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Massive spin-2 particles have been a subject of great interest in current research. If the graviton
has a small mass, the gravitational force at large distances decreases more rapidly, which could
contribute to the explanation of the accelerated expansion of the Universe. The massive spin-2
particles are commonly described by the known Fierz-Pauli action which is formulated in terms of a
symmetric tensor hμν ¼ hνμ. However, the Fierz-Pauli theory is not the only possible description of
massive spin-2 particles via a rank-2 tensor. There are other two families of models Lða1Þ and
LnFPðcÞ, where a1 and c are real arbitrary parameters, which describe massive particles of spin-2 in
the flat space via a nonsymmetric tensor eμν ≠ eνμ. In the present work we derive Lagrangian
constraints stemming from Lða1Þ and LnFPðcÞ in curved backgrounds with nonminimal couplings
which are analytic functions of m2. We show that the constraints lead to a correct counting of degrees
of freedom if nonminimal terms are included with fine-tuned coefficients and the background space is
of the Einstein type, very much like the Fierz-Pauli case. We also examine the existence of local
symmetries.

DOI: 10.1103/PhysRevD.95.065028

I. INTRODUCTION

Our motivation to work with massive spin-2 particles
in a curved background is twofold. On one hand, they
can represent massive gravitons at the linearized approxi-
mation; on the other hand, they can be understood as
elementary massive spin-2 particles in a given gravita-
tional background.
Regarding the motivation for massive gravitons, they

lead to a weaker gravitational interaction at large dis-
tances, which could contribute to the observed [1,2]
accelerated expansion of the Universe at large distances.
Although the recent detection of gravitational waves [3] is
consistent with massless gravitons, predicted by the usual
(massless) general relativity, massive gravitons are not
ruled out. The mentioned experiment sets an upper bound
of about 10−22 eV for the graviton mass [4]. Further-
more, previous theoretical obstacles for massive gravitons
like the vDVZ mass discontinuity [5,6] and the existence
of ghosts in the nonlinear theory [7] have been tackled
by the addition of fine-tuned nonlinear self-interaction
terms for the metric fluctuation; see [8] and the bimetric
model of [9]. Those models are based on previous ideas
of [10] and [11] and have recently led to intense work on
massive gravity and related topics; see the review works
[12,13].
Regarding elementary massive spin-2 particles, the

coupling of higher spin particles to electromagnetic and

gravitational interactions is a longstanding problem. Since
any elementary particle must couple to gravity, one first
needs to check the gravitational interaction as in [14,15]
and [16]. Usually, unitarity [7] and causality [17,18] are
lost in interacting theories of higher spin particles. Those
particles require the use of higher rank tensors which have
too many components. The redundant components must
vanish on shell. They work like auxiliary fields. However,
when interactions are turned on, some of those auxiliary
fields may become dynamic, giving rise to negative
contributions to the Hamiltonian (instabilities) and incor-
rect number of degrees of freedom.
Basically all studies of interacting massive spin-2 par-

ticles and the modern massive gravity theories, as [8], start
with the paradigmatic free theory suggested by Fierz and
Pauli in [19]. It describes massive spin-2 particles via a
symmetric and traceful rank-2 tensor hμν ¼ hνμ. It is the
metric fluctuation in massive gravitational theories,
gμν ¼ ημν þ hμν. A natural question concerns the independ-
ence of the outcome of such studies on the underlying
specific massive spin-2 model.
In [20] we started with a rather general second order (in

derivatives) Ansatz for a quadratic Lagrangian for a
nonsymmetric rank-2 tensor eμν and by requiring the
existence of only one massive physical pole in the spin-2
sector of the propagator we obtained three families of
consistent free theories describing massive spin-2 par-
ticles. One of them is the usual Fierz-Pauli (FP) family
which includes the FP model written in terms of a
symmetric tensor. The other two families require a non-
symmetric tensor. There is no local field redefinition
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relating those families in general. One of the families is
given in (1) and the other one in (49). They depend on an
arbitrary real constant, a1 and c, respectively. See also
[21] for the special case a1 ¼ −1=4. Here we couple a
background gravitational field to those theories by includ-
ing also nonminimal terms and look for curved space
generalization of the tensor, vector, and scalar constraints
which are necessary for getting rid of nonphysical degrees
of freedom. We require that the coefficients of the
nonmininal terms be analytic functions of m2. Such a
restriction plays a key role in our work and leads us to
constrain the gravitational background to Einstein spaces;
see further comments in the conclusion. In Sec. II we deal
with Lða1Þ, while in Sec. III we study the LnFPðcÞ case.
In Sec. IV we draw our conclusions. In the Appendix we
briefly show the technical difficulties in arbitrary
backgrounds.

II. FAMILY OF LAGRANGANS Lða1Þ
A. Main results in the flat space

In [22] the family of second order LagrangiansLða1Þ has
been presented in arbitrary dimensions D ≥ 3, but here we
focus on D ¼ 4. It describes massive “spin-2” particles via
a nonsymmetric rank-2 tensor eμν ≠ eνμ in the flat space1

for any value of the constant a1:

Lða1Þ ¼ −
1

2
∂μeðαβÞ∂μeðαβÞ

þ
�
a1 þ

1

4

�
∂μe½∂μe − 2∂αeðαμÞ�

þ ½∂αeðαβÞ�2 þ
�
a1 −

1

4

�
ð∂αeαβÞ2

−
m2

2
ðeμνeνμ − e2Þ:

ð1Þ

We recover the FP theory at a1 ¼ 1=4 where e½μν�
becomes nondynamic and it can be neglected. However
there is no local field redefinition which takes us from the
FP theory to a1 ≠ 1=4. The massless theory Lm¼0ða1Þ is
unitary in the ranges a1 ≥ 1=4 and a1 ≤ −1=12; it
describes massless spin-2 particles plus a scalar field,
except at a1 ¼ 1=4 and a1 ¼ −1=12 where the scalar field
disappears. At a1 ¼ −1=12 the model Lða1Þ intersects the
nFP (non-Fierz-Pauli) family of Sec. III at c ¼ −1;
see (49).
The flat space equations of motion Eμν ≡ δSða1Þ

