Since
any elementary particle must couple to gravity, one first
needs to check the gravitational interaction as in [14,15]
and [16]. Usually, unitarity [7] and causality [17,18] are
lost in interacting theories of higher spin particles. Those
particles require the use of higher rank tensors which have
too many components. The redundant components must
vanish on shell. They work like auxiliary fields. However,
when interactions are turned on, some of those auxiliary
fields may become dynamic, giving rise to negative
contributions to the Hamiltonian (instabilities) and incor-
rect number of degrees of freedom.

Basically all studies of interacting massive spin-2 par-
ticles and the modern massive gravity theories, as [8], start
with the paradigmatic free theory suggested by Fierz and
Pauli in [19]. It describes massive spin-2 particles via a
symmetric and traceful rank-2 tensor h,, = h,,. It is the
metric fluctuation in massive gravitational theories,
9w = M + hy,. A natural question concerns the independ-
ence of the outcome of such studies on the underlying
specific massive spin-2 model.

In [20] we started with a rather general second order (in
derivatives) Ansatz for a quadratic Lagrangian for a
nonsymmetric rank-2 tensor e, and by requiring the
existence of only one massive physical pole in the spin-2
sector of the propagator we obtained three families of
consistent free theories describing massive spin-2 par-
ticles. One of them is the usual Fierz-Pauli (FP) family
which includes the FP model written in terms of a
symmetric tensor. The other two families require a non-
symmetric tensor. There is no local field redefinition
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relating those families in general. One of the families is
given in (1) and the other one in (49). They depend on an
arbitrary real constant, a¢; and c, respectively. See also
[21] for the special case a; = —1/4. Here we couple a
background gravitational field to those theories by includ-
ing also nonminimal terms and look for curved space
generalization of the tensor, vector, and scalar constraints
which are necessary for getting rid of nonphysical degrees
of freedom. We require that the coefficients of the
nonmininal terms be analytic functions of m?. Such a
restriction plays a key role in our work and leads us to
constrain the gravitational background to Einstein spaces;
see further comments in the conclusion. In Sec. II we deal
with L(a;), while in Sec. III we study the £, zp(c) case.
In Sec. IV we draw our conclusions. In the Appendix we
briefly show the technical difficulties in arbitrary
backgrounds.

II. FAMILY OF LAGRANGANS L (a,)

A. Main results in the flat space

In [22] the family of second order Lagrangians £(a, ) has
been presented in arbitrary dimensions D > 3, but here we
focus on D = 4. It describes massive “spin-2” particles via
a nonsymmetric rank-2 tensor e, # e,, in the flat space’
for any value of the constant a;:

1
[,(al) = —Eaﬂe(“ﬂ)aﬂemﬂ)
1
+ <a1 + Z) oteld,e —20% 4]

1
+ (0% (op))* + (Ch - 4_1) (0%qp)?

2
- % (e,,e™ —e?).

(1)

We recover the FP theory at a; = 1/4 where e,
becomes nondynamic and it can be neglected. However
there is no local field redefinition which takes us from the
FP theory to a; # 1/4. The massless theory £,,_q(a;) is
unitary in the ranges a; >1/4 and a; <-1/12; it
describes massless spin-2 particles plus a scalar field,
except at a; = 1/4 and a; = —1/12 where the scalar field
disappears. At a; = —1/12 the model £L(a;) intersects the
nFP (non-Fierz-Pauli) family of Sec. I at ¢ = —1I;
see (49).

The flat space equations of motion E,, =
given by

'"Throughout this work we use N =

(= 4+ + ), e =
(eqp + ep,)/2 and €lap) = (eqp — €pa)/2.
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1
E, =Uey, +2 <a1 + Z) [nﬂu(aaaﬁeaﬁ —Ue) +0,0,¢€]

1
— 0,0% () + —0,0% (o) — 2 (al - 4_1) 0,0%,

+ mz(nﬂpe - el/ﬂ) =0. (2)

From 0”E,, = 0, we have the vector constraint:
0%y, = 0, €. (3)

Plugging (3) back in E,, we have, from E,, — E,,, = 0, the
tensor constraint:

From (3) and (4) back in #*”E,, = 0, we obtain the final
scalar constraint:

e=0 (5)

and, consequently, from (3) we have the transverse con-
dition:

0%q = 0. (6)

The equations of motion E,, =0 become the Klein-
Gordon equations

(O- m2)e(m,> =0. (7)

The FP conditions (4), (5) and (6) guarantee the correct
number of 5 degrees of freedom consistent with 5 =2s + 1,
see [23] for a recent derivation of the FP conditions from
first principles.

