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Two- and three-point functions of composite operators are analyzed with regard to
(logarithmically) divergent contact terms. Using the renormalization group of dimensional regulari-
zation it is established that the divergences are governed by the anomalous dimensions of the
operators and the leading UV behavior of the 1=ϵ coefficient. Explicit examples are given by the
hG2G2i, hΘΘi (trace of the energy momentum tensor) and hq̄qq̄qi correlators in QCD-like theories.
The former two are convergent when the 1=ϵ poles are resummed but divergent at fixed
order implying that perturbation theory and the ϵ → 0 limit do not generally commute. Finite
correlation functions obey unsubtracted dispersion relations which is of importance when they are
directly related to physical observables. As a by-product the R2 term of the trace anomaly is extended
to next-to-next-to-leading order [Oða5sÞ], in the minimal subtraction scheme, using a recent hG2G2i
computation.
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I. INTRODUCTION

In this paper divergences are investigated which arise
when (composite) operators approach each other. These
ultraviolet (UV) divergences are necessarily local and
expressed in terms of delta functions and derivatives thereof
[i.e. contact terms (CTs)]. This requires renormalization in
addition to the parameters of the theory and the composite
operators themselves.
These CTs play an important role as they manifest

themselves as anomalies in correlation functions of
composite operators, the chiral anomaly serving as a
primary example,1 and the perspective on other anomalies
continues to evolve [8–10]. On the other hand CTs are
not important when studying the spectrum of two-point
functions (e.g. QCD sum rules [11]) or lattice QCD [12])
since they bear no relation to the infrared (IR) spectrum.
In lattice simulations of correlation functions CTs require
additional renormalization conditions, a problem for
which the 4þ 1-dimensional gradient flow offers new
perspectives [13–15].
Our work originates from the observation that the

leading logarithm (LL) ϵ poles of the field strength tensor
correlation function sums to an expression

Z
d4xeix·ph½G2ðxÞ�½G2ð0Þ�ijLLpoles ∼ p4

1

ϵþ β0as

¼ p4
1

ϵ

�
1 −

β0as
ϵ

þ ðβ0asÞ2
ϵ2

þOðas3Þ
�
; ð1Þ

which is finite for ϵ → 0 but divergent at each fixed order in
perturbation theory. Using the renormalization group (RG)
of dimensional regularization (DR) the absence of potential
logarithmic divergences is systematized in various ways.
Firstly, simple criteria for convergence, involving RG
quantities, are established of generic two-point functions.
The discussion is extended to include the nonperturbative
condensate terms, multiple couplings and three-point
functions. Using the local quantum action principle
(QAP) a closed integral expression for the R2 anomaly
is given in terms of the first pole of the correlation
function (1).
The paper is organized as follows. In Sec. II the finite-

ness criteria for two-point functions are discussed, followed
by the explicit examples of hG2G2i and hΘΘi correlators in
QCD-like theories in Sec. III. Implications for dispersion
integrals, RG-scale dependence (physicality) and the R2

anomaly are elaborated on in Secs. III B 1, III B 2 and III D,
respectively. The 1-coupling case of the two-point function
is generalized to multiple couplings and three-point func-
tions in Secs. IVA and IV B. The paper ends with a
summary and conclusions in Sec. V. Appendix A contains
details about the hG2G2i-correlation function computation
and Appendix B discusses the convergence of the hq̄qq̄qi-
and hJ5μJ5νi-correlation functions. The β-function conven-
tions are given in Appendix C.

*v.prochazka@ed.ac.uk
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1Early analyses centered around configuration space singular-

ities in correlation functions, without particular emphasis on
perturbation theory, of the chiral and trace anomalies can be
found in [1,2] and [2–4] and reviewed in [5], respectively.
Recently CTs in three-point correlation functions were the center
of discussion on whether in d ¼ 4 nontrivial unitary scale but not
conformal field theories exist [6,7].
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II. TWO-POINT FUNCTION IN
MOMENTUM SPACE

We consider a renormalizable theory [i.e. with a UV fixed
point (FP)] in four dimensions with no explicit mass scales
and a nontrivial flow. The Euclidean two-point functions of
marginal operators are parametrized as2 follows3:

ΓABðp2Þ ¼
Z

d4xeip·xh½OAðxÞ�½OBð0Þ�ic ¼ C1
ABðp2Þp4;

ð2Þ
where c stands for the connected component, h…i for the
vacuum expectation value (VEV), ½OA;B� are renormalized
scalar (composite) operators of mass dimension 4 and C1

AB
are dimensionless functions. Such a divergence might be
thought of as the Wilson coefficient of the identity operator.
In an asymptotically free (AF) theory the coefficient
C1
ABðp2Þ is potentially logarithmically divergent by power

counting. In coordinate space this divergence results from
singular behavior as x → 0. The latter can be removed by
local counterterms within the standard renormalization
program. The renormalized correlation function ΓR

AB is
obtained from the bare one ΓAB by splitting the bare
Wilson coefficient C1

ABðp2Þ into renormalized C1;R
AB ðp2Þ

and a counterterm L1;R
AB part

C1
ABðp2Þ ¼ C1;R

AB ðp2Þ þ L1;R
AB : ð3Þ

Above, the letter L either stands for local and R denotes a
renormalization scheme. To be clear we wish to add that
C1;R
AB is finite whereas L1;R

AB is generally not despite the R
label. We are going to be careful as to which statements are
generic for any scheme [i.e. a specific split in (3)] andwhat is
valid when R stands for the minimal subtraction (MS)
scheme.
In coordinate space this translates into

Γ̂R
ABðx2Þ ¼ h½OAðxÞ�½OBð0Þ�ic|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡Γ̂ABðx2Þ

− L1;R
AB □

2δðxÞ; ð4Þ

where □ ¼ ∂μ∂μ and δðxÞ is the four-dimensional Dirac
delta function throughout. With slight abuse in notation we
refer to C1

ABðp2Þ as the bare correlation function despite its

dependence on the RG scale through the renormalization
of the composite operators ½OA;B�. The renormalized
correlation function C1;R

AB ðp2Þ and the counterterm L1;R
AB

are in general RG-scale dependent even if ½OA;B� are not.
This particular RG-scale dependence of course cancels in
the sum and consists of CTs since L1;R

AB is local.

A. Two-point function in dimensional regularization
with one coupling

At first we restrict ourselves to one coupling as ¼ asðμÞ
whose scale dependence will frequently be suppressed
throughout. In the MS scheme with DR (d ¼ 4 − 2ϵ) the
counterterm

L1;MS
QQ ðμÞ≡X

n≥1

r1ðnÞQQ ðasðμÞÞ
ϵn

;

r1ð1ÞQQ ðasÞ ¼ r1ð1;0ÞQQ þ r1ð1;1ÞQQ as þOða2sÞ; ð5Þ

is given by a Laurent series. The residues r1ðnÞQQ are
dimensionless and functions of the running coupling only.
Since in this work we use the MS scheme in all practical
computation we do not indicate this circumstance with a
further label. We proceed to derive a RG equation (RGE)
for L1

QQ. The starting point is (3), which in DR

C1
QQðp2Þp−2ϵ ¼ ðC1;R

QQ ðp2Þ þ L1;R
QQ Þμ−2ϵ: ð6Þ

The renormalized Wilson coefficient C1;R
QQ ðp2Þ is finite for

ϵ → 0 in the sense of being analytic in ϵ (in particular no
poles). Suppose that ½OQ� can be made RG invariant by
premultiplying by a finite factor κQðasÞ, i.e.

d
d ln μ

κQZQQ ¼ 0; ZQQOQ ¼ ½OQ� þ � � � ; ð7Þ

where the dots correspond to equation of motion (EOM)
operators which do not contribute to structure we are
discussing. Using d

d ln μ κ
2
QC

1
QQðp2Þ ¼ 0 and the finiteness

of the renormalized Wilson coefficient one deduces4�
2γ̂Q þ d

d ln μ
− 2ϵ

�
L1;R
QQ ¼ −χRQQ; ð8Þ

where

γ̂Q ¼ d
d ln μ

ln κQ; ð9Þ
2Various extensions of this setup will be discussed: condensate

corrections in the language of the operator product expansion
(OPE) [1], nondiagonal correlation functions, multiple couplings
and three-point functions are discussed in Secs. III C, IVA and
IV B, respectively. An extension to operators with spin is possible
and we refer the reader to [16] where this is done in the context of
QCD for diagonal correlation functions.

3The correlation function h½OAðxÞ�½OBð0Þ�ic is formally de-
fined by the connected part of a regularized path-integral
representation

R
Dϕ½OAðxÞ�½OBð0Þ�e−S½ϕ�.

