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We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the
energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the
geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general
scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients
depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free
and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between
the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near
the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEVof the
energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component
describing an energy flux along the direction normal to the boundaries. Expressions are derived for the
Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these
forces can be either attractive or repulsive. An important difference from the corresponding result in the
Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin
coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It
is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may
change the sign.
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I. INTRODUCTION

The investigation of quantum effects in cosmological
backgrounds is among themost important topics of quantum
field theory in curved spacetime (see [1]). There are several
reasons for that. Due to the high symmetry of the back-
ground geometry, a relatively large number of problems are
exactly solvable, and the corresponding results may shed
light on the influence of the gravitational field on quantum
fields for more complicated geometries. The expectation
value of the energy-momentum tensor for quantum fields
may break the energy conditions appearing in the formu-
lations of the Hawking-Penrose singularity theorems. This
expectation value appears as a source for the gravitational
field in the right-hand side of the Einstein equations and,
consequently, the quantum effects of nongravitational fields
may provide a way to solve the cosmological singularity
problem. In the inflationary phase, the quantum fluctuations
of fields are responsible for the generation of density
perturbations serving as seeds for the large scale structure

formation in the Universe. Currently, this mechanism is the
most popular one for the generation of cosmological
structures. From the cosmological point of view, another
interesting quantum field theoretical effect is the isotropiza-
tion of the cosmological expansion as a result of particle
creation.
In a number of cosmological problems, additional boun-

dary conditions are imposed on the operators of quantum
fields. These conditionsmay have different physical origins.
For example, they can be induced by nontrivial spatial
topology, by the presence of coexisting phases, or by branes
in the scenarios of the braneworld type. The boundary
conditions modify the spectrum of quantum fluctuations of
fields and, as a consequence of that, the expectationvalues of
physical observables are changed. This is the well-known
Casimir effect first predicted by Casimir in 1948 (for
reviews, see [2]). In the present paper, we consider the
influence of the cosmological expansion on the local
characteristics of the scalar vacuum in the geometry of
two parallel plates. This type of problem for various special
cases has been considered previously. In particular, the
vacuum expectation values (VEVs) for parallel plates in a
background of de Sitter spacetimewere investigated in [3,4]
and [5] for scalar and electromagnetic fields, respectively.
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The problems with spherical and cylindrical boundaries
have been discussed in [6,7] (for the Casimir densities in the
anti–de Sitter bulk, see [8] and references therein). All these
investigations have been done for the de Sitter invariant
Bunch-Davies vacuum state. By using the conformal rela-
tion between the Friedmann-Roberston-Walker (FRW) and
Rindler spacetimes, the VEVs of the energy-momentum
tensor and the Casimir forces for a conformally coupled
massless scalar field and for the electromagnetic field, in the
geometry of curved boundaries on a background of FRW
spacetimewith negative spatial curvature, were evaluated in
[9] (for a special case of the static background, see also [10]).
The electromagnetic Casimir effect in FRW cosmologies
with an arbitrary number of spatial dimensions and with
power-law scale factors has been considered in [11] (for the
topological Casimir densities in the corresponding models
with compact dimensions, see [12]).
The present paper generalizes the previous investiga-

tions in two directions. First, we consider a spatially flat
FRW spacetime with general scale factor and, second, the
Casimir effect will be investigated without specifying the
vacuum state for a scalar field. The boundary geometry
consists of two parallel plates on which the scalar field
operator obeys the Robin boundary conditions with, in
general, different coefficients on the separate plates. We
consider the case when these coefficients are proportional
to the scale factor. With this assumption, closed analytical
expressions are obtained for the Hadamard function
and for the VEVs of the field squared and the energy-
momentum tensor without specifying the time dependence
of the scale factor.
The paper is organized as follows. In the next section, we

describe the bulk and boundary geometries under consid-
eration and the field content. In Sec. III, the Hadamard
function is evaluated for a massive scalar field with general
curvature coupling parameter and obeying the Robin
boundary conditions on two parallel plates. The boun-
dary-induced contributions are explicitly separated for
both the single-plate and two-plates geometries. By using
the Hadamard function, in Sec. IV, we evaluate the VEVs of
the field squared and of the energy-momentum tensor.
Expressions are derived for the Casimir forces acting on the
plates. Two special cases of the general results are dis-
cussed in Sec. V. They include a conformally coupled
massless scalar field for a general scale factor and the de
Sitter bulk with a massive scalar field for the general case of
the curvature coupling. Finally, we leave for Sec. VI the
most relevant discussion of the results obtained.

II. PROBLEM FORMULATION AND THE
SCALAR MODES

As a background geometry, we take a spatially flat
(1þD)-dimensional FRW spacetime described by the line
element

ds2 ¼ dt2 − a2ðtÞ
XD
i¼1

ðdxiÞ2; ð2:1Þ

with the scale factor aðtÞ. Defining the conformal time η in
terms of the cosmic time t by η ¼ R

dt=aðtÞ, the metric
tensor is presented in a conformally flat form gμν ¼
a2ðηÞημν with the flat spacetime metric ημν. In addition
to the Hubble function H ¼ _a=a, we will use the corre-
sponding function for the conformal time:

~H ¼ a0ðηÞ=aðηÞ ¼ aðηÞH: ð2:2Þ

Here and in what follows, the dot specifies the derivative
with respect to the cosmic time and the prime denotes the
derivative with respect to the conformal time.
Consider a massive scalar field ϕðxÞ nonminimally

coupled to the background. The corresponding action
functional has the form

S ¼ 1

2

Z
dDþ1x

ffiffiffiffiffi
jgj

p
ðgμν∇μϕ∇νϕ −m2ϕ2 − ξRϕ2Þ; ð2:3Þ

where ∇μ stands for the covariant derivative and ξ is the
coupling parameter to the curvature scalar R. For the
background geometry under consideration, one has

R ¼ D
a2

½2 ~H0 þ ðD − 1Þ ~H2�: ð2:4Þ

By varying the action with respect to the field, one obtains
the equation of motion

ð∇μ∇μ þm2 þ ξRÞϕ ¼ 0: ð2:5Þ

Additionally, we assume the presence of two flat bounda-
ries located at z≡ xD ¼ z1 and z ¼ z2, z2 > z1, on which
the field satisfies the Robin boundary conditions

ð1þ β0jn
μ
j∇μÞϕ ¼ 0; z ¼ zj; j ¼ 1; 2; ð2:6Þ

where nμj is the normal to the boundary z ¼ zj, njμn
μ
j ¼ −1.