B. Generalization of L(a,) to curved spaces

1. General setup and constraints

If we want to construct a theory of massive spin-2 field
in a curved space out of a nonsymmetric rank-2 tensor
we should provide the same number of propagating
degrees of freedom as in the flat case. They correspond
to the curved space version of the 11 Fierz-Pauli conditions
4), (5), (6), namely e}, =0, ¢”e,, =0 and V¥e,, = 0.
Thus, from the 16 components of e,,, we end up with
16 — 11 = 5 degrees of freedom. Our calculations focus on
the D =4 case, but it can be generalized to D dimen-
sions (D > 3).
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Generalizing (1) to curved spacetime we substitute all derivatives by the covariant ones and add nonminimal terms
containing the curvature tensor as in the FP case [24]. They also take care of ordering ambiguities. Requiring a quadratic
theory in derivatives, consistent with the flat limit (1) and at most linear in curvatures, the most general action has the form”

1 1 1 1
LI(ay) = —ZV“e”‘ﬂVﬂeaﬂ - Zvﬂe“ﬂvﬂeﬂa + a; VeV, et + Evaeaﬂvﬂeﬂ” + Zvaeﬂavﬂeﬁ” + <a1 + )V"ev e

2
- <a1 + )V eVe,, + (a1 + )vwva —%(eaﬂeﬁ“ —e?) + f1Re" e 5+ fHRe?

+ f3Ropue™e” + fiRype™ el + fsRypePe + foRupneP e + f1Rge™ el + fsRe esy + foR e e’

(8)
where f; (j =1,2,...,9) are arbitrary constants for the time being.
Varying the action with respect to ¢”°, we obtain the equations of motion in curved space:
oS 1 1 , 1 1
po = Gopr = ED("M +e,,) —2a,V,Vte,, — EVPV* Cop — EVGV"eW, - EVGV”eW
1 ViV ey, + €,4)
+2 <a1 + Z) [—gpaﬂe +V,V,e+9,, 2” P2+ —m ( —eg,,) +2f1Re,,
+ 2f2Rgpae + 2f3Rpﬂm/eﬂy + 2f4Rpﬁeﬂ6 + fSRpo'e + fSRaﬂgpo'eaﬁ + 2f6Raﬁpaeaﬁ + f7Rao'eap
+ f7Rpaeo‘a + 2f8Reo'p + 2f9Ro‘ﬁepﬁ =0. (9)
By applying one derivative on the equations of motion and after several manipulations, one obtains:
1
C/) = ngpa = +(1 - 2f3 - 2f6)Rp/hmvae/16 + (1 + 2]‘-6)R/)/1¢70:vaeM + <§ + f7> Rlavaeﬂp
1 1
+ <2 + 2f9>RmVaep,1 + (f 2al)R,1pVﬂe” + <2f4 >R/1PV elw + 2f1RV"ep,,
1 E 2 ! B
+ Z+2fl +fo )e,s VR + 2fz+ eV ,R + (m” +2f,R)V e + §+2f4+2f6 e’V R,
1
+ <§ + 2611 + f5>RpGV"e - (1 - 2f3 - f5)e"‘/ijRa/j + staﬂVpe“/j-l-
1
_ (5 +2f3 + 2f6 — f7> e *V,R,, + <4 + 1;7 + 2fs> e,y V'R + —(m* = 2fsR)V°e,,. (10)
Now, we define the tensor C,,
h 1 14 U
C/)o- = E/)o‘ - EO'[) = (—2611 + E) (v/)vﬂe - v 4 eﬂ/)) [m2 + 2R(f1 - fS)](e/m - eap) + 2f3Rp/3m/(eﬂ —-e /})
=+ 2f4 (Rpﬂeﬂa - Raﬂeﬂp) + 4f6Raﬂpaeaﬂ + f7Ra6(eap - epa)
+ f7Rpa<eaa - eaa) + 2f9 (Raﬂepﬂ - Rpﬁeoﬂ)' (1 1)

In order to find a scalar constraint we have to consider the most general scalar combination of the equations of motion
C= (b0R+blm )g/m /m'+b2R/m /)ﬂ+b3VﬂvﬂE (12)

*We disregard nonanalytic functions of m?

and the term Raﬁm,e"/‘e”/’ which is redundant due to the cyclic property
R;wa/i + R;m/)’b + R;t/)’ua =0.
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where b; (j = 0, 1, 2, 3) are arbitrary constants for now. By manipulating and simplifying as much as possible, we obtain
the following expression:

C = +[b3(2f 4 + f1) = B2]R*V ,VPe;, + 2b3(1 — f3)R )5V’ VOe*+
{2172 <1 + a1> — by G —2a; + f7+ 2f9)] RV, Vre,
[ boR + bym? (1 + 6a1> + 2b, G + a1>R — by(m? = 2f\R — 2f8R)] ViVre, +
{ boR + bym? (1 + 6a1> + 2b2< + a1>R by(m? + 2f2R)] Oe
(

