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Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and
Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic
regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions
and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-
type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the
energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other
regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to
study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in
conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.
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I. INTRODUCTION

The study of the dynamics of quantum field theory
(QFT) in curved spacetime is not only relevant for the
understanding of a number of important physical problems
such as inflation or Hawking radiation, but it is also rather
challenging. See, for example, the books [1–3] for a general
exposition. One of the challenges is the determination of
the vacuum. In fact, as time is not a diffeomorphic invariant
concept, neither is the vacuum. The observer dependent
nature of the vacuum is therefore intrinsic to QFT in curved
spacetime. Even after one fixes a choice of time, the
vacuum in perturbation theory is generally still not unique.
For metric with isometries, it is often preferred to choose
the vacuum to respect the symmetries. But still one may not
be able to get a unique one. For example, for the de Sitter
metric, the alpha-vacua give a one parameter family of
vacua which are invariant under the de Sitter isometries,
and one is able to single out the Bunch-Davies vacuum only
if the Hadamard property is also imposed.
After one decided on the vacuum, one could then

proceed to study various quantum properties of the system
using traditional tools of quantum field theory in flat
spacetime. However, extra care must be exercised to take
into account the effects of particle creation which is a
simple consequence of the fact that, in general for a time
dependent background, a vacuum at time t may not be a
vacuum anymore at a different time t0. As a result, instead
of the S matrix, it is more sensible to consider correlation
functions of operators [4–7] for QFT in curved spacetime.
Historically, the conformal (Weyl) anomaly of the energy

momentum tensor was one of the first quantities studied

and computed for a QFT in curved spacetime. And various
methods have been developed to regularize the UV
divergence found in the energy momentum tensor. These
include, for example, the Dewitt-Schwinger geodesic point-
splitting method [8], the zeta-function regularization [9,10],
and the adiabatic regularization method [11].
Adiabatic regularization [11,12] is a useful and simple

method to obtain physically meaningful renormalized
results from the formally UV divergent quantities, e.g.,
the vacuum expectation value of the energy momentum
tensor, in an expanding universe such as a conformally flat
spacetime. The most studied example is the adiabatic
regularization for scalar fields [11–14] (see also [15] for
a recent review and references therein). Recently the
adiabatic regularization for fermion has been established
[16,17]. On the other hand, as far as we know, adiabatic
regularization for gauge fields has never been considered in
the literature. One of the motivations of this paper is to fill
this gap.
At the first glance, one may think that the adiabatic

regularization for the gauge field is rather straightforward
since the theory of a massless gauge field in a four-
dimensional conformally flat spacetime is conformally
invariant. One may then infer that the mode function of
a gauge field Aμ can be collectively written in the same
form, up to some overall scaling factor, as that of a massless
conformally coupled scalar field, and thus the adiabatic
expansion for the gauge field can be performed exactly in
the same way as that for a massless conformally coupled
scalar field. This is actually wrong, and one would get the
wrong result for the conformal anomaly. The reason for the
mistake is that one has missed a very important nontrivial
issue related to the gauge fixing of the theory, the latter of
which is essential to the setting up of the perturbation
theory.
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The conformal anomaly for the gauge field has been
obtained using other regularization schemes before [18–25]
and is given by1

hTμ
μi ¼ 1

2880π2

�
62

�
RμνRμν −

1

3
R2

�
þ d□R

�
; ð1Þ

where it is known that there is a discrepancy in the
coefficient d of □R among different schemes: dimensional
regularization gives 12 [21,22], while the DeWitt-
Schwinger point-splitting expansion gives −18 [9]. In fact,
it is well understood that this term is regularization
dependent since it can be expressed as the variation of a
local action [21,22],

ffiffiffiffiffiffi
−g

p
□R ¼ 1

6
gμν

δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R2; ð2Þ

and so the value of d can be shifted to any arbitrary value by
using an appropriate counter term. Regularization depend-
ence of the □R term has also been discussed recently in
[27]. It has also been pointed out [24,25] that the coefficient
of □R, at least in the DeWitt-Schwinger regularization
scheme, is gauge dependent. We are interested not only in
computing the conformal anomaly of the gauge field using
the adiabatic method but also in comparing our results,
especially the gauge dependence of the □R term, with
those obtained in the other regularization methods.
Recently the N ¼ 4 superconformal Yang-Mills theory

on de Sitter space [28] has been introduced, and it has been
proposed [29] to be the holographic dual of the type IIB
string theory on AdS5 × S5 background with certain
boundary conditions. Furthermore, the holographic duality
suggests that the de Sitter space superconformal Yang-
Mills theory has a number of rather interesting quantum
properties similar to that of the maximal superconformal
Yang-Mills theory on flat spacetime. To check, a consistent
framework of evaluating the quantum loop contributions in
the conformally flat spacetime is necessary. Compared to
the other regularization schemes, the adiabatic regulariza-
tion scheme is practical and particularly useful for pertur-
bative quantum field theory computation in a conformally
flat metric as it has taken full advantage of the homogeneity
of the metric. As a result, the mode expansion of the field
can be greatly simplified, and one simply obtains an
oscillator with a time dependent frequency, whose solution
can be obtained via an adiabatic expansion in terms of
slowness of the temporal change of the metric. However,
while the adiabatic regularization schemes for the scalar
field and fermion field are available, the adiabatic scheme
for the gauge field has not been constructed before. The

main motivation of this work is indeed to develop such a
scheme for the gauge field so that one has available a
practical and complete framework that one can use to
handle the UV divergences and study the renormalization
of the theory.
The next section is devoted to a brief review of the

adiabatic regularizations for a scalar field and for a Dirac
fermion. In Sec. III, we consider the adiabatic expansion
for Uð1Þ gauge theory. In Sec. IV, we compute the
conformal anomaly for the Uð1Þ gauge theory in the
adiabatic regularization. We summarize our result in Sec. V.
Our convention of the Minkowski metric is ημν ¼

diagð−1; 1; 1; 1Þ, and the Riemann and Ricci tensors are
given by

Rρ
σμν ¼ ∂μΓρ

νσ − ∂νΓρ
μσ þ Γρ

αμΓα
σν − Γρ

ανΓα
σμ;

Rσν ¼ Rρ
σρν: ð3Þ

Note that sign convention on the signature of the metric
affects the signs of the d’Alembertian operator, and the
convention of the Riemann and Ricci tensors affects the sign
of the scalar curvature R. In the conformal anomaly the
overall sign of the□R term is thus conventiondependent. For
example,□R in our convention has the same sign as those in
[22,23] and the opposite sign as those in [9,24].