For the region between the plates, z1 ≤ z ≤ z2, one has
nμj ¼ ð−1Þj−1δμD=aðηÞ. The Robin condition is an extension
of the Dirichlet and Neumann boundary conditions and is
useful for modeling the finite penetration of the field into
the boundary with the skin-depth parameter related to the
coefficient β0j [13]. This type of boundary condition
naturally arises for bulk fields in braneworld models. In
the discussion below, we will consider a class of boundary
conditions for which β0j ¼ βjaðηÞ, with βj, j ¼ 1, 2, being
constants. This corresponds to the physical situation when,
for an expanding bulk, the penetration length to the
boundary is increasing as well. In this special case, for
the region between the plates, the boundary conditions are
rewritten as
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ð1þ ð−1Þj−1βj∂zÞϕ ¼ 0; z ¼ zj: ð2:7Þ
As will be shown below, the corresponding Casimir
problem is exactly solvable for a general case of the scale
factor aðηÞ.
We are interested in the changes of the VEVs of the field

squared and the energy-momentum tensor induced by the
imposition of the boundary conditions (2.7). The VEVs of
physical observables, quadratic in the field operator, are
expressed in terms of the sums over a complete set of
solutions to the field equation (2.5) obeying the boundary
conditions. In accordance with the geometry of the prob-
lem, for the corresponding mode functions, we will use the
following ansatz:

ϕðxÞ ¼ fðηÞeik·x∥hðzÞ; k ¼ ðk1; k2;…; kD−1Þ;
x∥ ¼ ðx1; x2;…; xD−1Þ: ð2:8Þ

Substituting into the field equation (2.5), we obtain two
differential equations:

h00ðzÞ ¼ −λ2hðzÞ ð2:9Þ
and

f00ðηÞ þ ðD − 1Þ ~Hf0ðηÞ þ ½γ2 þ a2ðm2 þ ξRÞ�fðηÞ ¼ 0;

ð2:10Þ
with γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k2

p
and k ¼ jkj. In particular, from

Eq. (2.10), it follows that

faD−1½f�ðηÞf0ðηÞ − fðηÞf�0ðηÞ�g0 ¼ 0; ð2:11Þ
where the star stands for the complex conjugate. Note that,
introducing the function gðηÞ ¼ aðD−1Þ=2fðηÞ, Eq. (2.10) is
written in the form

g00ðηÞ þ fγ2 þm2a2 þDðξ − ξDÞ½2 ~H0 þ ðD − 1Þ ~H2�ggðηÞ
¼ 0; ð2:12Þ

where ξD ¼ ðD − 1Þ=ð4DÞ is the curvature coupling
parameter for a conformally coupled scalar field.
The solution for (2.9) that obeys the boundary condition

on the plate z ¼ zj reads

hðzÞ ¼ cos ½λðz − zjÞ þ αjðλÞ�; ð2:13Þ
with the function αjðλÞ defined by the relation

e2iαjðλÞ ¼ iλβjð−1Þj þ 1

iλβjð−1Þj − 1
: ð2:14Þ

From the boundary condition on the second plate, it follows
that the quantum number λ obeys the restriction condition

ð1 − b1b2u2Þ sin u − ðb1 þ b2Þu cos u ¼ 0; ð2:15Þ

where

u ¼ λz0; bj ¼ βj=z0; z0 ¼ z2 − z1: ð2:16Þ
Note that the eigenvalue equation (2.15) coincides
with the corresponding equation for parallel plates in the
Minkowski bulk [14]. We will denote the solutions of
the transcendental equation (2.15) by u ¼ un, n ¼ 1; 2;….
For the eigenvalues of the quantum number λ, one
has λ ¼ λn ¼ un=z0.
So, for the complete set of solutions, one has

fϕðþÞ
σ ðxÞ;ϕð−Þ

σ ðxÞg, where

ϕðþÞ
σ ðxÞ ¼ Cσfðη; γÞeik·x∥ cos ½λnðz − zjÞ þ αjðλnÞ�;

ð2:17Þ

ϕð−Þ
σ ðxÞ ¼ ϕðþÞ�

σ ðxÞ, with Cσ being a normalization con-
stant and σ ¼ ðn;kÞ representing the set of quantum
numbers specifying the modes. In (2.17), the dependence
of the function f on γ is explicitly displayed.
In accordance with (2.11), we will normalize the

function fðη; γÞ by the condition

fðη; γÞ∂ηf�ðη; γÞ − f�ðη; γÞ∂ηfðη; γÞ ¼ ia1−D: ð2:18Þ
With this normalization, the constantCσ is determined from
the standard orthonormalization condition for the Klein-
Gordon equation:
Z

dDx
ffiffiffiffiffi
jgj

p
g00½ϕσðxÞ∂ηϕ

�
σ0 ðxÞ − ϕ�

σ0 ðxÞ∂ηϕσðxÞ�

¼ iδðk − k0Þδnn0 : ð2:19Þ
By taking into account (2.18), one gets

jCσj2 ¼
2

ð2πÞD−1z0

�
1þ sin un

un
cos½un þ 2~αjðunÞ�

�
−1
;

ð2:20Þ
where the function ~αjðuÞ is defined in accordance with

e2i ~αjðuÞ ¼ iubj − 1

iubj þ 1
; ð2:21Þ

for j ¼ 1, 2.
Note that themode functions (2.17) are not yet completely

fixed. The function fðη; γÞ is a linear combination of two
linearly independent solutions of Eq. (2.10). One of the
coefficients is fixed (up to a phase) by the condition (2.18).
Among the most important steps in the construction of a
quantum field theory in a fixed classical gravitational
background is the choice of the vacuum state j0i.
Different choices of the second coefficient in the linear
combination for the function fðη; γÞ correspond to different
choices of the vacuum state. An additional condition could
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be the requirement of the smooth transition to the standard
Minkowskian vacuum in the limit of slow expansion. This
point will be discussed below for an example of de
Sitter bulk.
In the limit of small wavelengths, γ ≫ ma;

ffiffiffiffiffiffiffiffi
j ~H0j

q
; ~H,

the general solution of Eq. (2.12) is a linear combination of
the functions eiγη and e−iγη. For the modes which satisfy the
adiabatic condition (for the adiabatic condition see [1]), one
takes gðηÞ ∼ e−iγη and the function fðη; γÞ, normalized by
the condition (2.18) has the small wavelength asymptotic
behavior:

fðη; γÞ ≈ að1−DÞ=2 e
−iγηffiffiffiffiffi
2γ

p : ð2:22Þ

In the limit of slow expansion, these modes approach
the positive energy solutions for a scalar field in
Minkowski spacetime. The condition on the wavelength,
written in terms of the cosmic time t, is in the form

γ=a ≫ m;
ffiffiffiffiffiffiffi
j _Hj

q
; H. Note that the condition (2.22) does not

specify the vacuum state uniquely (for the discussion of
related uncertainties in the inflationary predictions of the
curvature perturbations, see, for instance, [15]).