+ (by + b fs)R;, e + [bz + b3 fs + 2<a1 - Z) (by +b3) + bz} R, V'VPe +C, (13)

[
where C; contains up to first derivatives of e,,. The

expression (13) has seven terms with second derivatives boR + bym? <l +6a ) +2b (l +a ) R
of e,,, which must be eliminated in order to become a (Bo i) 2 ! 2\4 !
scalar constraint. In the special case of the FP theory — by(m? + 2f,R) = 0 (18)

(a; = 1/4), the last two terms with second derivatives can
only be simultaneously cancelled if b, = b3 = 0. Back in
the other terms we need byR + m>b; = 0. However in this by + byfs =0, (19)
case we have no constraint whatsoever. This is in agreement
with [24] where the authors have chosen Einstein spaces in

order to surmount such difficulty. In the general case a; # 1 fs\
1/4 we have to find a solution for the system below: 2b 4 + a | +2bs 4 Ta + =0. (20)

b3(2f4+ f7) — by =0, (14) Without restrictions in the background, as shown in the

Appendix, we have not been able to solve the previous

bs(1-f3) =0, (15) system and get ¢ = 0 from the scalar constraint. So, we are
| | going to restrict the gravitational background to Einstein
2b, <4 + al> — by <2 —2a, + f7+ 2f9> =0, (16) spaces’ as in the FP case [12,24],
R
1 1 =
(b0R+b1m2)(§+6a1> +2b2<z+al>R R =7 G- (21)
= by(m® =2f 1R = 2f3R) = 0, (17) " Now we can rewrite (10), (11) and (13) as follows:

C/) = vﬂEpG = (1 - 2f3 - 2f6)Rp/16avae/1” + (1 + 2f6)R/)/lzmv{leo—}L + 2f~1Rv/1€/,/1

1/1 . 1/1 -
+ [5 <Z—a1 +4f8>R—m2] Vie,, + [5 (Z+a1 +4f2>R+m2} V,e=0, (22)

C/)o' = E/}o’ - E(r/) = +< 2611 + ><v vﬂe - v{fv”eﬂ/l) + 2(f3 + 2f6)R/)/}(w(eﬂD - ey/)’)

+ [mZ + (zfl - 2f8)R](epa - eap) =0, (23)

?Altogether with Bianchi identities we have V#R,, . = 0 and V¥R = §*R = 0.

HUpo
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C= b g°E,, + b;V’VE,,

PHYSICAL REVIEW D 95, 065028 (2017)

1 by (1 ~
= +2b3(1 —f3)Rp,1mV/’V“eﬂ" |: 6b1 (Cll + 12> =+ ?3 <Z =+ ay + 4f2)R =+ b3m2] Lle

2

+{6l~)1<a1+112>+b3 <4 a1+4f1+4f8)R b3m}vlvﬂeﬁ

+ b, {3m2+(2f1+8f2+f3+2f8> }620. (24)

Motivated by the substitution of (21) back in (8) and (12)
we have defined:

fi ﬁ+ﬂ+%
fr= 1 +é,
x L f7
fs = I3 +Z,

4

The expression (22) is already a vector constraint since it
does not have second derivatives of the field. It corresponds
to four constraints, in total. The same does not occur in
expressions (23) and (24). First, let us turn (24) into a scalar
constraint. We need to solve the system below:

by(1—f3) =

1\ by (1 . ,
6b1<611+12> 2 (Z+a1+4f2)R+b3m —0,

~ 1 by (1 ~ ~
6b1 (Cl] +E> +?3<Z—al +4fl +4f8>R—b3m2_0.

(26)

It is easy to see that the solution of (26) back in (24) leads
to the scalar constraint e = 0, provided the coefficient of e
is different from zero in (24). However, the expression (23)
still has terms with second derivatives. For these terms to be
cancelled,” it is necessary that V¥e,, = 0. We can get this
from the vector constraint (22) if an appropriate choice of
parameters is made. More speciﬁcally, since the solution of
(26) requires f3 = 1, if we set f1 =0 and fe = —, we
obtain automatically from (22) that V¥e,, = 0 as far as the
coefficient of V¥e w10 (22) is non-null. The solution of the
system given in (26) with the additional equations f1=0
and fg = —1 is given by

If a) = %, those terms would be eliminated, but this specific
value for a; represents the FP case and it is not of our interest
here.