II. ADIABATIC REGULARIZATIONS FOR
SCALAR FIELD AND DIRAC FERMION
IN CONFORMALLY FLAT SPACETIME

To see the basic strategy of the adiabatic method, in this
section we give a brief review of the adiabatic expansions
and regularizations for a scalar field and for a Dirac fermion
in a conformally flat spacetime.

A. Conformally coupled scalar field

We consider a conformally flat spacetime with metric

gμν ¼ CðτÞημν; xμ ¼ ðτ; xiÞ; i ¼ 1; 2; 3; ð4Þ

where CðτÞ≡ aðτÞ2 and aðτÞ is the cosmological scale
factor. To perform the adiabatic expansion, we need to
introduce a mass m to the scalar field and take a zero mass
limit in the end of calculation. This mass will play a role in
capturing the effect of the background gravitational field.
The action is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ−

1

2

�
m2þR

6

�
ϕ2

�
; ð5Þ

with the field equation

gμν∇μ∇νϕ −
�
m2 þ R

6

�
ϕ ¼ 0; ð6Þ

1The general form of the conformal anomaly in arbitrary
dimensions was obtained by momentum space calculation
in [26].
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where ∇μ is the covariant derivative associated with the
background metric. This gives the energy momentum
tensor

Tμν ¼
−2ffiffiffiffiffiffi−gp δS

δgμν
¼ 2

3
∂μϕ∂νϕ −

1

6
gμνgρσ∂ρϕ∂σϕ

−
1

2
gμνm2ϕ2 −

1

3
ϕ∇μ∇νϕ

þ 1

3
gμνϕgρσ∇ρ∇σϕþ 1

6

�
Rμν −

1

2
gμνR

�
ϕ2; ð7Þ

and the trace

Tμ
μ ¼ −m2ϕ2; ð8Þ

where the field equation (6) has been used to obtain (8).
The field equation (6) can be solved with the Fourier
expansion

ϕðxÞ ¼ 1ffiffiffiffi
C

p
Z

d3k
ð2πÞ3 ða~kφðτ; kÞe

i~k·~x þ H:c:Þ; ð9Þ

where k ¼ j~kj and the mode function φðτ; kÞ satisfies a
second order differential equation which is precisely that of
a harmonic oscillator with a time dependent frequency

ð∂2
0 þ ω2Þφðτ; kÞ ¼ 0; ω2 ¼ k2 þm2C: ð10Þ

The operators a~k satisfy the commutation relation of
creation and annihilation operators

½a~k; a†~k0 � ¼ ð2πÞ3δð3Þð~k − ~k0Þ; ½a~k; a~k0 � ¼ 0 ð11Þ

iff the mode function φðτ; kÞ satisfies the normalization
condition

φðτ; kÞ∂0φ
�ðτ; kÞ − ∂0φðτ; kÞφ�ðτ; kÞ ¼ i: ð12Þ

The vacuum of the theory is defined to be a state annihilated
by the operators a~k. However, this depends on the choice of
the mode function as different choices of the mode
functions determine different sets of annihilation operators
a~k, and hence the vacuum states. In general, solving (10)
analytically is impossible. A useful observation is that
the normalization condition (12) can be conveniently
solved by [11]

φðτ; kÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðτÞp ðαe−i

R
τ Wðτ0Þdτ0 þ βei

R
τ Wðτ0Þdτ0 Þ; ð13Þ

where α, β are constant coefficients satisfying

jαj2 − jβj2 ¼ 1 ð14Þ

and WðτÞ is an arbitrary function. The differential equa-
tion (10) for φ becomes the differential equation for W,

W2 ¼ ω2 −
�
W00

2W
−
3ðW0Þ2
4W2

�
; ð15Þ

where the prime denotes the differential with respect to the
conformal time, 0 ≡ ∂0 ¼ ∂=∂τ. This equation is compli-
cated and, again, impossible to solve analytically in
general. However, if one considers the background to be
slowly changing and parametrizes the time variation by a
small parameter ϵ ≪ 1: ∂0 → ϵ∂0, then Eq. (15) can be
solved iteratively to give rises to an expansion in powers of
time derivatives

W ¼ Wð0Þ þ ϵ2Wð2Þ þ ϵ4Wð4Þ þ � � � : ð16Þ

Here WðnÞ contains n orders of time derivatives. The
expansion (16) is a Wentzel-Kramers-Brillouin-type
(WKB-type) expansion and defines the adiabatic expansion
of the mode function of the scalar field, with n being called
the order of the adiabatic expansion. The first few terms of
the expansion are

Wð0Þ ¼ ω; ð17Þ

Wð2Þ ¼
3

8

ðω0Þ2
ω3

−
1

4

ω00

ω2
; ð18Þ

Wð4Þ ¼ −
297

128

ðω0Þ4
ω7

þ 99

32

ðω0Þ2ω00

ω6
−
13

32

ðω00Þ2
ω5

−
5

8

ω0ω000

ω5
þ 1

16

ω0000

ω4
: ð19Þ

In [11] it was argued that, for a sufficiently slow and
smooth expansion, it is the choice β ¼ 0 for the mode
function