4In the case where OQ is marginal (and not mq̄q) κQ ¼ β̂Q and
γ̂Q ¼ 2∂ ln as β̂

Q, the non-ϵ part becomes Lie derivative,
Lβ ¼ 2γ̂Q þ β̂P∂P, acting on the 2-tensor L1;R

QQ . This circum-
stance is put into evidence in the multiple coupling section IV
which reveals the structure more systematically.
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with β̂ ¼ −ϵþ β and γ̂Q ¼ γQ − ξQϵ being the d-
dimensional β function and anomalous dimension, respec-
tively.5 The quantity χRQQ follows from the requirement of
finiteness and is given in the MS scheme by

χMS
QQ ¼ 2ðas∂asðasr1ð1ÞQQ Þ þ ξQr

1ð1Þ
QQ Þ: ð10Þ

The ordinary differential equation (8) is solved by

L1;R
QQ ðμÞ ¼

Z
∞

ln μ
χRQQðasðμ0ÞÞIQQðμ; μ0Þ

�
μ

μ0

�
2ϵ

d ln μ0; ð11Þ

which shows the MS property that all higher pole residues
of L1

QQ follow from the first one [encoded in χQQ (10)].
Above ðμ=μ0Þ2ϵIQQ is an integrating factor with

IQQðμ; μ0Þ ¼ exp

�
2

Z
ln μ0

ln μ
γ̂Qðasðμ00ÞÞd ln μ00

�
: ð12Þ

Generally it is the function IQQ and the power behavior of
χQQ which decide on whether or not the integral diverges
for μ0 → ∞ and ðμ=μ0Þ2ϵ serves as a potential UV regulator.
A more refined analysis is required to distinguish whether
the UV FP is of the AF type aUVs ≡ asð∞Þ ¼ 0 or
asymptotically safe (AS) type aUVs ≠ 0.

1. Asymptotically free theory

For the asymptotic analysis it is convenient to change the
variable to the RG time t≡ ln μ=μ0. In the asymptotic
regime a LL analysis is sufficient. Assuming β̂ðasÞ ¼ −ϵþ
β ¼ −ϵ − β0as þOða2sÞ the LL relation is given by6

asðtÞ ¼
ϵasðμÞe−2ϵt

ϵþ β0asðμÞð1 − e−2ϵtÞ ¼
asðμÞ

1þ 2β0asðμÞt
þOðϵÞ;

ð13Þ
with slight abuse in notation and initial value asðt ¼ 0Þ ¼
asðμÞ (for ϵ → 0) and UV value asðt → ∞Þ ¼ 0. The
anomalous dimension is parametrized by γQ ¼ asγQ;0 þ
Oða2sÞ implying the asymptotic behavior IQQðtÞ ∼ tη with
η ¼ γQ;0=β0. Assuming χQQ ∼ t−nQQ to be perturbative for
t → ∞ with nQQ ≥ 0 [nQQ ¼ 0, i.e. χQQ ¼ Oða0sÞ, being

the nominal case for a nontrivial unitary theory] the
condition for UV finiteness is7

1þ γQ;0

β0
< nQQ ⇔ L1;R

QQ ⟶
ϵ=ðβ0asÞ→0

L̄1;R
QQ ¼ ½finite�: ð14Þ

This result is presumably scheme independent since, as it is
well known, both β0 and γQ;0 are scheme independent.
Leading behavior in theMS scheme.—The leading behav-

ior of L1;MS
QQ is obtained explicitly by using the one-loop

expressions for β, γQ and the LO of χMS
QQ involves hyper-

geometric functions and is given in (A6) inAppendixA 2. For
ξ ¼ 0 (A6) becomes simpler which can be expanded in as:

L1;MS
QQ ðμÞ≃2r1ð1;0ÞQQ

Z
∞

0

e−2ϵtϵ−
γQ;0
β0 ðϵþβ0asð1−e−2ϵtÞ

γQ;0
β0 Þdt

¼ r1ð1;0ÞQQ

ð1þ asβ0
ϵ Þ1þ

γQ;0
β0 −1

asðβ0þ γQ;0Þ

¼ r1ð1;0ÞQQ

�
1

ϵ
þ γQ;0as

2ϵ2

þð−β0γQ;0þðγQ;0Þ2Þa2s
6ϵ3

þOða3sÞ
�
; ð15Þ

where the μ dependence arises from as ¼ asðμÞ. There are
divergent terms at each order in the as expansion. Provided
(14) is met for nQQ ¼ 0 the ϵ → 0 limit is finite and gives

L̄1;MS
QQ ¼ −

r1ð1;0ÞQQ

asðβ0 þ γQ;0Þ
: ð16Þ

Two important remarks are in order. First when (15) is
expanded in powers of as then 1=ϵ poles appear irrespective
of whether condition (14) is obeyed or not. This is an
example of where fixed order perturbation theory gives the
wrong indication about convergence. Secondly, even though
convergent the ϵ → 0 followed by as → 0 limit does not
exist for the hOQOQi-correlation function. That is to say that
in general the as expansion (fixed order) and ϵ → 0 limit do
not commute. In the cases where the correlation function is
related to a physical observable, such as the trace of the
energy moment tensor (TEMT) correlation function, there
are as-dependent prefactors which ensure a smooth limit.

2. Asymptotically safe theory

The nontrivial FP is characterized by generally
nonvanishing anomalous dimensions γQ¼ γ�Q þ
ðas−aUVs ÞγQ;0þ�� �. The integrating factor assumes the
form IOQðtÞ ∼ e2γ

�
Qt. The exponential behavior dominates

5Note that the γQ’s refer to the anomalous dimensions of the
operators and not to the κQ parameters (γQ ¼ −γκQ ). Using that for
a 1 coupling theory and a mass-independent scheme d

d ln μ ¼
2β̂∂ ln as , (8) can be written as ððϵ− γ̂QÞ−β̂∂ lnasÞL1;R

QQ¼χRQQ=2.
6For β̂ðasÞ ¼ −ϵþ β ¼ −ϵ − β0ars þOðarþ1

s Þ this leads
to asðtÞ ¼ ðasðμÞe−2ϵtϵ1=rÞ=ðϵ þ β0arsðμÞð1 − e−2rϵtÞÞ1=r →
asðμÞð1 þ 2rβ0arsðμÞtÞ−1=r for ϵ → 0 provided r > 0. In the
case where γQðasÞ ∼ ars the formula (14) still applies. For more
generic cases we leave it to the reader to work out the relevant
formula from Eqs. (11) and (12).

7In the case of a nondiagonal correlation function, as in (2),
with a single coupling theory the criterion (14) generalizes to
1þ γA;0þγB;0

2β0
< nAB where the operator basis has been assumed to

be diagonalized at LO. An example is given by QCD with the
topological term O1 ¼ G ~G and O2 ¼ ∂μq̄γμγ5q which do mix
with each other Z2

1 ¼ 12CFas 1
ϵ þOða2sÞ.
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over the polynomial behavior of χRQQ. Hence the sign of γ
�
Q

determines the convergence

γ�Q < 0 ⇒ L1;R
QQ ⟶

ϵ=as→0 ½finite�: ð17Þ
If γ�Q > 0, L1;R

QQ diverges and if γQ ¼ 0, then the analysis of
the AF case in the previous section applies.

B. Summary and contemplation

In summary the presence or absence of UV divergences
depends on the anomalous dimension γQ and the leading
power behavior of the χQQ. A more detailed comparison is
instructive. In the AF case (14) the condition depends on
both quantities mentioned above whereas in the AS case
(17) it only depends on the anomalous dimension at the FP.
The polynomial behavior of χQQ is overruled by the
exponential behavior of the anomalous dimension. This
is reminiscent of marginal flows requiring specific analysis
in order to determine whether or not they are relevant or
exactly marginal, whereas relevant and irrelevant flows are
settled from the start. The behavior of the AS case is similar
to the case of a scale or conformally invariant field theory.
The two-point function of operators, of scaling dimension
ΔO ¼ dO þ γO, is given by hOðxÞOð0Þi ∼ ðx2Þ−ΔO. In our
case dO ¼ 4 and the Fourier transform of the p4 structure is
convergent provided γO < 0 in accordance with the criteria
for an AS theory (17).
A priori the divergent structure of two-point function of

dimension-four operators inmomentum space reads (d ¼ 4)

ΓAB ∼ aΛ4
UV þ bp2Λ2

UV þ cp4 lnΛUV þ ½finite�; ð18Þ
for a cutoff regularization. Above a, b, c are dimensionless
functions of ΛUV=μ0 where μ0 is some reference scale. In
this section it was shown under what conditions
cDRðΛUV=μ0Þ lnΛUV ¼ ½finite� holds for ΛUV → ∞ in DR
(symbolically lnΛUV ↔ 1=ϵ). Since DR is defined only in
perturbation theory one might question as to whether the
result holds outside this framework. An argument in favor is
that perturbation theory is trustworthy in the UVand that the
LL approximation should therefore be sufficient. One
assumption though is that the UV divergences can be
captured as a Laurent expansion in powers of 1=ϵ.
Whether or not this is valid outside perturbation theory is
unknown since DR is only defined perturbatively. It is well
known that DR is blind to power divergences since no
explicit scale is introduced into the integral regularization
other than the prefactor μ−2ϵ. Hence aDR ¼ bDR ¼ 0 is built
into DR rather than being a result.8

In Secs. IVA and IV B the results are generalized
straightforwardly to the case of multiple couplings and
three-point functions. First, we illustrate the findings in the
familiar setting of QCD-like gauge theories including an
extension of the R2 anomaly to one order higher. This will
clarify the meaning of the quantity χQQ as being related to
trace anomaly of the external sources of the corresponding
operators; cf. [18].