1 -
fgz—g—fz,

bs 1 i
by=— 3 lom2a (= 4%, \R|. (27
1= 1+12a1[ +<4+‘”+f2> ] (27)

Returning this solution in (22), (23) and (24) we finally get
all necessary constraints. More specifically, from (24) we
obtain the scalar constraint:

e=0. (28)

Using (27) and the result e = 0 in (22), we have the vector
constraint:

Vee,, = 0. (29)

Finally, using (27) and the results (28) and (29) in (23), we
achieve the tensor constraint:

€lpo] = 0 (30)

once its coefficient in (23) is nonvanishing too.
Summarizing, we have found all the FP constraints:

e=0, (31)
Vee,, =0, (32)
€lpo] = 0, (33)

if the restrictions below are respected
52 0n 52 1 -, R
b3m Zm + —Z—i—al R 3m —5 Sé 0, (34)

1 ~
m?=m?+ (Z + 2f2>R, (35)
while the equations of motion become
E, =(0O- ﬁ12)ep0 + 2Rpm,/,e“ﬁ. (36)

Therefore, we end up with 16 — 11 =35 degrees of
freedom, which is the correct count for a massive spin-2
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particle (5 = 2s + 1). The final curved space theory still

contains 2 free parameters: f, and a;, with the restriction
(34) and (a; + 1/12)(a; — 1/4) #0.

For the sake of comparison with [21] we focus now on a
special subcase of Einstein spaces, namely the maximally
symmetric spaces:
|

PHYSICAL REVIEW D 95, 065028 (2017)
R
Ra/ipﬂ = E (.gapgﬁrr - g(mg/}p)' (37)

All the results from the previous section can be brought
consistently to the maximally symmetric spaces (37). Using
(25) and (27), the Lagrangian (8) in a maximally symmetric
background becomes

1 1 1
LMSS)(q) = - VHe™V e 05 — ZV”e“ﬂVﬂeﬁa +a; V%,V et + Evaeaﬂvﬂeﬁ”

1 1 1
+ Zvaeﬂavﬂeﬁ” + <a1 + 4_1) VeV e — <a1 + Z) Vie(Vee,, +Ve,,)+

m2

2

On the other hand, it has been presented in [21] a model for
massive spin-2 particles also with a nonsymmetric tensor
e,, # e, minimally coupled to maximally symmetric
background.

The Lagrangian is known as dual massive gravity and is
given by

1
£(dual) — Evpew(—vﬂe”" — Vrere 4 V¥e? — VPe™
+ Voer” + Vo) — m?(e,, e — e?). (39)

As already discussed in [20], the model presented in [21]
is recovered from LMSS)(4,) in the flat space when
a; = —1/4. However, it is important to notice that the
assumption of a; = —1/4 does not require a maximally
symmetric space as we have shown here.

The relation between £(@%) and £LMSS)(q,) is given by

LMSS) (g, = —1/4)

1 1 ~
— _ p(dval) _ | af 2
2£ [24+f2]R(e epe—€°).  (40)

Thus, the model of [21] is a subcase of LMSS)(a; = —1/4)
where

~ 1

T (@1)

With the above value of fz, the restrictions (34) lead
to two forbidden values for the scalar curvature, namely,
R # —6m?> and R # 12m?. The first value differs by
a sign from the restriction obtained in [21] while the
second one has not been mentioned. It is important to

1
— —(egpef* — %) — ﬁRe“ﬂeaﬂ + (

f~2+i>Re2 +—1<

11 ~
12 4 —+ a + 4f2>R€ ﬁe/}a. (38)

12

emphasize, however, that f2 is a free parameter in the
L9(ay) model, so the inequality (34) restricts the possible
values of fz, not of the curvature R. This happens
because our original Lagrangian is more general than
(39). In MSS there are no forbidden values for the scalar
curvature in the L£9%a;) model for any value of a,
including a; = —1/4.

2. Local symmetries of L8 (a)

In the previous sections, we have found all the
constraints of the £Y%a;) model. The form of (22)
and (24) suggests that some local symmetries of £9(a,)
may exist even in the massive case. For example,
if the expression obtained for the vector constraint
V?E,, given in (22) becomes identically null, instead
of a vector constraint we would have four identities
V°E,, =0 and, consequently, the theory acquires the

P
vector symmetry

0e,; = V[,Ap (42)
since, up to a surface term,
oS
5AS = /d4Xﬁ66po- = /d4pr6V"A/’
. / Fx(VIE, )A, = 0. 43)

In order that V°E,, = 0 holds identically, see (22), we
need the conditions:
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f3:17
fl :0’
fa=—g-F
8 — ] 2
1
f6__§v
2
N ”
]+4a1+16f2

We have checked explicitly that (42) is indeed a
symmetry of £9(a;) if we use (44).