φðτ; kÞ ¼ 1ffiffiffiffiffiffiffi
2W

p e−i
R

τ Wðτ0Þdτ0 ; ð20Þ

which give rises to operators a~k that correspond to physical
particles. This choice of the vacuum

a~kj0iA ¼ 0 ð21Þ

is called the adiabatic vacuum. Note that for a time
independent metric, all higher order terms vanish and
W ¼ ω. In this case the mode function φðτ; kÞ is the
ordinary positive frequency solution, and the adiabatic
vacuum reduces to the standard Minkowski vacuum.
In the adiabatic regularization, the renormalized energy

momentum tensor is given by

hTμνiren ¼ hTðm¼0Þ
μν i − lim

m→0
Ah0jTμνj0iA: ð22Þ
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As the adiabatic expansion becomes more accurate for
large k, the second adiabatic subtraction term has the same
UV divergent structure as that of the first term, and so
hTμνiren is UV finite. It is known that the adiabatic
regularization of the energy momentum tensor is equivalent
to renormalizing the gravitational coupling constants in the
Einstein equation [14]. As a matter of fact, the adiabatic
regularization is a method for renormalization rather than
that for regularization of divergent momentum integrals,
since the adiabatic subtraction term precisely cancels mode
by mode the contribution from large momenta to the first
term in (22), and the result hTμνiren is thus completely
finite. To remove all the divergences in the expectation
value of the energy momentum tensor, the adiabatic
expansion should be performed up to the fourth order,
i.e., the same order as the mass dimension of Tμν, the
physical quantity being considered.

For our theory, substituting ω ¼ k2 þm2C to (16), the
adiabatic expansion forW up to the fourth adiabatic order is
given by

W ¼ ω −
m2C00

8ω3
þ 5m4ðC0Þ2

32ω5
þm4C0000

32ω5

−
m4

128ω7
ð28C000C0 þ 19ðC00Þ2Þ

þ 221m6C00ðC0Þ2
256ω9

−
1105m8ðC0Þ4
2048ω11

; ð23Þ

where we have absorbed back the formal expansion
parameter ϵ into the time derivatives, effectively setting
ϵ ¼ 1. The conformal anomaly in the classically confor-
mally invariant theory is determined by the massless limit
of the adiabatic subtraction term

hTμ
μiren ¼ − lim

m→0
Ah0jTμ

μj0iA

¼ lim
m→0

m2

4π2C

Z
∞

0

dk
k2

Wk

¼ lim
m→0

m2

4π2C

Z
∞

0

dkk2
�
1

ω
þm2C00

8ω5
−
5m4ðC0Þ2
32ω7

−
m4C0000

32ω7

−
m4

128ω9
ð28C000C0 þ 21ðC00Þ2Þ − 231m6C00ðC0Þ2

256ω11
þ 1155m8ðC0Þ4

2048ω13

�

¼ 1

960π2

�
5
ðC0Þ4
C6

− 11
ðC0Þ2C00

C5
þ 3

ðC00Þ2
C4

þ 4
C0C000

C4
−
C0000

C3

�

¼ 1

2880π2

��
RμνRμν −

1

3
R2

�
þ□R

�
; ð24Þ

where we have used (A2) in the last equality. In the above
computation only the fourth adiabatic order terms survive to
contribute. The reason is that by introducing an UV mo-
mentum cutoff k ¼ aðτÞΛ where Λ is the physical momen-
tum cutoff, the first and second adiabatic order terms give
contributions that are proportional to m4 and m2, respec-
tively, and thus they vanish by taking m → 0 before taking
Λ → ∞. Note that the conformal anomaly can be expressed
in terms of theRicci tensor and the scalar curvature only since
theWeyl tensorCμνρσ is identically zero in a conformally flat
spacetime [3]. The conformal anomaly obtained here (24)
agrees with the result obtained by the other regularization
methods [9,22,30,31]. We note that one has to be aware of
the sign difference in front of the□R term in comparing the
result here with those in [9,31], which is simply due to the
convention of metric and the curvature tensors. For example,
Dowker et al. [9] adopted ημν ¼ diagð1;−1;−1;−1Þ,
DRμνσ

ρ ¼ ∂μΓρ
νσ − � � � and DRνσ ¼ DRρσν

ρ. Therefore we
have Rμν ¼ DRμν, and the sign difference comes from the
metric sign convention as □R ¼ −□DR. The same remark
applies to the results (39) and (95).

B. Dirac fermion

Adiabatic expansion for a Dirac fermion has been
performed recently in [16,17]. This is noticeably different
from the scalar field case that is based on the WKB-type
expansion. As we are ultimately interested in the de Sitter
space superconformal Yang-Mills theory [29], we will
follow their convention and consider the action for a
Dirac fermion Ψ in the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Ψ̄γμ

�
∂μ þ

1

4
ωμρσγ̂

ρσ

�
ΨþmΨ̄Ψ

�
;

ð25Þ

where Ψ̄ ¼ iΨ†γ̂0,

γ̂0 ¼
�

0 1

−1 0

�
; γ̂i ¼

�
0 σi

σi 0

�
: ð26Þ

Here the gamma matrices γμ are those in a general curved
space, fγμ; γνg ¼ 2gμν, while the “hatted” gamma matrices
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are those in the Minkowski space, fγ̂μ; γ̂νg ¼ 2ημν.
Note that the spin connection for a conformally flat
spacetime is given by ωμρσ¼−1

2
Dðδ0ρησμ−δ0σηρμÞ, where

D≡ C0=C ¼ 2a0=a. It is convenient to introduce the
rescaled field ψ ≡ a

3
2Ψ, ψ̄ ¼ iψ†γ̂0, the field equation for

the rescaled field becomes

ðγ̂μ∂μ −maÞψ ¼ 0; ð27Þ

which is simply the free field equation for a Dirac fermion
in Minkowski space with a time dependent mass.
The Fourier expansion for ψ is given by

ψ ¼
X
s¼1;2

Z
d3k
ð2πÞ3 ðc

s
~k
us~kðτÞe

i~k·~x þ ds†~k v
s
~k
ðτÞe−i~k·~xÞ; ð28Þ

where s is the spin index and vs~k is given by the charge

conjugation of us~k, v
s
~k
¼ usC~k ¼ γ̂0γ̂1γ̂3us�~k . The canonical

anticommutation relations are

fψαðτ; ~xÞ;ψ†
βðτ; ~yÞg ¼ δαβδ

ð3Þð~x − ~yÞ; ð29Þ

where α, β are spinor indices. In addition to the field
equation, the spinor mode functions are subject to the
orthogonality condition,