III. QCD-LIKEGAUGE THEORY AS AN EXAMPLE

We consider a QCD-like gauge theory, i.e. Nf massless
fermions in a fundamental representation coupled to gluons
in the adjoint representation for a SUðNcÞ gauge group.
This implies in particular a nontrivial RG flow. In Sec. III A
finiteness of the hG2G2i and the closely related hΘΘi
correlators is established,9 followed by a discussion of
the physical consequences: unsubtracted dispersion rela-
tion (Sec. III B 1) and observability of the bare correlation
function (Sec. III B 2). In Sec. III C the discussion is
extended to include condensates through the OPE.

A. Gauge theory correlation functions

Correlation functions of the field strength tensor.—We
consider the two-point function of the field strength
correlation function, with

½Og� ¼
�
1

g20
G2

�
; ð19Þ

where G2 ¼ G2
μν is the usual field strength tensor Gμν¼

−i½Dμ;Dν� squared with covariant derivativeDμ¼ð∂þiAÞμ.
From (7) κg ¼ β̂ and therefore γg ¼ 2∂ lnas β̂ follows. This
leads to a simple form of the integrating factor (12):

Iggðμ; μ0Þ ¼
�
β̂ðμ0Þ
β̂ðμÞ

�2

: ð20Þ

The corresponding Laurent series (11), changing variables to
d ln μ0 ¼ du=ð2uβ̂ðuÞÞ, takes on the form

L1;R
gg ðμ;ϵÞ ¼−

1

2β̂2ðasðμÞÞ
Z

asðμÞ

0

χRggðuÞβ̂ðuÞ
�
μðasÞ
μðuÞ

�
2ϵ du

u
;

ð21Þ

where the factor ð…Þ2ϵ will be specified further below. This
expression is convergent as γg;0 ¼ −2β0 and χRggðasÞ ∼
Oða0sÞ obey the inequality (14) with 1–2 < 0. This means
that

8Let us mention, in passing, that it has been argued by Bardeen
[17] that cutoff regularizations are not a natural choice for
renormalizable theories. For example when a theory exhibits a
global chiral symmetry one would preferably use a chirally
invariant regularization as otherwise the Ward identities need to
be fixed by adding local counterterms.

9The hq̄qq̄qi and hJ5μJ5νi-correlation functions are discussed in
Appendixes B 1 and B 2, respectively. Its convergence depends
on the number of flavors and colors.
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L1;R
gg ðϵÞ ⟶

ϵ=β→0
L̄1;R
gg ¼ ½finite�: ð22Þ

It is instructive to consider this constant explicitly at LL
in the MS scheme:

L1;MS
gg jLL ¼ r1ð1;0Þgg

ϵþ β0as
⟶

ϵ=ðβ0asÞ→0
L̄1;MS
gg jLL ≡ r1ð1;0Þgg

β0as
¼ ½finite�;

ð23Þ
as it becomes apparent that the correlation function is not
finite for as → 0. One should keep in mind that the field
strength correlation function is not a physical quantity unlike
the closely related correlation function of the TEMT dis-
cussed below. Before doing so let us emphasize that when
expanding (21) in as divergent terms appear; cf. (15). We
indeed reproduce the divergent terms in [19,20] at next-to-
leading order and next-to-next-to-leading order (NNLO),
respectively. To obtain agreement it is important to expand
the term to the power 2ϵ in the integrand ðμðasÞ=μðuÞÞ2ϵ ¼
expðϵ R as

u du0=ðu0β̂ðu0ÞÞÞ ¼ u=asðμÞ þOð1=ϵÞ.
Correlation functions of the trace of the energy momen-

tum tensor.—The TEMT decomposes as follows:

hTρ
ρi ¼ ð−δsðxÞÞ lnZ ¼ hΘi þ hΘgravityi

þ hΘeomi þ hΘgfi; Θ ¼ β̂

2
½Og�; ð24Þ

where Θ, Θgravity, Θeom, and Θgf are the operator, curvature-
dependent, EOM and gauge-fixing part of the TEMT,
respectively. The Θgf part does not contribute to physical
observables, Θgravity vanishes in flat space, and Θeom

contributes to the ðp2Þ0 structure. We can therefore con-
centrate on Θ.10 Adapting the notation ½Oθ� ¼ Θ in analogy
with (19), Eq. (24) implies a relation between the two
Laurent series:

L1;R
θθ ¼ β̂2

4
L1;R
gg þ ½finite�: ð25Þ

An expression for L1;MS
θθ is obtained from (21) by multiply-

ing by β̂2=4, partial integration and subtracting the finite
constant in (25):

L1;MS
θθ ¼ 1

4

Z
as

0

∂u

�
β

u

�
u

��
μðasÞ
μðuÞ

�
2ϵ

−
u
as

�
r1ð1Þgg ðuÞdu:

ð26Þ

The limiting expression L̄1;MS
θθ is manifestly finite and well

behaved in the limit β → 0 and as → 0. For instance, the LL

expression is given by L̄1;MS
θθ jLL ¼ ðr1ð1;0Þgg =4Þ · β0as. In

passing we note that the criteria (14) for the hΘΘi correlator
is obeyed with γθ ¼ 0 and nθθ ¼ 2. Finiteness of the trace of

the hΘΘi correlator and the hG2G2i correlator in AF gauge
theories has been noted elsewhere [16,21–24].
We conclude this section by stating that both C1

ggðp2Þ
and C1

θθðp2Þ are finite for ϵ → 0 and that C1
ggðp2Þ, being

proportional to 1=β (21), cannot be expanded in as. An AF
theory is therefore different from a conformal field theory
(CFT), of which a free theory is a special case, in that the
correlator of marginal operators is finite in the former but
not the latter case. In a CFT ΓXXðx2Þ ∼ 1=x8, withΔOX

¼ 4,
which diverges upon Fourier transformation whereas
Γggðx2Þ ∼ 1=x8fðlnðμ2x2ÞÞ converges in the AF case.

B. Consequences of finiteness of C1
ggðp2Þ and C1

θθðp2Þ
There are three points connected to the finiteness of L1;R

gg

andL1;R
θθ whichwewould like to discuss. First, since the bare

Wilson coefficients C1
ggðp2Þ and C1

θθðp2Þ are both finite,
they satisfy a dispersion relation which does not require
subtractions (i.e. no regularization). Note that if regulari-
zation was necessary, then the ϵ → 0 limit would not exist
contrary to our findings. An explicit dispersion representa-
tion is given at LL in Sec. III B 1. Second, since C1

θθðp2Þ is
finite and scale independent (since bare) it may be related
to a physical observable, which is indeed the case;
cf. Sec. III B 2. A third aspect is the R2-trace anomaly
associated with the hΘΘi correlator. Since anomalies can be
interpreted as originating from UV divergences one might
wonder whether UV finiteness means that the R2 anomaly
(related to hΘΘi; cf. Sec. III D) is an artifact of perturbation
theory only. The answer to this question is no, at least in the
MS scheme since it is the ln μ termwhich is the true signal of
the anomaly. Finiteness though means that one can choose a
scheme [25]where theR2 anomaly is absent or absorbed into
the renormalization of the dynamical operators.

1. Explicit unsubtracted dispersion representation
for leading logarithms

We introduceP2 ≡ −p2, whereP2 might be thought of as
aMinkowski momentum allowing us towrite the dispersion
relation in the usual way. The starting point is the LL
expression (23). The associated logarithms are 1=ϵn ↔
−lnnð1=μ2Þ (which is derived in Appendix A 1 from the
bare correlation function) and by dimensional analysis this
implies 1=ϵn ↔ − lnnð−P2=μ2Þ. At LL the expression can
be written as follows:

C1
ggðp2ÞjLL ¼ C1;MS

gg ðp2ÞjLL þ ðL1;MS
gg jLLÞϵ→0

¼ ðL1;MS
gg jLLÞϵ−n→−lnnð−P2

μ2
Þ þ ðL1;MS

gg jLLÞϵ→0

¼ −
r1ð1;0Þgg lnð−P2=μ2Þ

1þ asβ0 lnð−P2=μ2Þ þ
r1ð1;0Þgg

asβ0

¼ r1ð1;0Þgg

asβ0
xðP2Þ; ð27Þ10In the case where the fermions are massive Θ → Θþ

Nfmfð1þ γmÞq̄q.
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with

xðP2Þ ¼ 1

1þ asβ0 lnð−P2=μ2Þ ; ð28Þ

and it should be kept in mind that the ϵ−n replacement rule is
to be applied to the renormalized part only. We refer the
reader to [26] for a next-to-leading logarithmic expression
but the reason we content ourselves with LL is that it is
sufficient for the asymptotic behavior. Since xðP2Þ is finite
for P2 → ∞, it obeys an unsubtracted dispersion relation of
the form

xðP2Þ ¼ 1

2πi

Z
Γ

xðsÞ
s − P2

; ð29Þ

where Γ is such that no singularities are crossed. The
singularities of xðP2Þ are a branch cut at P2 ≥ 0 and a pole
in the Euclidean domain atP2 ¼ P2

0 ≡ −μ2 expð−1=ðβ0asÞÞ
onwhich we comment in the next section. It is convenient to
split the dispersion representation into the pole part

xðP2Þ ¼ −1
1 − P2=P2

0

þ x̂ðP2Þ ð30Þ

and the integration over the cut

x̂ðP2Þ ¼ 1

π

Z
∞

0

ds
Im½xðsÞ�

s − P2 − i0

¼
Z

∞

0

ds
s − P2 − i0

1

ð1þ aβ0 lnðs=μ2ÞÞ2 þ ðaβ0πÞ2
:

ð31Þ
Above it was used that xðsÞ → 0 for s → ∞ as otherwise the
arc at infinity would contribute to the dispersion integral.
This is the formal solution and it is easily seen that for finite
P2 the integrand behaves

R
∞
0 ds=ðs lnðs=μ2Þ2Þ < 0 which

is finite. The integral (31) is explicitly evaluated in
Appendix A 3 to reproduce the expression in (30). The
dispersion relation for the TEMT part is simply given
by C1

θθðp2ÞjLL ¼ β20=4a
2
sC1

ggðp2ÞjLL.