Analogously, we could find scalar symmetries for
L9(ay). The action is invariant under the transformation

e,V =V, V, 1 (45)

where 1 is an arbitrary scalar, provided the conditions
below are satisfied:

fi=1

s 1 - .
f8:_§_fl_f2’

R——— S (46)

1+ 4a, +16f,
In addition, there is another possible scalar symmetry
which is

e .Y =12V, V, 1+ Rg,,A (47)

P

where 4 is an arbitrary scalar and the conditions below are
required:

=1
fo=—g—Fi-
8 — 8 1 25
2
R——_12m (48)
1+ 247,

We leave for a future work a detailed study of the special
cases (44), (46) and (48). The appearance of vector and
scalar symmetries are usually connected with massless and
partially massless theories, respectively.

III. FAMILY OF LAGRANGIANS L, p(c)

A. Main results in the flat space

Analogously to the L(a;) case, in [22] we can find
another family of second order Lagrangians £, gp(c) which
describes massive spin-2 particles via a nonsymmetric
rank-2 tensor in D = 4 flat spaces’

The model L,pp(c) can be generalized to arbitrary D > 3;
see [22].

PHYSICAL REVIEW D 95, 065028 (2017)

1 1
Lopp(c) = —Eaﬂe(“ﬁ)ﬁ”qu/j) + gﬁﬂe[&‘e —20,e)]

2

1 m
+ [0%e(op))* — 3 [0,e"]* — > (e e + ce?).

(49)

The real constant c is arbitrary and nFP stands for “non-
Fierz-Pauli” since we do not need to have ¢ = —1. In such a
special case, however, the model £ gp(c = —1) coincides
with £(a;) at a; = —5. The massless case L(c) first
appeared in [25] and describes massless spin-2 particles. If
c# - }1 the FP conditions can be derived from the equations
of motion as follows:

Nav [ g 1 "
Eﬂy:De(ﬂy)—i—%(a 8ﬁe,,ﬁ—De)+§5‘”5‘ye—8”8 €va)t

2
—=0,0% (g +§aﬂaaew —m? (eyu+cne)=0.  (50)

From 0"E,, = 0, we have

ey, +cd,e=0. (51)
Back in (50), we obtain from E,, — E,, = 0:
e = 0. (52)
From n**E,, = 0, we have
m2<c+%>e:0:>e:O (53)

and, consequently, from (51) now we have
0%,, = 0. (54)

Thus, the equations of motion given in (50) become the
Klein-Gordon equations:

(D - mz)E(MD) =0. (55)

If ¢ = —§ the model Lpp(c) is invariant under Weyl
transformations: dye,, = 1,,¢. We can fix the gauge e = 0
and obtain all the FP conditions (52), (53) and (54) and the
Klein-Gordon equations (55).

B. Generalization of L pp(c) to curved spaces

1. General setup and constraints

For £, gp(c) the procedure was analogous to that used for
L(ay). The most general expression for L pp(c) is the
following one:

065028-7
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1 1 1 1
[’zFP(C) = Z % eaﬁvﬂ €ap — Z % eaﬂvl‘ €pa — E vaeaﬂvieiﬂ + E v{leot/iv/le/ﬁL

1 1 1 2
+ ZV“’eﬁaVﬂe/”1 + ngﬂe - gvae,,,,,vﬁe - m7 (eqpel™ + ce?)

+ lee"ﬁe(,/,w + dyRe? + d3R(,ﬁﬂye"”eﬁ” + d4R,,ﬂe“”eﬂ” + dSRa/;e”/’e
+ dsRopue® e + diRpe™ e, + dyRePes, + doRse"%e,l (56)

where d; (j =1,2,...,9) are arbitrary constants for now. The equations of motion are

L 88%p(c) 1 1 | (T
E/)o‘ — 51;1;6 — 5 D(epo’ + eo‘/)) —|— EVpV’leM - E (valed + V(,V’Iepﬁ) - EVGV eap—f—

1 1 1
- ggpl,De + gvpv,,e + ggpavﬂvaeaﬁ —m?*(e,, + ceg,,) + 2d\Re,,
+ 2d2Regpo‘ + 2d3RPﬂo.yeﬂy + 2d4Rpﬂ€ﬂ0' + dSRpGe + d5gpo.Raﬂ€aﬁ
+ 2dgR4pps€™ + d1R%ye 4, + d1R %€y + 2dgRe,, 4+ 2dgR P e 5 = 0. (57)

