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Two- and three-point functions of composite operators are analyzed with regard to
(logarithmically) divergent contact terms. Using the renormalization group of dimensional regulari-
zation it is established that the divergences are governed by the anomalous dimensions of the
operators and the leading UV behavior of the 1/¢ coefficient. Explicit examples are given by the
(G*G?), (©0) (trace of the energy momentum tensor) and (Gqgq) correlators in QCD-like theories.
The former two are convergent when the 1/e poles are resummed but divergent at fixed
order implying that perturbation theory and the ¢ — O limit do not generally commute. Finite
correlation functions obey unsubtracted dispersion relations which is of importance when they are
directly related to physical observables. As a by-product the R? term of the trace anomaly is extended
to next-to-next-to-leading order [O(a3)], in the minimal subtraction scheme, using a recent (G>G?)

computation.
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I. INTRODUCTION

In this paper divergences are investigated which arise
when (composite) operators approach each other. These
ultraviolet (UV) divergences are necessarily local and
expressed in terms of delta functions and derivatives thereof
[i.e. contact terms (CTs)]. This requires renormalization in
addition to the parameters of the theory and the composite
operators themselves.

These CTs play an important role as they manifest
themselves as anomalies in correlation functions of
composite operators, the chiral anomaly serving as a
primary example,1 and the perspective on other anomalies
continues to evolve [8—10]. On the other hand CTs are
not important when studying the spectrum of two-point
functions (e.g. QCD sum rules [11]) or lattice QCD [12])
since they bear no relation to the infrared (IR) spectrum.
In lattice simulations of correlation functions CTs require
additional renormalization conditions, a problem for
which the 4 + 1-dimensional gradient flow offers new
perspectives [13—15].

Our work originates from the observation that the
leading logarithm (LL) € poles of the field strength tensor
correlation function sums to an expression
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lEarly analyses centered around configuration space singular-
ities in correlation functions, without particular emphasis on
perturbation theory, of the chiral and trace anomalies can be
found in [1,2] and [2-4] and reviewed in [5], respectively.
Recently CTs in three-point correlation functions were the center
of discussion on whether in d = 4 nontrivial unitary scale but not
conformal field theories exist [6,7].
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which is finite for ¢ — 0 but divergent at each fixed order in
perturbation theory. Using the renormalization group (RG)
of dimensional regularization (DR) the absence of potential
logarithmic divergences is systematized in various ways.
Firstly, simple criteria for convergence, involving RG
quantities, are established of generic two-point functions.
The discussion is extended to include the nonperturbative
condensate terms, multiple couplings and three-point
functions. Using the local quantum action principle
(QAP) a closed integral expression for the R?> anomaly
is given in terms of the first pole of the correlation
function (1).

The paper is organized as follows. In Sec. II the finite-
ness criteria for two-point functions are discussed, followed
by the explicit examples of (G>G?) and (80) correlators in
QCD-like theories in Sec. III. Implications for dispersion
integrals, RG-scale dependence (physicality) and the R?
anomaly are elaborated on in Secs. III B 1, [II B 2 and 11 D,
respectively. The 1-coupling case of the two-point function
is generalized to multiple couplings and three-point func-
tions in Secs. IVA and IV B. The paper ends with a
summary and conclusions in Sec. V. Appendix A contains
details about the (G>G?)-correlation function computation
and Appendix B discusses the convergence of the (gqgq)-
and (J3J;)-correlation functions. The S-function conven-
tions are given in Appendix C.

© 2017 American Physical Society
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II. TWO-POINT FUNCTION IN
MOMENTUM SPACE

We consider a renormalizable theory [i.e. with a UV fixed
point (FP)] in four dimensions with no explicit mass scales
and a nontrivial flow. The Euclidean two-point functions of
marginal operators are parametrized as” follows’:

Fas(p?) = / e ([0, (D)[050)), = Chy(p?)p".

)

where ¢ stands for the connected component, (...) for the
vacuum expectation value (VEV), [0, | are renormalized
scalar (composite) operators of mass dimension 4 and C,
are dimensionless functions. Such a divergence might be
thought of as the Wilson coefficient of the identity operator.
In an asymptotically free (AF) theory the coefficient
Clz(p?) is potentially logarithmically divergent by power
counting. In coordinate space this divergence results from
singular behavior as x — 0. The latter can be removed by
local counterterms within the standard renormalization
program. The renormalized correlation function F WY
obtained from the bare one I'yp by splitting the bare

Wilson coefficient C!4(p?) into renormalized C}¥(p?)
and a counterterm L% part

Cha(p?) = i’ (P?) + Ly (3)
Above, the letter L either stands for local and R denotes a
renormalization scheme. To be clear we wish to add that
CL¥ is finite whereas L)1 is generally not despite the R
label. We are going to be careful as to which statements are
generic for any scheme [i.e. a specific splitin (3)] and what is
valid when R stands for the minimal subtraction (MS)
scheme.
In coordinate space this translates into

Ks(?) = ([04(0)][05(0)]) ~ Lig TP8(x).  (4)

EﬁAB(x2>

where [J = 0,0" and §(x) is the four-dimensional Dirac
delta function throughout. With slight abuse in notation we
refer to C}z(p?) as the bare correlation function despite its

Various extensions of this setup will be discussed: condensate
corrections in the language of the operator product expansion
(OPE) [1], nondiagonal correlation functions, multiple couplings
and three-point functions are discussed in Secs. III C, IVA and
IV B, respectively. An extension to operators with spin is possible
and we refer the reader to [16] where this is done in the context of
QCD for diagonal correlation functions.

*The correlation function ([04(x)][05(0)]), is formally de-
fined by the connected part of a regularized path-integral
representation [ Dep[0,(x)][05(0)]e~514.
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dependence on the RG scale through the renormalization
of the composite operators [O,p]. The renormalized
correlation function Cy¥(p?) and the counterterm L}
are in general RG-scale dependent even if [0, ] are not.
This particular RG-scale dependence of course cancels in

the sum and consists of CTs since Lfdf is local.

A. Two-point function in dimensional regularization
with one coupling

At first we restrict ourselves to one coupling a; = a,(u)
whose scale dependence will frequently be suppressed
throughout. In the MS scheme with DR (d = 4 — 2¢) the
counterterm

L“MS( )_ZM

rQQ(s)_rQ )+rQ(Q a, +O(a;), (5)

1(n)

is given by a Laurent series. The residues r,,  are
dimensionless and functions of the running coupling only.
Since in this work we use the MS scheme in all practical
computation we do not indicate this circumstance with a
further label. We proceed to derive a RG equation (RGE)
for L“QQ. The starting point is (3), which in DR
_ 1R 1Ry —

CHQQ(PZ)P = (Coo (p*) + Lgg)u > (6)
The renormalized Wilson coefficient CHQS( p?) is finite for
€ — 0 in the sense of being analytic in € (in particular no
poles). Suppose that [Op] can be made RG invariant by
premultiplying by a finite factor x,(a;), i.e.

d

dln g ——KgZgo =0,

ZppO0g =[0g] +---, (7)

where the dots correspond to equation of motion (EOM)
operators which do not contribute to structure we are

. . . d 2 ‘I] 2 _ - .
discussing. Using dl—nﬂKQCQQ(p ) =0 and the fmlzeness
of the renormalized Wilson coefficient one deduces

d 1R
(2}/Q +d1 2€>LQQ = —¥%o- (8)

where

A

Yo =

In ko, 9
ding <@ ©)