2. Finiteness of C1
θθðp2Þ implies observability

Generally physical quantities are RG-scale independent
and finite. Bare correlation functions with renormalized
composite operators, such as ΓABðp2Þ (2), are RG-scale
independent but, in the case where they are not finite, do
not qualify as physical observables. Since C1

θθðp2Þ is finite
the situation changes and the bare function is observable.
For example Δb̄, the difference of the flow of □R term of
the Weyl anomaly, is related by Δb̄ ¼ 1

8
C1
θθð0Þ [25].

Below we illustrate the scale independence of C1
θθðp2Þ

(and the analogous case of the bare m2hq̄qq̄qi correlator is
discussed in Appendix B 1). In a one-scale theory with one
external momentum any quantity reads φðp2=μ2; asðμ=μ0ÞÞ

where μ0 is a reference scale, e.g. ΛQCD, which we suppress
further below. In the case where φ is a physical quantity,
and therefore independent of the renormalization scale μ,
the functional dependence simplifies to

d
d ln μ

φðp2=μ2; asðμ2ÞÞ ¼ 0 ⇔ φ ¼ ~φðasðp2ÞÞ: ð32Þ

This is indeed the case for C1
θθðp2Þ at LL. Starting with (27)

one gets

C1
θθðp2ÞjLL ¼ r1ð1;0Þgg

4

asðμ2Þβ0
1þ asðμ2Þβ0 lnðp2=μ2Þ

¼ r1ð1;0Þgg

4
β0asðp2Þ þOðβ1Þ; ð33Þ

a function which depends on asðp2Þ only. Note that if we
were guided by fixed order perturbation theory, then we
would resort to the renormalized C1;R

θθ ðp2Þ which is scale
dependent, d

d ln μC
1;R
θθ ðp2Þ ¼ −limϵ→0ð d

d ln μ − 2ϵÞL1;R
θθ ¼ χRθθ

with the last equality following from (11). This is why
it is sometimes stated that only p2 d

dp2 C
1;R
θθ ðp2Þ ¼

p2 d
dp2 C1

θθðp2Þ (e.g. [20]) is physical whereas we advocate
that the bare term C1

θθðp2Þ is physical and should be stated.
An example being the previously mentioned □R flow:
Δb̄ ¼ 1

8
C1
θθð0Þ. The scheme-dependent splitting of the bare

function into a counterterm and a renormalized part defines
a flow for b̄ connecting the UV and IR values [25].
The pole discussed in the previous section is the Landau

pole of the gauge coupling. It has no direct physical
meaning and contradicts the analytic structure of the
spectral representation. It is precisely this pole that is
removed in the approach of analytic perturbation theory by
enforcing a physical singularity structure on the amplitude
[27]. In the fully nonperturbative version this pole dis-
appears. The correlation function satisfies an unsubtracted
dispersion (P2 ¼ −p2):

C1
θθðP2Þ ¼ 1

π

Z
∞

0

ds
Im½C1

θθðsÞ�
s − P2 − i0

þ ω0; ð34Þ

consistent with the Källén-Lehmann representation. Above
ω0 is an arbitrary, scale-independent, finite constant which
can be added by changing the theory by a local term in
the UV. The addition of this term is more than a choice
of scheme; it corresponds to changing the theory by a
local term. We have therefore silently assumed ω0 ¼ 0
which is automatic in the conventional setup. This constant,
being arbitrary, should not impact on any physical pre-
dictions. In the above mentioned formula of the □R-flow
anomaly this is ensured by the implicit boundary
condition C1

θθð∞Þ ¼ 0. If this boundary condition is
generic C1

θθð∞Þ ¼ ω0, as in (34), then the formula simply
changes to Δb̄ ¼ 1

8
ðC1

θθð0Þ − ω0Þ [25].
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C. OPE extension with condensates

This section may be considered as a minor digression
and the reader may or may not want to directly proceed to
Sec. IV. The discussion below has some overlap with
Ref. [28] but goes beyond it in the emphasis on finiteness.
So far we have treated the correlation function (2) within
the framework of perturbation theory. Equation (2) is a
good approximation for large p2 and preasymptotic effects
for p2 ≫ Λ2

QCD can be parametrized in terms of vacuum
condensates h½OC�i ∼OðΛ4

QCDÞ with the framework of the
OPE [1]. The vacuum condensates appear as power
suppressed with respect to perturbation theory (i.e. the
h1i ¼ 1 term):

ΓABðp2Þ ¼ C1
ABðp2Þp4h1i þ

X
C

CC
ABðp2Þh½OC�i: ð35Þ

Anticipating Sec. IVA we include several operators which
correspond to the several coupling case. In the formula
above we have assumed all perturbations ½OC� to be of
dimension four, i.e. marginal. The OPE has been shown to
hold in perturbation theory [29,30] and has enjoyed
phenomenological success in the nonperturbative regime
where it is expected to hold [31].
It is our aim to investigate whether or not the Wilson

coefficient Cg
ggðp2Þ, in analogy to C1

ggðp2Þ,

Γggðp2Þ ¼ C1
ggðp2Þp4 þ Cg

ggðp2Þh½Og�i; ð36Þ

is finite or not. To do so the QAP proves useful. The key
idea of the QAP is that differentiation of the finite partition
function with respect to finite renormalized parameters
leads directly to finite well-defined quantities. The QAP
might be regarded as a scheme for the renormalization of
composite operators. For convenience we employ the local
QAP (e.g. [28,32]) where the couplings gA are promoted to
local functions gAðxÞ which then become sources for the
corresponding local operators

h½OAðyÞ�i ¼ ð−δAðyÞÞ lnZ; δAðxÞ ≡ δ

δgAðxÞ ; ð37Þ

where the corresponding Lagrangian in bare quantities
reads L ¼ gA0OA þ � � �. The principle also applies to higher
point functions such as

ΓR
ABðx − yÞ ¼ð−δBðyÞÞð−δAðxÞÞ lnZ ¼ ð−δBðyÞÞh½OAðxÞ�i

¼ h½OAðxÞ�½OBðyÞ�ic − hðδBðyÞ½OAðxÞ�Þi
¼ ½finite�: ð38Þ

Since the right-hand side is finite this means that the local
divergences of the unrenormalized two-point function,

CC
ABðp2Þ − LC;R

AB ¼ ½finite�; ð39Þ

ought to cancel against corresponding divergencies in LC;R
AB

coming from the variation of the operator renormalization
constants

hðδBðyÞ½OAðxÞ�Þi ¼
X
C

LC;R
AB h½OC�iδðx − yÞ

þ μd−4L1;R
AB h1i□2δðx − yÞ þ ½finite�:

ð40Þ

The quantities LC;R
AB are given in terms of the RG mixing

matrix ZA
I:

LC;R
AB ¼ ð∂BZA

IÞðZ−1ÞCI ; ∂Q ≡ ∂
∂gQ ; ð41Þ

where the scheme dependence comes from the scheme-
dependent ZA

IjR ¼ ZI
A which we suppress throughout

in order to lighten the notation. For our example with a
Yang-Mills Lagrangian L ¼ 1=4Og with Og defined in
(19) the renormalized composite operator follows
from h½OgðxÞ�i ¼ ð− 4

g2 δ1=g2ðxÞÞ lnZ ¼ ð2δln gðxÞÞ lnZ. The

renormalization of ½Og� is given by [33,34]

½Og� ¼ Zg
gOg þ � � � ;

Zg
g ¼

�
1þ ∂ lnZg

∂ ln g
�

¼ ðd − 4Þ
2β̂

; ð42Þ

with the dots standing for EOM and gauge-dependent terms
which vanish on physical states and are therefore imma-
terial for the current discussion. From Eqs. (40) and (42)
one gets

Lg;R1
gg ¼ 2∂ ln g lnZg

g

¼ 2

�
1þ ∂ lnZg

∂ ln g
�

−1 ∂2 lnZg

∂ðln gÞ2

¼ −
2∂ ln gβ̂

β̂
⟶
ϵ=β→0½finite�: ð43Þ

The term Lg;R1
gg differs from Lg;MS

gg in finite terms since the
latter is a power series in 1=ϵ by definition. From (39) it
then follows that Cg

ggðp2Þ is finite in the limit ϵ → 0 but
divergent at each order in perturbation theory.11 It is noted