III. HADAMARD FUNCTION

Given the complete set of modes, we can evaluate the
two-point functions. We consider a free field theory (the
only interaction is with the background gravitational field)
and all the information about the vacuum state is encoded in
two-point functions. As such we take the Hadamard
function Gðx; x0Þ ¼ h0jϕðxÞϕðx0Þ þ ϕðx0ÞϕðxÞj0i with the
mode sum formula

Gðx; x0Þ ¼
Z

dk
X∞
n¼1

X
s¼�

ϕðsÞ
σ ðxÞϕðsÞ�

σ ðx0Þ: ð3:1Þ

Substituting the mode functions (2.17), one gets the
representation

Gðx;x0Þ¼ 2

z0

Z
dk

eik·Δx∥

ð2πÞD−1

X∞
n¼1

unwðη;η0;γnÞ

×
cos½λnðz−zjÞþαjðλnÞ�cos½λnðz0−zjÞþαjðλnÞ�

unþsinuncos½unþ2~αjðλnÞ�
;

ð3:2Þ

with Δx∥ ¼ x∥ − x0
∥, γn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ k2

p
, and

wðη; η0; γÞ ¼ fðη; γÞf�ðη0; γÞ þ f�ðη; γÞfðη0; γÞ: ð3:3Þ

In (3.2), λn ¼ un=z0 and the eigenvalues un are given
implicitly, as solutions of (2.15). Related to this, the
representation (3.2) is not convenient for the evaluation
of the VEVs. For the further transformation, we apply to the
series over n the summation formula [14,16],

X∞
n¼1

πunsðunÞ
un þ sin un cos½un þ 2~αjðλnÞ�

¼ −
πsð0Þ=2

1 − b2 − b1
þ
Z

∞

0

dusðuÞ

þ i
Z

∞

0

du
sðiuÞ − sð−iuÞ

c1ðuÞc2ðuÞe2u − 1
; ð3:4Þ

where the notation

cjðuÞ ¼
bju − 1

bjuþ 1
ð3:5Þ

is introduced. In (3.4), it is assumed that the function sðuÞ
obeys the condition jsðuÞj < ϵðxÞecjyj for juj → ∞, where
u ¼ xþ iy, c < 2, and ϵðxÞ → 0 for x → ∞. As the
function sðuÞ, we take

sðuÞ ¼ fcosðuz−=z0Þ þ cos½uðzþ − 2zjÞ=z0
þ 2αjðu=z0Þ�gwðη; η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=z20 þ k2

q
Þ; ð3:6Þ

with

z� ¼ z� z0: ð3:7Þ

After the application of (3.4), the Hadamard function
(3.2) is decomposed as

Gðx; x0Þ ¼ Gjðx; x0Þ þ
1

z0

Z
dk

eik·Δx∥

ð2πÞD
Z

∞

0

du
Wðη; η0; u; kÞ

c1ðuÞc2ðuÞe2u − 1

�
2 cosh ðuz−=z0Þ þ cjðuÞeujzþ−2zjj=z0 þ

e−ujzþ−2zjj=z0

cjðuÞ
�
;

ð3:8Þ
where

Wðη; η0; u; kÞ ¼ i

�
wðη; η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiuÞ2=z20 þ k2

q
Þ − wðη; η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−iuÞ2=z20 þ k2

q
Þ
�
: ð3:9Þ

BEZERRA DE MELLO, SAHARIAN, and SETARE PHYSICAL REVIEW D 95, 065024 (2017)

065024-4



The part

Gjðx; x0Þ ¼ G0ðx; x0Þ þ 2

Z
dk

eik·Δx∥

ð2πÞD
Z

∞

0

dy cos½yðzþ − 2zjÞ þ 2αjðyÞ�w
�
η; η0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ k2

q �
; ð3:10Þ

comes from the first integral in the right-hand side of (3.4),
and it presents the Hadamard function for the geometry of a
single plate at z ¼ zj when the second plate is absent. In
(3.10), the contribution

G0ðx; x0Þ ¼
Z

dkD
eikD·Δx

ð2πÞD wðη; η0; jkDjÞ; ð3:11Þ

with x ¼ ðx1; x2;…; xDÞ, kD ¼ ðk1; k2;…; kDÞ, is the
Hadamard function in the boundary-free geometry. The
second term in the right-hand side of (3.10) is induced by
the boundary at z ¼ zj. Consequently, the last term in (3.8)
is interpreted as the contribution when one adds the second
boundary in the problem with a single boundary at z ¼ zj.
For the further transformation of the boundary-induced

contribution in (3.10), we present the cosine function in
terms of the exponentials and rotate the integration contour
over y by the angles π=2 and −π=2 for the parts with the
functions eiyjzþ−2zjj and e−iyjzþ−2zjj, respectively. As a result,
for the Hadamard function in the geometry of a single plate
at z ¼ zj, we get

Gjðx; x0Þ ¼ G0ðx; x0Þ þ
Z

dk
eik·Δx∥

ð2πÞD

×
Z

∞

0

dy
βjyþ 1

βjy − 1
e−yjzþ−2zjjWðη; η0; yz0; kÞ:

ð3:12Þ

Substituting this representation into (3.8), the Hadamard
function in the region between two plates is presented in
the form

Gðx; x0Þ ¼ G0ðx; x0Þ þ
1

z0

Z
dk

eik·Δx∥

ð2πÞD

×
Z

∞

0

du
Wðη; η0; u; kÞ

c1ðuÞc2ðuÞe2u − 1

×

�
2 cosh ðuz−=z0Þ þ

X
j¼1;2

cjðuÞeujzþ−2zjj=z0
�
:

ð3:13Þ

This expression can be further simplified by integrating
over the angular part of k. The corresponding integral is
expressed in terms of the Bessel function. In the regions
z < z1 and z > z2, the Hadamard function is given by
(3.12) with j ¼ 1 and j ¼ 2, respectively. Note that the
dependence on the mass of the field appears in (3.13)

through the function fðη; γÞ. Equation (2.10) for the latter
contains the mass as a parameter.

IV. VEVs AND THE CASIMIR FORCE

Having the two point function we can evaluate the VEVs
of local physical observables bilinear in the field operator.

A. Field squared

We start with the VEVof the field squared. The latter is
obtained from the Hadamard function in the coincidence
limit of the arguments. Of course, this limit is divergent and
a renormalization procedure is required. An important point
is that we have separated the part of the Hadamard function
corresponding to the boundary-free geometry. For points
away from boundaries, the divergences are contained in this
part only and the remaining boundary-induced contribution
is finite in the coincidence limit. As a consequence, the
renormalization is reduced to that for the VEVs in the
boundary-free geometry. These VEVs are well investigated
in the literature and in the following we will focus on the
boundary-induced effects.
Taking the limit x0 → x in (3.13), for the VEVof the field

squared, h0jϕ2j0i≡ hϕ2i, in the region between the plates
we get:

hϕ2i ¼ hϕ2i0 þ
AD

z0

Z
∞

0

dkkD−2
Z

∞

0

du
Wðη; η; u; kÞ

c1ðuÞc2ðuÞe2u − 1

×

�
2þ

X
j¼1;2

cjðuÞe2ujz−zjj=z0
�
; ð4:1Þ

where

AD ¼ 2−Dπ−ðDþ1Þ=2

ΓððD − 1Þ=2Þ ; ð4:2Þ

and hϕ2i0 is the renormalized VEV in the boundary-free
geometry. The latter does not depend on the spatial point. In
the regions z < z1 and z > z2, the VEVs are obtained from
(3.12):

hϕ2ij ¼ hϕ2i0 þ AD

Z
∞

0

dkkD−2

×
Z

∞

0

dy
βjyþ 1

βjy − 1
e−2yjz−zjjWðη; η; yz0; kÞ; ð4:3Þ

with j ¼ 1 and j ¼ 2, respectively.
Alternative expressions are obtained by taking into

account that Wðη; η; u; kÞ ¼ 0 for u < z0k and
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Wðη; η; u; kÞ ¼ Uðη;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − z20k