“In the case where O, is marginal (and not mgq) ko = fi’Q and
70 = 2014, ﬂQ, the non-e part becomes Lie derivative,
Ly =270 + j*dp, acting on the 2-tensor LﬂQg This circum-
stance is put into evidence in the multiple coupling section IV
which reveals the structure more systematically.
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with f=—-e+p and o=y —Epe being the d-
dimensional f function and anomalous dimension, respec-
tively.” The quantity ;(gQ follows from the requirement of
finiteness and is given in the MS scheme by

1(1 1(1
295 = 2(a,0,, (a,rpp) + Eorpp)- (10)

The ordinary differential equation (8) is solved by

LES(M)=A°:)(5Q(as(u’))lgg(ﬂ,ﬂ’) (/%)zsdlnu’, (11)

which shows the MS property that all higher pole residues
of L“QQ follow from the first one [encoded in ypo (10)].
Above (u/u')*1y, is an integrating factor with

Iny/
Taolest) =exp (2 [" fola ). (12)
nu

Generally it is the function /. and the power behavior of
X oo Which decide on whether or not the integral diverges
for ' — oo and (u/u')? serves as a potential UV regulator.
A more refined analysis is required to distinguish whether
the UV FP is of the AF type aV¥ =a,(c0) =0 or
asymptotically safe (AS) type aVV # 0.

1. Asymptotically free theory

For the asymptotic analysis it is convenient to change the
variable to the RG time 7= Inu/uy. In the asymptotic
regime a LL analysis is sufficient. Assuming f(a,) = —e +
B = —¢ — Poa, + O(a?) the LL relation is given by®

2et

_ eas(pu)e” _as(p)
G = T By (1 =) ~ T+ 2ot T O
(13)

with slight abuse in notation and initial value a,(r = 0) =
ag(p) (for € = 0) and UV value ay(t > o0) =0. The
anomalous dimension is parametrized by yo = a,yg0 +
O(a?) implying the asymptotic behavior 1y, (f) ~ ! with
N =70.0/Po- Assuming y,, ~ t7"¢¢ to be perturbative for
t = oo with ngg > 0 [ngg =0, ie. ygo = O(a?), being

’Note that the yo’s refer to the anomalous dimensions of the
operators and not to the k parameters (yp = —, Y ). Using that for

a 1 coupling theory and a mass-independent scheme ﬁ:
2P, (8) can be written as ((e—7¢) —BOma, ) Lo =X 50/2-
®For  B(a,) = —€ + f = —€ — foa’ + O(ai™!) this leads
o ay(r) = (a,(u)eeV)/(e + poai(u)(1 = e )V —
a,(u)(1 + 2rByal(u)t)="/" for € —» 0 provided r > 0. In the
case where y,(a,) ~ af the formula (14) still applies. For more

generic cases we leave it to the reader to work out the relevant
formula from Egs. (11) and (12).
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the nominal case for a nontrivial unitary theory] the
condition for UV finiteness is’

700 1R €/(Boa;)=>0 —q 1o . .
1+ E < I’ZQQ = LQQ — LQQ = [flnlte].
This result is presumably scheme independent since, as it is
well known, both f, and y, are scheme independent.

Leading behavior in the MS scheme.—The leading behav-
ior of ngs is obtained explicitly by using the one-loop
expressions for f, y, and the LO of ;(Z[g involves hyper-
geometric functions and is given in (A6) in Appendix A 2. For
& = 0 (A6) becomes simpler which can be expanded in ay:

(14)

00 70.0 700
L =2rgg” [ e E et pra 1= B
0

100
_ 100 (1+%0) % -1
2 a(fo+7r00)

a0 (1 rp04s
=700 <g+ ¢

: 2y,2
( ﬂon,Og_eng.O) )as (15)

where the y dependence arises from a, = a,(u). There are
divergent terms at each order in the a, expansion. Provided
(14) is met for nyy = 0 the € — 0 limit is finite and gives

+

1MS 4 HQ%O)
SIMs
Lo as(Bo+7100) 1)
Two important remarks are in order. First when (15) is
expanded in powers of a then 1 /e poles appear irrespective
of whether condition (14) is obeyed or not. This is an
example of where fixed order perturbation theory gives the
wrong indication about convergence. Secondly, even though
convergent the ¢ — 0 followed by a;, — 0 limit does not
exist for the (0 O p)-correlation function. That s to say that
in general the a, expansion (fixed order) and ¢ — 0 limit do
not commute. In the cases where the correlation function is
related to a physical observable, such as the trace of the
energy moment tensor (TEMT) correlation function, there
are a;-dependent prefactors which ensure a smooth limit.

2. Asymptotically safe theory

The nontrivial FP is characterized by generally
nonvanishing  anomalous  dimensions  yp=yp +
(ag—aYV)ygo+---. The integrating factor assumes the

form 10 (t) ~ ¢*’o'. The exponential behavior dominates

"In the case of a nondiagonal correlation function, as in (2),
with a single coupling theory the criterion (14) generalizes to
1+ “‘)zm < nyp where the operator basis has been assumed to
be diagonalized at LO. An example is given by QCD with the
topological term O, = GG and 0, = 9,qr"ysq which do mix
with each other Z} = 12Cra, 1+ O(a?).
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over the polynomial behavior of )(SQ. Hence the sign of vy,
determines the convergence
20 L
vy < 0= LER 25" [finite]. (17)
Ifyp >0, LHQS diverges and if y, = 0, then the analysis of
the AF case in the previous section applies.

B. Summary and contemplation

In summary the presence or absence of UV divergences
depends on the anomalous dimension y, and the leading
power behavior of the y. A more detailed comparison is
instructive. In the AF case (14) the condition depends on
both quantities mentioned above whereas in the AS case
(17) it only depends on the anomalous dimension at the FP.
The polynomial behavior of y,, is overruled by the
exponential behavior of the anomalous dimension. This
is reminiscent of marginal flows requiring specific analysis
in order to determine whether or not they are relevant or
exactly marginal, whereas relevant and irrelevant flows are
settled from the start. The behavior of the AS case is similar
to the case of a scale or conformally invariant field theory.
The two-point function of operators, of scaling dimension
Ay =dp +y0, is given by (O(x)0(0)) ~ (x*)~22. In our
case d, = 4 and the Fourier transform of the p* structure is
convergent provided y, < 0 in accordance with the criteria
for an AS theory (17).

A priori the divergent structure of two-point function of
dimension-four operators in momentum space reads (d = 4)

[up ~ aAly + bp?Ady + cp*In Ayy + [finite],  (18)

for a cutoff regularization. Above a, b, ¢ are dimensionless
functions of Ayy/ug where p is some reference scale. In
this section it was shown under what conditions
cpr(Ayv/Ho) In Ayy = [finite] holds for Ayy — oo in DR
(symbolically In Ayy <> 1/€). Since DR is defined only in
perturbation theory one might question as to whether the
result holds outside this framework. An argument in favor is
that perturbation theory is trustworthy in the UV and that the
LL approximation should therefore be sufficient. One
assumption though is that the UV divergences can be
captured as a Laurent expansion in powers of 1/e.
Whether or not this is valid outside perturbation theory is
unknown since DR is only defined perturbatively. It is well
known that DR is blind to power divergences since no
explicit scale is introduced into the integral regularization
other than the prefactor x~2¢. Hence apg = bpg = 0 is built
into DR rather than being a result.®

¥Let us mention, in passing, that it has been argued by Bardeen
[17] that cutoff regularizations are not a natural choice for
renormalizable theories. For example when a theory exhibits a
global chiral symmetry one would preferably use a chirally
invariant regularization as otherwise the Ward identities need to
be fixed by adding local counterterms.
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In Secs. IVA and IV B the results are generalized
straightforwardly to the case of multiple couplings and
three-point functions. First, we illustrate the findings in the
familiar setting of QCD-like gauge theories including an
extension of the R? anomaly to one order higher. This will
clarify the meaning of the quantity y,( as being related to
trace anomaly of the external sources of the corresponding
operators; cf. [18].