11To compare with the literature we need the CTs of G2 as
opposed to ½Og�. These can be obtained by accounting for the
factor 1=g20 in the definition of Og [see (19)], which leads to
the following modification of (43): 2∂ ln g lnZg

g=g20 ¼ Lg;R1
gg −

2ðd − 4Þ=β̂. Expanding this expression in powers of as results

in −4ða2s ½β1ϵ � þ a3s ½− β0β1
ϵ2

þ 2β2
ϵ � þ a4s ½β

2
0
β1
ϵ3

− β1ðβ1þ2β0Þ
ϵ2

þ 3β3
ϵ �Þ up to

corrections of the order ofOða5s ; ϵ0Þ. This is identical to 1
4
ZL
11=Z11

in [35,36] [Eq. (4.7)] up to finite terms. However, the observation
of finiteness and its possible implications were not made in
[35,36].
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though that Lθ;R
θθ ðp2Þ ¼ β̂=2Lg;R

gg þ ½finite� ¼ −∂ ln gβ̂ þ
½finite� is finite, but even finite in each order in perturbation
theory provided every quantity, e.g. beta function, is treated
consistently in d dimensions. The same applies therefore to
the corresponding bare Wilson coefficient Cθ

θθðp2Þ ¼
β̂=2Cg

ggðp2Þ. Hence one can write down convergent
dispersion relations for both Cg

ggðp2Þ and Cθ
θθðp2Þ as

done in Sec. III B 1. The coefficient Cθ
θθðp2Þ is scale

independent.
It is again instructive to write down the LL expression

Cg
ggðp2ÞjLL ¼ −1

1þ asðμ2Þβ0 lnðp2=μ2Þ ;

Cθ
θθðp2ÞjLL ¼ β0asðμ2Þ

2ð1þ asðμ2Þβ0 lnðp2=μ2ÞÞ
¼ β0

2
asðp2Þ þOðβ1Þ; ð44Þ

which happens to be proportional to C1
ggðp2ÞjLL and

C1
θθðp2ÞjLL (33), respectively.

D. Extending the R2 anomaly to Oða5s Þ
1. R2 anomaly from the hΘΘi correlator and the

quantum action principle

It has been known for a long time that trace anomalies in
curved space time (e.g. [37]) are related to correlation
functions of the TEMT in flat space. The link is provided by
the local QAP.
In four dimensions the VEV of the TEMT in curved

space reads (e.g. [38])

hTρ
ρi ¼ −ðβIRa E4 þ βIRc W2 þ βIRb H2Þ þ 4b̄IR□H þ dΛIR;

H ≡ 1

ðd − 1ÞR; ð45Þ

with E4, W2, R and Λ being the Euler, the Weyl squared,
the Ricci scalar and the cosmological constant term,

respectively, and βaðμÞ →
μ→0

βIRa , etc.12 The Euler term is
topological and analogous to the G ~G term of the chiral
anomaly known as a type A anomaly [39]. TheW2 and H2

arise from the introduction of a scale in the process of
regularization and □H is the variation of a local term.
These are known as type B anomalies [39].
We write the gravitational counterterm as follows:

Lgravity ¼ −ða0E4 þ c0W2 þ b0H2Þ; ð46Þ
with b0 ¼ μd−4ðbR þ LR

b Þ and notation that largely follows
Shore’s review [32]. A double variation of the Weyl factor
sðxÞ (gμν → e−2sðxÞgμν) is finite since both the partition

function and the metric are finite. When the latter is Fourier
transformed and projected on the p4 structure one obtainsZ

ddxeip·xðð−δsðxÞÞð−δsð0ÞÞ lnZÞjp4

¼
Z

ddxeip·xhTρ
ρðxÞTρ

ρð0Þijp4 þ 8b0

¼
Z

ddxeip·xhΘðxÞΘð0Þijp4 þ 8b0

¼ C1
θθðp2Þp−2ϵ þ 8b0 ¼ ½finite�; ð47Þ

where in passing to the third line we used the fact that EOM
terms contribute to the ðp2Þ0 structure only and assumed that
neither virial currents nor nonimprovable scalars are present.
This is correct for QCD-like theories in the conformal
window used in the next section. In the parameterization
of (48) this implies the nontrivial, known [40], relation

LR1

b ¼ −
1

8
L1;R2

θθ þ ½finite�; ð48Þ

which translates into LMS
b ¼ − 1

8
L1;MS
θθ for the MS scheme.

We end this section with three slightly disjoint points.
(i) One application of the finiteness of LR

b , i.e. p4

structure of the hΘΘi correlator, is that one can
choose a scheme where βRb vanishes [25]. The
contribution is absorbed into the operators appearing
in the trace anomalies e.g. G2 in the case of QCD-
like theories. Below βb is given in the MS scheme
for which is nonzero outside the FPs.

(ii) Remark on the sign conventions and the specifics of
the gravity counterterms. First a0, b0 and c0 are
taken to be independent of the scale in accordance
with Refs. [37,40,41] but differing from the classic
work [18] where b0 is reduced to μd−4LMS

b . We refer
the reader to Appendix B of our paper [25] for
further comments. Our approach determines bR in
b0 ¼ μd−4ðbR þ LR

b Þ up to a scale-independent
constant e.g. [37] which incidentally is the ω0 in
(34). The sign convention of b0 is such that βa
decreases along the flow leading to the counterterm
with the opposite sign in (47) as compared to (4),
which explains the sign difference in (48).

(iii) Equation (48) allows us to elucidate the quantity
χRQQ (8) in the context where Q ¼ θ. Since the
TEMT is physical, γθ ¼ 0, and from (11) it follows
that [βRb ≡ −ð d

d ln μ − 2ϵÞLR
b ]

βMS
b ¼ −

1

8
χMS
θθ ; ð49Þ

χMS
θθ and the βMS

b R2 anomaly (45) are related. It
seems worthwhile to mention that the link between
χRAB and the TEMT generalizes for local source
couplings other than sðxÞ. Instead of geometric
terms like R2, the χRAB appear in front of covariant

12The latter is defined by hTαβi ¼ gαβΛIR and may or may not
be canceled by adding a suitable counterterm to the UV action.

VLADIMIR PROCHAZKA and ROMAN ZWICKY PHYSICAL REVIEW D 95, 065027 (2017)

065027-8



expression in the source couplings gA;BðxÞ;
cf. Eqs. (2.5) and (2.8) in [18]. The concept also
generalizes to higher point functions both at the level
of gravity terms (e.g. E4 is related to three-point
functions) as well as covariant coupling terms.

2. Application to QCD-like theories

The generally valid relations (48) and (49) are applied to
QCD-like theories in this section. From (48) and L1;MS

θθ in
(26) it is then observed that (ϵ → 0 implied)

LMS
b ðasðμÞÞ ¼ −

1

32

Z
as

0

∂u

�
β

u

�
u

�
1 −

u
as

�
r1ð1Þgg ðuÞdu;

ð50Þ
which allows us to write an explicit formula for the βb-
anomaly term:

βMS
b ¼ −

�
d

d ln μ
− 2ϵ

�
LMS
b

¼ 1

16

βðasÞ
as

Z
as

0

∂u

�
βðuÞ
u

�
u2r1ð1Þgg ðuÞdu: ð51Þ

Hence from the r1ð1Þgg counterterm of the TEMT correlation

function one can deduce the R2-anomaly term. The r1ð1Þgg

term can be found in the recent computation [36] up to
NNLO. We extract

r1ð1;0Þgg ¼ ng
4π2

;

r1ð1;1Þgg ¼ r1ð1;0Þgg

�
17

2
CA −

10

3
NFTF

�
;

r1ð1;2Þgg ¼ 4r1ð1;0Þgg

�
C2
A

�
11

6
ζ3 þ

22351

1296

�

− CANFTF

�
14

3
ζ3 þ

799

81

�

þ ngNFTF

�
ζ3 −

107

18

�
þ 49

81
T2
FN

2
F

�
; ð52Þ

with ζ3 being the Riemann zeta function at the value 3
and ng ¼ CACF=TFjSUðNcÞ ¼ N2

c − 1 being the number of
gluons (dimension of the adjoint representation). The
Oða3sÞ contribution agrees with [40] [Eq. (7.7)] at the level
of β0 and β1 which straightforwardly extends to QCD-like
theories.
From (51) one then obtains βb up to Oða5sÞ. We give the

result in terms of the first pole in LMS
b ¼ P

n≥1bnðasÞϵ−n by
the MS-type relation (with an extra factor of 2 in the first
equality with respect to [37,40] from the d ¼ 4 − 2ϵ versus
d ¼ 4 − ϵ convention)