2

q
Þ; ð4:4Þ

for u > z0k, where

Uðη; z0xÞ ¼ i½wðη; η; ixÞ − wðη; η;−ixÞ�: ð4:5Þ
By using the relation
Z

∞

0

dxxn−1
Z

∞

x
duf1ðuÞf2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − x2

p
Þ

¼
Z

∞

0

duunf1ðuÞ
Z

1

0

dssð1 − s2Þn=2−1f2ðusÞ; ð4:6Þ

the VEV of the field squared in the region between the
plates is presented as

hϕ2i ¼ hϕ2i0 þ
AD

zD0

Z
∞

0

duuD−1Zðη; uÞ

×
2þP

j¼1;2cjðuÞe2ujz−zjj=z0
c1ðuÞc2ðuÞe2u − 1

; ð4:7Þ

with the notation

Zðη; uÞ ¼
Z

1

0

dssð1 − s2ÞðD−3Þ=2Uðη; usÞ: ð4:8Þ

In a similar way, for the regions z < z1 and z > z2 from
(4.3) we get

hϕ2ij ¼ hϕ2i0 þ AD

Z
∞

0

dyyD−1Zðη; yz0Þ
βjyþ 1

βjy − 1
e−2yjz−zjj:

ð4:9Þ
The information on the background geometry is encoded in
the function Zðη; uÞ.
For the modes which satisfy the adiabatic condition in

the limit of small wavelengths, one has the asymptotic
condition (2.22). In this case we can obtain simple
asymptotic expressions for the VEV of the field squared
near the boundaries. From (2.22) it follows that for large x
one has Uðη; xÞ ≈ 2z0a1−D=x and, hence, for the function
Zðη; uÞ we get

Zðη; uÞ ≈ z0

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ΓðD=2ÞaD−1u
; ð4:10Þ

for u ≫ 1. In order to find the asymptotic behavior of the
VEV (4.7) near the boundary z ¼ zj, we note that in
this region the dominant contribution to the integral comes
from large values of u. By using (4.10), to the leading order
one gets

hϕ2i ≈ ð1 − 2δ0βjÞΓððD − 1Þ=2Þ
ð4πÞðDþ1Þ=2ðajz − zjjÞD−1 : ð4:11Þ

This leading term comes from the single plate part (4.9) and
coincides with that for the plate in Minkowski bulk with the

distance from the plate jz − zjj replaced by the proper
distance aðηÞjz − zjj for a fixed η. The latter property is
natural, because, due to the adiabatic condition, the
influence of the background gravitational field on the
modes with small wavelengths is weak and in the region
near the plates the main contribution to the VEVs comes
from those modes.
The regularization procedure we have employed for the

evaluation of the VEV of the field squared is based on the
point-splitting technique with combination with the sum-
mation formula (3.4). Instead, we could start directly from
the divergent expression hϕ2i ¼ Gðx; xÞ=2 with Gðx; xÞ,
obtained from (3.2) in the coincidence limit. In that
expression the integration over the angular part of k is
trivial. For the regularization, we can introduce a cutoff
function Fðα; γnÞ with a regularization parameter α,
Fð0; γnÞ ¼ 1 (for example, FðxÞ ¼ e−αx, α > 0), and then
apply Eq. (3.4) for the summation over n. For points outside
the plates, the boundary-induced contribution in the VEVof
the field squared is finite and the limit α → 0 can be put
directly. The corresponding result for the boundary-induced
part will coincide with the last term in Eq. (4.1). Another
regularization procedure for the VEVs is the local zeta
function technique (see, for instance, [17] and references
therein). In the formula for the VEV hϕ2i we can introduce
the factor γ−sn . For sufficiently large Res, the corresponding
expression is finite. For the analytic continuation to the
physical value s ¼ 0, we can again use Eq. (3.4). Now, in the
generalized Abel-Plana formula the singular points �ik
should be excluded by small semicircles in the right-half
plane. For points away from the plates, the additional
contributions to the boundary-induced parts coming from
the corresponding integrals vanish in the limit s → 0. The
boundary-induced parts are finite for s ¼ 0 and this value
can be directly substituted in the integrandwith the results in
agreement with those we have displayed before.

B. Energy-momentum tensor

Another important characteristic of thevacuum state is the
VEV of the energy-momentum tensor, h0jTμνj0i≡ hTμνi.
Given the Hadamard function and the VEV of the field
squared, it is evaluated by using the formula

hTμνi ¼
1

2
lim
x0→x

∂μ∂ 0
νGðx; x0Þ

þ ½ðξ − 1=4Þgμν∇l∇l − ξ∇μ∇ν − ξRμν�hϕ2i;
ð4:12Þ

where for the Ricci tensor one has

R00 ¼ D ~H0; Rii ¼ − ~H0 − ðD − 1Þ ~H2; ð4:13Þ
with i¼ 1;2;…;D, and the off-diagonal components vanish.
By taking into account the expression (3.13) for the

Hadamard function, the diagonal components of the
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vacuum energy-momentum tensor are presented as (no
summation over ν)

hTν
νi ¼ hTν

νi0 þ
AD

z0a2

Z
∞

0

dkkD−2
Z

∞

0

du

×
2Fνðη; u; kÞ þ Gνðη; u; kÞ

P
j¼1;2cjðuÞe2ujz−zjj=z0

c1ðuÞc2ðuÞe2u − 1
;

ð4:14Þ
where hTν

νi0 is the corresponding VEV in the boundary-free
geometry. In (4.14), we have defined the functions

F0ðη; u; kÞ ¼ W0ðη; u; kÞ − P̂Wðη; η; u; kÞ;
Flðη; u; kÞ ¼ ½−P̂1 − k2=ðD − 1Þ�Wðη; η; u; kÞ;
FDðη; u; kÞ ¼ ½−P̂1 þ ðu=z0Þ2�Wðη; η; u; kÞ; ð4:15Þ
for l ¼ 1;…; D − 1, and

Gνðη;u;kÞ¼Fνðη;u;kÞþbνðu=z0Þ2Wðη;η;u;kÞ; ð4:16Þ

where bν ¼ 1�4ξ for ν ≠ D, bD ¼ −1. For the operators in
(4.15), one has

P̂ ¼ ð1=4Þ∂2
η −Dðξ − ξDÞ ~H∂η þDξ ~H0;