III. QCD-LIKE GAUGE THEORY AS AN EXAMPLE

We consider a QCD-like gauge theory, i.e. Ny massless
fermions in a fundamental representation coupled to gluons
in the adjoint representation for a SU(N,) gauge group.
This implies in particular a nontrivial RG flow. In Sec. III A
finiteness of the (G°G?) and the closely related (©©)
correlators is established,9 followed by a discussion of
the physical consequences: unsubtracted dispersion rela-
tion (Sec. III B 1) and observability of the bare correlation
function (Sec. IIIB2). In Sec. IIIC the discussion is
extended to include condensates through the OPE.

A. Gauge theory correlation functions

Correlation functions of the field strength tensor.—We
consider the two-point function of the field strength
correlation function, with

0,] = FGZ], (19)

%
where G? = G2, is the usual field strength tensor G,,=
—i[D,,D,] squared with covariant derivative D, = (0+iA),,.

From (7) k, = ,B and therefore y, = 281naﬁ follows. This
leads to a simple form of the integrating factor (12):

20NN 2
Lyg(u. ') = (g%;;) . (20)

The corresponding Laurent series (11), changing variables to
dIny' = du/(2up(u)), takes on the form

ﬁ/)axu))&(u)ﬁ(u) <ﬂ(as)>2g@’

T.R _
L!Ig (/’[56)__232(61 ”(u) u

(21)

where the factor (...)%¢ will be specified further below. This
expression is convergent as y,o = —2f, and yX(a,) ~
O(a?) obey the inequality (14) with 1-2 < 0. This means
that

*The (34g4) and (J3.J3)-correlation functions are discussed in
Appendixes B 1 and B 2, respectively. Its convergence depends
on the number of flavors and colors.
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e/p—0
LI () 5 LER — [finite]. (22)
It is instructive to consider this constant explicitly at LL
in the MS scheme:
1(1,0
L“ MS| r gé )
L= ey Poag

1(1,0
/=0 1 rog
|LL

/}Oas

= [finite],

(23)

as it becomes apparent that the correlation function is not
finite for a; — 0. One should keep in mind that the field
strength correlation function is not a physical quantity unlike
the closely related correlation function of the TEMT dis-
cussed below. Before doing so let us emphasize that when
expanding (21) in a, divergent terms appear; cf. (15). We
indeed reproduce the divergent terms in [19,20] at next-to-
leading order and next-to-next-to-leading order (NNLO),
respectively. To obtain agreement it is important to expand
the term to the power 2¢ in the integrand (u(ay)/pu(u))* =
exp(e [ du'/(W'B(u'))) = u/ay(u) + O(1/e).

Correlation functions of the trace of the energy momen-
tum tensor.—The TEMT decomposes as follows:

<Tpp> = (_5s(x)) InZ = <®> + <®gravity>

+ <®eom> + <(9gf>7 == [Oq]’ (24)
where 0, Ogyyity» Ocom» and Oy are the operator, curvature-
dependent, EOM and gauge-fixing part of the TEMT,
respectively. The @y part does not contribute to physical
observables, O, vanishes in flat space, and Oy

contributes to the (p?)° structure. We can therefore con-
centrate on ©.' Adapting the notation [Oy] = © in analogy
with (19), Eq. (24) implies a relation between the two
Laurent series:

)
R _P R
Lee - ZLG(I

is obtained from (21) by multiply-

+ [finite]. (25)

: 1.MS
An expression for L,

ing by /#*/4, partial integration and subtracting the finite
constant in (25):

o) () i)

(26)

L1I.MS

The limiting expression Lﬂ MS s manifestly finite and well
behaved in the limit § — 0 and a, — 0. For instance, the LL
expression is given by LyMS|; = (rgél’o)/4) - Poag. In
passing we note that the crltena (14) for the (®O) correlator
is obeyed with yy = 0 and ngy = 2. Finiteness of the trace of

In the case where the fermions are massive ® — @ +
Nyme(1+7,)qq-
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the (@0) correlator and the (G2G?) correlator in AF gauge
theories has been noted elsewhere [16,21-24].

We conclude this section by stating that both CJ,(p?)
and Cly(p?) are finite for ¢ — 0 and that C,(p?), being
proportional to 1/ (21), cannot be expanded in a,. An AF
theory is therefore different from a conformal field theory
(CFT), of which a free theory is a special case, in that the
correlator of marginal operators is finite in the former but
not the latter case. In a CFT Iyx (x?) ~ 1/x%, with Ay = 4,
which diverges upon Fourier transformation whereas
[y (x*) ~ 1/x8f(In(u?x*)) converges in the AF case.

B. Consequences of finiteness of Cg, (p?) and Cg,(p?)

There are three points connected to the finiteness of L“ R

and L ga which we would like to discuss. First, since the bare
Wilson coefficients C,(p?) and Cj,(p*) are both finite,
they satisfy a dispersion relation which does not require
subtractions (i.e. no regularization). Note that if regulari-
zation was necessary, then the ¢ — 0 limit would not exist
contrary to our findings. An explicit dispersion representa-
tion is given at LL in Sec. Il B 1. Second, since Cj,(p?) is
finite and scale independent (since bare) it may be related
to a physical observable, which is indeed the case;
cf. Sec. NIB2. A third aspect is the R>-trace anomaly
associated with the (@) correlator. Since anomalies can be
interpreted as originating from UV divergences one might
wonder whether UV finiteness means that the R> anomaly
(related to (©0); cf. Sec. III D) is an artifact of perturbation
theory only. The answer to this question is no, at least in the
MS scheme since it is the In ¢ term which is the true signal of
the anomaly. Finiteness though means that one can choose a
scheme [25] where the R? anomaly is absent or absorbed into
the renormalization of the dynamical operators.

1. Explicit unsubtracted dispersion representation
Jor leading logarithms

We introduce P> = —p?, where P? might be thought of as
a Minkowski momentum allowing us to write the dispersion
relation in the usual way. The starting point is the LL
expression (23). The associated logarithms are 1/e" <>
—In"(1/u?) (which is derived in Appendix A 1 from the
bare correlation function) and by dimensional analysis this
implies 1/€" <> —In"(—P?/u?). At LL the expression can
be written as follows:

Chy(P?)li = Coa™ (PPl + (L5 ILL)emo

= (Lg{:IMS‘LL)e—Hq_ln"(_%) + (Lg.EIMS|LL)€—>O
1(1,0 1(1,0
”gé >ln(—P2//42) ”gé :
1+ asﬂO ln(_PZ/ﬂ2) asﬂO
r]](l ,0)
——x(P?), (27)
vﬁ()
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with

B 1

1+afoIn(-P*/u?)’

and it should be kept in mind that the ™" replacement rule is
to be applied to the renormalized part only. We refer the
reader to [26] for a next-to-leading logarithmic expression
but the reason we content ourselves with LL is that it is

sufficient for the asymptotic behavior. Since x(P?) is finite
for P — oo, it obeys an unsubtracted dispersion relation of

the form
1 x(s)
P =— [ —%, 29
x(P7) 27ri/p s —P? (29)

x(P?)