δeμν ¼ 0 are
given by

Eμν ¼ □eðμνÞ þ 2

�
a1 þ

1

4

�
½ημνð∂α∂βeαβ −□eÞ þ ∂μ∂νe�

− ∂μ∂αeðανÞ þ −∂ν∂αeðαμÞ − 2

�
a1 −

1

4

�
∂μ∂αeαν

þm2ðημνe − eνμÞ ¼ 0: ð2Þ

From ∂νEμν ¼ 0, we have the vector constraint:

∂αeαν ¼ ∂νe: ð3Þ

Plugging (3) back in Eμν we have, from Eμν − Eνμ ¼ 0, the
tensor constraint:

e½μν� ¼ 0: ð4Þ

From (3) and (4) back in ημνEμν ¼ 0, we obtain the final
scalar constraint:

e ¼ 0 ð5Þ

and, consequently, from (3) we have the transverse con-
dition:

∂αeαν ¼ 0: ð6Þ

The equations of motion Eμν ¼ 0 become the Klein-
Gordon equations

ð□ −m2ÞeðμνÞ ¼ 0: ð7Þ

The FP conditions (4), (5) and (6) guarantee the correct
number of 5 degrees of freedom consistent with 5¼ 2sþ 1,
see [23] for a recent derivation of the FP conditions from
first principles.

B. Generalization of Lða1Þ to curved spaces

1. General setup and constraints

If we want to construct a theory of massive spin-2 field
in a curved space out of a nonsymmetric rank-2 tensor
we should provide the same number of propagating
degrees of freedom as in the flat case. They correspond
to the curved space version of the 11 Fierz-Pauli conditions
(4), (5), (6), namely e½μν� ¼ 0, gμνeμν ¼ 0 and ∇μeμν ¼ 0.
Thus, from the 16 components of eμν, we end up with
16 − 11 ¼ 5 degrees of freedom. Our calculations focus on
the D ¼ 4 case, but it can be generalized to D dimen-
sions (D ≥ 3).

1Throughout this work we use ημν ¼ ð−;þ;þ;þÞ, eðαβÞ ¼ðeαβ þ eβαÞ=2 and e½αβ� ¼ ðeαβ − eβαÞ=2.
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Generalizing (1) to curved spacetime we substitute all derivatives by the covariant ones and add nonminimal terms
containing the curvature tensor as in the FP case [24]. They also take care of ordering ambiguities. Requiring a quadratic
theory in derivatives, consistent with the flat limit (1) and at most linear in curvatures, the most general action has the form2

Lgða1Þ ¼ −
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα þ a1∇αeαβ∇μeμβ þ

1

2
∇αeαβ∇μeβμ þ

1

4
∇αeβα∇μeβμ þ

�
a1 þ

1

4

�
∇μe∇μe

−
�
a1 þ

1

4

�
∇μe∇αeαμ þ −

�
a1 þ

1

4

�
∇μe∇αeμα −

m2

2
ðeαβeβα − e2Þ þ f1Reαβeαβ þ f2Re2

þ f3Rαβμνeαμeβν þ f4Rαβeαμeβμ þ f5Rαβeαβeþ f6Rαβμνeαβeμν þ f7Rαβeαμeμβ þ f8Reαβeβα þ f9Rαβeμαeμβ

ð8Þ

where fj ðj ¼ 1; 2;…; 9Þ are arbitrary constants for the time being.
Varying the action with respect to eρσ , we obtain the equations of motion in curved space:

Eρσ ≐ δS
δeρσ

¼ 1

2
□ðeρσ þ eσρÞ − 2a1∇ρ∇μeμσ −

1

2
∇ρ∇μeσμ −

1

2
∇σ∇μeμρ −

1

2
∇σ∇μeρμ

þ 2

�
a1 þ

1

4

��
−gρσ□eþ∇ρ∇σeþ gρσ

∇μ∇αðeαμ þ eμαÞ
2

�
þ −m2ðeσρ − egρσÞ þ 2f1Reρσ

þ 2f2Rgρσeþ 2f3Rρβσνeβν þ 2f4Rρβeβσ þ f5Rρσeþ f5Rαβgρσeαβ þ 2f6Rαβρσeαβ þ f7Rασeαρ

þ f7Rραeσα þ 2f8Reσρ þ 2f9Rσβeρβ ¼ 0: ð9Þ

By applying one derivative on the equations of motion and after several manipulations, one obtains:

Cρ ≐ ∇σEρσ ¼ þð1 − 2f3 − 2f6ÞRρλσα∇αeλσ þ ð1þ 2f6ÞRρλσα∇αeσλ þ
�
1

2
þ f7

�
Rλα∇αeλρ

þ
�
1

2
þ 2f9

�
Rλα∇αeρλ þ ðf7 − 2a1ÞRλρ∇μeμλ þ

�
2f4 −

1

2

�
Rλρ∇μeλμ þ 2f1R∇σeρσ

þ
�
1

4
þ 2f1 þ f9

�
eρσ∇σRþ

�
2f2 þ

f5
2

�
e∇ρRþ ðm2 þ 2f2RÞ∇ρeþ

�
1

2
þ 2f4 þ 2f6

�
eβσ∇σRρβ

þ
�
1

2
þ 2a1 þ f5

�
Rρσ∇σe − ð1 − 2f3 − f5Þeαβ∇ρRαβ þ f5Rαβ∇ρeαβþ

−
�
1

2
þ 2f3 þ 2f6 − f7

�
eσα∇σRρα þ

�
1

4
þ f7

2
þ 2f8

�
eσρ∇σRþ −ðm2 − 2f8RÞ∇σeσρ: ð10Þ

Now, we define the tensor Cρσ:

Cρσ ≐ Eρσ − Eσρ ¼
�
−2a1 þ

1

2

�
ð∇ρ∇μeμσ −∇σ∇μeμρÞ þ ½m2 þ 2Rðf1 − f8Þ�ðeρσ − eσρÞ þ 2f3Rρβσνðeβν − eνβÞ

þ 2f4ðRρβeβσ − RσβeβρÞ þ 4f6Rαβρσeαβ þ f7Rα
σðeαρ − eραÞ

þ f7Rρ
αðeσα − eασÞ þ 2f9ðRσβeρβ − RρβeσβÞ: ð11Þ

In order to find a scalar constraint we have to consider the most general scalar combination of the equations of motion