The vector constraint is the following expression

C, = VOE,, = (1 = 2d5 — 2dg)R 10a Ve + (1 4 2dg)R 110,V + dsR oV e

1
+ (E - 2d3 - 2d6 + d7) E}LGVARG[, + (—1 + 2d3 + ds)e’l"V/,Rm{

1 1
+ (E + 2d4 + 2d6> e"’lijgp + <§ + 2d9>Rﬂﬂvﬂ€pﬂ + 2d1RV"ep6

1 1 1
+ (— + d7> Rﬂ(IVaE)Lﬂ + <— + d7)R,1/,Vﬂe”’1 + <Z -I— 2d1 -I— dg) el,{,V"R

2 6
2ds =2 \R Ve 4 (LD 2 e, ViR + (2d5R — m?)Ve
T 2da =5 JRyp Ve + | g5 T 2ds |ey + (2dyR = m*)V?e,,
1 a 2 dS
+ 3 +ds |R,,V + (2d,R —m*c)V e + | 2d, + > eV,R = 0. (58)

The tensor constraint will be obtained from the expression below:

) 2
Cpa = Epa - Eap = g (vpvieia - vavieip) + (m2 + 2(d1 - dS)R)(epo - eap)
+ 2(2d6 + d3)Rpo.aﬂeaﬂ + (2d4 — d7)(Rpﬂ€ﬁo. — Ro.ﬂeﬂp) + (d7 - 2d9)(Rpﬁ€6ﬂ — Rgﬂepﬂ) =0. (59)

Regarding the scalar constraint, due to the Weyl symmetry of the kinetic terms in £’ (¢) we do not need to add second
derivatives of equations of motion in order to produce a constraint as in (24). We can simply have

C =g E,
= [-m*(1 4 4c) + (2d; + 8d, + ds + 2dg)R]e + 2(ds + dy + 2ds + d7 + do)R,5e” = 0. (60)
Thus, we have a scalar constraint in arbitrary gravitational backgrounds. In the Appendix we show that although it is
possible to get e = 0 from (60) in arbitrary backgrounds, we are not able to have a curved space version of the tensor

constraint without restricting the background space. Henceforth we assume Einstein spaces (21). Let us rewrite (58), (59)
and (60) as follows:
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C/, = VUEPO. = (1 - 2d3 — Zd(,)Rp/lo.ﬂvﬂelg + (1 + 2d6)RMGﬂV“e"’1 + d]RV"epa

1 ~ 1 ~
+ |:(g + 2d8>R - m2:| V"eﬂp + |:<E + 2d2>R - mZC:| Vpe = O, (61)
Cpp = = 2(V,Vie,, — Y,V o 2 - 2dg+ @ =
po — E/J(r - E(r/) - g( pVi€is — Vg eﬂ/)) + 2(d3 + 2d6)Rp(m/)’€ + A+ |m” 2dl - 2d8 + 7 R (e/lo- - e(r/)) =0,
(62)
. 2 7 7 d3 7
CZQ‘DGE’DU: —m (1+4C)+ 2d1+8d2+?+2d8 R 620, (63)

where we have defined

5 dy  dy
dy=d +2+22,
1 1+4+4
ds
d,=d, +—
2 2+47
~ d
dgid8+z7. (64)

Therefore, (63) leads to the scalar constraint e =0,
provided the coefficient of e is different from zero. On
the other hand, (62) still has terms with second derivatives.
In order to solve this, we need V¥e,, = 0. We can get this
automatically from the vector constraint (61) by setting

1
de =—= 65
== (69

as far as the coefficient of V¥e,, does not vanish.

Back in the tensor constraint (62) we obtain e,,; = 0 as
far as its coefficient is nonvanishing too. In summary, all 11
Fierz-Pauli constraints (31), (32) and (33) are confirmed if

n? <th —%) {(1 + 4¢)im? + {8(&38 —d,) —%}R} #0,

(66)
mr=m?— ZZZSR (67)

while the equations of motion become
E,, = (O—m?)e,, + 2R 5™ (68)

where the free paramenters Jz and Jg must satisfy the
conditions (66).

2. Local symmetries of L5pp(c)

The model LY(c) also presents vector and scalar
symmetries. There is one vector symmetry which comes
from the transformation

de,, = V,A, (69)

where A, is an arbitrary vector. We need a nonvanishing
scalar curvature (R # 0) and the following conditions:

- 1
d, =0; de = ——; d, = 1;
1 6 D) 3
R
~2:_
m 6,
- 1 c -
d2 == _ﬁ+ﬁ+ dgC. (70)

Such conditions imply that the vector constraint (61) be
identically null, i.e., V°E,, = 0.

On the other hand, starting from the general scalar
transformation

8e s = A1V, V4 + Arg,eh + Az g, LA (71)
where 4 is an arbitrary field and A; (j =1, 2, 3) are
arbitrary constants, we have found three scalar symmetries
for L9 (c).

The first one is

56/}{)-(1) = g/)oj* (72)

where we must have
1 - -

The second scalar symmetry is
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Se,,? = -4V, V, 1+ g,,01 (74)

p

where the relations below must hold:

dy =1,
~ 5 ~ R
Finally, the last scalar symmetry is given by
Se,,3) =V, V,A (76)
where the conditions below must be obeyed:
d3 = 1,
dy =~ + 5 4 c(dy + dy)
2T T T T T
~ R
n~12:(1+12d1)g. (77)

The symmetry (76) and conditions (77) follow from the
previous scalar symmetries (72) and (74).