(28)

where I' is such that no singularities are crossed. The
singularities of x(P?) are a branch cut at P> > 0 and a pole
in the Euclidean domain at P? = P} = —u? exp(—1/(pya;))
on which we comment in the next section. It is convenient to
split the dispersion representation into the pole part

-1
P)=— o~ +%(P? 30
H(P) = e A (P) (30)
and the integration over the cut
1 [o I
R(P2) = - / dsim[’;@],
7 Jo s —P=—i0
B /00 ds 1
~Jo s=P*=i0(1 +apyIn(s/p?))* + (apor)*’
(31)

Above it was used that x(s) — 0for s — oo as otherwise the
arc at infinity would contribute to the dispersion integral.
This is the formal solution and it is easily seen that for finite
P? the integrand behaves [ ds/(sIn(s/u*)?) < 0 which
is finite. The integral (31) is explicitly evaluated in
Appendix A 3 to reproduce the expression in (30). The
dispersion relation for the TEMT part is simply given

by Cge(P2)|LL = ﬁ%/4a?ng(P2)|LL-

2. Finiteness of C),(p*) implies observability
Generally physical quantities are RG-scale independent
and finite. Bare correlation functions with renormalized
composite operators, such as ['yz(p?) (2), are RG-scale
independent but, in the case where they are not finite, do
not qualify as physical observables. Since ng( p?) is finite
the situation changes and the bare function is observable.
For example Ab, the difference of the flow of (IR term of

the Weyl anomaly, is related by Ab = }C},(0) [25].
Below we illustrate the scale independence of Cj,(p?)
(and the analogous case of the bare m?(gqgq) correlator is
discussed in Appendix B 1). In a one-scale theory with one
external momentum any quantity reads ¢(p?/u?, a,(u/uo))

PHYSICAL REVIEW D 95, 065027 (2017)

where y is a reference scale, e.g. Aqcp, which we suppress
further below. In the case where ¢ is a physical quantity,
and therefore independent of the renormalization scale g,
the functional dependence simplifies to

d
dlnpu

(P /2. a,(0?) =0 & ¢ = p(a,(p?). (32)

This is indeed the case for C},,(p?) at LL. Starting with (27)
one gets

rog a,(12)py

4 1+ as(u?)poIn(p*/u?)
1(1,0)

- r994 Boas(p?) + O(B)), (33)

Cz)e(PZMLL =

a function which depends on a,(p?) only. Note that if we

were guided by fixed order perturbation theory, then we

would resort to the renormalized Cgf( p?) which is scale
1,R . LR

g dli,l Coy (P?) = —hmeao(ﬁ —2¢)Lgy" = xiy

with the last equality following from (11). This is why

dependent

it is sometimes stated that only pzdipog’HR(pz) =

p? diQ Clo(p?) (e.g. [20]) is physical whereas we advocate

that the bare term C},,(p?) is physical and should be stated.
An example being the previously mentioned [IR flow:
Ab = }C},(0). The scheme-dependent splitting of the bare
function into a counterterm and a renormalized part defines
a flow for b connecting the UV and IR values [25].

The pole discussed in the previous section is the Landau
pole of the gauge coupling. It has no direct physical
meaning and contradicts the analytic structure of the
spectral representation. It is precisely this pole that is
removed in the approach of analytic perturbation theory by
enforcing a physical singularity structure on the amplitude
[27]. In the fully nonperturbative version this pole dis-
appears. The correlation function satisfies an unsubtracted
dispersion (P> = —p?):

1 [ Im[Cly(s)]
Cho(P?) =;A dSﬁﬂoo, (34)

consistent with the Killén-Lehmann representation. Above
@ is an arbitrary, scale-independent, finite constant which
can be added by changing the theory by a local term in
the UV. The addition of this term is more than a choice
of scheme; it corresponds to changing the theory by a
local term. We have therefore silently assumed wy =0
which is automatic in the conventional setup. This constant,
being arbitrary, should not impact on any physical pre-
dictions. In the above mentioned formula of the [1R-flow
anomaly this is ensured by the implicit boundary
condition C},(c0) =0. If this boundary condition is
generic Cjy,(c0) = @y, as in (34), then the formula simply
changes to Ab = §(Cj,(0) — wy) [25].
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C. OPE extension with condensates

This section may be considered as a minor digression
and the reader may or may not want to directly proceed to
Sec. IV. The discussion below has some overlap with
Ref. [28] but goes beyond it in the emphasis on finiteness.
So far we have treated the correlation function (2) within
the framework of perturbation theory. Equation (2) is a
good approximation for large p? and preasymptotic effects
for p* > Agcp can be parametrized in terms of vacuum
condensates ([Oc]) ~ O(A§cp) with the framework of the
OPE [1]. The vacuum condensates appear as power
suppressed with respect to perturbation theory (i.e. the
(1) =1 term):

CExB 2)P

Cap(p?) = )+ ZCAB K[Och).  (35)

Anticipating Sec. IV A we include several operators which
correspond to the several coupling case. In the formula
above we have assumed all perturbations [O¢| to be of
dimension four, i.e. marginal. The OPE has been shown to
hold in perturbation theory [29,30] and has enjoyed
phenomenological success in the nonperturbative regime
where it is expected to hold [31].

It is our aim to investigate whether or not the Wilson
coefficient C,(p?), in analogy to C},(p?),

)p* + Chy(p

Fgg(pz) = ng(pz

0. (36)
is finite or not. To do so the QAP proves useful. The key
idea of the QAP is that differentiation of the finite partition
function with respect to finite renormalized parameters
leads directly to finite well-defined quantities. The QAP
might be regarded as a scheme for the renormalization of
composite operators. For convenience we employ the local
QAP (e.g. [28,32]) where the couplings g are promoted to
local functions g*(x) which then become sources for the
corresponding local operators

([0A)]) = (=04y)) In Z, Opx) = (37)

_59" (x)°

where the corresponding Lagrangian in bare quantities
reads £ = g5 0,4 + - - -. The principle also applies to higher
point functions such as

=(=0p(y))(=0a(x)) In Z = (=8p(,))([04(x)])
= ([04(0)][05(Y)])¢ = (BB [0a(X)]))
= [finite]. (38)

FZSB(X_)’)

Since the right-hand side is finite this means that the local
divergences of the unrenormalized two-point function,

CSy(p?) = LS = [finite], (39)
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ought to cancel against corresponding divergencies in LS'R

coming from the variation of the operator renormalization

constants
=2 L [0c)ot =)

((Bpy) [0
+ ﬂd-‘*ngf;(ﬂ Y2S(x — y) + [finite].