P̂1 ¼
�
1

4
− ξ

�
∂2
η þ

�
D − 1

4
− ðD − 2Þξ

�
~H∂η

þ ξ½ ~H0 þ ðD − 1Þ ~H2�; ð4:17Þ
and

W0ðη; u; kÞ ¼ lim
η0→η

∂η∂η0Wðη; η0; u; kÞ: ð4:18Þ

Due to the homogeneity of the background spacetime, the
boundary-free contribution hTν

νi0 to (4.14) does not depend
on the spatial point (for the VEVof the energy-momentum
tensor in boundary-free FRW cosmologies see, for in-
stance, [1] and Refs. [18] for more recent discussions).
By using Eq. (2.10), it can be seen that

W0ðη; u; kÞ ¼
�
1

2
∂2
η þ

D − 1

2
~H∂η þ k2

−
u2

z20
þ a2ðm2 þ ξRÞ

�
Wðη; η; u; kÞ: ð4:19Þ

Substituting this into (4.15), we get an alternative expres-
sion for the function F0ðη; u; kÞ:

F0ðη; u; kÞ ¼ ðP̂0 þ k2 − u2=z20ÞWðη; η; u; kÞ; ð4:20Þ
with the operator

P̂0 ¼
1

4
∂2
η þDðξþ ξDÞ ~H∂η þ a2m2

þDξ½ ~H0 þ ðD − 1Þ ~H2�: ð4:21Þ

Note that one has GDðη; u; kÞ ¼ −P̂1Wðη; η; u; kÞ and this
function vanishes for the Minkowski bulk. Hence, in the
latter geometry the normal stress is homogeneous. In
general, this is not the case for the FRW background.
The problem under consideration is inhomogeneous

along the t and z directions. As a consequence of that, in
addition to the diagonal components, the vacuum energy-
momentum tensor has a nonzero off-diagonal component

hTD
0 i ¼ −

AD

z0a2

Z
∞

0

dkkD−2
Z

∞

0

duu

×

P
j¼1;2cjðuÞð−1Þj−1e2ujz−zjj=z0

c1ðuÞc2ðuÞe2u − 1
G0Dðη; u; kÞ;

ð4:22Þ

with the notation

G0Dðη; u; kÞ ¼ ½ð1=2 − 2ξÞ∂η þ 2ξ ~H�Wðη; η; u; kÞ: ð4:23Þ

This corresponds to the energy flux along the direction
perpendicular to the plates. If the Robin coefficients for the
boundaries are the same, one has c1ðuÞ ¼ c2ðuÞ. In this
special case, the energy flux hTD

0 i vanishes at z¼ðz1þz2Þ=2
and has opposite signs in the regions z < ðz1 þ z2Þ=2 and
z > ðz1 þ z2Þ=2. Note that we have the relation

∂ηðaD−1G0Dðη; u; kÞÞ ¼ −aDþ1GDðη; u; kÞ; ð4:24Þ

between the functions in the expressions for the normal
stress and the energy flux.
In the regions z < z1 and z > z2, for the VEV of the

energy-momentum tensor one has (no summation over ν)

hTν
νij ¼ hTν

νi0 þ
AD

a2

Z
∞

0

dkkD−2

×
Z

∞

0

dy
βjyþ 1

βjy − 1

Gνðη; yz0; kÞ
e2yjz−zjj

;

hTD
0 ij ¼ −

ð−1ÞjAD

a2

Z
∞

0

dkkD−2

×
Z

∞

0

dyy
βjyþ 1

βjy − 1

G0Dðη; yz0; kÞ
e2yjz−zjj

: ð4:25Þ

with j ¼ 1 and j ¼ 2, respectively.
By taking into account that

XD
ν¼0

Fνðη; u; kÞ ¼ fDðξ − ξDÞ½∂2
η þ ðD − 1Þ ~H∂η�

þ a2m2gWðη; η; u; kÞ; ð4:26Þ

it can be explicitly checked that the boundary-induced
contributions in (4.14) and (4.25), hTν

νib ¼ hTν
νi − hTν

νi0,
obey the trace relation
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hTμ
μib ¼ ½Dðξ − ξDÞ∇μ∇μ þm2�hϕ2ib; ð4:27Þ

where hϕ2ib ¼ hϕ2i − hϕ2i0 is the boundary-induced part
in the VEVof the field squared. For a conformally coupled
massless field, the boundary-induced contribution in the
VEVof the energy-momentum tensor is traceless. The trace
anomaly is contained in the boundary-free part only. As an
additional check, we can see that the boundary-induced
VEVs satisfy the covariant conservation equation
∇μhTμ

νib ¼ 0. For the geometry under consideration, it is
reduced to the following two equations:

1

aDþ1
∂ηðaDþ1hT0

0ibÞ þ ∂zhTD
0 ib − ~HhTμ

μib ¼ 0;

∂zhTD
Dib −

1

aDþ1
∂ηðaDþ1hTD

0 ibÞ ¼ 0: ð4:28Þ

In particular, the second equation directly follows from the
relation (4.24). This equation shows that the inhomogeneity
of the normal stress is related to the nonzero energy flux
along the direction normal to the plates.
Equivalent representations for the VEVs of the energy-

momentum tensor are obtained by using the relation (4.6).
In the way similar to that we have used for the VEVof the
field squared, for the diagonal components one gets (no
summation over ν)

hTν
νi ¼ hTν

νi0 þ
AD

zD0 a
2

Z
∞

0

du
uD−1

c1ðuÞc2ðuÞe2u − 1

×

�
2Zνðη; uÞ þ ½Zνðη; uÞ þ bνðu=z0Þ2Zðη; uÞ�

×
X
j¼1;2

cjðuÞe2ujz−zjj=z0
�
; ð4:29Þ

with the functions

Z0ðη; uÞ ¼ P̂0Zðη; uÞ − u2Yðη; uÞ=z20;

Zlðη; uÞ ¼
u2=z20
D − 1

Yðη; uÞ −
�
P̂1 þ

u2=z20
D − 1

�
Zðη; uÞ;

ZDðη; uÞ ¼ ðu2=z20 − P̂1ÞZðη; uÞ; ð4:30Þ
and

Yðη; uÞ ¼
Z

1

0

dss3ð1 − s2ÞðD−3Þ=2Uðη; usÞ: ð4:31Þ

For the off-diagonal component, we find

hTD
0 i ¼ −

AD

zD0 a
2

Z
∞

0

duuD
P

j¼1;2cjðuÞð−1Þj−1e2ujz−zjj=z0
c1ðuÞc2ðuÞe2u − 1

× ½ð1=2 − 2ξÞ∂η þ 2ξ ~H�Zðη; uÞ: ð4:32Þ
The dependence of the VEVs on the background geometry
enters through the functions Zðη; uÞ and Yðη; uÞ.