C ≐ ðb0Rþ b1m2ÞgρσEρσ þ b2RρσEρσ þ b3∇ρ∇σEρσ ð12Þ

2We disregard nonanalytic functions of m2 and the term Rαβμνeαμeνβ which is redundant due to the cyclic property
Rμναβ þ Rμαβν þ Rμβνα ¼ 0.
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where bj (j ¼ 0, 1, 2, 3) are arbitrary constants for now. By manipulating and simplifying as much as possible, we obtain
the following expression:

C ¼ þ½b3ð2f4 þ f7Þ − b2�Rλα∇α∇ρeλρ þ 2b3ð1 − f3ÞRρλσα∇ρ∇αeλσþ

−
�
2b2

�
1

4
þ a1

�
− b3

�
1

2
− 2a1 þ f7 þ 2f9

��
Rλα∇α∇ρeρλ

þ
�
ðb0Rþ b1m2Þ

�
1

2
þ 6a1

�
þ 2b2

�
1

4
þ a1

�
R − b3ðm2 − 2f1R − 2f8RÞ

�
∇λ∇ρeρλþ

−
�
ðb0Rþ b1m2Þ

�
1

2
þ 6a1

�
þ 2b2

�
1

4
þ a1

�
R − b3ðm2 þ 2f2RÞ

�
□e

þ ðb2 þ b3f5ÞRλρ□eλρ þ
�
b2 þ b3f5 þ 2

�
a1 −

1

4

�
ðb2 þ b3Þ þ b3

�
Rλρ∇λ∇ρeþ C1 ð13Þ

where C1 contains up to first derivatives of eρσ. The
expression (13) has seven terms with second derivatives
of eρσ, which must be eliminated in order to become a
scalar constraint. In the special case of the FP theory
(a1 ¼ 1=4), the last two terms with second derivatives can
only be simultaneously cancelled if b2 ¼ b3 ¼ 0. Back in
the other terms we need b0Rþm2b1 ¼ 0. However in this
case we have no constraint whatsoever. This is in agreement
with [24] where the authors have chosen Einstein spaces in
order to surmount such difficulty. In the general case a1 ≠
1=4 we have to find a solution for the system below:

b3ð2f4 þ f7Þ − b2 ¼ 0; ð14Þ

b3ð1 − f3Þ ¼ 0; ð15Þ

2b2

�
1

4
þ a1

�
− b3

�
1

2
− 2a1 þ f7 þ 2f9

�
¼ 0; ð16Þ

ðb0Rþ b1m2Þ
�
1

2
þ 6a1

�
þ 2b2

�
1

4
þ a1

�
R

− b3ðm2 − 2f1R − 2f8RÞ ¼ 0; ð17Þ

ðb0Rþ b1m2Þ
�
1

2
þ 6a1

�
þ 2b2

�
1

4
þ a1

�
R

− b3ðm2 þ 2f2RÞ ¼ 0; ð18Þ

b2 þ b3f5 ¼ 0; ð19Þ

2b2

�
1

4
þ a1

�
þ 2b3

�
1

4
þ a1 þ

f5
2

�
¼ 0: ð20Þ

Without restrictions in the background, as shown in the
Appendix, we have not been able to solve the previous
system and get e ¼ 0 from the scalar constraint. So, we are
going to restrict the gravitational background to Einstein
spaces3 as in the FP case [12,24],

Rμν ¼
R
4
gμν: ð21Þ

Now we can rewrite (10), (11) and (13) as follows:

Cρ ≐ ∇σEρσ ¼ ð1 − 2f3 − 2f6ÞRρλσα∇αeλσ þ ð1þ 2f6ÞRρλσα∇αeσλ þ 2 ~f1R∇λeρλ

þ
�
1

2

�
1

4
− a1 þ 4 ~f8

�
R −m2

�
∇λeλρ þ

�
1

2

�
1

4
þ a1 þ 4 ~f2

�
Rþm2

�
∇ρe ¼ 0; ð22Þ

Cρσ ≐ Eρσ − Eσρ ¼ þ
�
−2a1 þ

1

2

�
ð∇ρ∇μeμσ −∇σ∇μeμρÞ þ 2ðf3 þ 2f6ÞRρβσνðeβν − eνβÞ

þ ½m2 þ ð2 ~f1 − 2 ~f8ÞR�ðeρσ − eσρÞ ¼ 0; ð23Þ

3Altogether with Bianchi identities we have ∇μRμνρσ ¼ 0 and ∇μR ¼ ∂μR ¼ 0.
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C ≐ ~b1gρσEρσ þ b3∇ρ∇σEρσ

¼ þ2b3ð1 − f3ÞRρλσα∇ρ∇αeλσ þ
�
−6~b1

�
a1 þ

1

12

�
þ b3

2

�
1

4
þ a1 þ 4 ~f2

�
Rþ b3m2

�
□e

þ
�
6~b1

�
a1 þ

1

12

�
þ b3

2

�
1

4
− a1 þ 4 ~f1 þ 4 ~f8

�
R − b3m2

�
∇λ∇ρeρλ

þ ~b1

�
3m2 þ

�
2 ~f1 þ 8 ~f2 þ

f3
2
þ 2 ~f8

�
R

�
e ¼ 0: ð24Þ

Motivated by the substitution of (21) back in (8) and (12)
we have defined:

~f1 ≐ f1 þ
f4
4
þ f9

4
;

~f2 ≐ f2 þ
f5
4
;

~f8 ≐ f8 þ
f7
4
;

~b1 ≐ b0Rþ b1m2 þ b2R
4

: ð25Þ

The expression (22) is already a vector constraint since it
does not have second derivatives of the field. It corresponds
to four constraints, in total. The same does not occur in
expressions (23) and (24). First, let us turn (24) into a scalar
constraint. We need to solve the system below:

b3ð1− f3Þ ¼ 0;