(40)

The quantities nga are given in terms of the RG mixing
matrix Z,':

LR = (0sZy) (275, Og=7 5. (41)

where the scheme dependence comes from the scheme-
dependent Z,’|, = Z! which we suppress throughout
in order to lighten the notation. For our example with a
Yang-Mills Lagrangian £ = 1/40, with O, defined in
(19) the renormalized composite operator follows
from ([0,(x)]) = (—y%él/gz(x))lnz = (2811 4(x)) In Z. The

renormalization of [O] is given by [33,34]

[og]zzggog_;_...,
OlnZ (d—-4)
9 = 9) =
z, (1+alng> S0 @

with the dots standing for EOM and gauge-dependent terms
which vanish on physical states and are therefore imma-
terial for the current discussion. From Egs. (40) and (42)
one gets

Ly = 20y,,In 2,9
OlnZ\-19°InZ,
—2(1+ g
Olng J(Ing)

= 28;9/3 é//Ho[f nite]. (43)

The term L% differs from L% in finite terms since the
latter is a power series in 1/¢ by definition. From (39) it
then follows that Cj,(p?) is finite in the 11m1t e — 0 but
divergent at each order in perturbation theory "It is noted

"To compare with the literature we need the CTs of G? as
opposed to [O,]. These can be obtained by accounting for the

factor 1 / gy in the definition of O, [see (19)], which leads to
the followmg modification of (43) 201,029 /g5 = LY, Ri_

2(d—4) /p. Expanding this express19n in powers of a, results
in —4(a2 [%] +a [—ﬁg# + %} + af [/}2/3] by </}‘+2ﬁ°) + 3/”‘]) up to
corrections of the order of O(a3, €°). This is 1dentlcal tol 1Z L)z,
in [35,36] [Eq. (4.7)] up to finite terms. However, the observatlon

of finiteness and its possible implications were not made in
[35,36].
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though that L§,%(p?) = B/2LY," + [finite] = 0, .5 +
[finite] is finite, but even finite in each order in perturbation
theory provided every quantity, e.g. beta function, is treated
consistently in d dimensions. The same applies therefore to
the corresponding bare Wilson coefficient Cf,(p?) =
B/ 2CJ,(p*). Hence one can write down convergent
dispersion relations for both Cj,(p*) and CY,(p?) as
done in Sec. IIIB 1. The coefficient CY,(p?) is scale
independent.

It is again instructive to write down the LL expression

1
Gl P = T GV )

_ ﬁOas(I’tZ)
Conlr I = 51 4, (2o (/7))

=La () + 09, (44)

which happens to be proportional to ng( p*)|. and
Chy(p?)|LL (33), respectively.

D. Extending the R?> anomaly to O(a})

1. R* anomaly from the (©0) correlator and the
quantum action principle

It has been known for a long time that trace anomalies in
curved space time (e.g. [37]) are related to correlation
functions of the TEMT in flat space. The link is provided by
the local QAP.

In four dimensions the VEV of the TEMT in curved
space reads (e.g. [38])

(T? ) = —=(BREy + pRW? + BRH?) + 4b'™ROH + dAR,
1
(d-1)

with E,, W2, R and A being the Euler, the Weyl squared,
the Ricci scalar and the cosmological constant term,
respectively, and f,(u) 3 IR etc.'”” The Euler term is
topological and analogous to the GG term of the chiral
anomaly known as a type A anomaly [39]. The W? and H>
arise from the introduction of a scale in the process of
regularization and [JH is the variation of a local term.
These are known as type B anomalies [39].
We write the gravitational counterterm as follows:

H

R, (45)

ACgravity = _(aOE4 + C0W2 + b0H2>7 (46)

with by = u=*(b® + L}Y) and notation that largely follows
Shore’s review [32]. A double variation of the Weyl factor
s(x) (g, — e *Wg,,) is finite since both the partition

"The latter is defined by (T5) = g,sA'R and may or may not
be canceled by adding a suitable counterterm to the UV action.
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function and the metric are finite. When the latter is Fourier
transformed and projected on the p* structure one obtains

/ dxe'?* ((=8,()) (=0y(0)) In 2)| ¢
— /ddXei”‘x<Tpp(x)T/)/J(0)>|p4 + 8bo

= /ddxei”'x<®(x)®(0)>|lz4 + 8b0
= Cpp(p*)p™> + 8by = [finite], (47)

where in passing to the third line we used the fact that EOM
terms contribute to the ( p?)° structure only and assumed that
neither virial currents nor nonimprovable scalars are present.
This is correct for QCD-like theories in the conformal
window used in the next section. In the parameterization
of (48) this implies the nontrivial, known [40], relation

L{ = —éL;};,RZ + [finite], (48)
which translates into L} = —1 L{VS for the MS scheme.
We end this section with three slightly disjoint points.

(i) One application of the finiteness of L, ie. p*
structure of the (®®) correlator, is that one can
choose a scheme where ﬂ;} vanishes [25]. The
contribution is absorbed into the operators appearing
in the trace anomalies e.g. G? in the case of QCD-
like theories. Below f,, is given in the MS scheme
for which is nonzero outside the FPs.

(i) Remark on the sign conventions and the specifics of
the gravity counterterms. First ay, by and ¢, are
taken to be independent of the scale in accordance
with Refs. [37,40,41] but differing from the classic
work [18] where by is reduced to u?=* LS. We refer
the reader to Appendix B of our paper [25] for
further comments. Our approach determines b™ in
bo = u*(b® +L¥) up to a scale-independent
constant e.g. [37] which incidentally is the wg in
(34). The sign convention of by is such that f,
decreases along the flow leading to the counterterm
with the opposite sign in (47) as compared to (4),
which explains the sign difference in (48).

(iii) Equation (48) allows us to elucidate the quantity
;(SQ (8) in the context where Q = 6. Since the
TEMT is physical, yg = 0, and from (11) it follows
that [B = — (& = 2¢)LF]

1

pYS = — L (49)

255 and the BYSR? anomaly (45) are related. It
seems worthwhile to mention that the link between
s and the TEMT generalizes for local source
couplings other than s(x). Instead of geometric
terms like R?, the ¥, appear in front of covariant
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expression in the source couplings g4 p(x);
cf. Egs. (2.5) and (2.8) in [18]. The concept also
generalizes to higher point functions both at the level
of gravity terms (e.g. E, is related to three-point
functions) as well as covariant coupling terms.

2. Application to QCD-like theories

The generally valid relations (48) and (49) are applled to
QCD-like theories in this section. From (48) and L“ MS 4
(26) it is then observed that (¢ — 0 implied)

1) =55 [ 0u(2)u(1-2) A
| (50)

which allows us to write an explicit formula for the f,-
anomaly term:

MS _ _ d
b dlnp

_%ﬂ(czs)fx 9, <@>u2r3§”(u)du. (51)

Hence from the rgél)

- 26) LS

counterterm of the TEMT correlation

function one can deduce the R’*-anomaly term. The r_l_f,”

term can be found in the recent computation [36] up to
NNLO. We extract

11,00 1
T = g

17 10
rgs(ll']) = rgé]’()) (TCA - ?NFTF>»
1012 1(1,0 22351
I’gé ) = 4rg;1' )< ( {3+ 1296)

14 799
- CANFTF< {3+ )

107) 49

13 + TN%), (52)

N:T
+nyNp F<§3 31

with {5 being the Riemann zeta function at the value 3
and n, = CoCr/Tr|sy(y,) = Nz — 1 being the number of
gluons (dimension of the adjoint representation). The
O(a?) contribution agrees with [40] [Eq. (7.7)] at the level
of 3y and f; which straightforwardly extends to QCD-like
theories.