X
α

us†~kαðτÞu
s0
~kα
ðτÞ ¼ δss

0
; ð30Þ

which guarantees the correct normalization of the scalar
product of Ψ [32]. Following [16], we write the spinor
mode function us~k as

us~k ¼
�

hIkðτ; λsÞξs
hIIk ðτ; λsÞξs

�
: ð31Þ

Here ξs is a two component spinor satisfying

X
α

ξs†α ξs
0
α ¼ δss

0
;

X
s

ξsαξ
s†
β ¼ δαβ;

~σ · ~k
k

ξs ¼ λsξ
s; ð32Þ

with λs ¼ �1 the helicity eigenvalues, and hI;IIk are scalar
functions depending on λs. Substituting (31) into the field
equation (27), we obtain

ð∂0þ iλskÞhIIk ¼mahIk; ð−∂0þ iλskÞhIk ¼mahIIk ; ð33Þ

and it follows from the above equations that the second
order differential equations

�
∂2
0 −

D
2
∂0 þ k2 þm2Cþ i

D
2
λsk

�
hIk ¼ 0;

�
∂2
0 −

D
2
∂0 þ k2 þm2C − i

D
2
λsk

�
hIIk ¼ 0: ð34Þ

Eliminating the first derivative terms by redefining hI;IIk ¼
a1=2 ~hI;IIk yields

�
∂2
0 þΩ2

F þ i
D
2
λsk

�
~hIk ¼ 0;

�
∂2
0 þ Ω2

F − i
D
2
λsk

�
~hIIk ¼ 0; ð35Þ

where

Ω2
F ¼ ω2 þD0

4
−
D2

16
; and ω2 ¼ k2 þm2C: ð36Þ

It is important to note that the orthogonality condition
(30) implies the normalization condition for the scalar
functions

j ~hIkðτ; λsÞj2 þ j ~hIIk ðτ; λsÞj2 ¼ 1=a: ð37Þ

It is obvious that a simple form of ansatz (20) like that for
the scalar field could not solve the normalization condition
(37). As demonstrated in [16], one needs to adopt an ansatz
where the amplitudes and the phases of the mode functions
are independent. Expanding adiabatically, the correct
WKB-type solution for a Dirac fermion is of the form

hIkðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − λsk
2ω

r
ð1þ Fð1Þ þ � � �

þ FðnÞÞe−i
R

τðωþωð1Þþ���þωðnÞÞdτ0 ;

hIIkðnÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ λsk

2ω

r
ð1þ Gð1Þ þ � � �

þGðnÞÞe−i
R

τðωþωð1Þþ���þωðnÞÞdτ0 : ð38Þ

With these ansatz, one can obtain ωðnÞ, FðnÞ, and GðnÞ by
solving (33) and (37) iteratively. Note that in the adiabatic
expansion for a Dirac fermion, terms of all adiabatic order
(n ¼ 0; 1; 2;…) exist unlike the scalar field case where
only terms of even adiabatic order are present. Here we will
not repeat the same procedure for the adiabatic expansion
and the adiabatic regularization of the energy momentum
tensor for a Dirac fermion field as it has been carried out in
details in [16,17]. The result for the conformal anomaly
agrees with the result obtained by the other regularization
methods [9,22]
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hTμ
μiren ¼

1

2880π2

�
11

�
RμνRμν −

1

3
R2

�
þ 6□R

�
: ð39Þ

III. ADIABATIC EXPANSION FOR
Uð1Þ GAUGE FIELD

As we mentioned above, the adiabatic expansion for the
gauge field has not been performed before in the literature.
As the theory has gauge symmetry, one needs to fix a gauge
in order to perform perturbative calculations. The first thing
to be clarified is what kind of gauge fixing term should be
used. Since the classical action of Uð1Þ gauge theory on a
conformally flat spacetime in four dimensions possesses
conformal invariance, one may think that it is useful to
adopt a gauge fixing term which preserves the classical
conformal invariance. For example, by extending the
Lorentz gauge fixing in Minkowski space to a conformally
flat spacetime while keeping possession of the conformal
invariance, we have

Lgf ¼−
ffiffiffiffiffiffi−gp
2

ð∇μAμ−C−1ðτÞDðτÞA0Þ2 ¼−
ffiffiffiffiffiffi−gp
2

ð∂μAμÞ2:
ð40Þ

The above gauge fixing (40) is also known as the so-called
W gauge [33]. Using (40), the gauge fixed action with the
ghost kinetic term is conformally invariant and can be
written precisely as the same form as that in flat Minkowski
space. In this case, the gauge field and the ghost fields are
simply described, respectively, by collections of four and
two massless conformally coupled scalar modes. As a
result of this simple description of the fields, the conformal
anomaly in the adiabatic regularization amounts to
ð4 − 2Þ × hTμ

μiscalarren . This is wrong. The reason why this
gives the wrong result is because the gauge fixing term (40)
breaks the general covariance, and this leads to the breaking
of the covariant conservation of the energy momentum
tensor. In this case it is thus impossible to identify the pure
conformal anomalous contribution to the expectation value
of the trace of energy momentum tensor. Therefore, in order
to evaluate the conformal anomaly correctly, we have to use
a gauge fixing term that respects the general covariance
even though by itself it breaks the classical conformal
invariance of the theory. Taking into account the above
consideration, we will take the following covariant gauge
fixing term with a parameter ξ:

Lgf ¼ −
ffiffiffiffiffiffi−gp
2ξ

ð∇μAμÞ2: ð41Þ

To perform the adiabatic expansion for the mode
functions in the Uð1Þ gauge theory, we introduce a mass
m for the gauge field and a mass mχ for the (anti)ghost
fields χ, χ̄, respectively, in such a way that the gauge-fixed
massless Uð1Þ gauge theory is recovered in the limit
m;mχ → 0 [9]. The Lagrangian to be considered is thus