βMS
b ¼ 2∂asðasb1Þ

¼ 8b1;3a3s þ 10b1;4a4s þ 12b1;5a5s þOða6sÞ; ð53Þ

where [bn ¼ bn;0 þ bn;1as þOða2sÞ]

b1;3 ¼
1

24 · 16
β0β1r

1ð1;0Þ
gg ;

b1;4 ¼
1

120 · 16
ðð4β21 þ 6β0β2Þr1ð1;0Þgg þ 3β0β1r

1ð1;1Þ
gg Þ;

b1;5 ¼
1

720 · 16
ð50β0β2r1ð1;0Þgg þ ð24β0β2 þ 15β21Þr1ð1;1Þgg

þ 12β0β1r
1ð1;2Þ
gg Þ ð54Þ

follows from (51). Comparing with [18,37,40] we find
agreement with [37,40] to the computed order ofOða3sÞ and
with [18] to order Oða4sÞ. The fact that βMS

b is proportional
to the β function is consistent with βb being zero in CFTs
[42,43]. In fact a stronger statement can be made since
formula (51) shows that βMS

b vanishes for one-loop β
functions consistent with all coefficients above involving
a βn with n ≥ 1.
At least let us make a general observation which makes

use of the finiteness of L̄MS
b ¼ limϵ→0LMS

b . Firstly, we
observe that one may take the ϵ → 0 limit in (51) directly
and replace d

d ln μ → β ∂
∂ ln g leading to βMS

b ¼ −β ∂
∂ ln g L̄MS

b .
This result generalizes to multiple couplings as follows:

βMS
b ¼ −βA∂AL̄MS

b ; ð55Þ
where L̄MS

b is well defined in the limit of vanishing β
function as will be shown in Sec. IVA. This result is
accordance with βCFTb ¼ 0 [42,43].

IV. EXTENSIONS OF THE ONE-COUPLING
TWO-POINT FUNCTION CASE

A. Multiple couplings and finiteness
of TEMT correlators

In this section we proceed to show the finiteness of
the hΘΘi correlator for a general field theory with a
UV FP. Consider a RG flow generated by a deformation
δL ¼ P

Ag
A
0OA. The induced trace anomaly reads13

Θ ¼ β̂A½OA�; ð56Þ
where here the β functions for the couplings gA are given by

β̂A ¼ d
d ln μ

gA ¼ βA − ϵgAξA: ð57Þ

13Three possible structures are neglected. EOM terms can be
omitted for the same reasons as before. It is assumed that no virial
currents Θ ¼ ∂ · V þ � � � are present implicit in the assumption
that the UV FP is conformal (no nontrivial unitary scale but not
conformally invariant theories are known to date). Terms of the
form Θ ¼ −□ϕ2 þ � � � originating from nonconformally coupled
scalars can be improved à la Callan, Coleman and Jackiw [44].
An exception is the chirally broken phase but since the term is
relevant in the IR and not the UV we do not need to consider it for
the purposes of this section.
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The ξA are an artifact of going from four to d dimensions
(e.g. [18] whose notation is adapted here). Note that in
Sec. III, unlike here, the logarithmic β function was used
and that in QCD ξg ¼ 1. The generalization of (6) to the
nondiagonal case is straightforward and given by

C1
ABðp2Þp−2ϵ ¼ ðC1;R

AB ðp2Þ þ L1;R
AB Þμ−2ϵ; ð58Þ

where C1
AB is again finite in the sense that there are no poles

upon expanding in ϵ as long as no expansion in the
couplings gQ is attempted. The multiple coupling gener-
alization of (8) reads

ðLβ − 2ϵÞL1;R
AB ¼ −χRAB; ð59Þ

where Lβ denotes the Lie derivative on a 2-tensor in
coupling space

LβL
1;R
AB ¼ ∂Aβ̂

CL1;R
CB þ ∂Bβ̂

CL1;R
AC þ β̂C∂CL

1;R
AB ð60Þ

[∂A defined in (40)] since γ̂A
B is

γ̂A
B ¼ ∂Aβ̂

B

¼ ∂Aβ
B − δA

BξAϵ ¼ γA
B − δA

BξAϵ; ð61Þ
which follows from d

d ln μ hΘi ¼ 0 in flat space. The above

equation is the analogue of γg ¼ γ̂g ¼ 2∂ ln as β̂ stated below
(19). The reason for γg ¼ γ̂g is that we used the logarithmic
β function for QCD-like theories for which theOðϵÞ term is
coupling independent. The quantity χMS

AB generalizing (8) is
then given by

χMS
AB ¼ 2

�
1þ 1

2
ðξA þ ξBÞ þ 1

2
ξQgQ∂Q

�
r1ð1ÞAB ;

L1;MS
AB ¼

X
n≥1

r1ðnÞAB

ϵn
: ð62Þ

The RGE (59) can be solved by the method of character-
istics in terms of the anomalous dimension matrices γBA:

L1;R
AB ðμÞ ¼

Z
∞

ln μ
IACðμ; μ0ÞχRCDðμ0ÞIBDðμ; μ0Þ

�
μ

μ0

�
2ϵ

d ln μ0;

ð63Þ
where

IABðμ; μ0Þ ¼
�
exp

�Z
ln μ0

ln μ
γ̂ðμ00Þd ln μ00

��
A

B
: ð64Þ

It can be shown that14

β̂AðμÞIðμ; μ0ÞAB ¼ β̂Bðμ0Þ: ð65Þ
As previously C1

θθðp2Þ ¼ β̂Aβ̂BC1
ABðp2Þ and the generali-

zation of (25) reads

L1;R
θθ ðμÞ¼

Z
∞

lnμ
β̂Aðμ0Þβ̂Bðμ0ÞχRABðμ0Þ

�
μ

μ0

�
2ϵ

d lnμ0 þ ½finite�:

ð66Þ

For the asymptotic analysis it is, again, more convenient
to use the variable t ¼ ln μ0. We will now argue that the
ϵ → 0 limit can be safely taken. Assuming χAB ¼ Oðt−nABÞ
with nAB ≥ 0 the integrand of (66) is controlled by the β
functions for large t which tend to 0 by the UV-FP
assumption.
Note that the criteria for finiteness are easily generalized.

Finiteness of L1;R
θθ and L1;R

AB is easily established. For the
cases of AF and AS, of Secs. II A 1 and II A 2, respectively,
βQAF ¼ −βQ0 =ð4πÞ2ðgQÞ1þrQ þ � � � and rQ > 0 and βQAS ¼
jaQjððgQÞUV − gQÞ þ � � �. Expressed in the RG time vari-
able t this reads

βQAF ∼
1

t
ð1þ 1

rQ
Þ ; β̂QAS ∼ e−jaQjt: ð67Þ

This means that the terms in the integrands in (63) and (66)

vanish at least as t−ð2þ
1
rA
þ 1

rB
Þ or are exponentially suppressed

which guarantees convergence of the t integral. Hence the
ϵ → 0 limit can be taken safely and L1;R

θθ and L1;R
AB are finite

which is the aimed result. Note that L1;R
AB is the analogue of

L1;R
gg in the QCD-like case. If the operators are part of the

dynamics i.e. present in the trace anomaly, then the case has
to be reconsidered.
Condensate corrections.—As before we proceed to

discuss the finiteness in the presence of vacuum conden-
sates. The local coupling formalism of Sec. III C applies.
From (39) and (56) it follows that

LQ;R
θθ ¼ β̂Aβ̂BLQ;R

AB þ ½finite�: ð68Þ
Along with (41) one deduces

β̂Aβ̂BLQ;R
AB ¼ β̂Aβ̂Bð∂BZA

PÞðZ−1ÞPQ ¼ −β̂Aγ̂AQ ¼ ½finite�
ð69Þ

because of the boundedness of the anomalous dimension
matrix γ̂A

Q. The scheme dependence on the left-hand side
arises from ðZ−1ÞPQ ¼ ðZ−1ÞPQjR which we suppress.
Finiteness of LQ;R

θθ follows from (68) and completes the
task of this paragraph.

B. Finiteness criteria for three-point functions

Another extension of interest are higher point functions.
In general they consist of kinematic structures which are

14This follows by writing β̂AðμÞIðμ; μ0ÞAB ¼ fBðμ0Þ which
satisfies the differential equation ∂ ln μ0fB ¼ fCγ̂CBðμ0Þwith initial
condition fBðμÞ ¼ β̂BðμÞ. It is easy to show using (61) that
fBðμ0Þ ¼ β̂Bðμ0Þ is the unique solution to to the initial value
problem.
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sensitive to the anomalous dimension of all operators in the
correlation function and structures which are governed by
lower-dimensional point functions. The latter can be
identified by setting one or more of the external momenta
to zero. A comprehensive analysis in CFTs can be found in
[10] whereas we focus on theories with a nontrivial flow.
We introduce the following notation:

ΓABCðp2
A; p

2
B; p

2
CÞ

¼
Z

d4xd4yeiðpA·xþpB·yÞh½OAðxÞ�½OBðyÞ�½OCð0Þ�ic
¼ C1

ðAÞBCðp2
QÞp4

A þ C1
ABCðp2

QÞPBC þ cyclic; ð70Þ

where cyclic permutation over A, B and C is implied,
pA þ pB þ pC ¼ 0, Q ¼ A, B, C and PBC ¼ p4