From (51) one then obtains 3, up to O(aJ). We give the
result in terms of the first pole in LMS = 3~ .15, (a,)e™ by
the MS-type relation (with an extra factor of 2 in the first
equality with respect to [37,40] from the d = 4 — 2¢ versus
d = 4 — ¢ convention)

I;/[S = 28a‘g(asb1)
= 8b1,3a§ + 1Ob1,4a? + 12b1,5a§ + 0([1?), (53)
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where [bn = by, + byia; + O(a?)]

bz = TR 16ﬁ0ﬁ1 gg )

(482 + 6poPo)ras " + 3poPrrss "),

1
bia =150 16
1(1,0 1(1,1
bis= m@oﬁoﬁzrgs(z )+ (24B0p> + 15/)7%)7%(1 )

+ 12801y ) (54)

follows from (51). Comparing with [18,37,40] we find
agreement with [37,40] to the computed order of O(a3) and
with [18] to order O(a). The fact that g5 is proportional
to the f function is consistent with 3, being zero in CFTs
[42,43]. In fact a stronger statement can be made since
formula (51) shows that S5 vanishes for one-loop f
functions consistent with all coefficients above involving
a f, withn > 1.

At least let us make a general observation which makes
use of the finiteness of LMS = lim,_oLYS. Firstly, we
observe that one may take the € — 0 limit in (51) directly
and replace dln” - p-2 7y leading to pIS = —p 2 gL LMS

This result generalizes to multiple couplings as follows
PYS = PO, (55)

where LYS is well defined in the limit of vanishing f
function as will be shown in Sec. IVA. This result is
accordance with ST = 0 [42,43].

IV. EXTENSIONS OF THE ONE-COUPLING
TWO-POINT FUNCTION CASE

A. Multiple couplings and finiteness
of TEMT correlators

In this section we proceed to show the finiteness of
the (®O) correlator for a general field theory with a
UV FP. Consider a RG flow generated by a deformation
8L =>,930,. The induced trace anomaly reads’”

0 = 04, (56)

where here the /3 functions for the couplings ¢ are given by

gt =p"—eg'S". (57)

dlnu

BThree possible structures are neglected. EOM terms can be
omitted for the same reasons as before. It is assumed that no virial
currents ® = 9 -V + - - - are present implicit in the assumption
that the UV FP is conformal (no nontrivial unitary scale but not
conformally invariant theories are known to date). Terms of the
form ® = —[J¢? + - - - originating from nonconformally coupled
scalars can be improved a la Callan, Coleman and Jackiw [44].
An exception is the chirally broken phase but since the term is
relevant in the IR and not the UV we do not need to consider it for
the purposes of this section.
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The &4 are an artifact of going from four to d dimensions
(e.g. [18] whose notation is adapted here). Note that in
Sec. 111, unlike here, the logarithmic f function was used
and that in QCD &7 = 1. The generalization of (6) to the
nondiagonal case is straightforward and given by

Cls(P?)p™2 = (Ci(p?) + Liu™™,  (58)

where C},; is again finite in the sense that there are no poles
upon expanding in € as long as no expansion in the
couplings ¢¢ is attempted. The multiple coupling gener-
alization of (8) reads

(Lp—2€)Lyg = —1s. (59)

where L; denotes the Lie derivative on a 2-tensor in
coupling space

LoLyg = 0Ly + 0P LYY + BCOcLyy  (60)
[0, defined in (40)] since 7,2 is

748 = 04"
= aAﬁB - 5AB§A€ = J’AB - 5AB§A€7 (61)

which follows from —Z-(®) = 0 in flat space. The above
ny

equation is the analogue of y, = 7, = 20, ,, /} stated below
(19). The reason for y, = 7, is that we used the logarithmic
B function for QCD-like theories for which the O(¢) term is
coupling independent. The quantity y\iy generalizing (8) is
then given by

1 1
25 = 2(1 +5 (&) + EngQaQ) i

1.MS r 111(1;1)
Ly~ = : (62)

n
n>1

The RGE (59) can be solved by the method of character-
istics in terms of the anomalous dimension matrices y5:

0 2e

M

Ly (n) = / IACm,u')x?D(w)IBD(u,u')(;) dingl.
nu

(63)

where

Iny B
sty = (exo ([ snamir)) " o
nu A

It can be shown that'*

“This follows by writing 3 (u)I(u, ') ,® = fB(u') which
satisfies the differential equation 9y, /% = f<7 P (') with initial
condition fB(u) = jP(u). It is easy to show using (61) that
FB(u') = pB(u') is the unique solution to to the initial value
problem.

PHYSICAL REVIEW D 95, 065027 (2017)
B (') A5 = BP(u). (65)

As previously Cl,(p?) = p*BPCl4(p?) and the generali-
zation of (25) reads

SN A~ 2¢
L= B 6P (g) dingd + [fnite].

(66)

For the asymptotic analysis it is, again, more convenient
to use the variable ¢t = Iny’. We will now argue that the
€ — 0 limit can be safely taken. Assuming y,z = O(t7"4#)
with n,p > 0 the integrand of (66) is controlled by the j
functions for large ¢ which tend to 0 by the UV-FP
assumption.

Note that the criteria for finiteness are easily generalized.
Finiteness of LE,@R and Ll‘]} is easily established. For the
cases of AF and AS, of Secs. [T A 1 and II A 2, respectively,
By = =B/ (41)*(g2)'*7e + -+ and ry >0 and p%5 =
lag|((g2)"Y = g9) + ---. Expressed in the RG time vari-
able ¢ this reads

1
o -
ﬂAF t(l+%> ’

P ~ elaolt, (67)

This means that the terms in the integrands in (63) and (66)
vanish at least as £~ 757 or are exponentially suppressed
which guarantees convergence of the ¢ integral. Hence the
¢ — 0 limit can be taken safely and L},< and L)X are finite
which is the aimed result. Note that LL;z is the analogue of
Lg% in the QCD-like case. If the operators are part of the
dynamics i.e. present in the trace anomaly, then the case has
to be reconsidered.

Condensate corrections.—As before we proceed to
discuss the finiteness in the presence of vacuum conden-
sates. The local coupling formalism of Sec. III C applies.
From (39) and (56) it follows that

LER = PABELEF + [finite]. (68)
Along with (41) one deduces
ﬁA,BBL/%eR = ﬁABB(aBZAP)(Z_l)PQ = —ﬁA?AQ = [ﬁnite]
(69)
because of the boundedness of the anomalous dimension
matrix 7,€. The scheme dependence on the left-hand side
arises from (Z71),2 = (Z7")p9|r which we suppress.

Finiteness of LgéR follows from (68) and completes the
task of this paragraph.

B. Finiteness criteria for three-point functions

Another extension of interest are higher point functions.
In general they consist of kinematic structures which are
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sensitive to the anomalous dimension of all operators in the

correlation function and structures which are governed by

lower-dimensional point functions. The latter can be

identified by setting one or more of the external momenta

to zero. A comprehensive analysis in CFTs can be found in

[10] whereas we focus on theories with a nontrivial flow.
We introduce the following notation:

FABC(pi’ P%p ch)
- / dxdtye 24709 ([0, (1)][05 ()OO,
= Clysc(Po) P4 + Chpc(Pp)Psc + cyclic, (70)

where cyclic permutation over A, B and C is implied,
pa+pptpc=0. Q=A B. C and Pyc=pj-
pA(p% + p%) are kinematic structures which vanish when
any of the three external momenta p, p ¢ is set to zero.
Hence the CE‘ A)BC coefficients are the two-point function

structures. By applying

adeg(PQ) +0cCyy (PQ) aAC}];’g(PZQ) = [finite],

(71)

using the global version of (40) and noting 9, corresponds
to a zero momentum insertion of [O,4], the following
equation for the Laurent series emerges:

L]I.R

1
(A)BC = LgCRLBE — E (83[411 R + acL (9ALE;§)

+ [finite]. (72)

One infers that LPA?B c

only and finiteness follows from the finiteness of the two-
point functions. This implies that the truly three-point CT

is determined by two-point functions

information is encoded in the LE";QC terms. The results of
Sec. IVA apply straightforwardly. The RGE assumes the
form

(L5 =2)Lie = s (73)
where
NS = 2(1 +1(§A £ 80 11000 )r“”
XABC = 2 909 | Tapcs
Lipis = 3 e (74

n>1

and [Z,; denotes the Lie derivative, acting on a 3-tensor, as in
the previous section:

‘cﬂLABC = 6AﬂDLDBC + 8BﬁDLADC + OcBP Lk
+ BPOp Ly (75)
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where 8A[A} =942 is the anomalous dimension matrix
(61). The finiteness of LY ABC and ng; follows from the
same arguments as in Sec. [V A and we caution the reader
that the couplings ¢*%C refer to couplings governing the
dynamics as otherwise the refined conditions apply.