In the regions z < z1 and z > z2, the alternative expres-
sions for the VEVs are given by

hTν
νij ¼ hTν

νi0 þ
AD

a2

Z
∞

0

duuD−1

×
βjuþ 1

βju − 1

Zνðη; uz0Þ þ bνu2Zðη; uz0Þ
e2ujz−zjj

;

hTD
0 ij ¼ −

ð−1ÞjAD

a2

Z
∞

0

duuD

×
βjuþ 1

βju − 1

½ð1=2 − 2ξÞ∂η þ 2ξ ~H�Zðη; uz0Þ
e2ujz−zjj

;

ð4:33Þ
with j ¼ 1 and j ¼ 2, respectively. Note that for the
Minkowski bulk the normal stress in the geometry of a
single plate vanishes.
Under the adiabatic condition (2.22), we can find simple

asymptotic expressions of the VEVs near the boundaries
for general case of the scale factor. By taking into account
that the dominant contribution to the integral in (4.29)
comes from large values of u and using the asymptotic
expression (4.10), near the plate at z ¼ zj, to the leading
order one finds (no summation over ν)

hTν
νi ≈ ð2δ0βj − 1Þ DΓððDþ 1Þ=2Þðξ − ξDÞ

2DπðDþ1Þ=2ðajz − zjjÞDþ1
; ð4:34Þ

for ν ¼ 0; 1;…; D − 1. For the normal stress, the leading
term vanishes and it is needed to keep the next-to-leading
term. It is more convenient to find the corresponding
asymptotic expression by using the second equation in
(4.28) and the asymptotic expression for the energy flux.
For the latter from (4.32) and (4.10), we get

hTD
0 i ≈ ð2δ0βj − 1Þ 2ð−1ÞjDðξ − ξDÞH

ð4πÞðDþ1Þ=2ðajz − zjjÞD
ΓððDþ 1Þ=2Þ:

ð4:35Þ
Combining this with (4.28), one obtains the asymptotic for
the normal stress:

hTD
Di ≈ ð1 − 2δ0βjÞ

Dðξ − ξDÞΓððD − 1Þ=2Þ
ð4πÞðDþ1Þ=2ðajz − zjjÞD−1

ä
a
: ð4:36Þ

The leading terms in the near-plate asymptotic expansions
for the diagonal components with ν ≠ D, given by (4.34),
coincide with the corresponding expressions in the
Minkowski bulk, with the distance jz − zjj replaced by
the proper distance aðηÞjz − zjj. For the Minkowski bulk,
the normal stress hTD

Di does not depend on the coordinate z.
This property is already seen from the second equation in
(4.28), by taking into account that in the Minkowski bulk
hTD

0 i ¼ 0. Hence, we see that the cosmological expansion
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essentially changes the behavior of the normal stress. In
particular, near the plates the normal stress has different
signs for accelerated and deccelerated expansions.
Eqs. (4.34)–(4.36) present the leading-order terms in the
asymptotic expansions of the VEVs over the distance from
the plate z ¼ zj. These leading terms do not depend on
the fieldmass andvanish for a conformally coupled field.The
next-to-leading order terms, in general, will depend on the
mass they do not vanish in the conformally coupled case.
As is seen from Eqs. (4.34)–(4.36), the VEV of the

energy-momentum tensor diverges on the boundaries.
These types of divergences are well known in quantum
field theory with boundaries and they have been inves-
tigated for various bulk and boundary geometries. For
cosmological backgrounds, an essential difference from the
corresponding problem in the Minkowski bulk is that the
normal stress diverges on the boundary. For the Minkowski
bulk, it remains finite everywhere. Moreover, the corre-
sponding VEV does not depend on z in the region between
the plates and vanishes in the regions z < z1 and z > z2.
From Eqs. (4.34)–(4.36) it follows that near the plates the
VEVs for a field with ξ ≠ ξD have opposite signs for
Dirichlet (βj ¼ 0) and non-Dirichlet boundary conditions.
On the base of the results given above, we can investigate

the vacuum densities induced by a thick domain wall in the
background of FRW spacetime. This is done in the way
similar to that used in [19] for a thick brane on the anti–de
Sitter bulk. For a thick domain wall with the thickness 2b,
we write the line element for the interior geometry in the
form ds2 ¼ a2ðηÞ½euðzÞdη2 − evðzÞdx2

∥ − ewðzÞdz2�, jzj < b.
In the regions jzj > b, the line element is given by (2.1).
The functions uðzÞ, vðzÞ and wðzÞ are continuous on the
boundaries z ¼ −b and z ¼ b. For the symmetric domain
wall, these functions are even functions of z. It can be
shown that (the details will be presented elsewhere) the
VEVs in the region z > b are given by the expressions (4.3)
and (4.25) with zj ¼ b and with the Robin coefficient βj
being a function of the quantum numbers k and λ. This
function is determined by the matching conditions for the
scalar field modes in the interior and exterior regions.

C. The Casimir force

In the geometry of a single plate the vacuum pressures on
the right- and left-hand sides of the plate compensate each
other and the corresponding net force is zero. Consequently,
for the two plates geometry, the resulting force per unit
surface is determined by the part in the normal stress hTD

Di
induced by the second plate:

Pj ¼ −ðhTD
Di − hTD

DijÞjz¼zj ; ð4:37Þ

where hTD
Di is the normal stress in the region between

the plates. By taking into account the expressions given
above, we get

Pj ¼
AD

z0a2

Z
∞

0

dkkD−2

×
Z

∞

0

du
½2þ cjðuÞ þ 1=cjðuÞ�P̂1 − 2u2=z20

c1ðuÞc2ðuÞe2u − 1

×Wðη; η; u; kÞ: ð4:38Þ
The force is attractive for Pj < 0 and repulsive for
Pj > 0. In the problem on the Minkowski bulk one has
P̂1Wðη; η; u; kÞ ¼ 0 and the first term in the numerator of the
integrand in (4.38) vanishes. Hence, the Casimir force for
the Minkowski bulk is the same for both the plates,
regardless of the values of the coefficients in the Robin
boundary conditions. This is not the case for general FRW
spacetime.
An alternative representation for the Casimir force is

obtained by using the expression (4.29) for the normal
stress:

Pj ¼
AD

zD0 a
2

Z
∞

0

duuD−1

×
½2þ cjðuÞ þ 1=cjðuÞ�P̂1 − 2u2=z20

c1ðuÞc2ðuÞe2u − 1
Zðη; uÞ; ð4:39Þ

with the function Zðη; uÞ defined by (4.8). Depending on
the Robin coefficients and on the vacuum state, the forces
corresponding to (4.39) can be either attractive or repulsive.
In particular, one can have the situation when the forces are
repulsive at small separations between the plates and
attractive at large separation.
Assuming that the scalar modes satisfy the adiabatic

condition with the small wavelength asymptotic (2.22), we
can find the asymptotic of the Casimir force at small
separation between the plates. Under the assumption

1=ðaz0Þ ≫ m;
ffiffiffiffiffiffiffi
j _Hj

q
; H, the dominant contribution in

(4.39) comes from the second term in the numerator of
the integrand. By using the asymptotic (4.10), to the
leading order one gets

Pj ≈ −
2ð4πÞ−D=2

ðz0aÞDþ1ΓðD=2Þ
Z

∞

0

du
uD

c1ðuÞc2ðuÞe2u − 1
:

ð4:40Þ
The expression in the right-hand side coincides with the
Casimir pressure for the plates in the Minkowski spacetime
for a massless scalar field.