L ¼ ffiffiffiffiffiffi
−g

p �
−
1

4
gμρgνσFμνFρσ −

1

2ξ
ð∇μAμÞ2

−
1

2
m2gμνAμAν − iχ̄gμν∇μ∇νχ þ im2

χ χ̄χ

�
; ð42Þ

where Fμν ¼ ∇μAν −∇νAμ ¼ ∂μAν − ∂νAμ. The field
equations derived from (42) are

ηρσ∂ρ∂σAμ þ
�
1

ξ
− 1

�
ηρσ∂μ∂ρAσ −m2CAμ

þ 1

ξ
½δ0μð−Dηρσ∂ρAσ þD2A0 −D0A0Þ −D∂μA0� ¼ 0;

ð43Þ

and

ημν∂μ∂νχ −D∂0χ −m2
χCχ ¼ 0; same for χ̄: ð44Þ

Here D ¼ C0=C and C ¼ a2 as before.
Next we quantize the theory (42) in the canonical

formalism. First of all, the canonical conjugate momenta
are defined by

πμA ¼ ∂L
∂∂0Aμ

¼ ημνð∂0Aν − ∂νA0Þ−
1

ξ
ημ0ðηαβ∂αAβ −DA0Þ;

ð45Þ

πχ ¼
∂L
∂∂0χ

¼ −iC∂0χ̄; πχ̄ ¼
∂L
∂∂0χ̄

¼ iC∂0χ: ð46Þ

In terms of (45), the temporal and spatial components of the
field equation for the gauge field are written as

−∂iπ
i
A þ ð∂0 −DÞπ0A −m2CA0 ¼ 0; ð47Þ

−δik∂0π
k
A þ δjk∂jð∂kAi − ∂iAkÞ þ ∂iπ

0
A −m2CAi ¼ 0;

ð48Þ

respectively. To decouple the field equations (47) and (48),
we follow the strategy of [34] and separate the canonical
variables into the transverse and the longitudinal parts,

Ai ¼ Bi þ ∂iA; πiA ¼ δijðwj þ ∂jπAÞ; ð49Þ

with ∂iBi ¼ ∂iwi ¼ 0. Substituting the decompositions
(49) into the field equations (47) and (48) and using
(45), we arrive at three decoupled equations for Bi, π0A,
and πA,

ð∂2
0 − ∂2

j þm2CÞBi ¼ 0; ð50Þ

ð∂2
0 − ∂2

j −D∂0 þ ξm2C −D0Þπ0A ¼ 0; ð51Þ
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ð∂2
0 − ∂2

j −D∂0 þm2CÞπA ¼ 0; ð52Þ

where ∂2
j ≔ δjk∂j∂k. wi turns out to be a dependent

variable,

wi ¼ ∂0Bi; ð53Þ

and A0 and A can be obtained by using (47) and (48) as

A0 ¼
1

m2C
ðð∂0−DÞπ0A−∂2

jπAÞ; A¼ 1

m2C
ðπ0A−∂0πAÞ:

ð54Þ

The canonical (anti)commutation relations are

½Aμðτ; ~xÞ; πνAðτ; ~x0Þ� ¼ iδνμδð3Þð~x − ~x0Þ; ð55Þ

fχðτ; ~xÞ; πχðτ; ~x0Þg ¼ iδð3Þð~x − ~x0Þ;
fχ̄ðτ; ~xÞ; πχ̄ðτ; ~x0Þg ¼ iδð3Þð~x − ~x0Þ; ð56Þ

while the other (anti)commutators vanish. The Fourier
expansions of the dynamical variables Bi, π0A, πA, χ, and
χ̄ are given by

Biðτ; ~xÞ ¼
Z

d3k
ð2πÞ3

X
p¼1;2

ðϵpi ð~kÞaðpÞ~k
fðpÞðτ; kÞei~k·~x þ H:c:Þ;

ð57Þ

π0Aðτ; ~xÞ ¼
Z

d3k
ð2πÞ3 ða

ð0Þ
~k
fð0Þðτ; kÞei~k·~x þ H:c:Þ; ð58Þ

πAðτ; ~xÞ ¼
Z

d3k
ð2πÞ3 ða

ð3Þ
~k
fð3Þðτ; kÞei~k·~x þ H:c:Þ; ð59Þ

χðτ; ~xÞ¼
Z

d3k
ð2πÞ3 ðb~kχðτ;kÞe

i~k·~xþb†~kχ
�ðτ;kÞe−i~k·~xÞ; ð60Þ

χ̄ðτ; ~xÞ¼
Z

d3k
ð2πÞ3 ðb̄~kχ̄ðτ;kÞe

i~k·~xþ b̄†~kχ̄
�ðτ;kÞe−i~k·~xÞ; ð61Þ

where ϵpi ð~kÞ is the polarization tensor of the transverse
modes that satisfies

X
i

kiϵpi ð~kÞ ¼ 0;
X
i

ϵpi ð~kÞϵp
0
i ð~kÞ ¼ δpp

0
;

X
p¼1;2

ϵpi ð~kÞϵpjð~kÞ ¼ δij −
kikj
k2

:

According to (53) and (54), the corresponding Fourier
expansions for wi, A0, and A are obtained as

wiðτ; ~xÞ ¼
Z

d3k
ð2πÞ3

X
p¼1;2

ðϵpi ð~kÞaðpÞ~k
∂0fðpÞðτ; kÞei~k·~x þ H:c:Þ;