A −
p2
Aðp2

B þ p2
CÞ are kinematic structures which vanish when

any of the three external momenta pA;B;C is set to zero.
Hence the C1

ðAÞBC coefficients are the two-point function

structures. By applying

∂BC
1;R
AC ðp2

QÞ þ ∂CC
1;R
AB ðp2

QÞ − ∂AC
1;R
BC ðp2

QÞ ¼ ½finite�;
ð71Þ

using the global version of (40) and noting ∂A corresponds
to a zero momentum insertion of ½OA�, the following
equation for the Laurent series emerges:

L1;R
ðAÞBC ¼ LQ;R

BC L1;R
QA −

1

2
ð∂BL

1;R
AC þ ∂CL

1;R
AB − ∂AL

1;R
BC Þ

þ ½finite�: ð72Þ

One infers that L1;R
ðAÞBC is determined by two-point functions

only and finiteness follows from the finiteness of the two-
point functions. This implies that the truly three-point CT
information is encoded in the L1;R

ABC terms. The results of
Sec. IVA apply straightforwardly. The RGE assumes the
form

ðLβ − 2ϵÞL1;R
ABC ¼ −χRABC; ð73Þ

where

χMS
ABC ¼ 2

�
1þ 1

2
ðξA þ ξB þ ξCÞ þ 1

2
ξQgQ∂Q

�
r1ð1ÞABC;

L1;MS
ABC ¼

X
n≥1

r1ðnÞABC

ϵn
; ð74Þ

andLβ denotes the Lie derivative, acting on a 3-tensor, as in
the previous section:

LβL
1;R
ABC ¼ ∂Aβ̂

DL1;R
DBC þ ∂Bβ̂

DL1;R
ADC þ ∂Cβ̂

DL1;R
ABD

þ β̂D∂DL
1;R
ABC; ð75Þ

where ∂Aβ̂
D ¼ γ̂A

D is the anomalous dimension matrix
(61). The finiteness of L1;R

ABC and L1;R
θθθ follows from the

same arguments as in Sec. IVA and we caution the reader
that the couplings gA;B;C refer to couplings governing the
dynamics as otherwise the refined conditions apply.
All operators being the same is an interesting special

case leading to the expected reduction in the kinematics:

ΓABCðp2
A; p

2
B; p

2
CÞ ¼ C1

ðAÞBCðp2
QÞP3 þ C1

ABCðp2
QÞλ3; ð76Þ

with complete symmetry in A, B and C, where

λ3 ¼ p4
A þ p4

B þ p4
C − 2ðp2

Ap
2
B þ p2

Ap
2
C þ p2

Bp
2
CÞ;

P3 ¼ p4
A þ p4

B þ p4
C ð77Þ

are the important kinematic Källén function and the two-
point function structure, respectively. Finiteness of the
three-point function of TEMT follows from similar argu-
ments as in Sec. IVA.

V. SUMMARY AND CONCLUSIONS

In this work we have investigated the logarithmically
divergent CTs of two- and three-point functions. Using the
d-dimensional renormalization group, convergence criteria
have been given for asymptotically free and safe UV FPs in
Eqs. (14) and (17), respectively. This is followed by an
explicit discussion of the hG2G2i and hΘΘi correlators
and the hq̄qq̄qi correlators in QCD-like theories in Sec. III
and Appendix B 1. By taking into account all orders the
former two were shown to be finite but divergent at fixed
order perturbation theory implying that the ϵ → 0 and the
perturbation expansion do not commute in general. Hence
fixed order results can give the wrong indication about
convergence. Finiteness implies that the bare correlators
satisfy unsubtracted dispersion relations and are in princi-
ple observable since they are finite and scale independent;
cf. Secs. III B 1 and III B 2. An application of the latter is
given by the flow of the□R anomaly which is related to the
zero momentum limit of the p4 structure of the TEMT
correlation function [25]. Using a recent computation
and the quantum action principle the R2 anomaly was
extended in the MS scheme to NNLO (Oða5sÞ) in Sec. III D.
Generalizations of the finiteness conditions to several
couplings, assuming a conformal UV FP, and three-point
functions were presented in Secs. IVA and IV B,
respectively.
In what follows we discuss specific applications of the

finiteness and the possibility of adding finite CTs to the UV
action. A crucial point is that correlation functions which
are finite with operators without anomalous scaling are RG-
scale independent and therefore can serve as observables.
In this view the finiteness of the hΘ…Θi correlators is our
most important result. From it follows that the R2 anomaly
(45) is always proportional to β functions of the couplings
(55). Furthermore the finiteness serves as the basis for
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showing that the difference of the UVand IR □R anomaly
(45) is flow independent15 as well as the existence of a
scheme for which the R2 anomaly vanishes along the entire
RG flow [25].
Hence generally CTs are meaningful only when they are

related to observables. Otherwise they are arbitrary (i.e.
scheme dependent) since one cannot forbid adding local
terms to the UV action in general. It is though our opinion
that the local terms are not arbitrary to the point that they
ought to be RG-scale independent since the bare partition
function is scale independent. Concerning observables one
may distinguish the following two cases. Either the CTs
drop out in the observable(s) or not. In the latter case they
might either be fixed by some other principle or they need to
be determined experimentally. The first two examples men-
tioned in the previous paragraph are of the first type
mentioned. The bare contact term vanishes when taking
the scale derivative (55) or in the difference of the UVand IR
□R value. The third example of the R2 anomaly concerns a
scheme-dependent question and corresponds to a reorgani-
zation of terms in the trace of the energy momentum tensor.
Let us mention two well-known examples where (divergent)
CTs can be handled by symmetry. For the vacuum polari-
zation, the correlation function of two electromagnetic
currents, the dispersion integral needs to be subtracted once
but the value of the subtraction is fixed by gauge symmetry
(zero photon mass). The chiral anomaly, which can be
regarded as coming from a divergent contact term, cannot
be removed by a local term while maintaining gauge
symmetry. Another example where this ambiguity is settled
by a symmetry, namely chiral symmetry, is the low energy
constantL10 fromchiral perturbation theory. The quantityL10

is related to a dispersion relation of the correlation function
of left- and right-handed octet currents [L10 ∼ ΠLRðq2 ¼ 0Þ
with pion pole subtracted]. Chiral symmetry in the UV
forbids us to add a contact term to ΠLR since the latter is
sensitive to chiral symmetry breaking.
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Note added.—As compared to our v1 on the arXiv we
believe to have improved the notation by adapting 2χRQQ →
χRQQ [defined in (8)] δC1

xx → L1
xx [e.g. (3)] where the latter

stands for local and we changed C1
ss → C1

θθ when referring
to the operator part [cf. (24) for a more generic decom-
position] Θ ¼ βA½OA� of the trace of the energy momentum
tensor. In addition we have indicated the schemewith labels
in more consequence since scheme independence is a key
feature for orientation and consistency.

APPENDIX A: SOME ADDITIONAL FORMULAS
FOR RELEVANT TO LEADING LOGARITHM

1. Form of leading logarithms of C1
gg

The leading terms in the bare correlation function take
the formZ

ddxeip·xh0jOgðxÞOgð0Þj0iLL ¼ k
X
n≥0

ðβ0as0Þn−1
ϵn

�
μ2

p2

�
nϵ

;

ðA1Þ

with kbeing a constantwhich is immaterial for the argument.
Upon renormalizing the operator ½Og� ¼ ZG2Og and the
coupling as0 ¼ asZas with ZG2 ¼ Zas in the LL approxi-
mation one finds

Z
ddxeip·xh0j½OgðxÞ�½Ogð0Þ�j0iLL ¼ k

X
n≥0

fnðβ0asÞn−1
ϵn

;

ðA2Þ

where

fn ¼
Xn−1
j¼0

ð−1Þj
�
μ2

p2

�ðn−jÞϵ� n
n − j

�
: ðA3Þ

This sum evaluates to

fn ¼
Xn−1
j¼0

ð−1Þj
�

n
n − j

�

þ ϵn

n!
lnn

�
μ2

p2

�Xn
j¼0

ð−1Þjðn − jÞn
�

n
n − j

�

¼ ð−1Þnþ1 þ ϵnlnn
�
μ2

p2

�
; ðA4Þ

confirming the rule ϵ−n ↔ −lnnðp2=μ2Þ used in Sec. III B 1.
Note that nonlocal divergent terms in (A4) are avoided

since the sum, somewhat magically,

15Finiteness is also a crucial ingredient to the a theorem as it
allows one to establish positivity via an unsubtracted dispersion
relation [24,45].
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Xn−1
j¼0

ð−1Þjðn − jÞl
�

n
n − j

�
¼ 0; 0 < l < n; ðA5Þ

only contributes for l ¼ 0 and l ¼ n. We note that such
nonlocal terms could not be eliminated by local counter-
term in perturbation theory.