IV. CONCLUSION

Here we have studied massive spin-2 models via a
nonsymmetric rank-2 tensor in a curved background. As
in the usual Fierz-Pauli (FP) case with a symmetric tensor,
nonminimal couplings are necessary. The work here is a
preliminary one and parallels the work [24] on the FP
model. As in that case we have assumed that the Ansitze
(8) and (56) are linear on curvatures and their coefficients
are analytic functions of m?. Although there seems to be
slightly more freedom now in choosing the background
metric than in the FP case, we have selected, for
simplicity, background spaces of the Einstein type as
in [24]. We have succeeded in finding nontrivial solutions
for the coefficients of our Ansdtze by getting rid of
second derivatives in the tensor, vector, and scalar
constraints. In particular, we have generalized from
maximally symmetric spaces to Einstein spaces a pre-
vious work in the literature [21] carried out for a massive
spin-2 theory with nonsymmetric tensor e,, # e,,, which
corresponds to the model £(a;) of Sec. II at the specific
point a; = —1/4. Regarding the model L,zp(c), due to
the Weyl symmetry of the kinetic terms, the scalar
constraint has easily led to the traceless condition
e =0 but now the problem has moved to the tensor
constraint and once again we have found it convenient to
choose Einstein spaces.

Comparing the results obtained here in Einstein spaces
for £(a;) and L, rp(c) with the ones obtained in [24] for
the usual FP model, the main difference is that, besides

PHYSICAL REVIEW D 95, 065028 (2017)

the scalar and vector constraint, we now have a tensor
constraint C,, = 0; see (11) and (23). However, due to the
vector constraint V”e,w =0, the constraint C,, =0
amounts to e, —e,, =0 without further restriction in
the background. So there seems to be no fundamental
difference to the usual FP case in curved space. Since in
the FP case there is no restriction on the background
metric when we allow the coefficients to be nonanalytic
functions of m?2, we would like to address that point also
in the case of our nonsymmetric models. This is under
investigation now.

Moreover, in both cases of L(a;) and L,p(c), we
believe that less restrictive conditions on the coefficients
can be obtained by getting rid of second order derivatives of
time only; this is under study. We are also analyzing the
special points in the parameters space where the local
symmetries mentioned in the previous sections show up.
They indicate massless and partially massless theories even
if m* # 0. The truly massless cases m = 0 in both £(a,)
and L, p(c) theories are also worth investigating in curved
space. Especially in the second case where, at least in the
flat space, we have massless spin-2 particles just like in the
massless version of the FP model.

As a final comment, we notice that the ghost free massive
gravity theories, see [8] and [9], accommodate massive
gravitons propagating in any gravitational background, see
[26-28]. Those results agree with earlier perturbative (in
powers of 1/m?) calculations. Thus, if we obtain correct
Lagrangian constraints for the models discussed here, in the
case of nonanalytic coefficients, we would be prompted to
search for nonlinear (self-interacting) versions of L(a;)
and En[:p(c )
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APPENDIX: CONSTRAINTS IN A GENERAL
BACKGROUND

1. E(al)

We are looking for a solution of the system (14)—(20)
without imposing restrictions on the background space.
Since f; (i =1,...,9) and b; (j = 0,...,3) are constants,
we demand that the coefficients of R in Egs. (17) and (18)
are null, i.e.,

bo(%+6a1)+2bz(%+a1) +2bs3(f1+f3)=0, (A1)

1 1
bO (E + 6a1) + 2b2 (Z + dl> - 2b3f2 = O (A2)

The solution, singular at a; = 1/4 as expected, is given by
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1 (1+4a1) 8611 ] +8a1(1+2a1) bo
= 1’ = — s =, = —_-— 2 R = - -,
/3 fa 2‘f’f9 fs (—1 1 4a,) 17 (=1 +4a;) fo /2 41 +4a)) 2b,
_1+8a1(1+2a1)_ﬁ b1(1+1201)(1+4(11)
-~ 4(=1+44a)  2b 2(-1+4a))

(A3)

1
fi —fs. b3=§b1(1+12611), by = —

Plugging this solution back into (13), we obtain a scalar constraint in a general background:

b1(1+4a1)2 b1(1—12a1)

1412
( + al) RpoRpae_’_fviRo‘pvpeﬂa

C=0= 5 4a) {_ 2(=1 + 4ay)
bi(1+ 12ay)
2(=1+4ay)
+b1(1+12a1){[_@ 1+ 8a;(1+2a,)
2 b, 4(—1+4a)
_{bo 1 —2a,(-1+4a,)
b, -1 +4a,
(14 12ay)
(=1 +4a,)

bi(1+4a,)