All operators being the same is an interesting special
case leading to the expected reduction in the kinematics:

= C}]A)BC(pZQ)P3 + CJ]ABC(sz)’I& (76)

with complete symmetry in A, B and C, where

FABC(p,ZQv p%! p%‘)

A3 = ph + ph + pé — 2(pipE + PAPE + PEPE).
Py = ph + pi + e (77)

are the important kinematic Kéllén function and the two-
point function structure, respectively. Finiteness of the
three-point function of TEMT follows from similar argu-
ments as in Sec. IVA.

V. SUMMARY AND CONCLUSIONS

In this work we have investigated the logarithmically
divergent CTs of two- and three-point functions. Using the
d-dimensional renormalization group, convergence criteria
have been given for asymptotically free and safe UV FPs in
Egs. (14) and (17), respectively. This is followed by an
explicit discussion of the (G*>G?) and (©®) correlators
and the (gqgq) correlators in QCD-like theories in Sec. III
and Appendix B 1. By taking into account all orders the
former two were shown to be finite but divergent at fixed
order perturbation theory implying that the ¢ — 0 and the
perturbation expansion do not commute in general. Hence
fixed order results can give the wrong indication about
convergence. Finiteness implies that the bare correlators
satisfy unsubtracted dispersion relations and are in princi-
ple observable since they are finite and scale independent;
cf. Secs. III B 1 and III B 2. An application of the latter is
given by the flow of the [1R anomaly which is related to the
zero momentum limit of the p* structure of the TEMT
correlation function [25]. Using a recent computation
and the quantum action principle the R> anomaly was
extended in the MS scheme to NNLO (O(a3)) in Sec. I D.
Generalizations of the finiteness conditions to several
couplings, assuming a conformal UV FP, and three-point
functions were presented in Secs. IVA and IV B,
respectively.

In what follows we discuss specific applications of the
finiteness and the possibility of adding finite CTs to the UV
action. A crucial point is that correlation functions which
are finite with operators without anomalous scaling are RG-
scale independent and therefore can serve as observables.
In this view the finiteness of the (©...@) correlators is our
most important result. From it follows that the R> anomaly
(45) is always proportional to f functions of the couplings
(55). Furthermore the finiteness serves as the basis for

065027-11



VLADIMIR PROCHAZKA and ROMAN ZWICKY

showing that the difference of the UV and IR IR anomaly
(45) is flow independent15 as well as the existence of a
scheme for which the R? anomaly vanishes along the entire
RG flow [25].

Hence generally CTs are meaningful only when they are
related to observables. Otherwise they are arbitrary (i.e.
scheme dependent) since one cannot forbid adding local
terms to the UV action in general. It is though our opinion
that the local terms are not arbitrary to the point that they
ought to be RG-scale independent since the bare partition
function is scale independent. Concerning observables one
may distinguish the following two cases. Either the CTs
drop out in the observable(s) or not. In the latter case they
might either be fixed by some other principle or they need to
be determined experimentally. The first two examples men-
tioned in the previous paragraph are of the first type
mentioned. The bare contact term vanishes when taking
the scale derivative (55) or in the difference of the UV and IR
CIR value. The third example of the R? anomaly concerns a
scheme-dependent question and corresponds to a reorgani-
zation of terms in the trace of the energy momentum tensor.
Let us mention two well-known examples where (divergent)
CTs can be handled by symmetry. For the vacuum polari-
zation, the correlation function of two electromagnetic
currents, the dispersion integral needs to be subtracted once
but the value of the subtraction is fixed by gauge symmetry
(zero photon mass). The chiral anomaly, which can be
regarded as coming from a divergent contact term, cannot
be removed by a local term while maintaining gauge
symmetry. Another example where this ambiguity is settled
by a symmetry, namely chiral symmetry, is the low energy
constant L, from chiral perturbation theory. The quantity L,
is related to a dispersion relation of the correlation function
of left- and right-handed octet currents [L o ~ IT; g (¢*> = 0)
with pion pole subtracted]. Chiral symmetry in the UV
forbids us to add a contact term to I ; since the latter is
sensitive to chiral symmetry breaking.

ACKNOWLEDGMENTS

In the course of writing these papers we have benefited
from discussions with Richard Ball, Peter Boyle, Luigi Del
Debbio, Finan Gardi, Tony Kennedy, Zohar Komargodski,
Hugh Osborn, Guido Martinelli, Agostino Patella, Roberto
Pellegrini, Antonin Portelli, Misha Shifman, Kostas
Skenderis, Andreas Stergiou and especially Graham
Shore. We are grateful to Ben Pullin and Saad
Nabeebaccus for thorough proofreading of the manuscript.
The authors would like to express their gratitude to the
Mainz Institute for Theoretical Physics (MITP), the
Universita di Napoli Federico IT and INFN for its hospitality
and its partial support during the completion of this work.

Finiteness is also a crucial ingredient to the a theorem as it
allows one to establish positivity via an unsubtracted dispersion
relation [24,45].

PHYSICAL REVIEW D 95, 065027 (2017)

V. P. thanks Weizmann for hospitality during completing
final stages of this work.

Note added.—As compared to our vl on the arXiv we
believe to have improved the notation by adapting 2)(7ng -
X ldefined in (8)] 5CI, — L, [e.g. (3)] where the latter
stands for local and we changed C!; — C}, when referring
to the operator part [cf. (24) for a more generic decom-
position] ® = $4[0,] of the trace of the energy momentum
tensor. In addition we have indicated the scheme with labels
in more consequence since scheme independence is a key
feature for orientation and consistency.

APPENDIX A: SOME ADDITIONAL FORMULAS
FOR RELEVANT TO LEADING LOGARITHM
1. Form of leading logarithms of Cg,g

The leading terms in the bare correlation function take
the form

[ e 010,210,000, k3 e (17

n>0 p
(A1)

with k being a constant which is immaterial for the argument.
Upon renormalizing the operator [O,] = Z; O, and the
coupling a,y = a,Z, with Zs: = Z, in the LL approxi-
mation one finds

] e olio 0,0, = - L,
(2
where
This sum evaluates to
e :z_;(_l)j (ni,)
S (4) ji)(—l)f'(n (")
= (=1)" + "l <j‘7—z) , (Ad)

confirming the rule e <> —In"(p?/u?) used in Sec. III B 1.
Note that nonlocal divergent terms in (A4) are avoided
since the sum, somewhat magically,
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ni(—wf'(n—j)l( ! .>=0, 0<l<n, (AS)

=0 "

only contributes for / =0 and / = n. We note that such
nonlocal terms could not be eliminated by local counter-
term in perturbation theory.