−6~b1
�
a1 þ

1

12

�
þ b3

2

�
1

4
þ a1 þ 4 ~f2

�
Rþ b3m2 ¼ 0;

6~b1

�
a1 þ

1

12

�
þ b3

2

�
1

4
− a1 þ 4 ~f1 þ 4 ~f8

�
R− b3m2 ¼ 0:

ð26Þ

It is easy to see that the solution of (26) back in (24) leads
to the scalar constraint e ¼ 0, provided the coefficient of e
is different from zero in (24). However, the expression (23)
still has terms with second derivatives. For these terms to be
cancelled,4 it is necessary that ∇μeμν ¼ 0. We can get this
from the vector constraint (22) if an appropriate choice of
parameters is made. More specifically, since the solution of
(26) requires f3 ¼ 1, if we set ~f1 ¼ 0 and f6 ¼ − 1

2
, we

obtain automatically from (22) that ∇μeμν ¼ 0 as far as the
coefficient of ∇μeμν in (22) is non-null. The solution of the

system given in (26) with the additional equations ~f1 ¼ 0

and f6 ¼ − 1
2
is given by

f3 ¼ 1;

~f8 ¼ −
1

8
− ~f2;

~b1 ¼
b3

1þ 12a1

�
2m2 þ

�
1

4
þ a1 þ 4 ~f2

�
R

�
: ð27Þ

Returning this solution in (22), (23) and (24) we finally get
all necessary constraints. More specifically, from (24) we
obtain the scalar constraint:

e ¼ 0: ð28Þ

Using (27) and the result e ¼ 0 in (22), we have the vector
constraint:

∇σeσρ ¼ 0: ð29Þ
Finally, using (27) and the results (28) and (29) in (23), we
achieve the tensor constraint:

e½ρσ� ¼ 0 ð30Þ

once its coefficient in (23) is nonvanishing too.
Summarizing, we have found all the FP constraints:

e ¼ 0; ð31Þ
∇σeσρ ¼ 0; ð32Þ
e½ρσ� ¼ 0; ð33Þ

if the restrictions below are respected

b3 ~m2

�
2 ~m2 þ

�
−
1

4
þ a1

�
R

��
3 ~m2 −

R
2

�
≠ 0; ð34Þ

~m2 ≡m2 þ
�
1

4
þ 2~f2

�
R; ð35Þ

while the equations of motion become

Eρσ ¼ ð□ − ~m2Þeρσ þ 2Rρασβeαβ: ð36Þ

Therefore, we end up with 16 − 11 ¼ 5 degrees of
freedom, which is the correct count for a massive spin-2

4If a1 ¼ 1
4
, those terms would be eliminated, but this specific

value for a1 represents the FP case and it is not of our interest
here.
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particle (5 ¼ 2sþ 1). The final curved space theory still
contains 2 free parameters: ~f2 and a1, with the restriction
(34) and ða1 þ 1=12Þða1 − 1=4Þ ≠ 0.
For the sake of comparison with [21] we focus now on a

special subcase of Einstein spaces, namely the maximally
symmetric spaces:

Rαβρσ ¼
R
12

ðgαρgβσ − gασgβρÞ: ð37Þ

All the results from the previous section can be brought
consistently to the maximally symmetric spaces (37). Using
(25) and (27), the Lagrangian (8) in a maximally symmetric
background becomes

LðMSSÞða1Þ ¼ −
1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα þ a1∇αeαβ∇μeμβ þ

1

2
∇αeαβ∇μeβμ

þ 1

4
∇αeβα∇μeβμ þ

�
a1 þ

1

4

�
∇μe∇μe −

�
a1 þ

1

4

�
∇μeð∇αeαμ þ∇αeμαÞþ

−
m2

2
ðeαβeβα − e2Þ − 1

24
Reαβeαβ þ

�
~f2 þ

1

12

�
Re2 þ −

1

4

�
11

12
þ a1 þ 4 ~f2

�
Reαβeβα: ð38Þ

On the other hand, it has been presented in [21] a model for
massive spin-2 particles also with a nonsymmetric tensor
eμν ≠ eνμ minimally coupled to maximally symmetric
background.
The Lagrangian is known as dual massive gravity and is

given by

LðdualÞ ¼ 1

2
∇ρeνσð−∇ρeνσ −∇νeρσ þ∇νeσρ −∇ρeσν

þ∇σeρν þ∇σeνρÞ −m2ðeμνeνμ − e2Þ: ð39Þ

As already discussed in [20], the model presented in [21]
is recovered from LðMSSÞða1Þ in the flat space when
a1 ¼ −1=4. However, it is important to notice that the
assumption of a1 ¼ −1=4 does not require a maximally
symmetric space as we have shown here.
The relation between LðdualÞ and LðMSSÞða1Þ is given by

LðMSSÞða1 ¼ −1=4Þ

¼ 1

2
LðdualÞ −

�
1

24
þ ~f2

�
Rðeαβeβα − e2Þ: ð40Þ

Thus, the model of [21] is a subcase of LðMSSÞða1 ¼ −1=4Þ
where

~f2 ¼ −
1

24
: ð41Þ

With the above value of ~f2, the restrictions (34) lead
to two forbidden values for the scalar curvature, namely,
R ≠ −6m2 and R ≠ 12m2. The first value differs by
a sign from the restriction obtained in [21] while the
second one has not been mentioned. It is important to

emphasize, however, that ~f2 is a free parameter in the
Lgða1Þ model, so the inequality (34) restricts the possible
values of ~f2, not of the curvature R. This happens
because our original Lagrangian is more general than
(39). In MSS there are no forbidden values for the scalar
curvature in the Lgða1Þ model for any value of a1,
including a1 ¼ −1=4.