+ 4b1a1615DR/16 + 2

V,RVre,, - vvava%}

:| V'lRV/’e[M—i—

— 2f9:| V’lRVpe,lp}

b](l + 4611) |:m2 +bo_R_ [16611(1 + al) + 3]R:| }lee
po

2 bl 2(—1+4a1)
(14 12a,) [by(1 + 12a,)(1 + 4a,)
(—l + 4(11) 2<—1 + 4(11)

+b1(1+12a1) 2b0 1+16a1(1—|—3a1)
2 b] 4(—1 +4a1)

{(bOR + bym?) +

+ by (14 12a;)R*°R 5, ™ + - 8b1a1} RP°R zel

] V,RV’e + B—? - %} (DR)e}

1 + 16a1(1 + 3611) 3b0R
R 2 2 - R
+ {(b() +b1m )[3m 2(_1 +4a1) bl +
b1<1+1201)(1+4a1) 2 boR [1—|—8a1(1+2a1)}R
Joft _ . A4
2(—1 +4ay) ", 2(—1 + 4ay) ¢ (A4)

We have not been able to derive e = 0 from (A4) without restrictions on the background space.

2. ;C,,pp

For arbitrary backgrounds if we choose dy = —d3 —d; —2ds —d, and d, = —(2d| + ds + 2dg)/8 and assume
¢ # —1/4, the scalar constraint (60) becomes simply e = 0. Putting those results back into (58) and (59), we obtain

Cp = (1 - 2d3 - 2d6)R/,,1mV”e’1” + (1 + 2d6)Rp,1m,V“e"’1 + d5R{va€aﬂ
1
+ (E - 2d3 - 2d6 + d7> 6/16le6/) + (—1 —|— 2d3 + ds)eﬂ"vaml
1 ol 1 4
"’ §+2d4+2d6 e V/IRGp+ 5—2d3—2d4—4d5—2d7 R”Vﬂep,l
1
+ 2d1RV”elm + (Z + Zdl - d3 - d4 - 2d5 - d7> e[mV"R
2

1 1 d
+ <2d4 - z) Rﬂpvﬂeﬂﬂ + <Z + —7 + 2d8> elple + (2d8R - mz)vgeop

1 1
+ <5 + d7>R’1“V,,e,1/, + (E + d7> Rg/)vﬂeﬂﬂ, (AS)
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2
C/’” = § (V[,V’lem - V”V’leﬂp) + <m2 + Z(dl - dg)R) (e/m - 60./))

+2(2ds + d3)R poape™ + (2dy — d7) (RS egs — R ey,)
+ (2d3 + 2d4 + 4d5 + 3d7>(Rpﬂ€6ﬂ - Rgﬂepﬂ) = 0 (A6)

There are still second derivatives in C,,. We could think of determining Ve, as a function of the remaining terms in (A5) at
dg = 0 and plugging it back in (A6) which leads to

4
C p—

P W |:(1 - 2d3 - 2d6)R[a/w”vp]v’l€/w + (1 —+ 2d6)R[mwﬂvp]V”eﬁ’l

1 1
+ (2 - ng - 2d4 - 4d5 - 2d7> Rlﬂvwvﬂety]l + (2 + d7> R’l”v[pvﬂem

1 1
+ (g + d7> Rﬂ[UV,,}VAe’“‘ + <— E + 2d4> R,,[GV,,] Vﬂe’“ + dSR,,ﬂV[,,VG]e“ﬂ

+ 2d1RV[pVﬁea]ﬁ + V[pfo.]:| + (m2 + Z(d] - dg)R)(epo. - e(,p)

+ 2(2d6 + d3)R/ma/}eaﬁ + (2d4 - d7)(R/)ﬁe/irf - Roﬁe[)’/})
+ (2d3 + 2d4 + 4d5 + 3d7)(Rpﬁ€O.ﬁ - R(,ﬂep/;) (A7)

where F, does not contain any derivative of e,, and is defined as follows:

1
fa = +(2— 2d3 - 2d6 + d7> e’l"VlRW + (—1 + 2d3 + d5)e’1”V(,RM

1 1 1 d
+ <§ + 2d4 + 2d6> elMVﬁR/m + <Z + 2d1 - d3 - d4 - 2d5 - d7> eMV’lR + (Z + %) eMViR. (AS)
Unfortunately, without any restriction on the background space we have not been able to avoid second derivatives of e, in

the tensor constraint (A7). Therefore, just like the £9(a;) case, we are led to Einstein spaces R,, = % Ju, ONCE again.
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