ð62Þ

A0ðτ; ~xÞ ¼
1

m2C

Z
d3k
ð2πÞ3 ða

ð0Þ
~k
ð∂0 −DÞfð0Þðτ; kÞei~k·~x

þ að3Þ~k
k2fð3Þðτ; kÞei~k·~x þ H:c:Þ; ð63Þ

Aðτ; ~xÞ ¼ 1

m2C

Z
d3k
ð2πÞ3 ða

ð0Þ
~k
fð0Þðτ; kÞei~k·~x

− að3Þ~k
∂0fð3Þðτ; kÞei~k·~x þ H:c:Þ: ð64Þ

Now we substitute (57)–(64) into (55) and (56) to solve for
the canonical (anti)commutation relations for the creation
and annihilation operators and the normalization condition
for the mode functions. We obtain

h
aðμÞ~k

; aðνÞ†~k0

i
¼ ημνð2πÞ3δð3Þð~k − ~k0Þ;

fb~k; b̄†~k0g ¼ −fb̄~k; b†~k0 g ¼ ið2πÞ3δð3Þð~k − ~k0Þ; ð65Þ

where μ, ν ¼ 0, 1, 2, 3, and the following normalization
conditions for the mode functions:

fð1;2Þðτ; kÞ∂0fð1;2Þ�ðτ; kÞ − ∂0fð1;2Þðτ; kÞfð1;2Þ�ðτ; kÞ ¼ i;

fð0Þðτ; kÞ∂0fð0Þ�ðτ; kÞ − ∂0fð0Þðτ; kÞfð0Þ�ðτ; kÞ ¼ im2C;

fð3Þðτ; kÞ∂0fð3Þ�ðτ; kÞ − ∂0fð3Þðτ; kÞfð3Þ�ðτ; kÞ ¼ im2Ck−2;

χðτ; kÞ∂0χ̄
�ðτ; kÞ − ∂0χ̄ðτ; kÞχ�ðτ; kÞ ¼ iC−1;

χ̄ðτ; kÞ∂0χ
�ðτ; kÞ − ∂0χðτ; kÞχ̄�ðτ; kÞ ¼ iC−1: ð66Þ

In terms of the mode functions, the field equations (44),
(50)–(52) read

ð∂2
0 þ ω2Þfð1;2Þðτ; kÞ ¼ 0; ð67Þ

ð∂2
0 −D∂0 þ ω2

0 −D0Þfð0Þðτ; kÞ ¼ 0; ð68Þ

ð∂2
0 −D∂0 þ ω2Þfð3Þðτ; kÞ ¼ 0; ð69Þ

ð∂2
0 −D∂0 þ ω2

χ −D0Þχðτ; kÞ ¼ 0; ð70Þ

where

ω2≔ k2þm2C; ω2
0≔ k2þξm2C; ω2

χ ≔ k2þm2
χC:

ð71Þ

To perform the adiabatic expansion, we notice that the
differential equations for fð0Þðτ; kÞ, fð3Þðτ; kÞ, and χðτ; kÞ
include first time derivative terms that can be eliminated by
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rescaling the mode functions by appropriate time depen-
dent functions. Defining

fð0Þðτ; kÞ ¼ ðm2CÞ12Y0ðτ; kÞ; ð72Þ

fð3Þðτ; kÞ ¼
�
m2C
k2

�1
2

YLðτ; kÞ; ð73Þ

χðτ; kÞ ¼ C−1
2Yχðτ; kÞ; same for χ̄ðτ; kÞ; ð74Þ

then the differential equations (67)–(70) simplify to the
form of a harmonic oscillator with a time dependent
frequency,

ð∂2
0 þ Ω2

aÞYaðτ; kÞ ¼ 0 ða ¼ 0; L; T; χÞ; ð75Þ

where we have defined YTðτ; kÞ ≔ fð1;2Þðτ; kÞ, and

Ω2
a ≔ ω2

a þ αa; ð76Þ

with

ωa ¼
8<
:
ω0 ða¼ 0Þ
ω ða¼L;TÞ
ωχ ða¼ χÞ

; αa ¼
8<
:
−1

6
CR ða¼ 0;χÞ

1
6
CR− 1

2
D2 ða¼LÞ

0 ða¼TÞ
;

ð77Þ

and R ¼ C−1ð3D0 þ 3
2
D2Þ being the scalar curvature. Note

that the mode functions of the temporal component of the
conjugate momentum π0A and of the ghost field χ satisfy the
same differential equation as that of a minimally coupled
scalar field. Note also that we have

Y0ðτ; kÞ ¼ Yχðτ; kÞ ðm ¼ mχ ¼ 0Þ: ð78Þ

At this point it is pleasing to note that the same rescaling
also brings the normalization conditions (66) to the same
standard form (12) as that of scalar field

Ya∂0Y�
a − ∂0YaY�

a ¼ i ðno sum over aÞ: ð79Þ

Therefore one can proceed to quantize the theory adiabati-
cally with the choice of the mode functions

Yaðτ; kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WaðτÞ
p e−i

R
τ Waðτ0Þdτ0 ; ð80Þ

where

W2
a ¼ Ω2

a −
�
W00

a

2Wa
−
3ðW0

aÞ2
4W2

a

�
; ð81Þ

and with the adiabatic vacuum j0iA defined by

aðμÞ~k
j0iA ¼ b~kj0iA ¼ b̄~kj0iA ¼ 0: ð82Þ

The adiabatic expansions are obtained by solving (81)
iteratively with the zeroth adiabatic order solutions

Wað0Þ ¼ ωa: ð83Þ

Then one obtains the following results up to the fourth
adiabatic order:

Wa ¼ ωa −
m2

aC00

8ω3
a
þ 5m4ðC0Þ2

32ω5
a

þ αa
2ωa

þm2
aC0000

32ω5
a

−
m4

a

128ω7
a
ð28C000C0 þ 19ðC00Þ2Þ

þ 221m6
aC00ðC0Þ2

256ω9
a

−
1105m8

aðC0Þ4
2048ω11

a
−
α00a þ α2a
8ω3

a

þ m2
a

16ω5
a
ð5C0α0a þ 3C00αaÞ −

25m4
aðC0Þ2αa
64ω7

a
ð84Þ

and

1

Wa
¼ 1

ωa
þm2

aC00

8ω5
a

−
5m4

aðC0Þ2
32ω7

a
−

αa
2ω3

a
−
m2

aC0000

32ω7
a

−
m4

a

128ω9
a
ð28C000C0 þ 21ðC00Þ2Þ

−
231m6

aC00ðC0Þ2
256ω11

a
þ 1155m8

aðC0Þ4
2048ω13

a
þ α00a þ 3α2a

8ω5
a

−
5m2

a

16ω7
a
ðC0α0a þ C00αaÞ þ

35m4
aðC0Þ2αa
64ω9

a
: ð85Þ

Here we have introduced ma by ω2
a ¼ k2 þm2

aC.
Explicitly, it is

m2
a ¼

8>><
>>:

ξm2 ða ¼ 0Þ
m2 ða ¼ L; TÞ
m2

χ ða ¼ χÞ
: ð86Þ

The expressions (84) and (85) have been expressed in
ascending (even) powers of time derivatives. The results
obtained here for the adiabatic expansion of theUð1Þ gauge
field is new.

IV. ADIABATIC REGULARIZATION OF
THE ENERGY MOMENTUM TENSOR AND

THE CONFORMAL ANOMALY

Next let us turn to consider the adiabatic regularization of
the energy momentum tensor for the Uð1Þ gauge theory
(42). We will focus on the conformal anomaly in this paper.
The energy momentum tensor obtained from (42) is
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Tμν ¼
−2ffiffiffiffiffiffi−gp δS

δgμν

¼ −
1

4
gμνgαβgρσFαρFβσ þ gαβFαμFβν −

1

2ξ
gμνðgαβ∇αAβÞ2

þ 1

ξ
ð∇μAν þ∇νAμÞðgαβ∇αAβÞ −

1

ξ
½∇μðAνgαβ∇αAβÞ þ∇νðAμgαβ∇αAβÞ�

þ 1

ξ
gμνgρσ∇ρðAσgαβ∇αAβÞ −

1

2
gμνm2gαβAαAβ þm2AμAν

þ igμνgρσ∇ρχ̄∇σχ − ið∇μχ̄∇νχ þ∇νχ̄∇μχÞ þ igμνm2
χ χ̄χ: ð87Þ

In the adiabatic regularization scheme, the renormalized
energy momentum tensor is given by

hTμνðxÞiren ¼ hTðm¼0Þ
μν ðxÞi − lim

m;mχ→0
Ah0jTμνðxÞj0iA; ð88Þ

where the first term on the right-hand side is evaluated in the
vacuum defined by the mode functions in the massless
theory. As we have explained before, in order to remove all
the divergences and obtain the finite result for the renormal-
ized energy momentum tensor, one should expand the
subtraction term Ah0jTμνj0iA up to the fourth adiabatic order.
Now we evaluate the conformal anomaly. Taking the

trace of (87), we obtain

Tμ
μ ¼

2

ξ
gμν∇μðAνgαβ∇αAβÞ −m2gμνAμAν

þ 2igμν∂μχ̄∂νχ þ 4im2
χ χ̄χ: ð89Þ

One may worry that (89) does not vanish even in the
massless limit since the covariant gauge fixing term and the
ghost kinetic term breaks the conformal symmetry indi-
vidually. However, it is easy to check that they indeed
cancel each other and give zero contribution to the trace of
the energy momentum tensor when we take the expectation
value with respect to the vacuum defined in the massless
theory where (78) holds,

hTμ
μ
ðm¼0Þi ¼ 0: ð90Þ

As a result, the conformal anomaly is determined entirely
by the adiabatic subtraction term

hTμ
μiren ¼ − lim

m;mχ→0
Ah0jTμ

μj0iA: ð91Þ

Let us start with the contribution from themass term of the
gauge field in (89). The corresponding adiabatic subtraction
term that contributes to the conformal anomaly is given by

hTμ
μimass

ren ¼− lim
m→0

Ah0jð−m2gμνAμAνÞj0iA

¼ lim
m→0

m2

C
½−Ah0jA2

0j0iAþAh0jδijAiAjj0iA�

¼ lim
m→0

1

C2

Z
d3k
ð2πÞ3

�����
�
∂0−

D
2

�
Y0ðτ;kÞ

����
2

−k2jY0ðτ;kÞj2þ
����
�
∂0þ

D
2

�
YLðτ;kÞ

����
2

−k2jYLðτ;kÞj2þ2m2CjYTðτ;kÞj2Þ:

ð92Þ

Expanding this expression up to the fourth adiabatic order, we find that (92) is UV finite and gives a finite contribution to the
conformal anomaly.However,we found that the contribution from themass termalone cannot be expressed in terms ofR2

μν,R2,
and □R only. The contribution from the other terms is thus important to obtain the correct result. Next we evaluate the
contribution from the term proportional to ξ−1 in (89),

hTμ
μiξren ¼ − lim

m→0
Ah0j

2

ξ
gμν∇μðAνgαβ∇αAβÞj0iA

¼ − lim
m→0

2

C2
½Ah0jξðπ0AÞ2j0iA − Ah0jA0ð∂0 −DÞπ0Aj0iA þ Ah0jδij∂iA∂jπ

0
Aj0iA�

¼ lim
m→0

2

C2

Z
d3k
ð2πÞ3

�
−
����
�
∂0 −

D
2

�
Y0ðτ; kÞ

����
2

þ ω2
0jY0ðτ; kÞj2

�
: ð93Þ
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The fourth adiabatic order contribution from (93) is found to be UV divergent. This UV divergence is canceled by the ghost
contribution as we will see below. Finally the ghost contribution is obtained as