2. Local symmetries of Lgða1Þ
In the previous sections, we have found all the

constraints of the Lgða1Þ model. The form of (22)
and (24) suggests that some local symmetries of Lgða1Þ
may exist even in the massive case. For example,
if the expression obtained for the vector constraint
∇σEρσ given in (22) becomes identically null, instead
of a vector constraint we would have four identities
∇σEρσ ≡ 0 and, consequently, the theory acquires the
vector symmetry

δeρσ ¼ ∇σAρ ð42Þ

since, up to a surface term,

δAS ¼
Z

d4x
δS
δeρσ

δeρσ ¼
Z

d4xEρσ∇σAρ

¼ −
Z

d4xð∇σEρσÞAρ ¼ 0: ð43Þ

In order that ∇σEρσ ¼ 0 holds identically, see (22), we
need the conditions:
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f3 ¼ 1;

~f1 ¼ 0;

~f8 ¼ −
1

8
− ~f2;

f6 ¼ −
1

2
;

R ¼ −
8m2

1þ 4a1 þ 16 ~f2
: ð44Þ

We have checked explicitly that (42) is indeed a
symmetry of Lgða1Þ if we use (44).
Analogously, we could find scalar symmetries for

Lgða1Þ. The action is invariant under the transformation

δeρσð1Þ ¼ ∇ρ∇σλ ð45Þ
where λ is an arbitrary scalar, provided the conditions
below are satisfied:

f3 ¼ 1;

~f8 ¼ −
1

8
− ~f1 − ~f2;

R ¼ −
8m2

1þ 4a1 þ 16 ~f2
: ð46Þ

In addition, there is another possible scalar symmetry
which is

δeρσð2Þ ¼ 12∇ρ∇σλþ Rgρσλ ð47Þ
where λ is an arbitrary scalar and the conditions below are
required:

f3 ¼ 1;

~f8 ¼ −
1

8
− ~f1 − ~f2;

R ¼ −
12m2

1þ 24 ~f2
: ð48Þ

We leave for a future work a detailed study of the special
cases (44), (46) and (48). The appearance of vector and
scalar symmetries are usually connected with massless and
partially massless theories, respectively.

III. FAMILY OF LAGRANGIANS LnFPðcÞ
A. Main results in the flat space

Analogously to the Lða1Þ case, in [22] we can find
another family of second order Lagrangians LnFPðcÞ which
describes massive spin-2 particles via a nonsymmetric
rank-2 tensor in D ¼ 4 flat spaces5

LnFPðcÞ ¼ −
1

2
∂μeðαβÞ∂μeðαβÞ þ

1

6
∂μe½∂μe − 2∂νeðνμÞ�

þ ½∂αeðαβÞ�2 −
1

3
½∂μeμν�2 −

m2

2
ðeμνeνμ þ ce2Þ:

ð49Þ

The real constant c is arbitrary and nFP stands for “non-
Fierz-Pauli” since we do not need to have c ¼ −1. In such a
special case, however, the model LnFPðc ¼ −1Þ coincides
with Lða1Þ at a1 ¼ − 1

12
. The massless case Lm¼0

nFP ðcÞ first
appeared in [25] and describes massless spin-2 particles. If
c ≠ − 1

4
the FP conditions can be derived from the equations

of motion as follows:

Eμν¼□eðμνÞ þ
ημν
3
ð∂α∂βeαβ−□eÞþ1

3
∂μ∂νe−∂μ∂αeðναÞþ

−∂ν∂αeðαμÞ þ
2

3
∂μ∂αeαν−m2ðeνμþcημνeÞ¼0: ð50Þ

From ∂νEμν ¼ 0, we have

∂νeνμ þ c∂μe ¼ 0: ð51Þ

Back in (50), we obtain from Eμν − Eνμ ¼ 0:

e½μν� ¼ 0: ð52Þ

From ημνEμν ¼ 0, we have

m2

�
cþ 1

4

�
e ¼ 0 ⇒ e ¼ 0 ð53Þ

and, consequently, from (51) now we have

∂αeαν ¼ 0: ð54Þ

Thus, the equations of motion given in (50) become the
Klein-Gordon equations:

ð□ −m2ÞeðμνÞ ¼ 0: ð55Þ

If c ¼ − 1
4
the model LnFPðcÞ is invariant under Weyl

transformations: δWeμν ¼ ημνϕ. We can fix the gauge e ¼ 0

and obtain all the FP conditions (52), (53) and (54) and the
Klein-Gordon equations (55).

B. Generalization of LnFPðcÞ to curved spaces

1. General setup and constraints

For LnFPðcÞ the procedure was analogous to that used for
Lða1Þ. The most general expression for LnFPðcÞ is the
following one:

5The model LnFPðcÞ can be generalized to arbitrary D ≥ 3;
see [22].
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Lg
nFPðcÞ ¼ −

1

4
∇μeαβ∇μeαβ −

1

4
∇μeαβ∇μeβα −

1

12
∇αeαβ∇λeλβ þ

1

2
∇αeαβ∇λeβλ

þ 1

4
∇αeβα∇λeβλ þ

1

6
∇μ∇μe −

1

3
∇αeαβ∇βe −

m2

2
ðeαβeβα þ ce2Þ

þ d1Reαβeαβ þ d2Re2 þ d3Rαβμνeαμeβν þ d4Rαβeαμeβμ þ d5Rαβeαβe

þ d6Rαβμνeαβeμν þ d7Rαβeαμeμβ þ d8Reαβeβα þ d9Rαβeμαeμβ ð56Þ

where dj ðj ¼ 1; 2;…; 9Þ are arbitrary constants for now. The equations of motion are