V. SPECIAL CASES

In this section, we consider some special cases of the
general results given above. For the Minkowski bulk aðtÞ ¼
1 and for the modes realizing the standard Minkwoski
vacuum, one has fðη;γÞ¼e−iωη=

ffiffiffiffiffiffi
2ω

p
withω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þm2

p
,

and wðη; η; γÞ ¼ 1=ω. From here it follows that
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Uðη; z0xÞ ¼ 0 for x < m and Uðη; z0xÞ ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

p
for

x > m. For the function appearing in the expressions (4.1),
(4.14) and (4.38), one gets Wðη; η; u; kÞ ¼ 0 for u <
z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and

Wðη; η; u; kÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=z20 − k2 −m2

p ð5:1Þ

for u > z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. In this special case, the function

Zðη; uÞ in the expressions for the VEVs is simplified to

Zðη;uÞ¼
ffiffiffi
π

p
ΓððD−1Þ=2Þz0
ΓðD=2Þu ½1− ðz0m=uÞ2�D=2−1; ð5:2Þ

for u ≥ z0m and Zðη; uÞ ¼ 0 for u < z0m. Substituting the
expression (5.2) into the general formulas given above, we
obtain the VEVs for the Robin plates in Minkowski
spacetime (see [14] for the VEVs in the massless case
and [20] for a massive scalar field. Note that in [20] the
VEVs in theMinkowski bulk are obtained as a limiting case
of the corresponding problem with two uniformly accel-
erated plates moving through the Fulling-Rindler vac-
uum state).

A. Conformally coupled massless field

For a conformally coupled massless field, one has ξ ¼
ξD and m ¼ 0. As it follows from (2.12), the general
solution for the function fðη; γÞ has the form

fðη; γÞ ¼ að1−DÞ=2ffiffiffiffiffi
2γ

p ðc1e−iγη þ c2eiγηÞ; ð5:3Þ

where the factor 1=
ffiffiffiffiffi
2γ

p
is extracted for the further conven-

ience. One of the coefficients is determined by the normali-
zation condition, whereas the second one is fixed by the
choice of the vacuum state. For a vacuum state, we will take
the state corresponding to the standard Minkowskian vac-
uum in the adiabatic limit aðηÞ ¼ const. This corresponds to
the choice c2 ¼ 0 and from the normalization condition
(2.18) one gets jc1j2 ¼ 1.
For the function Wðη; η0; u; kÞ in the expressions of the

VEVs, we findWðη; η0; u; kÞ ¼ 0 in the region u < z0k and

Wðη; η0; u; kÞ ¼ 2a1−D
cosh½ðη − η0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=z20 − k2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2=z20 − k2
p ; ð5:4Þ

for u > z0k and, hence, Uðη; xÞ ¼ 2a1−Dz0=x. From (4.7),
for the VEV of the field squared one finds

hϕ2i ¼ hϕ2i0 þ
ðaz0Þ1−D

ð4πÞD=2ΓðD=2Þ

×
Z

∞

0

duuD−2 2þ
P

j¼1;2cjðuÞe2ujz−zjj=z0
c1ðuÞc2ðuÞe2u − 1

: ð5:5Þ

In a similar way, we can see that the VEV of the energy-
momentum tensor takes the form

hTμ
νi ¼ hTμ

νi0 −
diagð1; 1;…; 1;−DÞ

ð4πÞD=2ΓðD=2þ 1Þðaz0ÞDþ1

×
Z

∞

0

du
uD

c1ðuÞc2ðuÞe2u − 1
: ð5:6Þ

In this special case the vacuum energy-momentum tensor
is spatially homogeneous and diagonal. Of course, the
boundary-induced contributions in (5.5) and (5.6) could be
directly obtained from the corresponding expressions in the
Minkowski bulk by using the standard result for confor-
mally related problems (see, for instance, [1]).

B. de Sitter bulk

As a next application we consider the case of de Sitter
bulk with aðtÞ ¼ eHt, H ¼ const (the renormalized expect-
ation value of the energy-momentum tensor for an arbitrary
homogeneous and isotropic physical initial state of a scalar
field in de Sitter spacetime, in the absence of boundaries,
has been investigated in [21]). The corresponding scale
factor in conformal time has the form aðηÞ ¼ −1=ðHηÞ
with −∞ < η ≤ 0. In this case one has ~H ¼ −1=η
and R¼DðDþ1ÞH2. The general solution of Eq. (2.10)

is the linear combination of the functions jηjD=2Hð1Þ
ν ðγjηjÞ

and jηjD=2Hð2Þ
ν ðγjηjÞ, with Hð1;2Þ

ν ðxÞ being the Hankel
functions and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − 4DðDþ 1Þξ −m2=H2

q
: ð5:7Þ

For further convenience, we write the Hankel functions in
terms of the Macdonald function KνðxÞ [22]:

fðη; γÞ ¼ jηjD=2ffiffiffi
π

p
αðD−1Þ=2 ½d1Kνðγjηje−πi=2Þ þ d2Kνðγjηjeπi=2Þ�;

ð5:8Þ

where the parameter ν is either positive or purely imagi-
nary. From the condition (2.18) we get the relation

jd1j2 − jd2j2 ¼ 1; ð5:9Þ

between the coefficients.
By using the relation [22]

Kνðγjηje�πiÞ ¼ e∓νπiKνðγjηjÞ ∓ πiIνðγjηjÞ; ð5:10Þ

for the function appearing in the expressions of the VEVs
we get Wðη; η0; u; kÞ ¼ 0 for u < kz0 and
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Wðη; η0; u; kÞ ¼ 2HD−1jηη0jD=2fiπðd1d�2 − d�1d2ÞIνðyÞIνðy0Þ
þ ðjd1j2 þ jd2j2 þ eνπid1d�2 þ e−νπid�1d2Þ½I−νðyÞKνðy0Þ þ Iνðy0ÞKνðyÞ�g; ð5:11Þ

for u > kz0, where

y ¼ jηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=z20 − k2

q
; y0 ¼ jη0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=z20 − k2

q
: ð5:12Þ

For the function in (5.11), one has

I−νðyÞKνðy0Þ þ Iνðy0ÞKνðyÞ

¼ −
π

2

IνðyÞIνðy0Þ − I−νðyÞI−νðy0Þ
sin ðνπÞ ; ð5:13Þ

which shows that this function is real for both the real and
purely imaginary values for ν.
Note that in the expressions of the VEVs only the relative

phase of the coefficients d1 and d2 is relevant and, hence,
by taking into account the relation (5.9), we can take the
parametrization

d1 ¼ cosh α; d2 ¼ eiβ sinh α; ð5:14Þ
in terms of new real parameters α and 0 ≤ β < 2π. With
this parametrization, for the function (5.11) one gets