hTμ
μighostren ¼ −2i lim

mχ→0
Ah0jðgμν∂μχ̄∂νχ þ 2m2

χ χ̄χÞj0iA

¼ lim
mχ→0

2

C2

Z
d3k
ð2πÞ3

�����
�
∂0 −

D
2

�
Yχðτ; kÞ

����
2

− ðk2 þ 2m2
χCÞjYχðτ; kÞj2

�
: ð94Þ

For large k, taking into account (78), we observe that the two contributions from (93) and (94) have the same form but opposite
signs, and so the respective UV divergences cancel each other to give a finite result in the conformal anomaly. We remark that
the expressions for the momentum integrations in (92)–(94) are indeed valid for a general vacuum state until we substitute the
adiabatic expansions. As a result, the contributions (93) and (94) exactly cancel each other in the massless theory and we
obtain (90).
Putting (92), (93), and (94) together, the conformal anomaly for the Uð1Þ gauge theory in the adiabatic regularization is

given by

hTμ
μiren ¼ lim

m;mχ→0

1

4π2C2

Z
∞

0

dkk2
�
2

W0

�
ω2
0 −

�
W0

0

2W0

þD
2

�
2

−W2
0

�
−

1

W0

�
k2 −

�
W0

0

2W0

þD
2

�
2

−W2
0

�

−
1

WL

�
k2 −

�
W0

L

2WL
−
D
2

�
2

−W2
L

�
þ 2

m2C
WT

−
2

Wχ

�
k2 þ 2m2

χC −
�
W0

χ

2Wχ
þD

2

�
2

−W2
χ

��
ð4Þ

¼ 1

2880π2

�
−150

ðC0Þ4
C6

þ 474
ðC0Þ2C00

C5
− 162

ðC00Þ2
C4

− 216
C000C0

C4
þ 54

C0000

C3

− log ξ

�
405

2

ðC0Þ4
C6

−
945

2

ðC0Þ2C00

C5
þ 135

ðC00Þ2
C4

þ 180
C000C0

C4
− 45

C0000

C3

��

¼ 1

2880π2

�
62

�
RμνRμν −

1

3
R2

�
− ð18þ 15 log ξÞ□R

�
; ð95Þ

where the subscript (4) denotes the term up to the fourth
adiabatic order. In obtaining this result, we have used (84)
and (85) in the second equality and (A2) in the third
equality. Note that the ξ dependence came entirely fromW0

and ω0 as the other quantitiesWL,WT ,Wχ are independent
of ξ. The regularization independent term of our result (95)
agrees precisely with that obtained [first term of (1)] using
other regularization schemes. As for the regularization
dependent □R term, a priori there is no need for our
result to agree with any of the previously obtained results.
However, to our surprise, our value of d agrees with the
results of [9] for ξ ¼ 1 obtained using zeta function
regularization and of [24] for a general gauge fixing
parameter ξ obtained using the DeWitt-Schwinger
expansion.

V. SUMMARY

In this article, we have investigated and constructed the
adiabatic expansion and regularization for a Uð1Þ gauge
field in a conformally flat spacetime. This has never been
considered before and our results are new. We argued the
necessity of the use of a covariant gauge fixing term for the

sake of covariant conservation of the energy momentum
tensor. As in the scalar field case, the adiabatic expansion of
the gauge field mode functions are carried out by theWKB-
type solutions that preserve the Wronskian-type normali-
zation conditions. It is clear that the adiabatic expansion
and the computation of the conformal anomaly for a Uð1Þ
gauge field performed here can easily be extended to that
for Yang-Mills gauge fields.
Based on the adiabatic expansion, we evaluated the

conformal anomaly for the Uð1Þ gauge field in a con-
formally flat spacetime as an application, and we found that
the result exactly agrees with that obtained from ζ function
regularization [9,24] in the Dewitt-Schwinger (or local
momentum expansion [35]) formalism [1] and from the
Hadamard renormalization [36]. Consequently, our con-
struction of the adiabatic expansion and the adiabatic
regularization for gauge field in a conformally flat
spacetime is confirmed by reproducing the standard result
of the conformal anomaly. In addition, we have observed
the same gauge dependence in the coefficient of the □R
term of the conformal anomaly as Eq. (5.1) of [24].
However, the result is different from that obtained using
the dimensional regularization with ξ ¼ 1 [21,22]. Our

CHONG-SUN CHU and YOJI KOYAMA PHYSICAL REVIEW D 95, 065025 (2017)

065025-10



result clearly confirms the regularization dependency of the
□R term of the conformal anomaly.
While we have focused on the conformal anomaly in this

article, evaluation of the renormalized energy momentum
tensor (and more general correlation functions) in a specific
conformally flat spacetime, e.g., in de Sitter space or in the
inflationary universe, is an important application of our
adiabatic regularization procedure. Note that the applica-
tion of the adiabatic regularization scheme that we have
constructed here is not restricted to the energy momentum
tensor and the conformal anomaly. It will be useful to
evaluate various renormalized physical quantities of theo-
ries coupled to (Yang-Mills) gauge fields in conformally
flat spacetime. Since the adiabatic regularization allows one
to compute the particle number density, one can also
discuss gauge field particle production in an expanding
universe. Another important application is the study of the
renormalizability of theN ¼ 4 superconformal Yang-Mills
theory on de Sitter space [37].
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APPENDIX: SOME GEOMETRICAL TENSORS
IN CONFORMALLY FLAT SPACETIME

For a conformally flat spacetime (4) in four dimensions,
the Ricci tensor and Ricci scalar are

Rμν ¼
3

2
δ0μδ

0
ν

�
C0

C

�
2

þ 1

2
ð−2δ0μδ0ν þ ημνÞ

C00

C
;

R ¼ C−1
�
−
3

2

�
C0

C

�
2

þ 3
C00

C

�
: ðA1Þ

Quantities that appear at the fourth adiabatic order in a
conformally flat spacetime are

RμνRμν ¼ 9

4

ðC0Þ4
C6

−
9

2

ðC0Þ2C00

C5
þ 3

ðC00Þ2
C4

;

R2 ¼ 9

4

ðC0Þ4
C6

− 9
ðC0Þ2C00

C5
þ 9

ðC00Þ2
C4

;

□R ¼ 27

2

ðC0Þ4
C6

−
63

2

ðC0Þ2C00

C5
þ 9

ðC00Þ2
C4

þ 12
C000C0

C4
− 3

C0000

C3
: ðA2Þ
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