Eρσ ≐ δSgnFPðcÞ
δeρσ

¼ 1

2
□ðeρσ þ eσρÞ þ

1

6
∇ρ∇λeλσ −

1

2
ð∇ρ∇λeσλ þ∇σ∇λeρλÞ −

1

2
∇σ∇αeαρþ

−
1

3
gρσ□eþ 1

3
∇ρ∇σeþ

1

3
gρσ∇β∇αeαβ −m2ðeσρ þ cegσρÞ þ 2d1Reρσ

þ 2d2Regρσ þ 2d3Rρβσνeβν þ 2d4Rρβeβσ þ d5Rρσeþ d5gρσRαβeαβ

þ 2d6Rαβρσeαβ þ d7Rα
σeαρ þ d7Rρ

αeσα þ 2d8Reσρ þ 2d9Rσ
βeρβ ¼ 0. ð57Þ

The vector constraint is the following expression

Cρ ≐ ∇σEρσ ¼ ð1 − 2d3 − 2d6ÞRρλσα∇αeλσ þ ð1þ 2d6ÞRρλσα∇αeσλ þ d5Rαβ∇ρeαβ

þ
�
1

2
− 2d3 − 2d6 þ d7

�
eλσ∇λRσρ þ ð−1þ 2d3 þ d5Þeλσ∇ρRσλ

þ
�
1

2
þ 2d4 þ 2d6

�
eσλ∇λRσρ þ

�
1

2
þ 2d9

�
Rλμ∇μeρλ þ 2d1R∇σeρσ

þ
�
1

2
þ d7

�
Rλα∇αeλρ þ

�
1

6
þ d7

�
Rλρ∇μeμλ þ

�
1

4
þ 2d1 þ d9

�
eρσ∇σR

þ
�
2d4 −

1

2

�
Rλρ∇μeλμ þ

�
1

4
þ d7

2
þ 2d8

�
eλρ∇λRþ ð2d8R −m2Þ∇σeσρ

þ
�
1

3
þ d5

�
Rαρ∇αeþ ð2d2R −m2cÞ∇ρeþ

�
2d2 þ

d5
2

�
e∇ρR ¼ 0: ð58Þ

The tensor constraint will be obtained from the expression below:

Cρσ ≐ Eρσ − Eσρ ¼
2

3
ð∇ρ∇λeλσ −∇σ∇λeλρÞ þ ðm2 þ 2ðd1 − d8ÞRÞðeρσ − eσρÞ

þ 2ð2d6 þ d3ÞRρσαβeαβ þ ð2d4 − d7ÞðRρ
βeβσ − Rσ

βeβρÞ þ ðd7 − 2d9ÞðRρ
βeσβ − Rσ

βeρβÞ ¼ 0: ð59Þ

Regarding the scalar constraint, due to the Weyl symmetry of the kinetic terms in Lg
nFPðcÞ we do not need to add second

derivatives of equations of motion in order to produce a constraint as in (24). We can simply have

C ≐ gρσEρσ

¼ ½−m2ð1þ 4cÞ þ ð2d1 þ 8d2 þ d5 þ 2d8ÞR�eþ 2ðd3 þ d4 þ 2d5 þ d7 þ d9ÞRσβeσβ ¼ 0. ð60Þ

Thus, we have a scalar constraint in arbitrary gravitational backgrounds. In the Appendix we show that although it is
possible to get e ¼ 0 from (60) in arbitrary backgrounds, we are not able to have a curved space version of the tensor
constraint without restricting the background space. Henceforth we assume Einstein spaces (21). Let us rewrite (58), (59)
and (60) as follows:
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Cρ ≐ ∇σEρσ ¼ ð1 − 2d3 − 2d6ÞRρλσμ∇μeλσ þ ð1þ 2d6ÞRρλσμ∇μeσλ þ ~d1R∇σeρσ

þ
��

1

6
þ 2 ~d8

�
R −m2

�
∇σeσρ þ

��
1

12
þ 2 ~d2

�
R −m2c

�
∇ρe ¼ 0; ð61Þ

Cρσ ≐ Eρσ − Eσρ ¼
2

3
ð∇ρ∇λeλσ −∇σ∇λeλρÞ þ 2ðd3 þ 2d6ÞRρσαβeαβ þþ

�
m2 þ

�
2 ~d1 − 2 ~d8 þ

d9
2

�
R

�
ðeρσ − eσρÞ ¼ 0;

ð62Þ

C ≐ gρσEρσ ¼
�
−m2ð1þ 4cÞ þ

�
2 ~d1 þ 8 ~d2 þ

d3
2
þ 2 ~d8

�
R

�
e ¼ 0; ð63Þ

where we have defined

~d1 ≐ d1 þ
d4
4
þ d9

4
;

~d2 ≐ d2 þ
d5
4
;

~d8 ≐ d8 þ
d7
4
: ð64Þ

Therefore, (63) leads to the scalar constraint e ¼ 0,
provided the coefficient of e is different from zero. On
the other hand, (62) still has terms with second derivatives.
In order to solve this, we need ∇μeμν ¼ 0. We can get this
automatically from the vector constraint (61) by setting

~d1 ¼ 0; d3 ¼ 1; d6 ¼ −
1

2
ð65Þ

as far as the coefficient of ∇μeμν does not vanish.
Back in the tensor constraint (62) we obtain e½μν� ¼ 0 as

far as its coefficient is nonvanishing too. In summary, all 11
Fierz-Pauli constraints (31), (32) and (33) are confirmed if

~m2

�
~m2 −

R
6

��
ð1þ 4cÞ ~m2 þ

�
8ðc ~d8 − ~d2Þ −

1

2

�
R

�
≠ 0;

ð66Þ

~m2 ≡m2 − 2~d8R ð67Þ

while the equations of motion become

Eρσ ¼ ð□ − ~m2Þeρσ þ 2Rρασβeαβ ð68Þ

where the free paramenters ~d2 and ~d8 must satisfy the
conditions (66).

2. Local symmetries of Lg
nFPðcÞ

The model Lg
nFPðcÞ also presents vector and scalar

symmetries. There is one vector symmetry which comes
from the transformation

δeρσ ¼ ∇σAρ ð69Þ

where Aρ is an arbitrary vector. We need a nonvanishing
scalar curvature (R ≠ 0) and the following conditions:

~d1 ¼ 0; d6 ¼ −
1

2
; d3 ¼ 1;

~m2 ¼ R
6
;