PHYSICAL REVIEW D 95, 065027 (2017)
2. The leading poles of the counterterm
L“Q'gls for ) #0

The leading poles of the counterterm ng[s 1)
for an AF theory in the MS scheme for £, #0 is
given by

L) =201+ £y [ "ot e a1 )y
0

=To0 ax(ﬁo(lﬁ‘fQ)""}/Q,O)r(_yﬁQ_oo)

where & is the difference of the d-dimensional and four-
dimensional anomalous dimension 7, =yo — £pe. For
£p — 0 the formula simplifies considerably and is given
in Sec. [TA 1 in (15).

3. Explicit evaluation of the dispersion integral

As a check the integral (31) is integrated explicitly. This
is best done by changing variables to s = u’e” which

(158 8 (-1 =5 eD (1+£)T(-22—¢g) 2Po(—e) b F1 [0 1 Lot £ 0 k]
ﬂ<1.0>< ¢ Poc ol (=5 =S0) 2P 2=, T e, ’aﬂo>

e(Bo(1+&0)+700)
(A6)
|
wipay [ dye’ 1
) = [ O
(A7)

withapoleaty, =—1/(a,f,)+ iz and aseries of poles y, =
In(=P?/u?)+in(2n+1) for n > 0. The integration contour
can, for example, be closed in the upper half plane. The y,
pole result in the pole term in (30) and the series of poles
Yo, =In(=P?/u*)+in(2n+1) for n > 0 leads to a series

1

results in an integral (recall P> = —p?)
k(PZ) _
n>0
x b
1-P?/P}

which can be resummed into an analytic form. The final
result is consistent with Eq. (30) which was the aim of this
Appendix.

APPENDIX B: QUARK CURRENT
CORRELATORS

1. The (gqqq) correlator in QCD-like gauge theories

Finally we consider the bifermion scalar operator

[Om] = [g4]. Ky = m, (B1)
for which m[gq] = myqq is a RG invariant. The parameter
m does not enter the dynamics and is regarded as a source
term only. The relevant input to criteria (14) is given by
Ym.0s ¥mum and By. The leading order of the mass anomalous
dimension is given by (y;, = ¥y = —ym and y,, = 7,, since
Gq 1s a kinetic operator)

(B2)

Ym = Yuods + O(d?), Ymo = —6Cp,

1 .
T rR ) T P o O (@

(A8)

where r%}&(as) = r}]w(}l,’lo) + O(ay) and S and Cy are given

in (C2) and (C3). With y%,, = O(a?) (.e. nyy =0)
condition (14) reads
3(NZ=1)/(N.)

e 1 i
Po Isuw,) 11/3N.—2/3Ny > 1 & Ly = [finite]

(B3)

This criteria is satisfied for N > (9 4+ 2N2)/(2N,) which
for N, = 3 leads to convergence for Ny > 4.5.
The leading pole contribution (15) is given by

1 + aho 1+7}/|;]_ﬂ 1
L“'MS| _ rl](l,())( +T) 0 — (Bs)l:n_Ms L
MM ILL MM a.(Bo + 7210) MM
,101.0)
= MM (B4)
as(ﬂo + }’M,O)

where we have assumed (B3) to obeyed. For QCD with
three massless flavors Ny = 3 and N. = 3 the expression is
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divergent. Presumably this means that the constant part of
the I'y;, correlator is not directly related to a physical
quantity. Expanding in a, one obtains (15)

1.MS 100.0) (1 Yam0ay

LMll\\/[/[ L = VA}M)<+ 262
€

(=Pormo + (rmo)?)a:

+ 6e3

n O<a§>), (B)

from where the leading poles in [46,47] are recovered. For
the sake of illustration let us quote the LL result, obtained

by replacing 1 — — ln(i—j):

Dl (p?) = / d*xe'"(0{[gq(x)][34(0)]|0) .

M|
(1+afyIn(z) " ~ 1
as(Po +rmo)

1(1,0
= —Pz’”M(M)

(B6)

where the dots stand for condensate contributions.
Expanding in a; ln(z—j) the O(a?)-LL expression matches
the result in [46].

Following Sec. III B 2 we explicitly demonstrate at LL

that the bare correlator, multiplied by 3, = m?(u), is u
independent in the following sense:

m* (U)o (p*. 1) = pif (as(u? /i) m/po. p*/u3)
= p*m?(p*)F(a,(p*/u3)),

and p being an arbitrary reference scale. First we note that
the renormalized correlator

(B7)

_10) m*(p?)
MM ag(p?) (B + Ym0)
m* ()
ag(u)(Bo + 7M,O)> (B8)

splits into a u-independent nonlocal and a u-dependent
local term. If we now restrict to the convergent case
satisfying (B3), then the second term is equal to (B4)
and in the ¢ — 0 limit

m? ()T (p?) = m? ()TN (p?) + Lygy
m*(p?)
ay(p*)(Po + 7o)

which satisfies (B7) in analogy with (33).

()T (p?) = pZ(

+ r%}v',o)

LL 5 1(L0)
=—DPTum

, (B9)

2. The (J;J7) correlator

The axial current two-point function in an AF theory
has been studied by Shore [28] and is worthwhile to
be captured language of this paper. The correlator decom-
poses into

PHYSICAL REVIEW D 95, 065027 (2017)
/ e (75 ()5 (0))

= (8P = pup)Cy (P + pup,Ci5 (P%).  (B10)

a transversal (7) and a longitudinal (L) part. Since
Yis0 =0, the criteria (14) implies convergence for

T.L
n . .
nii > 1, where )(;555 ~ag’s’s is defined in analogy to

(8). In the case of massless fermion considered here the
axial current correlation function is identical to the vector
current correlation function (vacuum polarization). Hence
the important ingredient to the analysis is the conservation
of the vector current which implies that the transverse part

contributes at LO nj; =0 and further implies that
nj ;. > 0. Thus the well-known LO divergent contact term

of the vacuum polarization is not resummed to a finite
expression. Yet in the longitudinal part the chiral anomaly
itself contributes at NNLO, with ni 7 = 2, which then
implies convergence and a scaling of the type Ckﬁs (p?) ~

a, in analogy to the TEMT correlator (33). This result is
consistent with Eq. (6.36) of Shore’s work [28].

APPENDIX C: CONVENTIONS

FOR $ FUNCTION
In this work the bare f function / of DR is defined as

B_dlng_ (d—4)
Cdlnpg 2

+p=—e+p (C1)

We draw the reader’s attention to the fact that the
logarithmic f function (C1) is used throughout in order
to keep the formulas more compact. Explicitly

B = —Poa, — pra: — prai — prat +-- -,

(C2)

where f,_3 in MS scheme can be found in Ref. [48].
The first two coefficients, which are universal in mass-
independent schemes, read

11 4
Po=|—=5Ca—5NeTE |,

3 3
34 20
P = (g C,24 - ?NCNFTF - 4CFTFNF>,

where Cr and C, are the quadratic Casimir operators of
the fundamental (quark) and adjoint (gluons) representa-
tions, respectively, Ny is the number of quarks and
tr[T9T?] = T;5% is a Lie algebra normalization factor
of the fundamental representation. For SU(N,.) these
factors are given by

:N%—l 1

CA cr CF 2Nc ’ F B

(C3)
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