Wðη; η0; u; kÞ ¼ 2HD−1jηη0jD=2fπ sinhð2αÞ sin βIνðyÞIνðy0Þ
þ ½coshð2αÞ þ sinhð2αÞ cos ðβ − νπÞ�
× ½I−νðyÞKνðy0Þ þ Iνðy0ÞKνðyÞ�g: ð5:15Þ

The modes (5.8) correspond to the two-parameter ðα; βÞ
family of vacuum states in de Sitter spacetime. As it has
been discussed in [23], in the absence of the plates the de
Sitter invariant vacuum states correspond to β ¼ 0.
The Bunch-Davies (or Euclidean) vacuum state [24] is a
special case of de Sitter invariant vacua and corresponds to
α ¼ 0. In general, one has a one-parameter family of de
Sitter invariant vacuum states specified by the parameter α
(α states or α vacua in de Sitter space, for the discussion of
the role of these states in inflationary models see, for
example, [25]).
The transformations of the boundary-induced contribu-

tions in the VEVs, we have described above, are valid for
dS invariant vacua only. In this special case the function
(5.15) takes the form

Wðη; η0; u; kÞ ¼ 2HD−1bðαÞjηη0jD=2½I−νðyÞKνðy0Þ
þ Iνðy0ÞKνðyÞ�; ð5:16Þ

with

bðαÞ ¼ coshð2αÞ þ sinhð2αÞ cos ðνπÞ: ð5:17Þ

From here it follows that the VEVs of the field squared and
of the energy-momentum tensor for a dS invariant vacuum
state with a given α are obtained from the corresponding
VEVs in theBunch-Davies vacuum state, investigated in [4],
multiplying by the factor bðαÞ. For real values of the
parameter ν, this factor is always positive. For purely
imaginary ν, the factor bðαÞ can be negative. In this case,
compared with the Bunch-Davies vacuum state, the Casimir
forces for the corresponding α vacuum change the sign.

VI. CONCLUSION

We have studied the scalar Casimir effect for the
geometry of two parallel plates on the spatially flat
FRW background for a general case of the scale factor.
On the plates the field obeys the Robin boundary con-
ditions (2.6) with the coefficients proportional to the scale
factor. In the model under consideration, all the properties
of the vacuum state are encoded in two-point functions and,
as the first step in the investigation of the VEVs for physical
observables bilinear in the field operator, we have evaluated
the Hadamard function. By using the Abel-Plana-type
summation formula for the eigenvalues of the quantum
number λ, the boundary-induced contribution is explicitly
extracted. This contribution in the geometry of a single
plate and in the region between two plates is given by the
last terms in (3.12) and (3.13), respectively. In the corre-
sponding evaluation we have not fixed the vacuum state. In
order to specify the vacuum state, an additional condition
should be imposed on the function fðη; γÞ appearing in the
expression (2.17) for the scalar modes. In particular, for the
modes obeying the adiabatic condition this function has
the small wavelength asymptotic (2.22). In the limit of a
constant scale factor, these modes approach the positive
energy solutions used for the quantization of a scalar field
in the Minkowski bulk.
As important local characteristics of the vacuum state,

we have considered the VEVs of the field squared and of
the energy-momentum tensor. The VEVof the field squared
is given by the expression (4.7) in the region between the
plates and by (4.9) in the regions z < z1 and z > z2. For
points away from the boundaries the renormalization is
reduced to that for the boundary free-part hϕ2i0. The
information on the background geometry is encoded in
the function Zðη; uÞ, defined by the relation (4.8). For the
vacuum state realized by the modes obeying the adiabatic
condition, the leading term in asymptotic expansion of the
field squared near the plates is given by the expression
(4.11). It is obtained from the corresponding asymptotic in
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the problem on Minkowski bulk replacing the distance
from the plate by the proper distance. Near the plates the
dominant contribution to the VEVs come from the modes
with small wavelengths, the influence of the gravitational
field on which is weak.
The diagonal components of the VEV of the energy-

momentum tensor in the region between the plates are
given by the formula (4.29), where the functions in the
boundary-induced contribution are defined by (4.30).
Unlike to the case of the Minkowski bulk, the correspond-
ing normal stress is inhomogeneous. Another feature of
the Casimir effect in the expanding bulk is the presence of
the nonzero energy flux along the direction normal to the
plates. This flux is described by the off-diagonal compo-
nent of the vacuum energy-momentum tensor, given by the
expression (4.32). Depending on the Robin coefficients and
on the vacuum state, the flux can be either positive or
negative. For boundaries with the same Robin coefficients,
the energy flux vanishes on the plane z ¼ ðz1 þ z2Þ=2 and
has opposite signs in the right-hand and left-hand regions
with respect to this plane. In the regions z < z1 and z > z2
the vacuum energy-momentum tensor coincides with that
for the geometry of a single plate and is given by the
formulas (4.33). The corresponding normal stress and
the energy flux vanish in the Minkowskian limit. Under
the adiabatic condition for the scalarmodes, the leading term
in the near-plate expansion of the diagonal components hTν

νi
for ν ≠ D coincides with that for plates in the Minkowski
spacetime. For the energy flux and the normal stress, the
corresponding asymptotics are given by the expressions
(4.35) and (4.36). In particular, for the normal stress the
asymptotic behavior on the FRW bulk is completely differ-
ent from that for theMinkowski spacetime. In the latter case
the normal stress is finite on the plates.
The Casimir force per unit surface of the plate at z ¼ zj

is determined by the expression (4.38). An important
difference from the corresponding result in the
Minkowski bulk is that for a scalar field with β1 ≠ β2
the forces acting on the right and left plates, in general, are
different. Depending on the Robin coefficients and on the
vacuum state under consideration, these forces can be either

attractive or repulsive. Assuming that the modes used in the
quantization procedure obey the adiabatic condition, for the
leading term in the asymptotic expansion of the Casimir
force at small distances between the plates one gets the
expression (4.40).
In Section V, two special cases of general results are

discussed. In the first example we have considered a
conformally coupled massless field assuming that the field
is prepared in the vacuum state that corresponds to the
Minkowskian vacuum in the adiabatic limit. In this case,
the boundary-induced contributions to the VEVs of the
field squared and of the energy-momentum tensor are
obtained from the corresponding VEVs in the Minkowski
bulk by using the standard relation for conformally coupled
problems. In particular, the vacuum energy-momentum
tensor is diagonal. In the second example, the de Sitter
spacetime is considered as a background geometry. For this
geometry, one has a one-parameter family of the de Sitter
invariant vacuum states specified by the real parameter α.
The corresponding function Wðη; η0; u; kÞ, appearing in the
expressions for the VEVs, is given by the expression (5.16)
with the coefficient bðαÞ defined by (5.17). In the special
case α ¼ 0, we obtain the results for the Bunch-Davies
vacuum state previously discussed in the literature. For
imaginary values of the parameter ν, depending on the
parameter α, the Casimir forces for the α vacua may have
opposite signs compared with the Bunch-Davies vacuum.
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