~d2 ¼ −
1

24
þ c
12

þ ~d8c: ð70Þ

Such conditions imply that the vector constraint (61) be
identically null, i.e., ∇σEρσ ≡ 0.
On the other hand, starting from the general scalar

transformation

δeρσ ¼ A1∇ρ∇σλþ A2gρσλþ A3gρσ□λ ð71Þ

where λ is an arbitrary field and Aj (j ¼ 1, 2, 3) are
arbitrary constants, we have found three scalar symmetries
for Lg

nFPðcÞ.
The first one is

δeρσð1Þ ¼ gρσλ ð72Þ

where we must have

ð1þ 4cÞ ~m2 ¼ R

�
1

2
þ 8ð ~d2 − c ~d8Þ

�
: ð73Þ

The second scalar symmetry is
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δeρσð2Þ ¼ −4∇ρ∇σλþ gρσ□λ ð74Þ

where the relations below must hold:

d3 ¼ 1;

~m2 ¼ ð1þ 12~d1Þ
R
6
: ð75Þ

Finally, the last scalar symmetry is given by

δeρσð3Þ ¼ ∇ρ∇σλ ð76Þ

where the conditions below must be obeyed:

d3 ¼ 1;

~d2 ¼ −
1

24
þ c
12

þ cð ~d1 þ ~d8Þ;

~m2 ¼ ð1þ 12~d1Þ
R
6
: ð77Þ

The symmetry (76) and conditions (77) follow from the
previous scalar symmetries (72) and (74).

IV. CONCLUSION

Here we have studied massive spin-2 models via a
nonsymmetric rank-2 tensor in a curved background. As
in the usual Fierz-Pauli (FP) case with a symmetric tensor,
nonminimal couplings are necessary. The work here is a
preliminary one and parallels the work [24] on the FP
model. As in that case we have assumed that the Ansätze
(8) and (56) are linear on curvatures and their coefficients
are analytic functions of m2. Although there seems to be
slightly more freedom now in choosing the background
metric than in the FP case, we have selected, for
simplicity, background spaces of the Einstein type as
in [24]. We have succeeded in finding nontrivial solutions
for the coefficients of our Ansätze by getting rid of
second derivatives in the tensor, vector, and scalar
constraints. In particular, we have generalized from
maximally symmetric spaces to Einstein spaces a pre-
vious work in the literature [21] carried out for a massive
spin-2 theory with nonsymmetric tensor eμν ≠ eνμ, which
corresponds to the model Lða1Þ of Sec. II at the specific
point a1 ¼ −1=4. Regarding the model LnFPðcÞ, due to
the Weyl symmetry of the kinetic terms, the scalar
constraint has easily led to the traceless condition
e ¼ 0 but now the problem has moved to the tensor
constraint and once again we have found it convenient to
choose Einstein spaces.
Comparing the results obtained here in Einstein spaces

for Lða1Þ and LnFPðcÞ with the ones obtained in [24] for
the usual FP model, the main difference is that, besides

the scalar and vector constraint, we now have a tensor
constraint Cρμ ¼ 0; see (11) and (23). However, due to the
vector constraint ∇μeμν ¼ 0, the constraint Cρμ ¼ 0

amounts to eμν − eνμ ¼ 0 without further restriction in
the background. So there seems to be no fundamental
difference to the usual FP case in curved space. Since in
the FP case there is no restriction on the background
metric when we allow the coefficients to be nonanalytic
functions of m2, we would like to address that point also
in the case of our nonsymmetric models. This is under
investigation now.
Moreover, in both cases of Lða1Þ and LnFPðcÞ, we

believe that less restrictive conditions on the coefficients
can be obtained by getting rid of second order derivatives of
time only; this is under study. We are also analyzing the
special points in the parameters space where the local
symmetries mentioned in the previous sections show up.
They indicate massless and partially massless theories even
if m2 ≠ 0. The truly massless cases m ¼ 0 in both Lða1Þ
and LnFPðcÞ theories are also worth investigating in curved
space. Especially in the second case where, at least in the
flat space, we have massless spin-2 particles just like in the
massless version of the FP model.
As a final comment, we notice that the ghost free massive

gravity theories, see [8] and [9], accommodate massive
gravitons propagating in any gravitational background, see
[26–28]. Those results agree with earlier perturbative (in
powers of 1=m2) calculations. Thus, if we obtain correct
Lagrangian constraints for the models discussed here, in the
case of nonanalytic coefficients, we would be prompted to
search for nonlinear (self-interacting) versions of Lða1Þ
and LnFPðcÞ.
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APPENDIX: CONSTRAINTS IN A GENERAL
BACKGROUND

1. Lða1Þ
We are looking for a solution of the system (14)–(20)

without imposing restrictions on the background space.
Since fi ði ¼ 1;…; 9Þ and bj ðj ¼ 0;…; 3Þ are constants,
we demand that the coefficients of R in Eqs. (17) and (18)
are null, i.e.,

b0

�
1

2
þ6a1

�
þ2b2

�
1

4
þa1

�
þ2b3ðf1þf8Þ¼0; ðA1Þ

b0

�
1

2
þ 6a1

�
þ 2b2

�
1

4
þ a1

�
− 2b3f2 ¼ 0: ðA2Þ

The solution, singular at a1 ¼ 1=4 as expected, is given by
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f3 ¼ 1; f4 ¼
1

2
þ f9; f5 ¼

ð1þ 4a1Þ
ð−1þ 4a1Þ

; f7 ¼ −
8a1

ð−1þ 4a1Þ
− 2f9; f2 ¼ −

1þ 8a1ð1þ 2a1Þ
4ð−1þ 4a1Þ

þ b0
2b1

;

f1 ¼
1þ 8a1ð1þ 2a1Þ
4ð−1þ 4a1Þ

−
b0
2b1

− f8; b3 ¼
1

2
b1ð1þ 12a1Þ; b2 ¼ −

b1ð1þ 12a1Þð1þ 4a1Þ
2ð−1þ 4a1Þ

: ðA3Þ

Plugging this solution back into (13), we obtain a scalar constraint in a general background:

C ¼ C1 ¼
ð1þ 12a1Þ
ð−1þ 4a1Þ

�
−
b1ð1þ 4a1Þ2
2ð−1þ 4a1Þ

RρσRρσeþ
b1ð1 − 12a1Þ

2
∇λRσρ∇ρeλσ

þ 4b1a1eλσ□Rλσ þ b1ð1þ 12a1Þ
2ð−1þ 4a1Þ

∇ρRλσ∇ρeλσ −
b1ð1þ 4a1Þ

2
∇σRλα∇αeλσ

�

þ b1ð1þ 12a1Þ
2

��
−
b0
b1

þ 1þ 8a1ð1þ 2a1Þ
4ð−1þ 4a1Þ

�
∇λR∇ρeρλþ

−
�
b0
b1

þ 1 − 2a1ð−1þ 4a1Þ
−1þ 4a1

− 2f9

�
∇λR∇ρeλρ

�

þ ð1þ 12a1Þ
ð−1þ 4a1Þ

�
ðb0Rþ b1m2Þ þ b1ð1þ 4a1Þ

2

�
m2 þ b0R

b1
−
½16a1ð1þ a1Þ þ 3�R

2ð−1þ 4a1Þ
��

Rρσeρσ

þ b1ð1þ 12a1ÞRρσRρβσνeβν þ
ð1þ 12a1Þ
ð−1þ 4a1Þ

�
b1ð1þ 12a1Þð1þ 4a1Þ

2ð−1þ 4a1Þ
− 8b1a1

�
RρσRρβeβσ

þ b1ð1þ 12a1Þ
2

��
2b0
b1

−
1þ 16a1ð1þ 3a1Þ

4ð−1þ 4a1Þ
�
∇λR∇λeþ

�
b0
b1

−
2a1ð1þ 4a1Þ
ð−1þ 4a1Þ

�
ð□RÞe

�

þ
�
ðb0Rþ b1m2Þ

�
3m2 −

1þ 16a1ð1þ 3a1Þ
2ð−1þ 4a1Þ

Rþ 3b0R
b1

�
þ

−
b1ð1þ 12a1Þð1þ 4a1Þ

2ð−1þ 4a1Þ
�
m2 þ b0R

b1
−
½1þ 8a1ð1þ 2a1Þ�R

2ð−1þ 4a1Þ
�
R

�
e: ðA4Þ

We have not been able to derive e ¼ 0 from (A4) without restrictions on the background space.

2. LnFP

For arbitrary backgrounds if we choose d9 ¼ −d3 − d4 − 2d5 − d7 and d2 ¼ −ð2d1 þ d5 þ 2d8Þ=8 and assume
c ≠ −1=4, the scalar constraint (60) becomes simply e ¼ 0. Putting those results back into (58) and (59), we obtain

Cρ ¼ ð1 − 2d3 − 2d6ÞRρλσα∇αeλσ þ ð1þ 2d6ÞRρλσα∇αeσλ þ d5Rαβ∇ρeαβ

þ
�
1

2
− 2d3 − 2d6 þ d7

�
eλσ∇λRσρ þ ð−1þ 2d3 þ d5Þeλσ∇ρRσλ

þ
�
1

2
þ 2d4 þ 2d6

�
eσλ∇λRσρ þ

�
1

2
− 2d3 − 2d4 − 4d5 − 2d7

�
Rλμ∇μeρλ

þ 2d1R∇σeρσ þ
�
1

4
þ 2d1 − d3 − d4 − 2d5 − d7

�
eρσ∇σR

þ
�
2d4 −

1

2

�
Rλρ∇μeλμ þ

�
1

4
þ d7

2
þ 2d8

�
eλρ∇λRþ ð2d8R −m2Þ∇σeσρ

þ
�
1

2
þ d7

�
Rλα∇αeλρ þ

�
1

6
þ d7

�
Rλρ∇μeμλ; ðA5Þ
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Cρσ ¼
2

3
ð∇ρ∇λeλσ −∇σ∇λeλρÞ þ

�
m2 þ 2ðd1 − d8ÞR

�
ðeρσ − eσρÞ

þ 2ð2d6 þ d3ÞRρσαβeαβ þ ð2d4 − d7ÞðRρ
βeβσ − Rσ

βeβρÞ
þ ð2d3 þ 2d4 þ 4d5 þ 3d7ÞðRρ

βeσβ − Rσ
βeρβÞ ¼ 0: ðA6Þ

There are still second derivatives in Cρσ. We could think of determining∇σeσρ as a function of the remaining terms in (A5) at
d8 ¼ 0 and plugging it back in (A6) which leads to

Cρσ ¼
4

3m2

�
ð1 − 2d3 − 2d6ÞR½σλβμ∇ρ�∇μeλβ þ ð1þ 2d6ÞR½σλβμ∇ρ�∇μeβλ

þ
�
1

2
− 2d3 − 2d4 − 4d5 − 2d7

�
Rλμ∇½ρ∇μeσ�λ þ

�
1

2
þ d7

�
Rλμ∇½ρ∇μeλσ�

þ
�
1

6
þ d7

�
Rμ½σ∇ρ�∇λeλμ þ

�
−
1

2
þ 2d4

�
Rμ½σ∇ρ�∇λeμλ þ d5Rαβ∇½ρ∇σ�eαβ

þ 2d1R∇½ρ∇βeσ�β þ∇½ρF σ�

�
þ ðm2 þ 2ðd1 − d8ÞRÞðeρσ − eσρÞ

þ 2ð2d6 þ d3ÞRρσαβeαβ þ ð2d4 − d7ÞðRρ
βeβσ − Rσ

βeβρÞ
þ ð2d3 þ 2d4 þ 4d5 þ 3d7ÞðRρ

βeσβ − Rσ
βeρβÞ ðA7Þ

where F α does not contain any derivative of eρσ and is defined as follows:

F α ≐ þ
�
1

2
− 2d3 − 2d6 þ d7

�
eλμ∇λRμα þ ð−1þ 2d3 þ d5Þeλμ∇αRμλ

þ
�
1

2
þ 2d4 þ 2d6

�
eμλ∇λRμα þ

�
1

4
þ 2d1 − d3 − d4 − 2d5 − d7

�
eαλ∇λRþ

�
1

4
þ d7

2

�
eλα∇λR: ðA8Þ

Unfortunately, without any restriction on the background space we have not been able to avoid second derivatives of eμν in
the tensor constraint (A7). Therefore, just like the Lgða1Þ case, we are led to Einstein spaces Rμν ¼ R

4
gμν once again.
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