2. The leading poles of the counterterm
L1;MS
QQ for ξQ ≠ 0

The leading poles of the counterterm L1;MS
QQ (11)

for an AF theory in the MS scheme for ξQ ≠ 0 is
given by

L1;MS
QQ ðμÞ≃2ð1þξQÞr1ð1;0ÞQQ

Z
∞

0

e−2ð1þξQÞϵtϵ−
γQ;0
β0 ðϵþβ0asð1−e−2ϵtÞ

γQ;0
β0 Þdt

¼r1ð1;0ÞQQ

�ð1þasβ0
ϵ Þ1þ

γQ;0
β0 ð−1− ϵ

β0as
ÞξQΓð1þξQÞΓð−γQ;0

β0
−ξQÞ

asðβ0ð1þξQÞþγQ;0ÞΓð−γQ;0

β0
Þ þ

2β0ð−ϵÞ−
γQ;0
β0

2F1½−γQ;0

β0
;−1−γQ;0

β0
þξQ;−

γQ;0

β0
þξ;aβ0þϵ

aβ0
�

ϵðβ0ð1þξQÞþγQ;0Þ
�
;

ðA6Þ

where ξQ is the difference of the d-dimensional and four-
dimensional anomalous dimension γ̂Q ¼ γQ − ξQϵ. For
ξQ → 0 the formula simplifies considerably and is given
in Sec. II A 1 in (15).

3. Explicit evaluation of the dispersion integral

As a check the integral (31) is integrated explicitly. This
is best done by changing variables to s ¼ μ2ey which
results in an integral (recall P2 ¼ −p2)

x̂ðP2Þ ¼
Z

∞

−∞
dy

dyey

ey − P2=μ2
1

ð1þ asβ0yÞ2 þ ðaβ0πÞ2
;

ðA7Þ

with a pole at y�¼−1=ðasβ0Þ�iπ and a series of poles yn� ¼
lnð−P2=μ2Þ�iπð2nþ1Þ for n ≥ 0. The integration contour
can, for example, be closed in the upper half plane. The yþ
pole result in the pole term in (30) and the series of poles
ynþ ¼lnð−P2=μ2Þþiπð2nþ1Þ for n ≥ 0 leads to a series

x̂ðP2Þ ¼ 1

1 − P2=P2
0

− ð2πiÞ
X
n≥0

1

1þ asβ0ðlnð−P2=μ2Þ þ iπð2nþ 1ÞÞ2 þ ðaβ0πÞ2

¼ 1

1 − P2=P2
0

þ xðP2Þ; ðA8Þ

which can be resummed into an analytic form. The final
result is consistent with Eq. (30) which was the aim of this
Appendix.

APPENDIX B: QUARK CURRENT
CORRELATORS

1. The hq̄qq̄qi correlator in QCD-like gauge theories

Finally we consider the bifermion scalar operator

½OM� ¼ ½q̄q�; κM ¼ m; ðB1Þ

for which m½q̄q� ¼ m0q̄q is a RG invariant. The parameter
m does not enter the dynamics and is regarded as a source
term only. The relevant input to criteria (14) is given by
γM;0, χMM and β0. The leading order of the mass anomalous
dimension is given by (γq̄q ¼ γM ¼ −γm and γ̂m ¼ γm since
q̄q is a kinetic operator)

γM ¼ γM;0as þOða2sÞ; γM;0 ¼ −6CF; ðB2Þ

where r1ð1ÞMMðasÞ ¼ r1ð1;0ÞMM þOðasÞ and β0 and CF are given
in (C2) and (C3). With χRMM ¼ Oða0sÞ (i.e. nMM ¼ 0)
condition (14) reads

−
γM;0

β0

����
SUðNcÞ

¼ 3ðN2
c − 1Þ=ðNcÞ

11=3Nc − 2=3Nf
> 1 ⇔ L1

MM ¼ ½finite�:

ðB3Þ

This criteria is satisfied for Nf > ð9þ 2N2
cÞ=ð2NcÞ which

for Nc ¼ 3 leads to convergence for Nf > 4.5.
The leading pole contribution (15) is given by

L1;MS
MM jLL ¼ r1ð1;0ÞMM

ð1þ asβ0
ϵ Þ1þ

γM;0
β0 − 1

asðβ0 þ γM;0Þ
→
ðB.3Þ

L̄1;MS
MM jLL

¼ −
r1ð1;0ÞMM

asðβ0 þ γM;0Þ
; ðB4Þ

where we have assumed (B3) to obeyed. For QCD with
three massless flavorsNf ¼ 3 andNc ¼ 3 the expression is
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divergent. Presumably this means that the constant part of
the ΓMM correlator is not directly related to a physical
quantity. Expanding in as one obtains (15)

L1;MS
MM jLL ¼ r1ð1;0ÞMM

�
1

ϵ
þ γM;0as

2ϵ2

þ ð−β0γM;0 þ ðγM;0Þ2Þa2s
6ϵ3

þOða3sÞ
�
; ðB5Þ

from where the leading poles in [46,47] are recovered. For
the sake of illustration let us quote the LL result, obtained

by replacing 1
ϵ → − lnðp2

μ2
Þ:

ΓMS
MMjLLðp2Þ ¼

Z
d4xeip·xh0j½q̄qðxÞ�½q̄qð0Þ�j0iLL

¼ −p2r1ð1;0ÞMM

ð1þ asβ0 lnðp
2

μ2
ÞÞ1þ

γM;0
β0 − 1

asðβ0 þ γM;0Þ
þ � � � ;

ðB6Þ
where the dots stand for condensate contributions.

Expanding in as lnðp
2

μ2
Þ the Oða3sÞ-LL expression matches

the result in [46].
Following Sec. III B 2 we explicitly demonstrate at LL

that the bare correlator, multiplied by κ2M ¼ m2ðμÞ, is μ
independent in the following sense:

m2ðμÞΓMMðp2; μÞ ¼ μ40fðasðμ2=μ20Þ; m=μ0; p2=μ20Þ
¼ p2m2ðp2ÞFðasðp2=μ20ÞÞ; ðB7Þ

and μ0 being an arbitrary reference scale. First we note that
the renormalized correlator

m2ðμÞΓMS
MMjLLðp2Þ ¼ p2

�
−r1ð1;0ÞMM

m2ðp2Þ
asðp2Þðβ0 þ γM;0Þ

þ r1ð1;0ÞMM
m2ðμÞ

asðμÞðβ0 þ γM;0Þ
�

ðB8Þ

splits into a μ-independent nonlocal and a μ-dependent
local term. If we now restrict to the convergent case
satisfying (B3), then the second term is equal to (B4)
and in the ϵ → 0 limit

m2ðμÞΓMMðp2Þ ¼ m2ðμÞΓMS
MMðp2Þ þ L̄1;MS

MM

¼LL −p2r1ð1;0ÞMM
m2ðp2Þ

asðp2Þðβ0 þ γM;0Þ
; ðB9Þ

which satisfies (B7) in analogy with (33).

2. The hJ5μJ5νi correlator
The axial current two-point function in an AF theory

has been studied by Shore [28] and is worthwhile to
be captured language of this paper. The correlator decom-
poses into

Z
d4xix·phJ5μðxÞJ5νð0Þi

¼ ðδμνp2 − pμpνÞC1;T
J5J5

ðp2Þ þ pμpνC
1;L
J5J5

ðp2Þ; ðB10Þ
a transversal (T) and a longitudinal (L) part. Since
γJ5;0 ¼ 0, the criteria (14) implies convergence for

nT;LJ5J5
> 1, where χT;LJ5J5

∼ as
nT;LJ5J5 is defined in analogy to

(8). In the case of massless fermion considered here the
axial current correlation function is identical to the vector
current correlation function (vacuum polarization). Hence
the important ingredient to the analysis is the conservation
of the vector current which implies that the transverse part
contributes at LO nTJ5J5 ¼ 0 and further implies that
nLJ5J5 > 0. Thus the well-known LO divergent contact term
of the vacuum polarization is not resummed to a finite
expression. Yet in the longitudinal part the chiral anomaly
itself contributes at NNLO, with nLJ5J5 ¼ 2, which then

implies convergence and a scaling of the type C1;L
J5J5

ðp2Þ ∼
as in analogy to the TEMT correlator (33). This result is
consistent with Eq. (6.36) of Shore’s work [28].

APPENDIX C: CONVENTIONS
FOR β FUNCTION

In this work the bare β function β̂ of DR is defined as

β̂ ¼ d ln g
d ln μ

¼ ðd − 4Þ
2

þ β ¼ −ϵþ β: ðC1Þ

We draw the reader’s attention to the fact that the
logarithmic β function (C1) is used throughout in order
to keep the formulas more compact. Explicitly

β ¼ −β0as − β1a2s − β2a3s − β3a4s þ � � � ;

as ¼
αs
4π

¼ g2

ð4πÞ2 ; ðC2Þ

where β0−3 in MS scheme can be found in Ref. [48].
The first two coefficients, which are universal in mass-
independent schemes, read

β0 ¼
�
11

3
CA −

4

3
NFTF

�
;

β1 ¼
�
34

3
C2
A −

20

3
NcNFTF − 4CFTFNF

�
;

where CF and CA are the quadratic Casimir operators of
the fundamental (quark) and adjoint (gluons) representa-
tions, respectively, NF is the number of quarks and
tr½TaTb� ¼ TFδ

ab is a Lie algebra normalization factor
of the fundamental representation. For SUðNcÞ these
factors are given by

CA ¼ Nc; CF ¼ N2
c − 1

2Nc
; TF ¼ 1

2
: ðC3Þ
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